
Chapter XV: Characterizations of Integrability

Our characterizations of integrability are concerned with continuity. The
characterizations require a shift in perspective from the way we thought about
continuity previously: Instead of considering various points at which a function
is continuous, we consider the entire set of points of continuity; actually, we will
focus on the set of points of discontinuity. The following discussion motivates
the shift in perspective in general terms.
Continuous functions are integrable (Theorem 12.33). On the other hand,

we have seen examples of integrable functions that are not continuous; two
simple examples are in Example 12.11 and Exercise 12.14. In fact, an integrable
function on [a, b] can fail to be continuous at each rational number in [a, b]; this
is the case for the function f deÞned on [0, 1] by (as in Exercise 12.21)

f(x) =


0 , if x is irrational

1 , if x = 0
1
n , if x ∈ Q− {0} and x = m

n in lowest terms.

The example we just gave shows that an integrable function can be discon-
tinuous at inÞnitely many points between any two points of its domain (recall
Theorem 1.26). This seems to suggest that, in general, there is no connection
between the notions of integrability and continuity.
On the other hand, recall Theorem 12.15: A function f is integrable over

[a, b] if and only if for each ² > 0, there is a partition P = {x0, x1, ..., xn} of
[a, b] such that

Σni=1[Mi(f)−mi(f)]∆xi < ².

Roughly, the theorem says that the integrability of a function f over [a, b] is
equivalent to being able to subdivide [a, b] into small intervals (the intervals
[xi−1, xi]) on each of which f does not oscillate very much in comparison with
the length ∆xi of the interval. Therefore, if we can Þnd an appropriate notion
of the length of a set, we may be able to obtain the following type of theorem:
A function f on [a, b] is integrable over [a, b] if and only if the �length� of the
set of points at which f is not continuous is zero. In order to have such a
theorem, we see from the example above that our deÞnition of �length� must
have the property that the �length� of the set of all rational numbers in any
closed and bounded interval is zero; also, since the function in Example 12.12
is not integrable and is not continuous at any point, the �length� of any closed
and bounded interval [a, b] itself must not be zero (when a 6= b).
In section 3, we give a natural deÞnition for a set to have �length� zero,

called measure zero. Then we prove that a function is integrable over [a, b] if
and only if the set of points at which the function is not continuous has measure
zero (Theorem 15.33). Thus, we uncover a close connection between continuity
and integrability after all.
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1. Background

We discuss four general topics: Countable sets; series; open sets and closed
sets; and covers. We primarily focus on the aspects of each topic that we use
to get to the characterization theorems in the last section of the chapter. How-
ever, we include some examples and results merely for the purpose of providing
insight.

Countable Sets

A one - to - one correspondence between two sets is a one - to - one function
from one of the sets onto the other set.
A Þnite set is a set that can be placed in one - to - one correspondence with

the set Nn = {1, 2, ..., n} for some n; we also consider the empty set to be a
Þnite set.
A countable set is a set that can be placed in one - to - one correspondence

with a subset of the natural numbers. Thus, any Þnite set is a countable set;
we use the term countably inÞnite to refer to a countable set that is not Þnite.
A set that is not countable is called uncountable.

Theorem 15.1: A nonempty set X is countable if and only if there is a
function from the set N of all natural numbers onto X.

Proof: Assume that there is a function f from N onto X. Then, by the Well
Ordering Principle (1.18), there is a least natural number `x in f−1(x) for each
x ∈ X. Let

M = {`x : x ∈ X},

and deÞne a function g : M → X by letting g(`x) = x for each `x ∈ M . It is
easy to check that g is a one - to - one function from M onto X. Therefore, X is
countable.
Conversely, assume that X is countable. Then there is a one - to - one func-

tion h from a subset S of the natural numbers onto X. Note that S is nonempty
since X is nonempty (by assumption); hence, we can obtain a function r from
N onto S as follows: Simply Þx a point m ∈ S, and deÞne r by letting

r(n) =

½
n , if n ∈ S
m , if n ∈ N− S.

It follows easily that the composition h ◦ r is a function from N onto X. ¥
Exercise 15.2: A countable union of countable sets is a countable set; in

other words, if Ai is a countable set for each i = 1, 2, ..., then ∪∞i=1Ai is a
countable set.
(Hint: Consider the set N× N of all points in the plane whose coordinates

are natural numbers; it is easy to describe geometrically (without a formula) a
function from N onto N×N. What next?)
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Series

We deÞned sequences and limits of sequences in section 8 of Chapter IV. A
series Σ∞i=1ai, where ai ∈ R1 for each i = 1, 2, ... , is deÞned to be the sequence
{sn}∞n=1 where sn = Σ

n
i=1ai for each n. The Þnite sums sn are called the partial

sums of the series Σ∞i=1ai, and {sn}∞n=1 is called the sequence of partial sums of
the series Σ∞i=1ai (the terminology is merely descriptive since, by deÞnition, the
sequence of partial sums is the series). The numbers ai are called the terms of
the series Σ∞i=1ai.
In view of our deÞnition of series and our deÞnition of convergence of se-

quences in section 8 of Chapter IV, we already know what it means for a series
Σ∞i=1ai to converge to a number p : A series Σ∞i=1ai converges to p provided
that the sequence {sn}∞n=1 of partial sums converges to p, which we signify by
writing Σ∞i=1ai = p. When Σ

∞
i=1ai = p, we call p the sum of the series. We say

that a series diverges provided that the series does not converge.
It will be convenient sometimes to use the term series to include Þnite sums.

When we want to emphasize that a series may be a Þnite sum, we use the phrase
a Þnite or inÞnite series. Generally speaking, however, the word series all by
itself should be taken to mean an inÞnite series.
A series of the form Σ∞i=1ar

i, where a and r are Þxed real numbers, is called
geometric series; r is called the common ratio of the series (r is the ratio of the
(i+ 1)st term of the series to the ith term).
We determine when a geometric series converges and obtain a simple formula

for its sum. First, we prove a lemma that we use many times later as well.

Lemma 15.3: If −1 < r < 1, then limn→∞ rn = 0.
Proof: Since limi→∞ rn = 0 if and only if limi→∞ |rn| = 0, we assume for

the proof that 0 < r < 1. Then 1
r > 1; hence, letting c =

1
r − 1, we have that

c > 0. Thus, since 1
rn+1 = (1 + c)n+1 for each n, we see by an easy induction

(Theorem 1.20) that for each n,

1
rn+1 = 1 + (n+ 1)c+ [sum of positive terms] > 1 + (n+ 1)c.

Therefore, since r > 0 and c > 0, we have

(*) 0 < rn+1 < 1
1+(n+1)c for each n.

To complete the proof, recall that theorems about limits of functions apply
to limits of sequences by Theorem 4.38. Thus,

limn→∞ 1
1+(n+1)c

4.38, 4.20
= 1

limn→∞ 1+(n+1)c

1.22
= 0.

Therefore, by (*) and Theorem 4.38, we can apply the the Squeeze Theorem
(Theorem 4.34) to see that limn→∞ rn+1 = 0. ¥
Theorem 15.4: If −1 < r < 1, then the geometric series Σ∞i=1ar

i converges
and Σ∞i=1ar

i = ar
1−r . If |r| ≥ 1 and a 6= 0, then the series Σ∞i=1ar

i diverges.
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Proof: Assume that −1 < r < 1. Let sn = Σni=1ar
i (the nth partial sum of

Σ∞i=1ar
i) for each n. We show that limn→∞ sn = ar

1−r , which will prove the Þrst
part of the theorem.
Note that

sn − rsn = Σni=1ar
i −Σni=1ar

i+1 = ar − arn+1.

Hence, sn =
a(r−rn+1)

1−r . Therefore, limn→∞ sn = ar
1−r by Lemma 15.3 (and by

applying Theorem 4.38 to Theorems 4.2 and 4.9). This proves the Þrst part of
the theorem.
We leave the proof of second part of the theorem to the reader. ¥
We discuss series in depth in several later chapters; until then, the material

we have presented is for the most part the only information about series we
need.

Open Sets and Closed Sets

We discuss the notion of open set and its companion notion, closed set.
Open sets and closed sets are the basic notions in the Þeld of mathematics
called topology. We give a very brief introduction to these types of sets in R1.
Open sets can be deÞned as a generalization of open intervals: A subset of R1

is an open set provided that it is a union of open intervals. This is a good working
deÞnition of open set (it can be used right away to prove many theorems);
however, it is a terrible deÞnition! � it conceals the inherent geometrical idea
behind the notion. I have mentioned before that, in my opinion, a deÞnition
should convey the fundamental idea behind the notion being deÞned. Thus, I
prefer the following deÞnition:

DeÞnition. A subset U of R1 is an open set provided that no point of U is
arbitrarily close to the complement R1 − U of U .
The deÞnition of open set shows that open sets are stable in the following

sense: A point is in an open set U if and only if all points sufficiently close to the
point are points of U (see Theorem 2.3). This stability of open sets is important
in many areas of mathematics and in applications (e.g., to dynamical sysyems).

Example 15.5: The following sets are open: ∪∞n=1(n, n+ 1); R1 − {p} for
any p ∈ R1; R1 − {0, 1, 1

2 ,
1
3 , ...}. The following sets are not open: {p} for any

p ∈ R1; N (the set of natural numbers); [0, 1]; [0, 1); Q (the set of rationals);
R1 − {1, 1

2 ,
1
3 , ...}.

Our initial (rejected) deÞnition of open set now becomes a theorem:

Theorem 15.6: A subset U of R1 is an open set if and only if U is a union
of open intervals.
Proof: Assume that U is an open set. Let x ∈ U . Then, by the deÞnition

of open set, x 6∼ R1 − U . Hence, by Theorem 2.3, there is an open interval Ix
such that x ∈ Ix and Ix ∩ (R1 − U) = ∅, which says Ix ⊂ U . Hence, selecting
one such interval Ix for each x ∈ U , it is clear that
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U = ∪x∈UIx.
Therefore, we have written U as a union of open intervals.
Conversely, assume that U is a union of open intervals. Let p ∈ U . Then

p is a point of an open interval I such that I ⊂ U ; in other words, p ∈ I and
I ∩ (R1 − U) = ∅. Hence, by Theorem 2.3, p 6∼ R1 − U . This proves that no
point of U is arbitrarily close to R1 −U . Therefore, by deÞnition, U is an open
set. ¥
DeÞnition: A subset A of R1 is a closed set provided that A contains all

points that are arbitrarily close to A.

Exercise 15.7: Which of the sets in Exercise 15.5 are closed sets?

Exercise 15.8: True or false: A subset A of R1 is a closed set if and only
if A is a union of closed intervals.

Exercise 15.9: A subset A of R1 is a closed set if and only if R1 −A is an
open set.

Exercise 15.10: A subset A of R1 is a closed set if and only if A contains
all its limit points. (Limit point is deÞned in section 4 of Chapter II.)

Covers

It is convenient to have a name for a collection of sets whose union contains
a given set. The term cover is descriptive (and standard):

DeÞnition: Let X be a set, let A ⊂ X, and let C be a collection of subsets
of X.

� C covers A, or C is a cover of A, provided that ∪C ⊃ A.
� A subcover of a cover C of A is a subcollection C0 of C such that C0 covers
A.

It is important to keep in mind that a subcover of a cover C of A is not just
a subcollection of C : A subcover of C must also cover A. For example, let C be
the collection of two closed intervals given by

C = {[0, 3], [2, 5]};
then, considering C as a cover of the interval [0, 2], we see that C0 = {[0, 3]} is
a subcover of C; however, considering C as a cover of the interval [1, 4], we see
that C itself is the only subcover of C.
An important covering property of closed and bounded sets in R1 is in Ex-

ercise 15.13 below. The following exercise shows that being a closed set is
necessary in Exercise 15.13:

Exercise 15.11: Give an example of a cover by open sets of the open
interval (0, 1) that has no Þnite subcover.
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Exercise 15.12: If C is a cover of [a, b] by open sets, then C has a Þnite
subcover.
(Hint: Use the Nested Interval Property (Theorem 5.11) in conjunction with

the bisecting process illustrated by the proof of Theorem 5.13.)

Exercise 15.13: If X is a closed and bounded subset of R1, then any cover
of X by open sets has a Þnite subcover.
(Hint: Use Exercise 15.9 and Exercise 15.12.)

2. Oscillation

For our purpose, the concept of oscillation provides a useful way to describe
the points at which a function is not continuous (Exercise 15.19). Oscillation
plays a central role in the proofs of the characterization theorems in section 4.

DeÞnition: Let X ⊂ R1, and let f : X → R1 be a bounded function.

� The oscillation of f on a nonempty subset A of X, denoted by Of (A),
is deÞned by

Of (A) = lub f(A)− glb f(A).

� The oscillation of f at a point p of X, denoted by Of (p), is deÞned by
Of (p) = glb {Of ([p− δ, p+ δ] ∩X) : δ > 0};

from now on, we writeOf (p) = glbδ>0Of ([p−δ, p+δ]) for ease in notation.
Note the difference between the oscillation of f on the set consisting of a

single point p and the oscillation of f at the point p : Of ({p}) = 0, whereas
Of (p) may well not be zero.
Exercise 15.14: True or false: If X ⊂ R1, f : X → R1 is a bounded

function, and p ∈ Y ⊂ X, then Of (p) ≤ Of (Y ).
Exercise 15.15: Let X ⊂ R1, let f : X → R1 be a bounded function, and

let A be a nonempty subset of X. If A ⊂ B ⊂ X, then Of (A) ≤ Of (B).
Exercise 15.16: Let f : R1 → R1 be the greatest - integer function (i.e.,

for each x ∈ R1, f(x) is the greatest integer that is less than or equal to x).
Determine the oscillation of f at various points of R1.

Exercise 15.17: Let

f(x) =

(
sin(x)
x , if x 6= 0

0 , if x = 0.

Compute the oscillation of f on [0, 1] and the oscillation of f at x = 0.

Exercise 15.18: Let X ⊂ R1, let f : X → R1 be a bounded function, and
let p ∈ X. Then f is continuous at p if and only if Of (p) = 0.
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Notation: Let X ⊂ R1, and let f : X → R1 be a bounded function.

� Df = {x ∈ X : f is not continuous at x}.
� For each η > 0, Ef (η) = {x ∈ X : Of (x) ≥ η}.
Exercise 15.19: If X ⊂ R1 and f : X → R1 is a bounded function, then

Df = ∪∞n=1Ef ( 1
n).

Exercise 15.20: If f : [a, b] → R1 is a bounded function, then Ef (η) is a
closed set for all η > 0.

3. Content Zero and Measure Zero

The characterizations of integrability in the next section are in terms of
content zero and measure zero. Intuitively, content zero and measure zero say
that a set has small length (content zero says this in a stronger way than measure
zero does). As might be expected, we will deÞne a set to have content zero or
to have measure zero in terms of sums of lengths of intervals that cover the set;
the difference in the two concepts is a matter of the number of sets allowed in
the covers.
The length of a bounded interval ([a, b], (a, b), [a, b), or (a, b]) is b − a. For

a countable collection of intervals, we use the term length sum to refer to the
sum of the (Þnite or inÞnite) series whose terms are the lengths of the intervals
in the collection (length sum may be inÞnite). We note that length sum is
independent of the order in which the terms of the series are written down (see
Theorem 22.35).

DeÞnition: A subset A of R1 is said to have content zero provided that
for each ² > 0, there are Þnitely many open intervals covering A such that the
length sum of the intervals is less than ².

Exercise 15.21: Every Þnite set has content zero. The interval [0, 1] does
not have content zero; on the other hand, the set A = { 1

n : n = 1, 2, ...} is an
inÞnite set that has content zero. Does the set N of all natural numbers have
content zero?

Exercise 15.22: Any subset of a set that has content zero has content zero.

Exercise 15.23: The set of all rational numbers in [0, 1] does not have
content zero.

DeÞnition: A subset A of R1 is said to have measure zero provided that
for each ² > 0, there are countably many open intervals covering of A such that
the length sum of the intervals is less than ².

Exercise 15.24: Any countable subset of R1 has measure zero. In partic-
ular, the set Q of all rational numbers has measure zero (but not content zero
by Exercise 15.23).
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Exercise 15.25: Any subset of a set of measure zero has measure zero.

Exercise 15.26: The countable union of sets of measure zero has measure
zero. (You can use Theorem 22.35.)

Exercise 15.27: Does the set of all irrational numbers in [0, 1] have measure
zero?

Theorem 15.28: If a subset of R1 has content zero, then it has measure
zero; conversely, if a closed and bounded subset of R1 has measure zero, then it
has content zero.

Proof: The Þrst part of the theorem is obvious from deÞnitions.
To prove the second part, assume that A is a closed and bounded subset of

R1 such that A has measure zero. Let ² > 0. Then there is a countable cover
C of A by open intervals whose length sum is < ². By Exercise 15.13, C has a
Þnite subcover F . Since F ⊂ C, it is clear that the length sum of the intervals
in F is < ². Thus, we have proved that for each ² > 0, there are Þnitely many
open intervals covering A such that the length sum of the intervals is less than
². Therefore, A has content zero. ¥
Corollary 15.29: Let An be a closed and bounded subset of R1 for each

n = 1, 2, ... . Then ∪∞n=1An has measure zero if and only if An has content zero
for each n.

