MATH 251.007
Instr. K. Ciesielski
Fall 2007

SAMPLE FINAL TEST

Solve the following exercises. Show your work.

Ex. 1. Write the parametric equations of the line that passes through the point $P(11,13,-7)$ and is perpendicular to the plane with the equation: $x-2 z=17$.

Ex. 2. Let $\mathbf{a}=\langle 0,1,2\rangle, \mathbf{b}=\langle-1,0,7\rangle$, and $\mathbf{c}=\langle 2,3,-1\rangle$. Evaluate $(\mathbf{a} \cdot \mathbf{b}) \cdot(\mathbf{b} \times \mathbf{c})$.
Ex. 3. Let $\mathbf{v}(t)=\mathbf{i}(t+1)^{-1}+\mathbf{k} t^{3}$ be a velocity of a particle. Find the acceleration vector $\mathbf{a}(t)$ of the particle and its position vector $\mathbf{r}(t)$, where its initial position was $\mathbf{r}_{0}=3 \mathbf{i}$.

Ex. 4. Describe and sketch the graph of the equation: $4 z^{2}=x^{2}+y^{2}$.

Ex. 5. Compute the first order partial derivatives of $h(x, y, z)=e^{2 x+3 z} \sin x \tan y$.
Ex. 6. Compute the second order partial derivatives of $g(u, v)=\ln (u+2 v)-\sin u \cos v$.
Ex. 7. Find an equation of the plane tangent to the surface $z=\ln x-\sin y$ at the point $P(1, \pi / 2,-1)$.

Ex. 8. Find the absolute maximum and the absolute minimum of the function $f(x, y)=$ $4 x^{2}+2 x y+y^{2}$ on the region bounded below by the parabola $y=x^{2}$ and above by the line $y=9$.

Ex. 9. Evaluate the integrals:
(a) $\int_{0}^{1} \int_{0}^{\pi} \frac{1}{x+1}+\sin y d y d x=$
(b) $\int_{-1}^{2} \int_{-y}^{y+2}\left(x+2 y^{2}\right) d x d y=$
(c) $\iint_{R} \frac{d y d x}{\sqrt{9-x^{2}-y^{2}}}$, where R is the second quadrant region bounded by $x^{2}+y^{2}=4$.

Ex. 10. Find the mass of the solid bounded by the hemisphere $x^{2}+y^{2}+z^{2} \leq R^{2}, z \geq 0$, with the density $\delta(x, y, z)=x^{2}+y^{2}+z^{2}$.

Ex. 11. Find the mass of the plane lamina bounded by $x=0$ and $x=9-y^{2}$ with density $\delta(x, y)=x^{2}$.

Ex. 12. Set up the integral formulas, including the limits of the integrations, for the following problems. Do not evaluate the integrals!
(a) The mass of the solid T with the density $\delta(x, y, z)=x^{2}+e^{z}$ bounded by the surfaces: $6 x+2 y+z=12, x=0, y=0$, and $z=0$.
(b) The volume of the solid bounded by $z=x^{2}+y^{2}, z=0, x=0, y=0$, and $x+y=1$.

Ex. 13. Evaluate $\int_{C} x y d s$, where C is the parametric curve for which $x=3 t, y=t^{4}$, and $0 \leq t \leq 1$.

Ex. 14. Evaluate the integral, where C is the graph of $y=x^{3}$ from $(-1,-1)$ to $(1,1)$.
$\int_{C} y^{2} d x+x d y=$

Ex. 15. Evaluate the integral
$\int_{(\pi / 2, \pi / 2)}^{(\pi, \pi)}(\sin y+y \cos x) d x+(\sin x+x \cos y) d y=$

Ex. 16. Apply Green's theorem to evaluate the following integral, where the simple closed curve C is the boundary of the circle $x^{2}+y^{2}=1$.
$\oint_{C}\left(\sin x-x^{2} y\right) d x+x y^{2} d y=$

Ex. 17. Find the inverse matrix of

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Ex. 18. Find the determinant of the matrix

$$
\left[\begin{array}{rrrr}
1 & 2 & -11 & 1 \\
0 & 0 & 2 & 0 \\
7 & 1 & 0 & 2 \\
-2 & 0 & 9 & 0
\end{array}\right]
$$

