SAMPLE TEST \# 4

Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.)

Ex. 1. Transform the following system of equations into a single second order equation in terms of x_{1}. Then give the initial condition for the resulted equation that corresponds to the given initial conditions. Do not solve.
$x_{1}^{\prime}=-0.5 x_{1}+2 x_{2} ; \quad x_{2}^{\prime}=-2 x_{1}-0.5 x_{2} ; \quad x_{1}(0)=-2, \quad x_{2}(0)=2$.
Solution: From the first equation we get $x_{2}=0.5 x_{1}^{\prime}+0.25 x_{1}$. Substituting this to the second equation gives $\left(0.5 x_{1}^{\prime}+0.25 x_{1}\right)^{\prime}=-2 x_{1}-0.5\left(0.5 x_{1}^{\prime}+0.25 x_{1}\right)$, which in turn leads to $0.5 x_{1}^{\prime \prime}+0.25 x_{1}^{\prime}=-2 x_{1}-0.25 x_{1}^{\prime}-0.125 x_{1}$. Multiplying this equation by 8 produces $4 x_{1}^{\prime \prime}+2 x_{1}^{\prime}=-16 x_{1}-2 x_{1}^{\prime}-x_{1}$, so $4 x_{1}^{\prime \prime}=-4 x_{1}^{\prime}-17 x_{1}$.

Clearly $x_{1}(0)=-2$. To calculate $x_{1}^{\prime}(0)$ we put $t=0$ to the first equation and use given boundary values: $x_{1}^{\prime}(0)=-0.5 x_{1}(0)+2 x_{2}(0)=-0.5(-2)+2 \cdot 2=5$.

Answer: $4 x_{1}^{\prime \prime}=-4 x_{1}^{\prime}-17 x_{1} ; \quad x_{1}(0)=-2 ; \quad x_{1}^{\prime}(0)=5$.
Ex. 2. Use eigenvalues and eigenvectors to find the general solution of the given systems of differential equations. The solution must be expressed in terms of real-valued functions.
(a) $\mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right) \mathbf{x}$

Solution: The eigenvalues are obtained as roots of the equation
$\operatorname{det}\left(\begin{array}{cc}1-r & -2 \\ 3 & -4-r\end{array}\right)=0$, that is, $(1-r)(-4-r)+6=0$, or $r^{2}+3 r-4+6$. Hence, $(r+2)(r+1)=0$, leading to the eigenvalues -1 and -2.
The eigenvalue $r=-1$ leads to the eigenvector equation $\left(\begin{array}{cc}2 & -2 \\ 3 & -3\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}$, so $2 \xi_{1}-2 \xi_{2}=0$. Thus, $\xi_{2}=\xi_{1},\binom{\xi_{1}}{\xi_{2}}=\binom{\xi_{1}}{\xi_{1}}=\xi_{1}\binom{1}{1}$, and the eigenvector is $\binom{1}{1}$.
The eigenvalue $r=-2$ leads to the eigenvector equation $\left(\begin{array}{cc}3 & -2 \\ 3 & -2\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}$, so $3 \xi_{1}-2 \xi_{2}=0$. Thus, $\xi_{2}=1.5 \xi_{1},\binom{\xi_{1}}{\xi_{2}}=\binom{\xi_{1}}{1.5 \xi_{1}}=\xi_{1}\binom{1}{1.5}$, and the eigenvector is $\binom{1}{1.5}$.
Answer: $\mathbf{x}=c_{1}\binom{1}{1} e^{-t}+c_{2}\binom{1}{1.5} e^{-2 t}$.
(b) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 2 \\ -5 & -1\end{array}\right) \mathbf{x}$