Proof: If ∪∞n=1An has measure zero, then each set An has measure zero (by
Exercise 15.25); therefore, by the second part of Theorem 15.28, each set An
has content zero.
Conversely, if each set An has content zero, then each set An has measure

zero (by the Þrst part of Theorem 15.28); therefore, ∪∞n=1An has measure zero
(by Exercise 15.26). ¥

4. Characterizations of Integrability

We obtain two characterizations of integrability. The Þrst characterization
says that f is integrable over [a, b] if and only if the set of points at which the
oscillation of f is ≥ η has content zero for each η > 0 (Theorem 15.31). The
second characterization says that f is integrable over [a, b] if and only if the set
of points at which f is not continuous has measure zero (Theorem 15.33). The
two characterizations are obviously related; we use the Þrst characterization to
prove the second. We feel that the second characterization is by far the better
of the two � after all, it is easier to visualize the points at which a function
is not continuous than it is to Þnd the points at which the oscillation of the
function is ≥ η for each η. We give applications of the second characterization
in some exercises at the end of the section; included is the theorem about the
integrability of quotients (Exercise 15.34) which we promised at the beginning
of section 5 of Chapter XIII.
We use the following lemma to construct a special partition in the proof of

Theorem 15.31.
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Lemma 15.30: Let f : [a, b] → R1 be a bounded function such that for
some ² > 0, Of (x) < ² for all x ∈ [a, b]. Then there is a δ > 0 such that

Of ([c, d]) < ² for all [c, d] ⊂ [a, b] such that d− c < δ.
Proof: Since Of (x) < ² for all x ∈ [a, b], there is a δx > 0 for each x ∈ [a, b]

such that

(1) Of ([p− δx, p+ δx]) < ².
Let C be the following cover of [a, b] by open intervals:

C = {(x− δx
2 , x+

δx
2 ) : x ∈ [a, b]}.

Then, by Exercise 15.13, C has a Þnite subcover C0, say
C0 = {(xi − δxi

2 , xi +
δxi
2 ) : i = 1, 2, ..., n}.

Now, let

δ = min{δxi2 : i = 1, 2, ..., n}.
We show that this choice of δ satisÞes the conclusion of the lemma. Let [c, d] ⊂
[a, b] such that 0 < d− c < δ. Since c ∈ [a, b] and C0 covers [a, b],

c ∈ (xk − δxk
2 , xk +

δxk
2 ) for some k.

Thus, since d− c < δ ≤ δxk
2 ,

[c, d] ⊂ (xk − δxk , xk + δxk).
Therefore,

Of ([c, d])
15.15≤ Of ([xk − δxk , xk + δxk ])

(1)
< ². ¥

We prove our Þrst characterization theorem. Recall from the notation pre-
ceding Exercise 15.19 that Ef (η) = {x ∈ [a, b] : Of (p) ≥ η}.
Theorem 15.31: Let f : [a, b] → R1 be a bounded function. Then f is

integrable over [a, b] if and only if Ef (η) has content zero for each η > 0.
Proof: In the proof, the notation Mi(f), mi(f), UP (f) and LP (f) is from

section 2 of Chapter XII.
Assume that there is an η > 0 such that Ef (η) does not have content zero.

We prove that this assumption implies that f is not integrable over [a, b]. We
prove this by showing that the set of differences UP −LP for all partitions P of
[a, b] is bounded away from zero and then applying Theorem 12.15.
By our assumption that Ef (η) does not have content zero, there is a δ > 0

satisfying the following:

(1) The length sum of any Þnitely many
open intervals covering Ef (η) is ≥ δ.

Now, let P = {x0, x1, ..., xn} be any partition of [a, b]. Let
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A = {(xi−1, xi) : (xi−1, xi) ∩ Ef (η) 6= ∅}.

Let λ denote the length sum of the intervals in A; in other words,
(2) λ = Σ{∆xi : (xi−1, xi) ∈ A}.
We show that

(3) λ ≥ δ.
Proof of (3): Note that if Ef (η) ⊂ ∪A, then λ ≥ δ by (1). Hence. to prove

(3), we can assume that Ef (η) 6⊂ ∪A. Thus, Ef (η)− ∪A is a nonempty subset
of P , say

Ef (η)−∪A = {xi1 , xi2 , ..., xik}.

Now, suppose by way of contradiction that λ < δ. Then, letting

B = {(xij − δ−λ
3k , xij − δ−λ

3k ) : j = 1, 2, ..., k},
we see that A ∪ B is a cover of Ef (η) by open intervals whose length sum is
λ+ k(2δ−λ3k ). Therefore, since

λ+ k(2δ−λ3k ) =
1
3λ+

2
3δ < δ,

we have a contradiction to (1). This completes the proof of (3).

For any interval (xi−1, xi) ∈ A and any point p ∈ (xi−1, xi) ∩ Ef (η),
Mi(f)−mi(f) ≥ Of (p);

thus, we have that

(4) Mi(f)−mi(f) ≥ η for any interval (xi−1, xi) ∈ A.
Therefore,

UP (f)− LP (f) = Σni=1[Mi(f)−mi(f)]∆xi

≥ Σ{[Mi(f)−mi(f)]∆xi : (xi−1, xi) ∈ A}
(4)
≥ ηΣ{∆xi : (xi−1, xi) ∈ A} (2)= ηλ

(3)
≥ ηδ.

Therefore, since η and δ are independent of P and since P was an arbitrary
partition of [a, b], we see from Theorem 12.15 that f is not integrable over [a, b].
Conversely, assume that Ef (η) has content zero for each η > 0. We prove

that this assumption implies that f is integrable over [a, b] by using Theorem
12.15.
Let

M = lub f([a, b]), m = glb f([a, b]).
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If M = m, then f is a constant function and, therefore, f is integrable.
Hence, we can assume that

(5) M 6= m.
Now, let ² > 0. Then, by our assumption for this part of the proof, Ef ( ²

2(b−a))

has content zero. Hence, there are Þnitely many open intervals I1, I2, ..., Ir
satisfying (6) and (7) below:

(6) Ef ( ²
2(b−a)) ⊂ ∪ri=1Ii

and (noting that M −m > 0 by (5))

(7) the length sum of the intervals I1, I2, ..., Ir is < ²
2(M−m) .

For use later, we let Q denote the set of endpoints of the intervals I1, I2, ..., Ir.
Next, let

K = [a, b]−∪rj=1Ij .

If K = ∅, we disregard K in what follows. Since the intervals I1, I2, ..., Ir cover
Ef ( ²

2(b−a)), we have that

(8) Of (x) < ²
2(b−a) for all x ∈ K.

It is easy to see that K is the union of Þnitely many mutually disjoint closed
intervals L1, L2, ..., Ls. Note that an interval Lj may be of the form [x, x]; this
could possibly occur if x is a common endpoint of two of the intervals I1, I2, ..., Ir
or if x = a or b is an endpoint of one of the intervals I1, I2, ..., Ir (see Figure
15.31 below � intervals Ij are indicated with parentheses of various sizes; dots
represent endpoints of the intervals Lj except the dot for b).

Figure 15.31

By (8) and Lemma 15.30, we see that, for each j, there is a partition Pj =
{y0, y1, ..., ynj} of Lj such that

(9) Of ([yi−1, yi]) <
²

2(b−a) for all yi−1, yi ∈ Pj .
Now, let P = (∪sj=1Pj)∪Q, the points of the partitions P1, P2, ..., Ps together

with the endpoints of the intervals I1, I2, ..., Ir. Consider P as a partition of
[a, b],

P = {x0, x1, ..., xn}.

156



There are two mutually distinct types of intervals [xi−1, xi] : Those for which
xi−1, xi ∈ Pj for some j, and those for which xi−1, xi ∈ Q. Hence, for each i,
either xi−1, xi ∈ Pj for some j or xi−1, xi ∈ Q, and not both. Thus, since

UP (f)− LP (f) = Σni=1[Mi(f)−mi(f)]∆xi,

we have
(10) UP (f)− LP (f) = Σ{[Mi(f)−mi(f)]∆xi : xi−1, xi ∈ Q}

+ Σ{[Mi(f)−mi(f)]∆xi : xi−1, xi ∈ Pj for some j}.
Now, note that

(11) Σ{[Mi(f)−mi(f)]∆xi : xi−1, xi ∈ Q}

≤ Σ{[M −m]∆xi : xi−1, xi ∈ Q}
(7)
< [M −m] ²

2(M−m) =
²
2

and that

(12) Σ{[Mi(f)−mi(f)]∆xi : xi−1, xi ∈ Pj for some j}
= Σ{[Of ([xi−1, xi])]∆xi : xi−1, xi ∈ Pj for some j}
(9)
< Σ{ ²

2(b−a)∆xi : xi−1, xi ∈ Pj for some j} ≤ ²
2(b−a)(b− a) = ²

2 .

By (10), (11) and (12),

UP (f)− LP (f) < ².

We have shown that for any ² > 0, there is a partition P of [a, b] such that
UP (f)− LP (f) < ². Therefore, f is integrable over [a, b] by Theorem 12.15. ¥
For ready use in the proof of our next theorem, we reformulate the theorem

we just proved as follows:

Corollary 15.32: Let f : [a, b] → R1 be a bounded function. Then f is
integrable over [a, b] if and only if Ef ( 1

n) has content zero for each n = 1, 2, ... .

Proof: Note from the deÞnition of Ef (η) (above Exercise 15.19) that
Ef (η) ⊂ Ef (η0) when 0 < η0 ≤ η;

also, recall from Exercise 15.22 that a subset of a set of content zero has content
zero. Hence, it follows using the Archimedean Property (Theorem 1.22) that
Ef (η) has content zero for each η > 0 if and only if Ef ( 1

n) has content zero
for each n = 1, 2, ... . Therefore, our corollary now follows immediately from
Theorem 15.31. ¥
We are ready to prove our main characterization of intergability. The proof

is very short because the theorem is an easy consequence of Corollary 15.32 and
three previous results.
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Theorem 15.33: Let f : [a, b] → R1 be a bounded function. Then f is
integrable over [a, b] if and only if the set Df of points of discontinuity of f has
measure zero.

Proof: By Exercise 15.19,

Df = ∪∞n=1Ef ( 1
n);

furthermore, for each n = 1, 2, ... , Ef ( 1
n) is a closed set (by Exercise 15.20)

and Ef ( 1
n) is bounded (since Ef ( 1

n) ⊂ [a, b]). Thus, by Corollary 15.29, Df has
measure zero if and only if Ef ( 1

n) has content zero for each n. Therefore, our
theorem follows from Corollary 15.32. ¥
Exercise 15.34: Illustrate the applicability of Theorem 15.33 by using it to

prove the following result, which provides full generality for Theorem 13.36 (the
result applies to functions not covered by Theorem 13.36 in view of Exercise
13.38):

If f and g are integrable over [a, b], g(x) 6= 0 for any x, and f
g is bounded,

then f
g is integrable over [a, b].

Exercise 15.35: Illustrate the applicability of Theorem 15.33 by using it
to give a very short, simple proof of Theorem 13.26. (The proof we gave for
Theorem 13.26 was reasonably short, but only because the proof depended on
several previous lemmas and theorems in Chapter XIII.)

Exercise 15.36: Illustrate the applicability of Theorem 15.33 by using it
to work Exercise 12.21.

Exercise 15.37: If X is a set and A is a nonempty subset of X, then the
characteristic function for A, denoted by χA, is deÞned by

χA =

½
1 , if x ∈ A
0 , if x ∈ X −A.

Prove the following result:
If A ⊂ [a, b] and A is a nonempty closed set, then A has measure zero if and

only if χA is integrable over [a, b] and
R b
a
χA = 0.

Is it necessary for A to be a closed set in the result?

Exercise 15.38: Give an example of an integrable function on [0, 1] that is
not continuous at uncountably many points.

Exercise 15.39: True or false: Let f and g be bounded functions on [a, b]
such that f(x) = g(x) except for those points x in a set of measure zero; if f is
integrable over [a, b], then g is integrable over [a, b].

Exercise 15.40: True or false: If f is integrable over [a, b] and f(x) ≥ 0

except for those points x in a set of measure zero, then
R b
a f ≥ 0.
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Chapter XVI: The Natural Logarithm and
Exponential Functions

Consider the very simple function f(t) = 1
t on an interval [a, b], a > 0. This

is the simplest rational function that is not a polynomial. Nevertheless, we do
not know a formula for a function F whose derivative is f even though F exists
(by part (1) of the Fundamental Theorem of Calculus (Theorem 14.2)). On the
other hand, we do know how to Þnd such formulas for some more complicated,
closely related functions: For example, consider the function fq for any rational
number q 6= 1 given by

fq(x) =
1
xq for all x ∈ [a, b];

then Fq(x) = x1−q
1−q is a function whose derivative is fq (by Theorem 8.16);

furthermore, the function fq can be chosen as close to f on [a, b] as we like by
letting q be close enough to 1. What is so unusual here is that we know more
about the complicated functions which approximate the simple function f than
we know about the simple function. There is an obvious conclusion to draw � in
the context of what we are discussing, the function f(t) = 1

t is the function that
is complicated, not the functions fq, and our original opinion that f is simpler
than fq is actually an optical illusion.
We will not Þnd a formula, as the term is commonly used, for a function

whose derivative is f , where f(t) = 1
t . Instead, we will discover that the function

F (x) =
R x

1
f , whose derivative is f (by Theorem 14.2), has some surprising

algebraic properties; the properties will enable us to know that F is a special
function, called the natural logarithm function, that was originally studied from
a completely different point of view.
We devote the chapter to studying the natural logarithm function and its

inverse (the natural exponential function). The chapter lays the foundation for
studying logarithm and exponential functions in general, which we do in the
next chapter.

1. Preliminary: Reversing the Limits of Integration

Throughout most of the chapter, we investigate the speciÞc function f de-
Þned on the positive reals by f(x) =

R x
1

1
t for each x > 0. Note that there is a

problem with writing
R x

1
1
t when x < 1; the problem is that we have only consid-

ered integrals
R b
a
f when a ≤ b. In other words, we need a reasonable deÞnition

for
R a
b f when a < b. We determine the proper deÞntion in this section.
The most obvious deÞnition for

R a
b f when a < b is to simply deÞne

R a
b f =R b

a
f , thereby ignoring the order in which the limits of integration are written.

However, there is a signiÞcant drawback to doing this: A natural and useful
extension of the Fundamental Theorem of Calculus would fail for no good reason,
but simply because of our arbitrary deÞnition. We will present the extension
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of the Fundamental Theorem of Calculus we have in mind after we arrive at
a reasonable deÞnition for

R a
b f when a < b. We Þrst prove a theorem and a

corollary; these results lead us in a natural way to the deÞnition we want.
Recall that part (1) of the Fundamental Theorem of Calculus (Theorem

14.2) says that if f is continuous on [a, b], then³R x
a f
´0
= f(x) for all x ∈ [a, b].

The following theorem determines the derivative of the function obtained by
Þxing the upper limit of integration rather than the lower limit.

Theorem 16.1: If a < b and f : [a, b]→ R1 is a continuous function, thenµR b
x f

¶0
= −f(x) for all x ∈ [a, b].

Proof: Let h(x) =
R b
x f for all x ∈ [a, b]. Recall from Theorem 12.33 that f

is integrable over [a, b]; hence, by Theorem 13.40, (
R x
a
f) + h(x) =

R b
a
f . Thus,

h(x) =
R b
a f −

R x
a f for all x ∈ [a, b].

Therefore, since
R b
a
f is a constant and

³R x
a
f
´0
= f(x) by part (1) of the

Fundamental Theorem of Calculus (Theorem 14.2), we see that h is differentiable
and that

h0(x) 7.3= 0− f(x) = −f(x). ¥

The following corollary is an extension of the Þrst part of the Fundamental
Theorem of Calculus:

Corollary 16.2: Assume that a < b and that f : [a, b]→ R1 is a continuous
function. Let c ∈ [a, b], and deÞne F : [a, b]→ R1 as follows:

F (x) =

( R x
c f , if x ≥ c
− R cx f , if x < c.

Then F 0(x) = f(x) for all x ∈ [a, b].
Proof: If x ≥ c, then part (1) of the Fundamental Theorem of Calculus

(Theorem 14.2) shows that F 0(x) = f(x). If x < c, then Theorem 16.1 shows
that ³R c

x f
´0
= −f(x);

therefore, since F (x) = − R c
x
f when x < c, we have by Theorem 7.4 that

F 0(x) = −(−f(x)) = f(x). ¥
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We use Corollary 16.2 often, so we want to avoid writing the formula for
the function F in the corollary in two parts. This is easily accomplished by
extending our deÞnition of the integral as follows:

DeÞnition: For any function f that is integrable over [a, b], a ≤ b, we deÞneR a
b
f = − R b

a
f ;

we call
R a
b
f a negatively oriented integral.9

We can now state Corollary 16.2 in a more succinct way that makes it an
obvious direct extension of part (1) of the Fundamental Theorem of Calculus:

Corollary 16.3: Assume that a < b, f : [a, b]→ R1 is a continuous function,
and c ∈ [a, b]. Then ³R x

c
f
´0
= f(x) for all x ∈ [a, b].

