NAME (print): _

MATH 261.005 Instr. K. Ciesielski Fall 2009

SAMPLE FINAL TEST

This is en excerpt from the previous Sample Tests. The actual Final Test will be considerably shorter.

Test #1 material

Ex. 1. Each of the following differential equations is of one of the following form: linear, separable, homogenous, Bernouli, or exact. Solve each of these using appropriate method.

(a) $y' = \frac{e^{-x} + e^x}{3 + 4y}, \ y(0) = 1$ (b) $\frac{y}{x} + 6x + (\ln x - 2)\frac{dy}{dx} = 0, \ x > 0$ (c) $ty' - y = t^2 e^{-t}, \ t > 0$ (d) $\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$ (f) $\frac{dy}{dx} + y = \frac{1}{1 + e^x}$

Ex. 2. Without solving, determine the largest interval in which the initial value problem $(x^2 - x - 6)y' + y \cos x = e^x$, y(2) = 0, has a unique solution.

Ex. 3. A tank with a capacity of 500 gal originally contains 200 gal of wather with 100 lb of salt in solution. Water containing 1 lb of salt per gallon is entering at a rate of 3 gal/min, and the mixture is allowed to flaw out of the tank at the rate of 2 gal/min. Write down an initial value problem (ODE plus initial condition) giving the amount of salt in the tank at any time during the first hour. **Do not solve the equation.** Remember to give the initial condition.

Test #2 material

Ex. 4. Find the general solution for each of the following differential equations:

- (a) y'' + 10y' + 25 = 0
- (b) y'' + 10y' + 25y = 0
- (c) y'' + 10y' + 29y = 0
- (d) y'' + 10y' + 24y = 0

Ex. 5. Solve the initial value problem y'' + y' - 2y = 2t, y(0) = 0, y'(0) = 1.

Ex. 6. Find a particular solution of the equation $y'' + 3y = 3\sin 2t$.

Ex. 7. Given that $y_1(x) = e^x$ is a solution of the ODE (x - 1)y'' - xy' + y = 0, x > 0, use the method of reduction of order to find a second independent solution of this equation.

Ex. 8. Use the variation of parameters method to find a particular solution of the equation $y'' + 4y' + 4y = t^{-2}e^{-2t}$, t > 0. (No credit for the solution found by another method.)

Test #3 material

Ex. 9. Find the general solution for the following differential equations:

(a)
$$y^{(8)} - 18y^{(4)} + 81y = 0$$

(b)
$$y^{(4)} - 4y'' = t^2 + e^t$$

Ex. 10. Use power series with $x_0 = 1$ to solve y'' - xy' - y = 0. Find the recurrence formula and use it to find the first two non-zero terms in each of two independent solutions.

Ex. 11. Use Laplace transforms to solve y'' + 3y' + 2y = 1, y(0) = 1, y'(0) = 0. Recall that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$ for s > a.

Test #4 material

Ex. 12. Use eigenvalues and eigenvectors to find the general solution of the given systems of differential equations. The solution must be expressed in terms of real-valued functions.

(a)
$$\mathbf{x}' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} \mathbf{x}$$

(b) $\mathbf{x}' = \begin{pmatrix} 1 & 2 \\ -5 & -1 \end{pmatrix} \mathbf{x}$
(c) $\mathbf{x}' = \begin{pmatrix} 6 & -3 \\ 3 & 0 \end{pmatrix} \mathbf{x}$

Ex. 13. Solve the following boundary value problem or show that it does not have a solution. $y'' + 4y = 0, y(0) = 0, y(\pi) = 0.$

Ex. 14. Determine whether the method of separation of variables can be used to replace the partial differential equation $u_{xx} + u_{xt} + u_t = 0$ by a pair of ordinary differential equations. If so, find the ordinary differential equations. Do not solve them.

Ex. 15. Solve the heat equation: $u_t = 9u_{xx}$, u(0,t) = u(2,t) = 0, u(x,0) = 13 for 0 < x < 2.