Solution: The eigenvalues are obtained as roots of the equation
$\operatorname{det}\left(\begin{array}{cc}1-r & 2 \\ -5 & -1-r\end{array}\right)=0$, that is, $(1-r)(-1-r)+10=0$, or $r^{2}-1+10=0$. Hence, we have two complex the eigenvalues: ± 3.
Eigenvalue $r=3 i$ leads to eigenvector equation $\left(\begin{array}{cc}1-3 i & 2 \\ -5 & -1-3 i\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}$, so $(1-3 i) \xi_{1}+2 \xi_{2}=0$. Thus, $\xi_{2}=(1.5 i-0.5) \xi_{1}$,

$$
\binom{\xi_{1}}{\xi_{2}}=\binom{\xi_{1}}{(1.5 i-0.5) \xi_{1}}=\xi_{1}\binom{1}{1.5 i-0.5}
$$

and the eigenvector is $\binom{1}{1.5 i-0.5}$. Since the real part of the eigenvalue is 0 , this leads to the complex solution $\mathbf{x}^{(1)}(t)=\binom{1}{1.5 i-0.5} e^{0 t}(\cos 3 t+i \sin 3 t)$. Therefore $\mathbf{x}^{(1)}(t)=\binom{\cos 3 t+i \sin 3 t}{(-0.5 \cos 3 t-1.5 \sin 3 t)+i(1.5 \cos 3 t-0.5 \sin 3 t)}$ and

$$
\mathbf{x}^{(1)}(t)=\binom{\cos 3 t}{-0.5 \cos 3 t-1.5 \sin 3 t}+i\binom{\sin 3 t}{1.5 \cos 3 t-0.5 \sin 3 t}
$$

Answer: $\mathbf{x}(t)=c_{1}\binom{\cos 3 t}{-0.5 \cos 3 t-1.5 \sin 3 t}+c_{2}\binom{\sin 3 t}{1.5 \cos 3 t-0.5 \sin 3 t}$.
(c) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}6 & -3 \\ 3 & 0\end{array}\right) \mathbf{x}$

Solution: The eigenvalues are obtained as roots of the equation $\operatorname{det}\left(\begin{array}{cc}6-r & -3 \\ 3 & -r\end{array}\right)=0$, that is, $(6-r)(-r)+9=0, r^{2}-6 r+9=0$, or $(r-3)^{2}=0$. Hence, we have one double eigenvalue: $r=3$.
The first eigenvector equation is $\left(\begin{array}{cc}3 & -3 \\ 3 & -3\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}$, so $3 \xi_{1}-3 \xi_{2}=0$. Thus, $\xi_{2}=\xi_{1},\binom{\xi_{1}}{\xi_{2}}=\binom{\xi_{1}}{\xi_{1}}=\xi_{1}\binom{1}{1}$, and the eigenvector is $\xi=\binom{1}{1}$. This gives the first fundamental solution $\mathbf{x}^{(1)}=\xi e^{3 t}=\binom{1}{1} e^{3 t}$. Recall that the second fundamental solution is of the form $\mathbf{x}^{(2)}=\xi t e^{3 t}+\eta e^{3 t}$, where η is one of the solutions of the system $\left(\begin{array}{ll}3 & -3 \\ 3 & -3\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\xi$, that is, $\left(\begin{array}{cc}3 & -3 \\ 3 & -3\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{1}$. Hence, $3 \eta_{1}-3 \eta_{2}=1$, that is, $\eta_{1}=\eta_{2}+1 / 3$. So, $\eta=\binom{\eta_{2}+1 / 3}{\eta_{2}}=\eta_{2}\binom{1}{1}+\binom{1 / 3}{0}$. One of these solutions is when $\eta_{2}=0$, giving $\eta=\binom{1 / 3}{0}$.

$$
\text { Answer: } \mathbf{x}(t)=c_{1}\binom{1}{1} e^{3 t}+c_{2}\left[\binom{1}{1} t e^{3 t}+\binom{1 / 3}{0} e^{3 t}\right]
$$

Ex. 3. Solve the following boundary value problem or show that it does not have a solution. $y^{\prime \prime}+4 y=0, y(0)=0, y(\pi)=0$.