Proof: In view of the deÞnition we just gave, the corollary is the same as
Corollary 16.2. ¥
Exercise 16.4: For any a > 0, a−1

a ≤ R a
1

1
t ≤ a− 1.

We point out that with obvious changes in sign or directions of inequalities,
or sometimes with no changes at all, results about integrals in previous chapters
are valid for negatively oriented integrals.

2. Algebraic Properties of
R x

1
1
t

From the deÞnition in the preceding section, the notation
R x

1
1
t now has

meaning when 0 < x < 1 and, hence, for all x > 0. In other words, f(x) =
R x

1
1
t

deÞnes a function for all x > 0.
9 In books, negatively oriented integrals � although they are not given a name � are included

at about the same time that integrals are deÞned, with the following implicit or sometimes
explicit �explanation�:
If a < b and P = {x0, x1, ..., xn} is a partition of [a, b], then the quantities ∆xi = xi−xi−1

in upper and lower sums from a to b are positive ; the quantities ∆xi change to xi−1 − xi in
upper and lower sums from b to a and, thus, they are negative, so

R b
a

f = − R a
b

f .
It is therefore implanted in our minds that integrals depend on the two orientations on

[a, b] � left to right, right to left � and, hence, that there are two integrals of a single function
over [a, b] � one from a to b and the other from b to a. However, we have never said such
a thing; in fact, we have purposely always used the phrase integral over [a, b] to avoid any
suggestion that there are two integrals of the same function. Furthermore, we have done the
basic theory of integration without being concerned with negatively oriented integrals: We
have only introduced negatively oriented integrals at the time in our development when they
are needed. Most importantly, we have explained the deÞnition of negatively oriented integrals
in an appropriate way for calculus of a single real variable � as a notion that comes from a
natural, desirable generalization of the Fundamental Theorem of Calculus (rather than as an
arcane consequence of the deÞnition of upper and lower sums).
Oriented integrals do actually arise naturally when integrals are initially deÞned, but this

occurs in multidimensional calculus when deÞning integrals around oriented curves. To suggest
that this geometry can be seen and understood for integrals over intervals is, at best, wishful
thinking.
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We do not want to continually write f(x) =
R x

1
1
t when studying the function

f ; as a matter of convenience, we also want to give the function f a name. Thus,
we are faced with a dilemma: We can use a distinctive letter for the function
and not name the function � which results in stating important results without
distinguished, proper notation and terminology � or we can use the relevant
notation and terminology � which opens us up to the accusation of getting
ahead of our story about the function and introducing terminology that seems
to make no sense. We choose the latter and ask the reader not to worry for
now about where the notation and terminology come from � it will be explained
later (in section 6), after we have laid the proper foundation.

DeÞnition: The function f : (0,∞)→ R1 deÞned by

f(x) =
R x

1
1
t for all x > 0

is called the natural logarithm function and is denoted by ln; in other words,

ln(x) =
R x

1
1
t for all x > 0.

We prove in Theorem 16.7 that the natural logarithm function converts
multiplication to addition. We use this result, and some general results, to
derive other algebraic properties of the natural logarithm function (Corollaries
16.9 and 16.12).

Lemma 16.5: ln(1) = 0 and ln0(x) = 1
x for all x > 0.

Proof: The Þrst part of the lemma is true simply because
R a
a
f = 0 for any

function f (recall deÞnition of the integral in section 3 of Chapter XII). The
second part is true by Corollary 16.3. ¥
Having just given a formula for the derivative of the natural logarithm func-

tion, we note that we obtain a formula for the integral of the natural logarithm
function in section 5 (Theorem 16.29). At this time you can read section 5 with
complete understanding: The thought process in section 5 that leads to the
formula for

R b
a ln(x) is natural and is independent of all material in this chapter

except the lemma we just proved.

Exercise 16.6: Find a function whose derivative is tan(x) on [−π
4 ,

π
4 ]. Re-

peat the exercise for the interval [3π4 ,
5π
4 ].

Theorem 16.7: ln(xy) = ln(x) + ln(y) for all x, y > 0.
Proof: Fix a > 0. Let f : (0,∞) → R1 be the function deÞned by letting

f(y) = ay for all y > 0.
Note that for all y > 0, ln0(y) = 1

y (by Lemma 16.5) and f
0(y) = a (Example

6.2). Hence, by the Chain Rule (Theorem 7.23),

(ln ◦f)0(y) 7.23= ln0(f(y))f 0(y) = 1
ay (a) =

1
y = ln

0(y) for all y > 0.
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Thus, by Theorem 10.8, we have that

(1) (ln ◦f)(y)− ln(y) = C for all y > 0, C Þxed.
The constant C in (1) is ln(a) since

C
(1)
= ln(f(1))− ln(1) = ln(a)− ln(1) 16.5= f(a).

Hence, by (1), (ln ◦f)(y)− ln(y) = ln(a) for all y > 0; in other words,
ln(ay) = ln(a) + ln(y) for all y > 0.

Therefore, since a > 0 was arbitrary, we have proved the theorem. ¥
Theorem 16.8: If f : (0,∞)→ R1 is a function such that

f(xy) = f(x) + f(y) for all x, y > 0,

then

f(xy ) = f(x)− f(y) for all x, y > 0.

Proof: First, note that f(1) = f(1 · 1) = f(1) + f(1) and, hence, f(1) = 0.
Thus, for any y > 0,

0 = f(1) = f(y 1
y ) = f(y) + f(

1
y );

hence,

(1) f( 1
y ) = −f(y) for all y > 0.

Finally, for any x, y > 0,

f(xy ) = f(x
1
y ) = f(x) + f(

1
y )

(1)
= f(x)− f(y). ¥.

Corollary 16.9: ln(xy ) = ln(x)− ln(y) for all x, y > 0.
Proof: The corollary follows from Theorem 16.8 since ln satisÞes the hy-

pothesis of Theorem 16.8 by Theorem 16.7. ¥
Exercise 16.10: If f : (0,∞)→ R1 is a function such that

f(xy) = f(x) + f(y) for all x, y > 0,

then, for any integer k,

f(xk) = kf(x) for all x > 0.

For the next theorem, recall that we deÞned xr when r is rational in the
third bullet in the deÞnition above Theorem 8.15.
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Theorem 16.11: If f : (0,∞)→ R1 is a function such that

f(xy) = f(x) + f(y) for all x, y > 0,

then, for any rational number r,

f(xr) = rf(x) for all x > 0.

Proof: Fix a rational number r = m
n , where m is and n are integers (n 6= 0).

Fix x > 0. Then

f(x) = f((x
1
n )n)

16.10
= nf(x

1
n );

hence,

(1) f(x
1
n ) = 1

nf(x).

Since xr = (x
1
n )m (by the deÞnition above Theorem 8.15), we have that

f(xr) = f((x
1
n )m)

16.10
= mf(x

1
n )

(1)
= m[ 1

nf(x)] = rf(x). ¥

Corollary 16.12: For any rational number r, ln(xr) = r ln(x) for all x > 0.
Proof: The corollary follows from Theorem 16.11 since ln satisÞes the hy-

pothesis of Theorem 16.11 by Theorem 16.7. ¥
We could ask if Corollary 16.12 is true for all real numbers r, but there is a

problem with asking this question at this time: We have not deÞned xr for all
real numbers r. We will soon be able to give a reasonable deÞnition of xr for
any real number r and x > 0 (section 4); then we will see that ln(xr) = r ln(x)
for all real numbers r and x > 0 (Exercise 16.22).

Exercise 16.13: Prove Corollary 16.12 in a manner similar to the way we
proved Theorem 16.7 by considering the functions f(x) = ln(xr) and g(x) =
r ln(x).

3. The Graph of ln(x) =
R x

1
1
t

We prove three corollaries and then use the corollaries to obtain a picture of
the graph of the natural logarithm function ln.

Corollary 16.14: ln is strictly increasing.
Proof: By Lemma 16.5, ln0(x) = 1

x > 0 for all x > 0. Therefore, ln is strictly
increasing by part (1) of Theorem 10.17. ¥
Corollary 16.15: ln is concave down.
Proof: By Lemma 16.5, ln0(x) = 1

x for all x > 0; hence, by Lemma 7.5,

ln00(x) = −1
x2 for all x > 0.
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Thus, ln00(x) < 0 for all x > 0. Therefore, ln is concave down by part (2) of
Corollary 10.31. ¥
The two corollaries we just proved, and the fact that ln(1) = 0 (Lemma 16.5),

give us a lot of information about the graph of ln. However, two issues still need
to be addressed: What happens as x approaches 0 (from the right), and what
happens as x approaches ∞ ? SpeciÞcally, does ln have a vertical asymptote at
x = 0 (meaning limx→0 ln(x) = ∞), and does ln have a horizontal asymptote
(meaning limx→∞ ln(x) = c)? The answers are yes and no, respectively, and
come from combining Corollary 16.14 with the following corollary:

Corollary 16.16: ln maps (0,∞) onto R1.

Proof: We make note of the following fact (from Lemma 16.5):

(1) ln(1) = 0.

Now, let y ∈ R1. We prove the corollary by showing that y is a value of ln.
Assume Þrst that y ≥ 0. By (1) and the fact that ln is strictly increasing

(Corollary 16.14), we see that ln(2) > 0. Hence, by the Archimedean Property
(Theorem 1.22), there is a natural number n0 such that y < n0 ln(2). Thus,
since n0 ln(2) = ln(2

n0) (by Corollary 16.12), we have that

(2) ln(2n0) > y.

Since the function ln is differentiable (by Lemma 16.5), ln is continuous (by
Theorem 6.14). Therefore, by (1), (2) and the Intermediate Value Theorem
(Theorem 5.2), y = ln(x) for some x such that 1 ≤ x < 2n0 .
Finally, assume that y < 0. By (1) and the fact that ln is strictly increasing

(Corollary 16.14), we see that ln( 1
2) < 0; that is, − ln(1

2) > 0. Hence, by the
Archimedean Property (Theorem 1.22), there is a natural number n1 such that
−y < n1[− ln(1

2 )]. Thus, n1 ln(
1
2) < y. Thus, since n1 ln(

1
2) = ln((1

2)
n1) (by

Corollary 16.12), we have that

(3) ln(( 1
2)
n1) < y.

By (1), (3) and the Intermediate Value Theorem (Theorem 5.2), y = ln(x)
for some x such that (1

2)
n1 < x < 1. ¥

Now, putting the three preceding corollaries together, we see that the Þgure
on the next page is a correct picture of the graph of ln. To fully appreciate the
signiÞcance of what we have accomplished, note that we have graphed a function
without knowing an algebraic formula for the function and only knowing one
value of the function!

4. The Inverse of ln(x) =
R x

1
1
t

The natural logarithm function ln has a (unique) inverse ln−1 by Corollary
16.14. We establish various properties of the inverse function ln−1. The alge-
braic properties of ln−1 in Theorem 16.19 lead us to a reasonable deÞnition of
at for any a > 0 and any real number t; we address the appropriateness of the

165



deÞnition in Exercises 16.20 and 16.21. We then Þnd the number e that shows
that the inverse of ln should be called an exponential function (Theorem 16.23).
Corollary 16.24 and the result in Exercise 16.25 are of particular interest in
connection with the discussion at the beginning of section 2 of Chapter X.
Since we have graphed ln in the preceding section, we know what the graph

of ln−1 looks like: it is simply the reßection of the graph of ln about the line
y = x (for the reason given in section 1 of Chapter VIII). Nevertheless, we
include the following theorem for convenient reference.

Theorem 16.17: The function ln has a (unique) inverse function ln−1 which
is deÞned on all of R1 and which maps R1 onto (0,∞).
Proof: Since ln is strictly increasing (Corollary 16.14), ln is obviously one -

to - one; hence, ln has a (unique) inverse function ln−1. The rest of the theorem
follows at once from Corollary 16.16. ¥
Exercise 16.18: ln−1 is differentiable and (ln−1)0(x) = ln−1(x) for all

x ∈ R1.

Our next theorem gives algebraic properties of ln−1; the property in part
(4) will be extended to all real numbers r in Exercise 16.22 after we deÞne ar

for any real number r.

Theorem 16.19: The inverse function of ln has the following properties:
(1) ln−1(0) = 1.

(2) ln−1(x) ln−1(y) = ln−1(x+ y) for all x, y ∈ R1.

(3) ln−1(x)
ln−1(y)

= ln−1(x− y) for all x, y ∈ R1.

(4) [ln−1(x)]r = ln−1(rx) for all x ∈ R1 and all rational numbers r.

Proof: Part (1) is by Lemma 16.5. Parts (2), (3) and (4) follow from �cor-
responding� results for ln in section 2, as we show below.
Fix x, y ∈ R1. Then, for part (2),
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ln
³
ln−1(x) ln−1(y)

´
16.7
= ln

³
ln−1(x)

´
+ ln

³
ln−1(y)

´
= x+ y = ln

³
ln−1(x+ y)

´
,

and, therefore, part (2) now follows from the one - to - oneness of ln; similarly,
for part (3),

ln

µ
ln−1(x)
ln−1(y)

¶
16.9
= ln

³
ln−1(x)

´
− ln

³
ln−1(y)

´
= x− y = ln

³
ln−1(x− y)

´
,

and, thus, part (3) now follows from the one - to - oneness of ln; Þnally, for part
(4), Þxing a rational number r,

ln
³
[ln−1(x)]r

´
16.12
= r ln

³
ln−1(x)

´
= rx = ln

³
ln−1(rx)

´
and, therefore, part (4) now follows from the one - to - oneness of ln. ¥
The properties in Theorem 16.19 look a lot like many of the familiar laws

of exponents: If we agree to write at for ln−1(t), then the properties of ln−1 in
Theorem 16.19 become

a0 = 1, axay = ax+y, ax

ay = a
x−y, (ax)r = arx (r rational).

But this is meaningless formal symbolic manipulation � we have not even deÞned
at and, when we do, we will need to see if there is a particular number a for
which at = ln−1(t) for all t. The next deÞnition and Theorem 16.23 settle the
matter. (Regarding the appropriateness of the deÞnition, see Exercises 16.20
and 16.21).

DeÞnition: For any a > 0 and t ∈ R1, we deÞne the tth power of a, written
at, by

at = ln−1[t ln(a)],

which is deÞned for each t since ln−1 is deÞned on all of R1 (see Theorem 16.17).

The deÞnition of at may seem somewhat mysterious. Nevertheless, the Þrst
two exercises below indicate why the deÞnition is appropriate, even �correct�,
by relating the deÞnition to rational powers as we have known them ever since
studying arithmetic.

Exercise 16.20: Let a > 0. Show that when r is a rational number, the
deÞnition of ar above agrees with the deÞnition of ar in section 4 of Chapter
VIII (third bullet in the deÞnition above Theorem 8.15).

Exercise 16.21: Show that the function f(t) = at is continuous on R1 and
that no other continuous function on R1 agrees with f on the rational numbers.
(Thus, the deÞnition of at above is the only way to deÞne powers so that taking
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powers is continuous and so that, by the preceding exercise, the deÞnition for
rational powers agrees with the deÞnition in section 4 of Chapter VIII.)

Exercise 16.22: The deÞnition of at allows us to remove the restriction
that r is rational in Corollary 16.12 and in part (4) of Theorem 16.19:

ln(xr) = r ln(x) for all x > 0 and all r ∈ R1;

[ln−1(x)]r = ln−1(rx) for all x, r ∈ R1.

Theorem 16.23: Let e = ln−1(1). Then et = ln−1(t) for all t ∈ R1.

Proof: Let t ∈ R1. By the deÞnition above, et = ln−1[t ln(e)]; also, by the
choice of e in our theorem, ln(e) = 1. Therefore, et = ln−1(t). ¥
For more about the number e, see the discussion following the proof of

Corollary 16.26.
We mentioned the following corollary and exercise in the discussion at the

beginning of section 2 of Chapter X.

Corollary 16.24: (ex)0 = ex for all x ∈ R1 (where e = ln−1(1)).

Proof: The corollary is due to Theorem 16.23 and Exercise 16.18. ¥
Exercise 16.25: We can now determine all differentiable functions whose

derivatives are themselves: If f : R1 → R1 is a differentiable function, then
f 0 = f if and only if f(x) = cex for some constant c (and all x ∈ R1).
(Hint: Rewrite f 0(x) = f(x) as e−xf 0(x)− e−xf(x) = 0.)
The simple formula for the derivative of ex allows us to easily integrate ex :

Corollary 16.26: The function ex is integrable over any closed and bounded
interval [a, b] and

R b
a e

x = eb − ea.
Proof: The corollary follows at once from Corollary 16.24 and part (2) of

the Fundamental Theorem of Calculus (Theorem 14.2). ¥
Since the function ex is the inverse of the natural logarithm function (by

Theorem 16.23), we call ex the natural exponential function. We also use the
term natural in connection with the function ex for another reason, which we
discuss at the beginning of section 4 of Chapter XVII.
The use of the letter e dates back to Leonhard Euler (1707 - 1783). He used

e to stand for exponential (not because e was the Þrst letter of his last name!).
The number e can be expressed as a limit of a speciÞc sequence of numbers
rather than in terms of the natural logarithm function:

Exercise 16.27: Prove that e = limx→0 (1 + x)
1
x and, hence, that

e = limn→∞
¡
1 + 1

n

¢n
, where n = 1, 2, ... .