Solution: The characteristic function of our equation is $r^{2}+4=0$ and has solution $r= \pm 2 i$. Thus, the general solution of the equation is of the form $y(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. For $t=0$ this leads to the equation $y(0)=c_{1} \cos 0+c_{2} \sin 0$, that is, $0=c_{1} 1+c_{2} 0$. Thus $c_{1}=0$ and $y(t)=c_{2} \sin 2 t$. For $t=\pi$ this leads to the equation $y(\pi)=c_{2} \sin 2 \pi$, that is, $0=c_{2} 0$, which holds for any value of c_{2}. Thus, the boundary value problem has infinitely many solutions, each of the form $y(t)=c \sin 2 t$, where c is an arbitrary constant.

Ex. 4. Determine whether the method of separation of variables can be used to replace the partial differential equation $u_{x x}+u_{x t}+u_{t}=0$ by a pair of ordinary differential equations. If so, find the ordinary differential equations. Do not solve them.

Solution: We assume that u is of the form $u(x, t)=X(x) T(t)$. Then we have $u_{x x}=X^{\prime \prime} T$, $u_{x t}=X^{\prime} T^{\prime}$, and $u_{t}=X T^{\prime}$. Substituting this to the equation gives $X^{\prime \prime} T+X^{\prime} T^{\prime}+X T^{\prime}=0$. So, $X^{\prime \prime} T+\left(X^{\prime}+X\right) T^{\prime}=0$ and $X^{\prime \prime} T=-\left(X^{\prime}+X\right) T^{\prime}$. Thus, $\frac{X^{\prime \prime}}{X^{\prime}+X}=-\frac{T^{\prime}}{T}$ and this quantity is equal to a constant, which we denote by λ. Thus the method of separation of variables can be used to our partial differential equation and it leads to the pair of ordinary differential equations $X^{\prime \prime}=\lambda\left(X^{\prime}+X\right)$ and $T^{\prime}=-\lambda T$.

Ex. 5. Solve the heat equation: $u_{t}=9 u_{x x}, u(0, t)=u(2, t)=0, u(x, 0)=13$ for $0<x<2$.
Solution: The general solution of the heat equation

$$
u_{t}=\alpha^{2} u_{x x}, u(0, t)=u(L, t)=0, u(x, 0)=f(x) \text { for } 0<x<L
$$

is given by $u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \sin \frac{n \pi x}{L}$, where $c_{n}=\frac{2}{L} \int_{o}^{L} f(x) \sin \frac{n \pi x}{L} d x$. In our case $L=2$ and $\alpha^{2}=9$, reducing the solution to $u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2}\left(9 \pi^{2} / 4\right) t} \sin \frac{n \pi x}{2}$, where

$$
\begin{aligned}
c_{n}=\frac{2}{2} \int_{0}^{2} u(x, 0) \sin \frac{n \pi x}{2} d x & =\int_{0}^{2} 13 \sin \frac{n \pi x}{2} d x \\
& =-\left.13 \frac{2}{n \pi} \cos \frac{n \pi x}{2}\right|_{0} ^{2} \\
& =-\frac{26}{n \pi}(\cos n \pi-\cos 0) \\
& =\frac{26}{n \pi}(\cos 0-\cos n \pi)=\left\{\begin{array}{cc}
0 & n \text { is even } \\
52 /(n \pi) & n \text { is odd }
\end{array} .\right.
\end{aligned}
$$

This leads us to a final solution

$$
u(x, t)=\sum_{n=1,3,5, \ldots}^{\infty} \frac{52}{n \pi} e^{-n^{2}\left(9 \pi^{2} / 4\right) t} \sin \frac{n \pi x}{2}=\sum_{k=0}^{\infty} \frac{52}{(2 k+1) \pi} e^{-(2 k+1)^{2}\left(9 \pi^{2} / 4\right) t} \sin \frac{(2 k+1) \pi x}{2}
$$

where either of the two formats is acceptable as an answer.