(Hint: 1 = ln0(1) = limx→0
ln(1+x)−ln(1)

x .)

In Chapter XXI we use Exercise 16.27 to represent e as the sum of a series
(Theorem 21.42).
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Exercise 16.28: Let f(x) = xx for all x > 0. At what points x (if any)
does f have local or global extrema?

5. Integrating the Natural Logarithm Function

We have formulas for the derivative of the natural logarithm function (Lemma
16.5) and for the derivative and the integral of the natural exponential function
(Corollaries 16.24 and 16.26). In this section we complete the basic calculus
of these two functions by Þnding a formula for the integral of the natural log-
arithm function. Note that since the natural logarithm function is continuous
(by Lemma 16.5 and Theorem 6.14), the natural logarithm function is, indeed,
integrable over any closed and bounded interval of positive reals (by Exercise 5.3
and Theorem 12.33); however, this does not give us a formula for the integral.
Part (2) of the Fundamental Theorem of Calculus (Theorem 14.2) gives us

a way to Þnd a formula for the integral of any continuous function. To apply
this theorem to ln, we need to Þnd a function g such that g0 = ln; that is, such
that

g0(x) =
R x

1
1
t .

To understate the situation, it is not immediately obvious how to Þnd such a
function g. Nevertheless, a little thought � a naive approach � leads to the
answer. We Þrst discuss the approach in general.
Suppose we are given a function f and we want to Þnd a function g whose

derivative is f . Suppose further that f is differentiable. There are two natural
(although outrageously simplistic) ways to try to Þnd g : start by trying g(x) =
[f(x)]2

2 or by trying g(x) = xf(x). Both of these attempts are natural since, on
differentiating g, we are sure to get an expression with f in it: In the Þrst case,

(*) g0(x) 7.23= f(x)f 0(x)

and, in the second case,

(**) g0(x) 7.4= xf 0(x) + f(x).

We analyze each case in turn.
Consider (*) when f(x) = ln(x). Then, since f 0(x) = 1

x (by Lemma 16.5),

we must Þnd g such that g0(x) = ln(x)
x . This seems more complicated than

Þnding g such that g0(x) = ln(x).
So, let us turn to (**). If we knew a function h whose derivative is xf 0(x),

we would be done since

(#) (g − h)0(x) 7.2= g0(x)− h0(x) = xf 0(x) + f(x)− xf 0(x) = f(x).

In practice, we can almost never Þnd such a function h � the function xf 0(x)
is just too complicated. However, when f(x) = ln(x), the function xf 0(x) is
about as simple as possible: x ln0(x) = 1 (by Lemma 16.5)! Hence, h(x) = x is
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a function whose derivative is x ln0(x). Therefore, recalling that g(x) = xf(x)
was the choice that led to (**), we have found a function whose derivative is ln;
namely, by (#), g−h is such a function, where g(x) = x ln(x) and h(x) = x. In
other words,

(##)
³
x ln(x)− x

´0
= ln(x).

The discussion above explains how we arrive at the formula in the following
theorem:

Theorem 16.29: The function ln is integrable over any closed and bounded
interval [a, b], where a > 0, andR b

a ln(x) = b ln(b)− a ln(a) + a− b.
Proof: Since ln is differentiable (by Lemma 16.5), ln is continuous (by The-

orem 6.14); hence, ln is continuous on [a, b] (by Exercise 5.3). Therefore, by the
formula in (##) preceding the theorem, we can apply part (2) of the Funda-
mental Theorem of Calculus (Theorem 14.2) to obtain thatR b

a
ln(x) = b ln(b)− a ln(a) + a− b. ¥

6. What Have We Accomplished?

We have accomplished a lot, more than may be immediately apparent. Let
us see what we have accomplished other than our speciÞc results.
First, we can now state and prove the laws of exponents in complete gener-

ality (which justiÞes using the notation at in the deÞnition in section 4):

Theorem 16.30: Fix a > 0.
(1) a0 = 1.
(2) axay = ax+y for all x, y ∈ R1.
(3) a

x

ay = a
x−y for all x, y ∈ R1.

(4) (ax)y = axy for all x, y ∈ R1.
(5) (ab)x = axbx for any b > 0 and all x ∈ R1.
Proof: We prove each part in turn. Fix x, y ∈ R1 for use after the proof of

part (1).

Proof of (1): a0 = ln−1[0 ln(a)] = ln−1(0)
16.19
= 1.

Proof of (2): axay = ln−1[x ln(a)] ln−1[y ln(a)]
16.19
= ln−1[x ln(a) + y ln(a)]

= ln−1[(x+ y) ln(a)] = ax+y.

Proof of (3): ax

ay =
ln−1[x ln(a)]
ln−1[y ln(a)]

16.19
= ln−1[x ln(a)− y ln(a)]

= ln−1[(x− y) ln(a)] = ax−y.
Proof of (4): (ax)y = ln−1[y ln(ax)]

16.22
= ln−1[yx ln(a)] = ayx = axy.

Proof of (5): For any given b > 0,
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(ab)x = ln−1[x ln(ab)]
16.7
= ln−1[x

³
ln(a) + ln(b)

´
]

= ln−1[x ln(a) + x ln(b)]
16.19
= ln−1[x ln(a)] ln−1[x ln(b)] = axbx. ¥

We will call the function f(x) = ax, for a > 0, the exponential function with
respect to a.
Second, we can now explain clearly why we called ln the natural logarithm

function back in section 2. The common meaning of the word logarithm is �the
exponent that indicates the power to which a number is raised to produce a
given number� (Merriam Webster�s Collegiate Dictionary, Merriam -Webster,
Inc., SpringÞeld, Massachusetts, Tenth Edition, 1993). We see that ln(t) Þts
the deÞnition just quoted since, by Theorem 16.23, ln(t) is the exponent that
the number e is raised to produce a given number t. The term natural is used
in connection with the logarithm function ln for two reasons: ln and its inverse
(f(x) = ex) arise naturally in connection with many physical phenomena, and
ln and its inverse are the simplest and most convenient of all logarithm and
exponential functions (we study other logarithm and exponential functions in
the next chapter).
Next, we can at long last resolve the two issues we raised at the end of section

4 of Chapter VIII; namely, we now know what xp means for all x > 0 and all
real numbers p (e.g., 2

√
2 = ln−1[

√
2 ln(2)], and we can prove that Theorem 8.16

extends to the function f(x) = xp for all x > 0 :

Theorem 16.31: Fix p ∈ R1, and deÞne f : (0,∞) → R1 by f(x) = xp.
Then f is differentiable at each x > 0 and

f 0(x) = pxp−1.

Proof: Assume that x > 0. Let g = p · ln. Then, by the deÞnition of xp
(above Exercise 16.20), we see that f = ln−1 ◦ g. Hence, by the Chain Rule
(Theorem 7.23),

f 0(x) = [
¡
ln−1

¢0
(g(x))] [g0(x)];

furthermore,¡
ln−1

¢0
(g(x))

16.18
= ln−1(g(x)) = ln−1(p ln(x))

16.22
= ln−1(ln(xp)) = xp

and

g0(x) 7.4= p ln0(x) 16.5= p
x .

Therefore,

f 0(x) = xp px
16.30 (3)
= pxp−1. ¥

Finally, we have uncovered many new and interesting functions whose deriva-
tives and integrals are worth investigating. We deÞne and discuss some of these
functions in the next chapter (we have already considered one such function in
Exercise 16.28).
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Chapter XVII: General Logarithm and
Exponential Functions

We studied the natural logarithm function and the natural exponential func-
tion in the preceding chapter. It is now time to examine logarithm functions
and exponential functions in general.
We deÞne the logarithm and exponential functions in section 2. We obtain

a simple but important algebraic relationship between logarithm functions and
the natural logarithm function in section 3. This result shows that the functions
that are commonly called logarithms, and which historically came from other
considerations, are nothing more or less than the functions of the form

F (x) = c
R x

1
1
t , for some constant c 6= 0 and all x > 0.

We systematically present the properties of logarithm functions in section 3
and the properties of exponential functions in section 4; the properties include
the derivatives and the integrals of the functions, as well as other information
directly concerned with the graphs of the functions.
In the Þnal section, we concern ourselves with functions that have the prin-

cipal algebraic property of logarithm functions or of exponential functions. For
logarithm functions, the property is that they change multiplication to addi-
tion; for exponential functions, the property is that they change addition to
multiplication. We show that any function with the Þrst or second property
that is also bounded on some interval must, in fact, be a logarithm function or
an exponential function, respectively. The result shows, for example, that each
principal algebraic property, all by itself, almost implies differentiability.

1. DeÞnitions of Logarithm and Exponential Functions

We will see that it is convenient to deÞne exponential functions before we
deÞne logarithm functions.
Fix a > 0. Recall (from above Exercise 16.20) that we have deÞned ax to be

ln−1[x ln(a)] for any x ∈ R1. We now consider ax to be the value of a function
at x; we denote the function by expa, often writing expa(x) instead of a

x. We
note the following theorem before we formally deÞne the exponential functions
and the logarithm functions.

Theorem 17.1: For any a > 0 such that a 6= 1, the function expa is
one - to - one and maps R1 onto (0,∞).
Proof: Recall from part (1) of Theorem 16.19 that ln−1(0) = 1; thus, since

a 6= 1, ln(a) 6= 0. Hence the linear function f given by f(x) = x ln(a) for all
x ∈ R1 is a one - to - one function from R1 onto R1. Also, ln−1 is one - to - one
and maps R1 onto (0,∞) (by Theorem 16.17). Therefore, since

expa = ln
−1 ◦f ,

172



expa is one - to - one and maps R1 onto (0,∞). ¥
With Theorem 17.1 in mind with respect to the domain and range of expa,

we give the following formal deÞnition:

DeÞnition: Let a > 0. The exponential function with respect to a is the
function expa : R1 → (0,∞) deÞned above; that is,

expa(x) = a
x = ln−1[x ln(a)] for all x ∈ R1.

The basic algebraic properties of exponential functions are enumerated in
Theorem 16.30.
Note that the exponential function with respect to 1 is not very interesting

since 1x = 1 for all x ∈ R1 (by the deÞnition of at above Exercise 16.20).
We now deÞne the logarithm functions. Regarding the use of the word

logarithm, see the discussion in the second paragraph following the proof of
Theorem 16.30.

DeÞnition: Let b > 0 such that b 6= 1. The logarithm to the base b of a
number x > 0, denoted by logb(x), is exp

−1
b (x) (which exists and is unique by

Theorem 17.1); in other words, logb(x) is the power to which b must be raised
to obtain x.
The notation logb stands for the logarithm function with base b; that is,

logb = exp
−1
b .

We note that the general deÞnition of logarithm does, indeed, include our
old friend the natural logarithm:

Theorem 17.2: ln = loge (where e = ln
−1(1)).

Proof: By Theorem 16.23, expe = ln
−1. Hence, ln = exp−1

e . Therefore, by
the deÞnition of logarithm above, ln = loge. ¥

2. The Algebraic Relation between Logarithm Functions and ln

We show that each logarithm function is a constant multiple of the natural
logarithm function and, conversely, that every nonzero constant multiple of the
natural logarithm function is a logarithm function.
The formula in the following theorem makes it easy for us to prove that

logarithm functions are differentiable and to obtain formulas for their derivatives
(Theorem 17.10 in the next section).

Theorem 17.3: For any b > 0 such that b 6= 1,

logb(x) =
ln(x)
ln(b) for all x > 0.

Proof: Note that the right - hand side of the formula is deÞned since ln(b) 6= 0
(because b 6= 1; recall part (1) of Theorem 16.19).
Fix x > 0. Let y = logb(x). Then, by the deÞnition of logb(x) in section 1,

by = x. Therefore,

173



y ln(b)
16.22
= ln(by) = ln(x). ¥

Theorem 17.4: Every logarithm function is a constant multiple of ln and,
conversely, every nonzero constant multiple of ln is a logarithm function. In
other words, a function f is a logarithm function if and only if f = c · ln for
some constant c 6= 0.
Proof: Every logarithm function is a constant multiple of ln by Theorem

17.3.
Conversely, assume that c 6= 0. We show that c · ln is a logarithm function.

Let b = e
1
c . By Theorem 17.1, b > 0 and b 6= 1 (since e0 = 1 by Theorem 16.30).

Hence, b is a permissible base for a logarithm function, so logb is a logarithm
function. Now, for any x > 0,

logb(x)
17.3
= ln(x)

ln(e
1
c )

16.23
= ln(x)

1
c

= c ln(x).

Therefore, c · ln is a logarithm function. ¥
Exercise 17.5: For any a, b, c > 0 such that a 6= 1 and b 6= 1,

loga(b) · logb(c) = loga(c).

Exercise 17.6: Any two logarithm functions are constant multiples of one
another; that is, logb = c logb0 for some constant c, which depends on b and
b0. Find c. (Once you Þnd c, this change - in - base result allows us to express a
logarithm to one base in terms of a logarithm to any other base.)

For a given real number c, we know from Theorem 16.31 that the func-
tion f(x) = expx(c) is differentiable and that f

0(x) = cxc−1. In the following
exercise, you are asked to prove the analogous result for logarithms.

Exercise 17.7: Fix c > 0, and let f be the change - in - base function given
by f(x) = logx(c) for all x > 0 such that x 6= 1.
Find f 0(x), thereby showing f is differentiable.
For what values of c is f one - to - one? Find a formula for f−1 when f is

one - to - one.

3. Properties of Logarithm Functions

We present the algebraic properties and the basic calculus of logarithm func-
tions.
The algebraic properties of logarithm functions are in the following theorem:

Theorem 17.8: Fix b > 0 such that b 6= 1.
(1) logb(1) = 0.

(2) logb(xy) = logb(x) + logb(y) for all x, y > 0.

(3) logb(
x
y ) = logb(x)− logb(y) for all x, y > 0.

(4) logb(x
y) = y logb(x) for all x > 0 and all y ∈ R1.
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Proof: By Theorem 17.3, logb =
1

ln(b) · ln. Therefore, (1), (2), (3) and (4)
follow easily from the corresponding results for ln (namely, 16.5, 16.7, 16.9 and
16.22, respectively). ¥
Our next theorem concerns the simplest functional properties of logarithm

functions.

Theorem 17.9: For any b > 0 such that b 6= 1, the function logb is one -
to - one and maps (0,∞) onto R1.

Proof: Since logb = exp
−1
b (by deÞnition of logb), it is obvious that logb is

one - to - one and that the rest of the theorem follows from Theorem 17.1. ¥
In the next several results, we examine the calculus of logarithm functions.

Theorem 17.10: For any b > 0 such that b 6= 1, the function logb is
differentiable and

log0b(x) =
1

x ln(b) for all x > 0.

Proof: By Theorem 17.3, logb =
1

ln(b) · ln. Therefore, for any x > 0,

log0b(x)
7.4
= 1

ln(b) · ln0(x)
16.5
= 1

ln(b)
1
x =

1
x ln(b) . ¥

We obtain several corollaries to Theorem 17.10. First, however, we note a
lemma that we use several times; the lemma is simply an observation based on
two results in Chapter XVI.

Lemma 17.11: ln(b) < 0 when 0 < b < 1, and ln(b) > 0 when b > 1.
Proof: The lemma follows immediately from the fact that ln(1) = 0 (by

Lemma 16.5) and the fact that ln is strictly increasing (by Corollary 16.14). ¥
We now present three corollaries to Theorem 17.11. The Þrst corollary is

less interesting than the others, but we include it for convenient reference in the
proofs of other results here and in the next section

Corollary 17.12: For all x > 0,

log0b(x) < 0 when 0 < b < 1, log
0
b(x) > 0 when b > 1.

Proof: The corollary follows from Theorem 17.10 and Lemma 17.11. ¥
Corollary 17.13: The function logb is strictly decreasing if 0 < b < 1 and

is strictly increasing if b > 1.

Proof: The corollary follows from Corollary 17.12 and Theorem 10.17. ¥
Corollary 17.14: The function logb is concave up when 0 < b < 1 and is

concave down when b > 1.

Proof: For any b > 0 such that b 6= 1 and for all x > 0,

log00b (x)
17.10
=

³
1

x ln(b)

´0 7.5
= −(x ln(b))0

(x ln(b))2

6.2
= − ln(b)

(x ln(b))2 .
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Hence, for all x > 0, we see from Lemma 17.11 that

log00b (x) > 0 when 0 < b < 1, log
00
b (x) < 0 when b > 1.

Therefore, our corollary now follows by applying Corollary 10.31. ¥
Exercise 17.15: Draw the graphs of logb for some values of b > 1 and for

some values of b such that 0 < b < 1. Draw the graphs all in the same Þgure (for
the purpose of comparison); be sure to indicate what happens as x approaches
zero (from the right) and as x goes to inÞnity.

In Theorem 16.29, we found a formula for the integral of the natural loga-
rithm function over any closed and bounded interval of positive reals. Because
logb =

1
ln(b) · ln (by Theorem 17.3), we can use Theorem 16.29 to integrate all

logarithm functions:

Theorem 17.16: For any b > 0 such that b 6= 1, the function logb is
integrable over any closed and bounded interval [c, d] with c > 0 andR d

c
logb(x) = d logb(d)− c logb(c) + c−d

ln(b)

Proof: Fix b > 0 such that b 6= 1, and Þx c and d such that 0 < c ≤ d.
Since ln is integrable over [c, d] (by Theorem 16.27) and since logb =

1
ln(b) · ln

(by Theorem 17.3), we have by Theorem 13.11 that logb is integrable over [c, d]
and R d

c
logb(x)

17.3
=
R d
c

1
ln(b) · ln(x)

13.11
= 1

ln(b)

R d
c
ln(x)

16.29
= 1

ln(b)

³
d ln(d)− c ln(c) + c− d.

´
= d ln(d)

ln(b) − c ln(c)
ln(b) +

c−d
ln(b)

17.3
= d logb(d)− c logb(c) + c−d

ln(b) . ¥

The formula in Theorem 17.16 can be stated entirely in terms of the natural
logarithm:

Exercise 17.17: Under the assumptions in Theorem 17.16,R d
c logb(x) =

1
ln(b)

³
ln(d

d

cc ) + c− d
´
.

4. Properties of Exponential Functions

We already know the algebraic properties and the most elementary functional
properties of exponential functions (Theorems 16.30 and 17.1). Thus, we turn
our attention to the calculus of exponential functions.
The following theorem says that the rate of change of an exponential function

is proportional to the function itself. We see from the theorem that expe is the
only exponential function that is its own rate of change; in this sense, expe is
natural as an exponential function � however, in view of Exercise 16.25, expe
should be considered unusual as a function!
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Theorem 17.18: For any a > 0, the function expa is differentiable and

exp0a(x) = ax ln(a) for all x ∈ R1.

Proof: Fix a > 0 and x ∈ R1. Note that

(1) expa(x) = a
x 16.23= eln(ax) 16.22= ex ln(a).

By (1), exp0a(x) =
¡
ex ln(a)

¢0
. Therefore, using the Chain Rule (Theorem

7.23) and Corollary 16.24 for the Þrst equality below,

exp0a(x) =
¡
ex ln(a)

¢
(x ln(a))0 7.4=

¡
ex ln(a)

¢
ln(a)

(1)
= ax ln(a). ¥

The following corollaries are analogous to the corollaries for logarithm func-
tions in the preceding section.

Corollary 17.19: For all x ∈ R1,

exp0a(x) < 0 when 0 < a < 1, exp0a(x) > 0 when a > 1.

Proof: Since ax > 0 for all x ∈ R1 (by Theorem 17.1), the corollary follows
from Lemma 17.11 and Theorem 17.18. ¥
Corollary 17.20: The function expa is strictly decreasing if 0 < a < 1 and

is strictly increasing if a > 1.

Proof: The corollary follows from Corollary 17.19 and Theorem 10.17. ¥
Recall that the concavity of logb depends on whether b < 1 or b > 1 (Corol-

lary 17.14). Nevertheless, the following corollary shows that the concavity of
the inverse functions of the logarithm functions is always the same.

Corollary 17.21: For any a > 0 such that a 6= 1, the function expa is
concave up.

Proof: For all x ∈ R1,

exp00a(x)
17.18
=

³
ax ln(a)

´0 7.4
= (ax)0 ln(a) 17.18= ax[ln(a)]2 > 0.

Therefore, expa is concave up by Corollary 10.31. ¥
Exercise 17.22: Draw the graphs of expa for some values of a > 1 and

for some values of a such that 0 < a < 1. Draw the graphs all in the same
Þgure (for the purpose of comparison); be sure to indicate what happens as x
approaches ±∞.
Next, we integrate the exponential functions. We found it easy to integrate

the logarithm functions (Theorem 17.16). This was because we already had a
formula for the integral of ln and the logarithm functions are constant multi-
ples of ln (Theorem 17.3). Similarly, it is now easy to integrate the exponential
functions � by just looking at the formula in Theorem 17.18, we see that expa

ln(a)
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is a function whose derivative is ax. However, we must remember that substan-
tial work is behind the proof of Theorem 17.18; aside from results speciÞcally
mentioned in the proof, the Inverse Function Theorem (Theorem 8.7) is used to
prove Corollary 16.24 (see Exercise 16.18).

Theorem 17.23: For any a > 0 such that a 6= 1, the function expa is
integrable over any closed and bounded interval [c, d] andR d

c a
x = 1

ln(a)(a
d − ac).

Proof: Fix a > 0 such that a 6= 1, and Þx c ≤ d.
Since a 6= 1, ln(a) 6= 0 (by part (1) of Theorem 16.19). Thus, ax

ln(a) is deÞned

for all x (the expression ax

ln(a) comes from the discussion above). Now,

(*)
³

ax

ln(a)

´0 7.4
= 1

ln(a) (a
x)0 17.18= ax for all x ∈ [c, d],

Since expa is differentiable (by Theorem 17.18), expa is continuous (by The-
orem 6.14). Hence, expa is continuous on [c, d] (by Exercise 5.3). Therefore, by
(*) and part (2) of the Fundamental Theorem of Calculus (Theorem 14.2),R d

c
ax = ad

ln(a) − ac

ln(a) =
1

ln(a)(a
d − ac). ¥

5. Logarithm and Exponential Types of Functions

The algebraic properties of logarithm functions are listed in Theorem 17.8.
The property in part (2) of Theorem 17.8 says that logarithm functions convert
multiplication (of positive numbers) to addition; this property implies the other
properties in Theorem 17.8 (e.g., recall Theorems 16.8 and 16.11). Thus, we are
led to call a function f : (0,∞)→ R1 a logarithm type of function, abbreviated
L - function, provided that

f(xy) = f(x) + f(y) for all x, y > 0.

Similarly, since ax+y = axay (by Theorem 16.30), we call a function f : R1 →
(0,∞) an exponential type of function, abbreviated E - function, provided that

f(x+ y) = f(x)f(y) for all x, y ∈ R1.

The question arises as to whether there is an L - function or an E - function
other than the logarithm functions and the exponential functions (respectively).
We show that the answer is no under the assumtion that the L - function and the
E - function are bounded above on some interval (Theorem 17.29 and Theorem
17.33). In particular, the only L - functions or E - functions that are continu-
ous at some point are the logarithm functions and the exponential functions,
respectively.
On the other hand, there are L - functions and E - functions that are not

continuous at any point; the methods for constructing such functions require
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set - theoretic techniques that we will not discuss.10 We note that discontinuous
L - functions and E - functions are strange � they must be unbounded on every
nondegenerate interval (by our main theorems).
We accomplish our proofs in the following way: First, we introduce the

notion of additive functions, which play a prominent role in the proofs of our
main results; we prove that all additive functions that are bounded above on
some interval are linear (i.e., of the form f(x) = cx); then we characterize all
L - functions and E - functions as compositions of additive functions with ln and
expe, respectively; Þnally, we prove our main theorems by applying the theorem
about additive functions to the general characterizations of L - functions and
E - functions.

Additive Functions

We prove Theorem 17.24, which we use in the proofs of our main theorems
about L - functions and E - functions.
DeÞnition: A function f : R1 → R1 is said to be additive provided that

f(x+ y) = f(x) + f(y) for all x, y ∈ R1.

Obviously, all linear functions are additive. We show, conversely, that all
additive functions that are bounded above on some interval are linear.

Theorem 17.24: Let f : R1 → R1 be an additive function that is bounded
above on some interval [a, b], a < b. Then there is a constant c such that

f(x) = cx for all x ∈ R1.

Proof: Since f(0) = f(0 + 0) = f(0) + f(0), we see that f(0) = 0. Hence,
for all x ∈ R1,

0 = f(0) = f(x− x) = f(x) + f(−x).
Thus,

(1) f(−x) = −f(x) for all x ∈ R1.

Since f is bounded above on [a, b] (by assumption), there existsM > 0 such
that

(2) f(x) < M for all x ∈ [a, b].
Let d = b− a. Note that if x ∈ [0, d], then x+ a ∈ [a, b]. Hence, by (2), we

have that

(3) f(x+ a) <M for all x ∈ [0, d].
Next, note that for any x ∈ [0, d],

10Discontinuous L - functions and discontinuous E - functions can be obtained from Lemmas
17.28 and 17.32 by using a discontinuous additive function g. A brief history of the discovery
and signiÞcance of discontinuous additive functions is on pages 503 - 505 of the paper by J. W.
Green and W. Gustin, Quasiconvex sets, Canadian Journal of Math. 2(1950), 489 - 507. For a
construction of a discontinuous additive function, see, for example, the proof of Theorem 3 of
the paper by F. B. Jones, Connected and disconnected plane sets and the functional equation
f(x) + f(y) = f(x+ y), Bull. Amer. Math. Soc. 48(1942), 115 - 120.
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f(x) = f(x+ a− a) (1)= f(x+ a)− f(a) (3)< M − f(a);
hence,

(4) f is bounded above on [0, d].

Now, let c = f(d)
d . DeÞne a function g : R1 → R1 as follows:

g(x) = f(x)− cx for all x ∈ R1.

Since f is bounded above on [0, d] (by (4)), g is the difference of two functions
that are bounded above on [0, d]; hence,

(5) g is bounded above on [0, d].

Since g is the difference of two additive functions, it is obvious that

(6) g is additive.

Note that since c = f(d)
d , g(d) = f(d)− cd = 0; hence, we see from (6) that

g is periodic with period d, which means

(7) g(x+ d) = g(x) for all x ∈ R1.

Now, it follows easily from (5) and (7) that

(8) g is bounded above on all of R1.

Finally, we prove that f(x) = cx for all x ∈ R1 by proving that g(x) = 0 for
all x ∈ R1.
Suppose by way of contradiction that g(p) 6= 0 for some p ∈ R1. By (1),

either g(p) > 0 or g(−p) > 0; hence, we can assume without loss of generality
that g(p) > 0. Using (6) and a simple induction (Theorem 1.20), we see that

g(np) = ng(p) for all n = 1, 2, ... .

Thus, since g(p) > 0, we see that g is not bounded above (by the Archimedean
Property (Theorem 1.22)). This contradicts (8). Hence, we have proved that
g(x) = 0 for all x ∈ R1; therefore, by the formula deÞning g,

f(x) = cx for all x ∈ R1. ¥

Exercise 17.25: If f : R1 → R1 is an additive function, then f(qx) = qf(x)
for all rationals q and all x ∈ R1.

Exercise 17.26: Use Exercise 17.25 to prove directly the following special
case of Theorem 17.24:
If f : R1 → R1 is a continuous additive function, then there is a constant c

such that f(x) = cx for all x ∈ R1.
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L -Functions

We gave the deÞnition of an L - function at the beginning of the section.
Concerning the assumption in the deÞnition that the domain of an L - function
is (0,∞), we offer the following exercise:
Exercise 17.27: Let X ⊂ R1 and let f : X → R1 be a function such that

f(xy) = f(x) + f(y) whenever x, y ∈ X,

(1) If 0 ∈ X, f(x) = 0 for all x ∈ X.
(2) If 1 ∈ X and X is symmetric about the origin (i.e., x ∈ X implies

−x ∈ X), then f(−x) = f(x) for all x ∈ X.
Our main result about L - functions is Theorem 17.29. The proof of the

theorem uses the following lemma.

Lemma 17.28: A function f : (0,∞)→ R1 is an L - function if and only if
there is an additive function g : R1 → R1 such that f = g ◦ ln.
Proof: Assume that f is an L - function; that is,

(1) f(xy) = f(x) + f(y) for all x, y > 0.

DeÞne g : R1 → R1 as follows:

(2) g(t) = f(et) for all t ∈ R1 (e = ln−1(1)).

We see that g is additive since, for all x, y ∈ R1,

g(x+ y)
(2)
= f(ex+y)

16.30
= f(exey)

(1)
= f(ex) + f(ey)

(2)
= g(x) + g(y).

In addition, f = g ◦ ln since, for all x > 0,

f(x)
16.23
= f(eln(x))

(2)
= g(ln(x)).

Conversely, assume that f = g ◦ ln for some additive function g : R1 → R1.
Then f is an L - function since, for all x, y > 0,

f(xy) = g(ln(xy))
16.7
= g

³
ln(x) + ln(y)

´
= g(ln(x)) + g(ln(y)) = f(x) + f(y). ¥

Theorem 17.29: Assume that f : (0,∞)→ R1 is bounded above on some
interval [a, b], 0 < a < b. Then f is an L - function if and only if f is a logarithm
function or f is the zero function.

Proof: If f is a logarithm function, then f is an L - function by part (2) of
Theorem 17.8. Clearly, the zero function is an L - function.
Conversely, assume f is an L - function that is bounded above on [a, b], where

0 < a < b. By Lemma 17.28, there is an additive function g : R1 → R1 such
that f = g ◦ ln.
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We Þnd an interval [s, t], s < t, on which g is bounded above. Since ln is
differentiable (by Lemma 16.5), ln is continuous (by Theorem 6.14). Thus, by
Theorem 5.13, ln([a, b]) = [s, t], where s < t since ln is one - to - one (by Theorem
16.17). Hence, ln−1([s, t]) = [a, b] (using again that ln is one - to - one). Thus,
since f = g ◦ ln,

g([s, t]) = f(ln−1([s, t])) = f([a, b]).

Therefore, since f is bounded above on [a, b] (by assumption), clearly g is
bounded above on [s, t].
Since g is an additive function bounded above on [s, t], where s < t, we see

from Theorem 17.24 that there is a constant c such that

g(x) = cx for all x ∈ R1.

Thus, since f = g ◦ ln,
f(x) = g(ln(x)) = c ln(x) for all x ∈ R1,

which proves that f = c · ln. Therefore, by Theorem 17.4, f is a logarithm
function if c 6= 0. ¥
Exercise 17.30: State and prove the analogue of Theorem 17.29 for func-

tions f deÞned R1−{0} that satisfy the equation for L - functions (i.e., f(xy) =
f(x) + f(y) for all x, y ∈ R1 − {0}).
(Hint: Recall Exercise 17.27.)

E -Functions

We deÞned E - functions at the beginning of the section.

Exercise 17.31: The requirement in the deÞnition of an E - function that
f have only positive values only eliminates the function that is constantly zero
from consideration: If f : R1 → R1 is a function such that

f(x+ y) = f(x)f(y) for all x, y ∈ R1,

then either f(x) = 0 for all x ∈ R1 or f(x) > 0 for all x ∈ R1.

Our main result about E - functions is Theorem 17.33. First, we prove a
lemma.

Lemma 17.32: A function f : R1 → (0,∞) is an E - function if and only if
there is an additive function g : R1 → R1 such that f = expe ◦g (e = ln−1(1)).

Proof: Assume that f is an E - function. Then, since f(x) > 0 for all x ∈ R1,
the function g = ln ◦f is deÞned on all of R1. We see that g is additive since,
for all x, y ∈ R1,

g(x+ y) = ln
³
f(x+ y)

´
= ln

³
f(x)f(y)

´
16.7
= ln(f(x)) + ln(f(y)) = g(x) + g(y).

Also, f = expe ◦g since
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f = ln−1 ◦ ln ◦f 16.23
= expe ◦(ln ◦f) = expe ◦g.

Conversely, assume f = expe ◦g for some additive function g : R1 → R1.
Then f is an E - function since, for all x, y ∈ R1,

f(x+ y) = expe

³
g(x+ y)

´
= expe

³
g(x) + g(y)

´
16.30
= expe(g(x)) expe(g(y)) = f(x)f(y). ¥

Theorem 17.33: Assume that f : R1 → (0,∞) is bounded on some interval
[a, b], a < b. Then f is an E - function if and only if f is an exponential function.

Proof: If f is an exponential function, then f is an E - function by part (2)
of Theorem 16.30.
Conversely, assume f is an E - function that is bounded above on [a, b], where

a < b. By Lemma 17.32, there is an additive function g : R1 → R1 such that
f = expe ◦g.
We show that g is bounded above on [a, b]. Since f maps R1 to (0,∞) and

f is bounded above on [a, b],

f([a, b]) ⊂ (0,m) for some m > 0.

Thus, since f = expe ◦g,

expe

³
g([a, b])

´
⊂ (0,m).

Therefore, since expe is not bounded above on any set that is not bounded
above, it follows that g([a, b]) must be bounded above on [a, b].
Since g is and additive function bounded above on [a, b], where a < b, we

have by Theorem 17.24 that there is a constant c such that

g(x) = cx for all x ∈ R1.

Thus, since f = expe ◦g,
f(x) = expe(g(x)) = expe(cx) = e

cx for all x ∈ R1.

Therefore, by part (4) of Theorem 16.30, f is the exponential function given by
f(x) = (ec)x. ¥
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Chapter XVIII: L�Hôpital�s Rules

We know from Theorem 4.20 that the limit of the quotient, fg , of two func-
tions exists and is the quotient of the limits of the functions when the limit of
each function exists and the limit for g is not 0. It is evident that if the limit of
f exists and is not 0 and the limit of g is 0, then the limit of fg does not exist or
may be +∞ or −∞. We are left with the case when the limit of f and the limit
of g are both 0. This case occurs throughout calculus, and we have dealt with
it before � Þnding derivatives is evaluating limits of this type (by deÞnition of
the derivative).
When the limit of f and the limit of g are both 0, the limit of fg may not

exist, may be +∞ or −∞, or may be any real number. We illustrate with
simple examples: limx→0

x
x2 does not exist, limx→0

|x|
x2 = +∞ (see deÞnition in

section 1 of this chapter), limx→0
−|x|
x2 = −∞, and for any Þxed real number t,

limx→0
tx
x = t.

We obtain a systematic method for investigating limits of quotients of dif-
ferentiable functions when the functions separately have limit equal to 0, +∞,
or −∞. In general terms, the method says that the limit of such a quotient is
the limit of the ratio of the rates of speed (derivatives) of the functions provided
that the latter limit exists. (For a simple illustration, consider limits of axbx as x
approaches 0,+∞, or −∞).
The method we are concerned with is called l�Hôpital�s rules, named after

the Marquis de l�Hôpital (1661 - 1704). However, the method was actually due to
John Bernoulli (1667 - 1748), who was l�Hôpital�s tutor. The method originally
appeared in the Þrst textbook ever published on differential calculus, entitled
Analyse des inÞniment petits and written by l�Hôpital in 1696; this is undoubt-
edly the reason the method bears his name. An example from l�Hôpital�s book
is in Exercise 18.14.
We use nothing about integration theory in this chapter, so the chapter could

have been placed immediately after Chapter X (we will use a result from Chapter
X). We chose to postpone presenting l�Hôpital�s rules until now in order that
the rules be followed closely by applications that illustrate the rules in another
context � sequences and series, which we study in the next two chapters.
We mention some notation and terminology:
We write ∞ instead of +∞; ±∞ means ∞ or −∞ (i.e., one or the other).
The symbol ∞∞ signiÞes what is called the indeterminate form inÞnity over

inÞnity as x approaches p (x→ p), which refers to limits of the form limx→p
f(x)
g(x) ,

where limx→p |f(x)| =∞ = limx→p |g(x)|. Similarly, the symbol 0
0 is called the

indeterminate form zero over zero as x→ p, and is shorthand for limits of the
form limx→p

f(x)
g(x) , where limx→p f(x) = 0 = limx→p g(x).

We organize the chapter as follows: We give deÞnitions for limits involving
inÞnity in section 1, we present l�Hôpital�s Rule for ∞

∞ in section 2, and we
present l�Hôpital�s Rule for 0

0 in section 3.
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The indeterminate forms ∞
∞ and 0

0 are the main forms for l�Hôpital�s rules;
these two forms can be applied in other situations that we discuss near the end
of section 2 (above Exercise 18.5).

1. DeÞnitions for Limits Involving InÞnity

We give the deÞnitions for inÞnite limits as x approaches a number p or as x
approaches∞ or −∞, and we give deÞnitions for Þnite limits as x approaches∞
or −∞. We conclude with two theorems concerning Þnite limits as x approaches
∞ or −∞.
We will be confronted with a number of deÞnitions involving limits and

inÞnity all at once. This should not tax the reader�s ability to understand and
remember the deÞnitions since the deÞnitions are natural and each deÞnition is
a variation of the others. Moreover, let us imagine for a moment that ∞ and
−∞ are limit points of R1 and that an interval about ∞ or −∞ is an interval
of the form (a,∞] or [−∞, a), respectively; then the deÞnitions below become
natural analogues of the deÞnition of Þnite limits in section 1 of Chapter III �
thus, the deÞnitions do not involve substantially new ideas.

DeÞnition (limx→p f(x) = ±∞): Let X ⊂ R1, let f : X → R1 be a
function, and let p ∈ R1 such that p is a limit point of X.

� The limit of f as x approaches p is ∞, limx→p f(x) =∞, provided that
for each real number M , there is a real number δ > 0 such that

f(x) >M for all x ∈ X − {p} such that |x− p| < δ.
� The limit of f as x approaches p is −∞, limx→p f(x) = −∞, provided
that for each real number M , there is a real number δ > 0 such that

f(x) <M for all x ∈ X − {p} such that |x− p| < δ.
� The deÞnitions for one - sided limits being ∞ or −∞ (limx→p+ f(x) =
±∞, limx→p− f(x) = ±∞) are obtained from the deÞnitions just given by
analogy with the deÞnitions for one - sided limits in section 5 of Chapter
III.

DeÞnition (limx→∞ f(x)): Let X ⊂ R1 such that X has no upper bound,
and let f : X → R1 be a function.

� The limit of f as x approaches ∞ is the real number L, limx→∞ f(x) = L,
provided that for each ² > 0, there is a real number N such that

|f(x)− L| < ² for all x ∈ X such that x > N .

� The limit of f as x approaches ∞ is ∞, limx→∞ f(x) = ∞, provided
that for each real number M , there is a real number N such that

f(x) > M for all x ∈ X such that x > N .
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� The limit of f as x approaches ∞ is −∞, limx→∞ f(x) = −∞, provided
that for each real number M , there is a real number N such that

f(x) < M for all x ∈ X such that x > N .

DeÞnition (limx→−∞ f(x)): Let X ⊂ R1 such that X has no lower bound,
and let f : X → R1 be a function. (The only change here is to write x < N
instead of x > N as above.)

� The limit of f as x approaches −∞ is the real number L, limx→−∞ f(x) =
L, provided that for each ² > 0, there is a real number N such that

|f(x)− L| < ² for all x ∈ X such that x < N .

� The limit of f as x approaches −∞ is ∞, limx→−∞ f(x) =∞, provided
that for each real number M , there is a real number N such that

f(x) > M for all x ∈ X such that x < N .

� The limit of f as x approaches −∞ is −∞, limx→−∞ f(x) = −∞, pro-
vided that for each real number M , there is a real number N such that

f(x) < M for all x ∈ X such that x < N .

We note the following standard terminology for many of the limits deÞned
above:

DeÞnition: The line x = p in the plane (p ∈ R1 Þxed) is a vertical
asymptote for a function f provided that at least one of the following is true:
limx→p+ f(x) = ∞, limx→p− f(x) = ∞, limx→p+ f(x) = −∞, limx→p− f(x) =
−∞.
The line y = L in the plane (L ∈ R1 Þxed) is a horizontal asymptote for a

function f provided that limx→∞ f(x) = L or limx→−∞ f(x) = L.

Exercise 18.1: Find limx→∞ x
sin(x)−3 (if the limit is Þnite or ±∞).

Exercise 18.2: Find limx→0
|sin(x)|

1−cos(x) (if the limit is Þnite or ±∞).
Exercise 18.3: Let X ⊂ R1 such that X has no upper bound, and let

f : X → R1 be a positive function. Then limx→∞ f(x) = ∞ if and only if
limx→∞ 1

f(x) = 0.

Exercise 18.4: Let X ⊂ R1 such that X has no upper bound, and let
f : X → R1 be a function. Let Y = { 1

x : x ∈ X and x 6= 0}, and deÞne
F : Y → R1 by

F ( 1
x) = f(x), all

1
x ∈ Y .

Then lim 1
x→0+ F ( 1

x) = limx→∞ f(x) if either limit exists.
The analogous result for −∞ holds when X has no lower bound.
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Two Limit Theorems As x Approaches ±∞

The two theorems below place many limit theorems we obtained earlier in
the setting of limits as x approaches ±∞. The theorems will be needed for
exercises in this chapter and will be used in the next chapter.

Theorem 18.5: Let X ⊂ R1 such that X has no upper bound, and let
f, g : X → R1 be functions such that

limx→∞ f(x) = L and limx→∞ g(x) =M , where L,M ∈ R1.

Then the analogues of Theorems 3.1 (on uniqueness), 4.1 (on sums), 4.2 (on
differences), 4.9 (on products), 4.20 (on quotients), and 4.34 (Squeeze Theorem)
hold for limits as x approaches ∞. Also, the analogues of the theorems hold
when X has no lower bound and x approaches −∞.
Proof: Let Y = { 1

x : x ∈ X and x 6= 0}, and deÞne F,G : Y → R1 by

F ( 1
x) = f(x), G(

1
x) = g(x), all

1
x ∈ Y .

Then, our theorem follows by using Exercise 18.4 to apply any theorem listed
in our theorem to F and G. ¥
Our next theorem is the variant of the Substitution Theorem (Theorem 4.29)

for limits as x approaches ±∞.
Theorem 18.6 (Substitution Theorem for InÞnity): Let X,Y,Z ⊂ R1

such that X has no upper bound, and let f : X → Y and g : Y → Z be
functions. If limx→∞ f(x) = L, where L ∈ R1, and g is continuous at L, then

limx→∞(g ◦ f)(x) = g(L).

The analogous result when X has no lower bound and x approaches −∞ holds.

Proof: Let ² > 0. Since g is continuous at L, we have by Corollary 3.13 that
there is a δ > 0 such that

|g(y)− g(L)| < ² for all y ∈ Y such that |y − L| < δ.

Since limx→∞ f(x) = L, there is a real number N such that

|f(x)− L| < δ for all x ∈ X such that x > N .

It follows easily that

|(g(f(x))− g(L)| < ² for all x ∈ X such that x > N .

Therefore, we have proved that limx→∞(g ◦ f)(x) = g(L).
The proof of the result for −∞ is similar. ¥
Exercise 18.7: Find limx→∞(

√
x2 + 8x− x) (if the limit exists or is ±∞).
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2. L�Hôpital�s Rule for ∞
∞

We prove l�Hôpital�s rule for the indeterminate form ∞
∞ . We then discuss

exponential indeterminate forms to which the theorem can be applied.
The proofs of l�Hôpital�s rules in this section and the next use a generalization

of the Mean Value Theorem due to Cauchy:

Theorem 18.8 (Cauchy Mean Value Theorem): Assume that f and
g are continuous on [a, b] and differentiable on (a, b). Then there is a point
p ∈ (a, b) such that

f 0(p)[g(b)− g(a)] = g0(p)[f(b)− f(a)].
Proof: The theorem is in Exercise 10.6. In case you did not work Exercise

10.6, and in the interest of completeness, we note that the theorem follows easily
by considering the function h given by

h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)], all x ∈ [a, b]
and applying Rolle�s Theorem (Lemma 10.1). ¥
Theorem 18.9 (L�Hôpital�s Rule for ∞

∞): Let I be an open interval, let
p ∈ I, and let f, g : I − {p}→ R1 be functions such that

limx→p |f(x)| =∞ = limx→p |g(x)|.
Assume that f and g are differentiable on I − {p} and that g(x) 6= 0 and
g0(x) 6= 0 for any x ∈ I − {p}. If

limx→p
f 0(x)
g0(x) = L (including L = ±∞),

then limx→p
f(x)
g(x) = L. In addition, the analogous result holds when p is an end

point of I or when p = ±∞ (and I = (a,∞) or (−∞, a) for some a ∈ R1).

Proof: We divide the proof into four cases. The proof for the Þrst case is
substantially longer than the proofs for the other three cases.

Case 1: p ∈ I and L ∈ R1. By Theorem 6.14, we have that

(1) f and g are continuous on I − {p}.
Throughout the proof we Þx a point t ∈ I such that p < t. Let s ∈ I such that

p < s < t. By (1) and Exercise 5.3, g is continuous on [s, t]. Thus, if g(s) = g(t),
then the Mean Value Theorem (Theorem 10.2) shows that g0(x) = 0 for some
point x ∈ (s, t); however, this contradicts the assumption in our theorem that
g0(x) 6= 0 for any x ∈ I − {p}. Therefore, we have proved that

(2) g(s) 6= g(t).
By Theorem 18.8, there is a point ps ∈ (s, t) such that

f 0(ps)[g(t)− g(s)] = g0(ps)[f(t)− f(s)].
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Thus, by (2) and since g0(ps) 6= 0 (by assumption in our theorem), we have
f 0(ps)
g0(ps) =

f(t)−f(s)
g(t)−g(s) .

Therefore, since g(s) 6= 0 (by assumption in our theorem), we can divide the
numerator and denominator of the right - hand side by −g(s), which shows we
have proved the following:

(3) For each s ∈ (p, t), there is a point ps ∈ (s, t)
such that f

0(ps)
g0(ps) =

f(s)
g(s)− f(t)

g(s)

1− g(t)
g(s)

.

Let ² > 0. Since limx→p
f0(x)
g0(x) = L and L < ∞ (by assumption in Case 1),

we can assume that t was chosen above close enough to p so that

L− ²
2 <

f 0(x)
g0(x) < L+

²
2 for all x ∈ (p, t).

Then, since the points ps in (3) are in (p, t), we have by (3) that

(4) L− ²
2 <

f(s)
g(s)− f(t)

g(s)

1− g(t)
g(s)

< L+ ²
2 for all s ∈ (p, t).

Since limx→p |g(x)| = ∞ (by assumption in our theorem), we can assume
that t was chosen above close enough to p so that

g(t)
g(s) < 1 for all s ∈ (p, t).

Hence, by multiplying through (4) by the positive quantity 1− g(t)
g(s) , we obtain

(5) (L− ²
2)(1− g(t)

g(s)) <
f(s)
g(s) − f(t)

g(s) < (1− g(t)
g(s))(L+

²
2 ) for all s ∈ (p, t).

The last major step in the proof for Case 1 is to use (5) to prove the following:

(*) There exists q ∈ (p, t) such that for all s ∈ (p, q),
L− ² < f(s)

g(s) < L+ ².

Proof of (*): We prove (7) and (9) and then obtain the point q.
By the Þrst inequality in (5), we have

(6) L− ²
2 < (L− ²

2)
g(t)
g(s) +

f(s)
g(s) − f(t)

g(s) for all s ∈ (p, t).
Since limx→p |g(x)| =∞ (by assumption in our theorem), we see that

lims→p+

³
−(L− ²

2)
g(t)
g(s) +

f(t)
g(s)

´
= 0;

hence, there is a δ1 > 0 such that

− ²
2 < −(L− ²

2 )
g(t)
g(s) +

f(t)
g(s) for all s ∈ (p, t) such that s− p < δ1.
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Thus, writing L− ² = (L− ²
2)− ²

2 and applying (6), we have that

(7) L− ² < f(s)
g(s) for all s ∈ (p, t) such that s− p < δ1.

Next, we prove (9) (the proof is similar to the proof of (7)). By the second
inequality in (5), we have

(8) f(s)
g(s) − f(t)

g(s) + (L+
²
2)
g(t)
g(s) < L+

²
2 for all s ∈ (p, t).

Since limx→p |g(x)| =∞ (by assumption in our theorem),

lims→p+

³
−(L+ ²

2)
g(t)
g(s) +

f(t)
g(s)

´
= 0;

hence, there is a δ2 > 0 such that

−(L+ ²
2 )

g(t)
g(s) +

f(t)
g(s) <

²
2 for all s ∈ (p, t) such that s− p < δ2.

Thus, writing L+ ² = (L+ ²
2) +

²
2 and applying (8), we have that

(9) f(s)
g(s) < L+ ² for all s ∈ (p, t) such that s− p < δ2.

Finally, let q ∈ (p, t) such that q − p < min{δ1, δ2}. Then (7) and (9) both
hold for all s ∈ (p, q). Therefore, q satisÞes (*).
Since (*) holds for any t sufficiently close to p, we see that limx→p+

f(x)
g(x) = L.

A similar argument shows that limx→p−
f(x)
g(x) = L. Therefore, we have proved

the theorem for the case when p ∈ I and L is a real number (the assumptions
in Case 1).

Case 2: p is an end point of I and L ∈ R1. The proof for this case follows
from the proof for Case 1.

Case 3: p = ±∞ (and I = (a,∞) or (−∞, a) for some a ∈ R1) and L ∈ R1.
We only consider the case when p = ∞ (the proof when p = −∞ is similar).
Thus, I = (a,∞) for some point a ∈ R1.
We assume without loss of generality that a > 0.
Let J = (0, 1

a). DeÞne functions F,G : J → R1 as follows (the functions are,
indeed, deÞned on all of I since if t ∈ I, then 1

t > a):

F (t) = f(1
t ), G(t) = g(

1
t ), all t ∈ J .

We will apply the theorem in the setting of Case 2 to the functions F and
G, the interval J , and the end point 0 of J . We Þrst show that F and G satisfy
the required assumptions.
Since limx→∞ |f(x)| =∞ = limx→∞ |g(x)| (by assumption in the theorem),

we see easily that limt→0 |F (t)| = ∞ = limt→0 |G(t)|. By the Chain Rule
(Theorem 7.23) and Lemma 7.5, F and G are differentiable on J and G0(t) 6= 0
for any t ∈ J (since, by assumption, g0(x) 6= 0 for any x ∈ (a,∞)). Since g(x) 6=
0 for any x ∈ (a,∞), G(t) 6= 0 for any t ∈ J . Finally, since limx→∞

f 0(x)
g0(x) = L

(by assumption in the theorem), we see that
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limt→0
F 0(t)
G0(t)

7.23, 7.5
= limt→0

f 0( 1
t )[−1

t2 ]

g0( 1
t )[−1

t2 ]
= limt→0

f 0( 1
t )

g0( 1
t )
= limx→∞

f0(x)
g0(x) = L.

Thus, applying Case 2, we have that

limt→0
F (t)
G(t) = L.

Therefore, since limx→∞
f(x)
g(x) = limt→0

F (t)
G(t) , we have that limx→∞

f(x)
g(x) = L.

Case 4: L = ±∞. The proof for this case follows from simple adjustments
in the proofs for the preceding three cases to take into account the deÞnition of
an inÞnite limit. We leave the details to the reader. ¥
Exercise 18.10: Find limx→∞

ln(x)
xt for t > 0 (if the limit is Þnite or ±∞).

Exercise 18.11: Find limx→∞
(ln(x))n

x for each natural number n (if the
limit is Þnite or ±∞).

The Indeterminate Forms 00, ∞0 and 1∞

Sometimes l�Hôpital�s Rule for ∞
∞ can be used to evaluate limits of expres-

sions of the form f(x)g(x) (where, of course, f(x) > 0 for all x). Assume that
f(x)g(x) has one of the indeterminate forms 00 or ∞0 as x → p, which means
limx→p f(x) = 0 or∞ and limx→p g(x) = 0, where p is a real number or p = ±∞.
Then the idea that leads to applying l�Hôpital�s rules is to rewrite f(x)g(x) as
eg(x) ln[f(x)] and to rewrite g(x) ln[f(x)] as ln[f(x)]

1
g(x)

; the expression ln[f(x)]
1

g(x)

has

the indeterminate form ∞
∞ (since x = 0 is a vertical asymptote of natural log-

arithm function and limx→∞ ln(x) = ∞). Thus, if the functions ln[f(x)] and
1

g(x) satisfy the other assumptions of Theorem 18.9 and L in (the assumption
of) Theorem 18.9 is Þnite, then

limx→p f(x)g(x) = eL

(by Theorem 18.9 and the Substitution Theorems 4.29 or 18.6).
We can apply the procedure to the quotient g(x)

1
ln[f(x)]

; since this quotient has

the indeterminate form 0
0 when f(x)

g(x) has the form 00 or ∞0, we would use
Theorem 18.18 in the next section.
We can also apply the procedure when we have the indeterminate form 1∞

(meaning limx→p f(x) = 1 and limx→p |g(x)| =∞).
Many of the exercises below in this section and in the next section illustrate

the procedure.

Exercise 18.12: Find limx→0 x
x (if the limit is Þnite or ±∞).

Exercise 18.13: Discuss limx→∞ ex

xp for p > 0 (e = ln
−1(1)).

Exercise 18.14: Find limx→∞ x
1
x (if the limit is Þnite or ±∞).

Exercise 18.15: Find limx→0(
1
x)
x (if the limit is Þnite or ±∞).
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Exercise 18.16: Find limx→∞
x−sin(x)

x (if the limit is Þnite or ±∞).
Exercise 18.17: Is �∞0 = 1�, by which we mean if f(x)g(x) has the inde-

terminate form∞0 as x→ p and limx→p f(x)
g(x) exists, then must the limit be

equal to 1 ? (Surely, it is natural to ask: If the usual law of exponents for real
numbers carries over to always give ∞0 = 1, then why use a limit method each
time to work a problem?)

3. L�Hôpital�s Rule for 0
0

We prove the analogue of Theorem 18.9 for the indeterminate form 0
0 .

Theorem 18.18 (L�Hôpital�s Rule for 0
0): Let I be an open interval, let

p ∈ I, and let f, g : I − {p}→ R1 be functions such that

limx→p f(x) = 0 = limx→p g(x).

Assume that f and g are differentiable on I − {p} and that g(x) 6= 0 and
g0(x) 6= 0 for any x ∈ I − {p}. If

limx→p
f 0(x)
g0(x) = L (including L = ±∞),

then limx→p
f(x)
g(x) = L. In addition, the analogous result holds when p is an end

point of I or when p = ±∞ (and I = (a,∞) or (−∞, a) for some a ∈ R1).

Proof: We divide the proof of the theorem into the same four cases into
which we divided the proof of Theorem 18.9.

Case 1: p ∈ I and L ∈ R1. We start by extending the domain of f and
g to all of I as follows (we use the same notation, f and g, for the extended
functions): Let

(1) f(p) = 0 = g(p).

By Theorem 6.14, the functions f and g are continuous on I − {p}. Thus,
since limx→p f(x) = 0 = limx→p g(x) (by assumption in our theorem), we have
by (1) and Theorem 3.12 that

(2) f and g are continuous on I.

We prove that

(3) g(x) 6= 0 for any x ∈ I − {p}.
Proof of (3): Suppose by way of contradiction that g(q) = 0 for some

q ∈ I − {p}. Then, by (1), g(q) = g(p); also, by (2) and Exercise 5.3, g is
continuous on the closed interval with end points p and q. Hence, by the Mean
Value Theorem (Theorem 10.2), g0(x) = g(p)−g(q)

p−q = 0 for some point x between
q and p; however, this contradicts the assumption in our theorem that g0(x) 6= 0
for any x ∈ I − {p}. Therefore, we have proved (3).
Now, Þx a point z ∈ I − {p}. Assume that z < p. The assumptions in

Theorem 18.8 are satisÞed by the functions f |[z, p] and g|[z, p] (the functions are
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continuous on [z, p] by (2) and Exercise 5.3, and the functions are differentiable
on (z, p) by assumption in our theorem). Hence, by Theorem 18.8, there is a
point pz ∈ (z, p) such that

f 0(pz)[g(p)− g(z)] = g0(pz)[f(p)− f(z)].

Hence, by (1), f 0(pz)g(z) = g0(pz)f(z). Thus, since g0(pz) 6= 0 by assumption
in our theorem and since g(z) 6= 0 by (3),

f 0(pz)
g0(pz) =

f(z)
g(z) .

A similar argument when z > p shows that there is a point pz ∈ (p, z) such that
f 0(pz)
g0(pz) =

f(z)
g(z) . Therefore, we have proved the following:

(4) For each x ∈ I − {p}, there is a point px
between p and x such that f

0(px)
g0(px) =

f(x)
g(x) .

Since the points px in (4) lie between p and x, limx→p px = p. In addition,
by assumption in our theorem, limx→p

f 0(x)
g0(x) = L. Hence,

limx→p
f 0(px)
g0(px) = L.

Therefore, by (4), limx→p
f(x)
g(x) = L. This proves the theorem under the assump-

tions in Case 1.

Case 2: p is an end point of I and L ∈ R1. The proof for this case follows
from the proof for Case 1.

Case 3: p = ±∞ (and I = (a,∞) or (−∞, a) for some a ∈ R1) and L ∈ R1.
The proof for this case is the same as the proof for Case 3 of Theorem 8.4 (with
the obvious changes).

Case 4: L = ±∞. The proof for this case follows from simple adjustments
in the proofs for the preceding three cases to take into account the deÞnition of
an inÞnite limit. We leave the details to the reader. ¥
We comment at some length about part of the proof of Theorem 18.18.
After (4) in the proof of Theorem 18.18, we stated that limx→p px = p.

Technically, this limit makes no sense unless we specify one such px for each
x, thereby obtaining a function of x (we take limits of functions, not of sets of
points). Of course, we infer from the statement in (4) and the notation px that
we have chosen one point px for each x. But, What allows us to do this?
The answer is the Axiom of Choice, which says that that there is a choice

function for any inÞnite collection C of nonempty sets (a choice function for C is
a function ϕ : C → ∪C such that ϕ(A) ∈ A for all A ∈ C). Without the Axiom
of Choice, it is not always obvious how to deÞne a choice function for an inÞnite
collection C of nonempty sets and, in fact, it may not even be possible to do so:
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Try to deÞne a choice function for the collection of all nonempty subsets of the
reals.
Thus, to be precise in the proof of Theorem 18.4, we should have said the

following after (4): For each x ∈ I − {p}, let
Ax = {px : px satisÞes (4)}

and let C =
n
{Ax : x ∈ I − {p}

o
; then, by the Axiom of Choice, there is a

choice function ϕ for C. The rest of the proof of Theorem 18.4 then proceeds as
before, replacing px with ϕ(Ax).
Invoking the Axiom of Choice and showing how it is used in such a situation

is probably more trouble than it is worth. Therefore, as is customary, we write
proofs without mentioning the Axiom of Choice. Nevertheless, we can now keep
our eyes open for when the Axiom of Choice is being used � it�s good for us to
know when something is going on. We will speciÞcally make note of our use of
the Axiom of Choice only one more time (after the proof of Theorem 19.39).
Our unexpressed use of the Axiom of Choice in the future will not bother

you: You probably used the Axiom of Choice, perhaps without knowing you
were using it, in working some exercises in previous chapters (for example, I�ll
bet you used the Axiom of Choice in working Exercise 10.5).
Finally, we mention that the Axiom of Choice is independent of and consis-

tent with the other usual axioms of set theory (see Thomas J. Jech, The Axiom
of Choice, North -Holland Publ. Co., Amsterdam and London, and American
Elsevier Publ. Co., Inc., New York, 1973).

Exercise 18.19: Find limx→1
1+cos(πx)
1−x+ln(x) (if the limit is Þnite or ±∞).

Exercise 18.20: Find limx→0(
1

sin(x) − 1
x) (if the limit is Þnite or ±∞).

Exercise 18.21: Find limx→p
√

2p3x−x4−p 3
√
p2x

p− 4
√
px3

. (This is the example in

l�Hôpital�s book that we referred to in the introduction.)

Exercise 18.22: Find limx→0(e
x + x)

1
x (if the limit is Þnite or ±∞; e =

ln−1(1)).

Exercise 18.23: Find limx→0
2x−5x

sin(x) (if the limit is Þnite or ±∞).
Exercise 18.24: Find limx→0

1
x3

R x
0
sin(t3) dt (if the limit is Þnite or ±∞).

Exercise 18.25: Find limx→0
1
x16

R x5

0 sin(t2) dt (if the limit is Þnite or ±∞).
Exercise 18.26: Assuming that the second derivative f 00 of f is continuous

on an open interval I and p ∈ I, Þnd

limh→0
f(p+h)−2f(p)+f(p−h)

h2 .

The limit in Exercise 18.26 reminds us of limits in Exercises 6.11, 612 and
6.13. The result in Exercise 6.13 can be worked using l�Hôpital�s Rule for 0

0
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under the additional assumptions that f has a continuous derivative on I, ϕ is
differentiable on the open interval J about 0, and ϕ0(h) 6= 0 for all h ∈ J . Even
this special case of Exercise 6.13 is useful.

Exercise 18.27: Find limh→0
(p+h3)7−p5

h3 (if the limit is Þnite or ±∞).
Exercise 18.28: Assume that f : I → R1 has a continuous Þrst derivative

on I, and let p ∈ I. Find limh→0
f(p+h2)f(p+h2)−f(p)f(p)

2h2 (if the limit is Þnite or
±∞).
Exercise 18.29: In Exercise 16.27, you were asked to prove that e =

limx→0(1 + x)
1
x using (as a hint) the limit deÞnition of ln0(1). Work Exer-

cise 16.27 again, this time using l�Hôpital�s Rule for 0
0 (Theorem 18.18) instead

of the limit deÞnition of ln0(1).
Moreover, prove that ex = limt→∞(1 + x

t )
t for each x ∈ R1.

Exercise 18.30: DeÞne f : R1 → R1 by

f(x) =

(
sin(x)
x , if x 6= 0

1 , if x = 0.

Find f 0(0) and f 00(0) using l�Hôpital�s Rule for 0
0 (Theorem 18.18). Do you

think that the nth derivative of f at x = 0 exists (we return to this later)?

Exercise 18.31: What limits (Þnite or ±∞) can be obtained when f(x)g(x)

has the indeterminate form 00 ?
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Chapter XIX: Numerical Sequences

Recall that we deÞned and brießy discussed the notions of sequence and limit
of a sequence in section 8 of Chapter IV. We study these notions carefully in
this chapter and in the next chapter.
The reader should refresh his memory concerning the deÞnitions of a se-

quence and convergence of a sequence in section 8 of Chapter IV (we do not
repeat these deÞnitions here).
Throughout the chapter, the term sequence means a sequence of points in

R1 (i.e., a numerical sequence).
In section 1 we present the most fundamental results for studying sequences

� limits of combinations of sequences (sums, products, and so on), a squeeze
theorem and a theorem that allows us to use the methods of calculus to study
sequences. In section 2, we prove that bounded increasing (or decreasing) se-
quences converge; this important theorem provides the theoretical foundation
for studying convergence of inductively deÞned sequences in section 3. Of par-
ticular note in section 3 is the graphical method that we introduce in the latter
part of the section; the graphical method is a tool that can be used to gain
intuition regarding numerous inductively deÞned sequences.
Finally, in section 4, we recast arbitrary closeness and continuity as deÞned

in Chapter II in terms of sequences.
Regarding notation, limn→∞ sn implicitly signiÞes that {sn}∞n=1 is a se-

quence and, thus, that the values of n are limited to the natural numbers;
the same is true when n is replaced by any of the letters i, j, k, `, or m; when we
are concerned with functions that are not (necessarily) sequences, we use letters
near the end of the alphabet in the limit notation (e.g., limx→p f(x)).

1. The Algebra of Sequences

We discuss (Þnite) sums, differences, products and quotients for limits of
sequences. We also include the Squeeze Theorem for Sequences as well as a very
simple but extremely useful theorem for determining whether speciÞc sequences
converge (Theorem 19.7).
The results in this section are simple consequences of results we proved earlier

for limits in general. In particular, Theorem 4.38 says, without being speciÞc,
that results about limits in Chapter III and Chapter IV hold (with obvious
modiÞcations) for limits of sequences. Theorem 4.38 can now be replaced by
Theorem 18.5, for which sequences are obviously a special case. We want to
avoid having to refer to both Theorem 18.5 and a relevant previous theorem
about limits listed in Theorem 18.5 each time we give the reason for convergence
of a sequence; thus, we list the pertinent results separately and in terms of
sequences here.

Theorem 19.1: If limn→∞ sn = p and limn→∞ sn = q, then p = q.
Proof: Apply Theorem 18.5 for the case of Theorem 3.1. ¥
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Theorem 19.2: If limn→∞ sn = p and limn→∞ tn = q, then the sequence
{sn + tn}∞n=1 converges and limn→∞(sn + tn) = p+ q.
Proof: Apply Theorem 18.5 for the case of Theorem 4.1. ¥
Theorem 19.3: If limn→∞ sn = p and limn→∞ tn = q, then the sequence

{sn − tn}∞n=1 converges and limn→∞(sn − tn) = p− q.
Proof: Apply Theorem 18.5 for the case of Theorem 4.2. ¥
Theorem 19.4: If limn→∞ sn = p and limn→∞ tn = q, then the sequence

{sntn}∞n=1 converges and limn→∞ sntn = pq.
Proof: Apply Theorem 18.5 for the case of Theorem 4.9. ¥
Theorem 19.5: If limn→∞ sn = p and limn→∞ tn = q 6= 0 and if tn 6= 0 for

any n, then the sequence { sntn }∞n=1 converges and limn→∞
sn
tn
= p

q .

Proof: Apply Theorem 18.5 for the case of Theorem 4.20. ¥
Theorem 19.6 (Squeeze Theorem for Sequences): If sn ≤ tn ≤ un for

each n = 1, 2, ... and

limn→∞ sn = p = limn→∞ un,

then limn→∞ un = p.
Proof: Apply Theorem 18.5 for the case of Theorem 4.34. ¥
Our next theorem is trivial to prove but provides a very important method

for studying sequences. Sequences, being functions deÞned only on the natural
numbers, are in and of themselves not suited to the methods of calculus. The
theorem we now present overcomes this obstacle for many sequences. We will
illustrate how to use the theorem in the example that follows the theorem.

Theorem 19.7: Let {sn}∞n=1 be a sequence, and let f : [1,∞) → R1 be a
function such that f(n) = sn for each n ∈ N. If limx→∞ f(x) = L (including
L = ±∞), then limn→∞ sn = L.
Proof: The theorem is obvious from deÞnitions. ¥
We note that the converse of Theorem 19.7 is false even when f is continuous

(Exercise 19.17).

Example 19.8: We show that limn→∞ n
1
n = 1.

With Theorem 19.7 in mind, consider the function f deÞned by f(x) =
x

1
x for all x ≥ 1. If you worked Exercise 18.14, then you already know that
limx→∞ f(x) = 1. We include the details for completeness.
By Theorem 16.23,

f(x) = eln(x
1
x ) for all x ≥ 1.

By Exercise 16.22, we can write the exponent for e as ln(x)
x which, since we are

considering the limit as x → ∞, has the indeterminate form ∞
∞ . Furthermore,

since ln0(x) = 1
x (by Lemma 16.5),
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limx→∞
ln0(x)
x0 = limx→∞

1
x

1 = limx→∞
1
x = 0.

Hence, by l�Hôpital�s Rule for ∞
∞ (Theorem 18.9), limx→∞

ln(x)
x = 0. In other

words,

limx→∞ ln(x
1
x ) = 0.

Thus, since f(x) = eln(x
1
x ), we have by Theorem 18.6 that

limx→∞ f(x) = e0 = 1.

Therefore, since f(n) = n
1
n for each n ∈ N, it follows immediately that the

sequence {n 1
n }∞n=1 converges to 1.

We will use the symbol n!, which we deÞne below. We note that n! is the
number of ways to order n different objects in a list (the elementary proof of
this fact is in Lemma 21.39).

DeÞnition: For any natural number n, n factorial, written n!, is the product
n(n− 1)(n− 2) · · · (2)(1), and 0! = 1.
Exercise 19.9: Find limn→∞

3
√
n+ 5

√
n

2
√
n+ 5

√
n
(if the limit exists).

Exercise 19.10: Find limn→∞ n4

n! (if the limit exists).

Exercise 19.11: Find limn→∞ n!
10n (if the limit exists).

Exercise 19.12: Find limn→∞
n2 sin(n)
n3+1 (if the limit exists).

Exercise 19.13: Find limn→∞(n−1
n+1 )

n (if the limit exists).

Exercise 19.14: Find limn→∞
ln(3+en)

2n (if the limit exists).

Exercise 19.15: Find limn→∞ ln(8n+ 3)− ln(2n) (if the limit exists).
Exercise 19.16: In Lemma 15.3 we used some previous results (including

induction and the Squeeze Theorem) to show that limn→∞ rn = 0 for each r
such that −1 < r < 1. Give a short proof that the limit is 0 based on Theorem
19.7.
Also, give a short proof that limn→∞ rn = ∞ when r > 1. Prove that

limn→∞ rn does not exist when r < −1.
Exercise 19.17: Show that the converse of Theorem 19.7 is false even when

the function f is continuous.

Exercise 19.18: If {sn}∞n=1 is a sequence such that limn→∞ s2n = L and
limn→∞ s2n−1 = L, then {sn}∞n=1 converges to L.

Exercise 19.19: True or false: If {sn}∞n=1 is a sequence such that sn+1 −
sn ≥ ² for all n and some ² > 0, then {sn}∞n=1 is not bounded.
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2. Bounded Monotonic Sequences

The term monotonic refers to a function that is either increasing or decreas-
ing on its domain. A sequence {sn}∞n=1 is eventually monotonic provided that
there exists N such that the sequence {sn}∞n=N is monotonic.

11 We also use the
more speciÞc terms eventually increasing and eventually decreasing.
We prove the following important fundamental result:

Theorem 19.20 (Bounded Monotonic Sequence Property): Any
bounded eventually monotonic sequence converges; moreover, any bounded in-
creasing sequence converges to the least upper bound of its values, and any
bounded decreasing sequence converges to the greatest lower bound of its val-
ues.

Proof: We begin by proving the second part of the theorem for the case of
bounded increasing sequences.
Assume that {sn}∞n=1 is a bounded increasing sequence. By the Complete-

ness Axiom (section 1 of Chapter I), {sn : n ∈ N} has a least upper bound
`.
We show that limn→∞ sn = `. Let ² > 0. Then, since ` is the least upper

bound for {sn : n ∈ N}, there exists N such that

`− ² < sN ;

thus, since {sn}∞n=1 is increasing and ` is an upper bound for {sn : n ∈ N},
`− ² < sN ≤ sn ≤ ` for all n ≥ N .

Therefore,

|sn − `| < ² for all n ≥ N .

This proves that limn→∞ sn = `.
The second part of the theorem for the case when {sn}∞n=1 is a bounded

decreasing sequence can be proved similarly (using the Greatest Lower Bound
Axiom) or, even better, by applying the Þrst part of the theorem to the sequence
{−sn}∞n=1.
The Þrst part of the theorem follows easily from the second part. ¥
We make three comments about Theorem 19.20. Then we give some exam-

ples.
First, in comparing the Þrst part of Theorem 19.20 with the rest of the

theorem, we note that a bounded eventually increasing sequence may not con-
verge to the least upper bound of its values (e.g., the sequence whose terms are
2, 0, 0, 0, ...).

11Technically, {sn}∞n=N is not a sequence unless N = 1, but when we say {sn}∞n=N is a
sequence, the meaning is obvious � we are referring to the sequence {sN−1+i}∞i=1. We continue
to use the notation {sn}∞n=N as shorthand for {sN−1+i}∞i=1 since it will cause no confusion.
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Second, the part of Theorem 19.20 that says every bounded increasing se-
quence converges is so basic that it is actually equivalent to the Completeness
Axiom in section 1 of Chapter I; we leave the proof to the reader (Exercise
19.26).
Finally, it is clear that Theorem 19.20 is an existence theorem, just as were

the Intermediate Value Theorem (Theorem 5.2) and the Maximum-Minimum
Theorem (Theorem 5.13). In particular, it may not be easy to Þnd the value of
the limit of a bounded monotonic sequence � see Example 19.21.
We illustrate Theorem 19.20 with two examples in this section and with

another example in the next section. In the Þrst example, we are only able
to show that the sequence converges � we do not know what the limit of the
sequence is. In the second example, we are able to Þnd the limit of the sequence
after we use Theorem 19.20 to know the limit exists. In the example in the next
section, we illustrate how Theorem 19.20 is used in connection with inductively
deÞned sequences.

Example 19.21: For each n ∈ N, let sn = (1)(3)(5)···(2n−1)
(2)(4)(6)···(2n) . The sequence

{sn}∞n=1 is bounded since 0 < sn < 1 for all n. The sequence is decreasing since
sn+1 =

2n+1
2n+2sn for all n. Therefore, by Theorem 19.20, {sn}∞n=1 converges.

Example 19.22: Fix r such that 0 < r < 1. We show using Theorem 19.20
that limn→∞ nrn = 0.
First, we prove that the sequence {nrn}∞n=1 is eventually decreasing (the en-

tire sequence is not decreasing: try r = 3
4). Since r < 1 and since limn→∞

n
n+1 =

1, there exists N such that

n
n+1 > r for all n ≥ N .

Hence, for all n ≥ N , (n+1)r < n which, since r > 0, gives (n+1)rn+1 < nrn.
This proves that the sequence {nrn}∞n=1 is decreasing for all n ≥ N .
Thus, since the sequence {nrn}∞n=1 is bounded (below by 0), we now know

from Theorem 19.20 that the the sequence {nrn}∞n=1 converges, say

limn→∞ nrn = L.

Hence, limn→∞ r(nrn)
19.4
= rL; also, limn→∞ rn+1 15.3

= 0. Using these two facts
for the last equality below, we have

L = limn→∞ nrn = limn→∞(n+ 1)rn+1 = limn→∞(rnrn + rn+1)
19.2
= rL.

Hence, (1− r)L = 0. Therefore, since r 6= 1, L = 0.
Exercise 19.23: Rework Example 19.22 using Theorem 19.7 instead of

Theorem 19.20. Don�t give up if your Þrst attempt fails!

Exercise 19.24: For each n ∈ N, let sn = ln(2) ln(4)··· ln(2n)
ln(3) ln(5)··· ln(2n+1) . Determine

whether the sequence {sn}∞n=1 converges.
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Exercise 19.25: Show using Theorem 19.20 that the series Σ∞i=1
1
i! con-

verges.
(Hint: Recall Theorem 15.4.)

Exercise 19.26: Prove that the statement every bounded increasing se-
quence converges implies the Completeness Axiom in section 1 of Chapter I.
(We proved the converse in the proof of Theorem 19.20.)

3. Inductively DeÞned Sequences

The sequences in Examples 19.21 and 19.22 could have been deÞned by
induction (Theorem 1.20): For the sequence in Example 19.21, deÞne s1 =

1
2

and, assuming we have deÞned sn, deÞne sn+1 =
2n+1
2n+2sn; for the sequence

in Example 19.22, deÞne s1 = r and, assuming we have deÞned sn, deÞne
sn+1 = rsn+rn+1. In general, deÞning sequences by an inductive formula leads
to surprisingly interesting sequences. The surprise is due to the fact that the
inductive formula relating sn+1 to sn can be extremely simple, yet the properties
of the resulting sequence can be very complicated (and can take some effort to
uncover).
For all sequences we have seen, their terms have been deÞned by formulas;

however, we may not even be able to Þnd a formula that tells us the exact
value of the nth term of many inductively deÞned sequences. Thus, Theorem
19.20 plays a central role in investigating inductively deÞned sequences, and the
existential nature of Theorem 19.20 is even more directly visible here than it
was in the preceding section.
The example below illustrates everything we have said. In addition, the

veriÞcations for the example illustrate three important working principles: First,
looking at the Þrst several terms of a sequence may lead you to detect a pattern;
second, grouping various terms of a sequence together can be effective in proving
convergence (or divergence); third, proving only the existence of the limit of a
sequence can sometimes be turned into Þnding the exact value of the limit (we
saw this before, in the veriÞcations for Example 19.22).

Example 19.27: Let s1 = 1 and, assuming we have deÞned sn, let sn+1 =
1 + 1

sn
. The sequence {sn}∞n=1 is neither increasing nor decreasing:

1, 2, 3
2 ,

5
3 ,

8
5 ,

13
8 ,

21
13 ,

34
21 ,

55
34 , ... .

On examining the pattern, we are led to conjecture that the odd terms s2n−1

are increasing and the even terms s2n are decreasing. We prove the conjecture
by induction:
From the terms listed above, s1 < s3. Assume inductively that s2k−1 <

s2k+1 for some given k ∈ N. Then, since all terms of the sequence are positive
(by an easy induction), 1

s2k+1
< 1

s2k−1
; hence, 1 + 1

s2k+1
< 1 + 1

s2k−1
which,

by the inductive formula for the sequence {sn}∞n=1, says s2k+2 < s2k; then,
repeating the steps starting with s2k+2 < s2k, we obtain 1 + 1

s2k
< 1 + 1

s2k+2
,

which says s2k+1 < s2k+3. Therefore, by the Induction Principle (Theorem
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1.20), we have proved that all the odd terms s2n−1 are increasing. The proof
that the even terms s2n are decreasing is similar: From the terms listed above,
s2 > s4. Assume inductively that s2k > s2k+2 for some given k ∈ N. Then,

1
s2k+2

> 1
s2k

and, hence, 1 + 1
s2k+2

> 1 + 1
s2k
, which says s2k+3 > s2k+1; thus,

1 + 1
s2k+1

> 1 + 1
s2k+3

, which says s2k+2 > s2k+4. Therefore, by the Induction
Principle, all the even terms s2n−1 are decreasing.
Next, we show that the sequence {sn}∞n=1 is bounded. It is easy to see (by

induction) that sn ≥ 1 for all n ∈ N. Thus, since sn+1 = 1 +
1
sn
for all n ∈ N,

sn+1 ≤ 2 for all n ∈ N. Hence, we have shown that

1 ≤ sn ≤ 2 for all n ∈ N.

This proves that the sequence {sn}∞n=1 is bounded.
Now, we can apply Theorem 19.20 to the sequences {s2n−1}∞n=1 and {s2n}∞n=1

separately to obtain that they each converge, say

limn→∞ s2n−1 = L, limn→∞ s2n =M .

Note that since 1 ≤ sn ≤ 2 for all n ∈ N, L > 0 and M > 0; we will use this
fact several times (usually without saying so).
Finally, we determine the exact value for L and forM ; as a consequence, we

obtain that L = M . Therefore, we can conclude that limn→∞ sn is L = M by
Exercise 19.18.
Using the inductive formula that deÞned {sn}∞n=1, we see that for each n ∈ N,

s2n+1 = 1 +
1
s2n

= 1 + 1
1+ 1

s2n−1

= 1+2s2n−1

1+s2n−1
;

thus, since limn→∞ s2n−1 = L and, hence, limn→∞ s2n+1 = L, we have

L = limn→∞ s2n+1 = limn→∞
1+2s2n−1

1+s2n−1

19.2, 19.5
= 1+2L

1+L .

Thus, L2 − L− 1 = 0. Hence, by the quadratic formula, L = 1±√5
2 . Therefore,

since L > 0, we conclude that

L = 1+
√

5
2 .

Similarly, M = 1+
√

5
2 . Therefore, by Exercise 19.18, limn→∞ sn = 1+

√
5

2 , the
golden ratio(!), which we brießy discuss.

The limit 1+
√

5
2 of the sequence in Example 19.27 is called the golden ratio

because, in ancient times, it represented the perfection of beauty in art and
architecture � not for any particular reason we know of, but apparently from
aesthetic considerations alone. Obviously, the golden ratio did not surface in
ancient Greece as the limit of an inductively deÞned sequence! We don�t know
how or when the golden ratio was Þrst speciÞed, but the golden ratio appears in
many constructions in ancient Greek geometry. The ancient Greek geometers
considered the most beautiful of all rectangles to be one for which the ratio of
its length to its width is 1+

√
5

2 ; the straight line joining two nonadjacent vertices

of a regular pentagon with sides of unit length is 1+
√

5
2 (see Þgure on next page).
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A study of ancient art and architecture shows that the golden ratio was a
foundation of design. More recently, the golden ratio has been investigated in
connection with music. There are many other situations in which the golden
ratio plays an (explicit or implicit) role. For our purpose, it suffices to say
that Example 19.27 shows that inductively deÞned sequences with very simple
inductive formulas can have a very interesting limits indeed! However, we are
left to wonder why the golden ratio is noticeable in so many diverse situations.
I do not want to leave the reader with a misimpression: When we deÞne a

sequence by a simple inductive formula and show that the limit of the sequence
exists, we still may not be able to compute the exact limit of the sequence
by the method we used in Example 19.27. For example, as mentioned earlier,
the sequence in Example 19.21 can be deÞned inductively by letting s1 =

1
2

and deÞning sn+1 =
2n+1
2n+2sn; however, if we try to compute the exact value of

limn→∞ sn using the method in Example 19.27, we get nothing:

limn→∞ sn+1
19.4
= limn→∞ 2n+1

2n+2 limn→∞ sn = limn→∞ sn.

The Graphical Method

We look at Example 19.27 from another point of view, one that really serves
to explain what is going on. Our comments about the speciÞc example generalize
and, thus, can be employed to aid the reader�s intuition with respect to many
inductively deÞned sequences.
Consider the function f given by f(x) = 1+ 1

x for all x 6= 0. The inductively
deÞned sequence in Example 19.27 can be deÞned in terms of f : the inductive
formula becomes sn+1 = f(sn). �Simple enough,� you say, �but so what!� The
value of this point of view is as follows:
Draw the graph of f ; start at x = 1, move vertically to the graph, then move

horizontally to the line y = x, then vertically to the graph, then horizontally to
the line y = x, and so on. The Þrst point we got on the graph was f(1) = s2,
the second point we got on the graph was f(f(1)) = s3, and the nth time we
touch the graph in this procedure we get the the term sn+1, which coincides with
fn(1) where fn = f ◦f ◦· · ·◦f (f appearing n times); fn is called the nth iterate
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of f . It is evident from your picture that the terms of the sequence are heading
towards the positive Þxed point of f ; simple algebra shows the positive Þxed
point of f is 1+

√
5

2 . You can also see from your picture that successive terms
of the sequence are alternately below and above the positive Þxed point of f
with the odd terms increasing towards the Þxed point of f and the even terms
decreasing towards the Þxed point of f . The fact that the sequence converges
to a Þxed point of f is not an accident � see Exercise 19.28.
In practice, the graphical method we just described works for any induc-

tively deÞned sequence provided that the formula for the inductive deÞnition
is functional in nature and not too complicated. Of course, the conclusions we
arrive at using the method still need to be proved: the graphical method is
limited to helping our intuition.
The exercises that follow are designed to give the reader experience with the

graphical method. Although we do not call attention to the graphical method
in most of the exercises, we intend that the reader use the method to make con-
jectures before doing anything else (with the exceptions of Exercises 19.28 and
19.36); then, of course, the reader must try to verify the conjectures. Conjectures
followed by attempts to verify the conjectures is, after all, the way mathematics
is done; I doubt that many readers could just jump in and work the exercises
without Þrst getting a feeling for what is going on, and the graphical method is
well suited for building up intuition.
Our Þrst exercise veriÞes a statement we made when we discussed the graph-

ical method.

Exercise 19.28: Let X ⊂ R1, and let f : X → X be a continuous function.
DeÞne a sequence {sn}∞n=1 as follows: Let s1 be any given point of X and,
assuming we have deÞned sn, let sn+1 = f(sn). Prove that if the sequence
{sn}∞n=1 converges to a point p ∈ X, then p is a Þxed point of f (i.e., f(p) = p).
Exercise 19.29: Use the graphical method to conjecture whether or not we

could have started with any s1 > 0 in Example 19.27 and obtained the golden
mean 1+

√
5

2 as the limit of {sn}∞n=1. What about when s1 < 0 ?

Exercise 19.30: As a variation of Example 19.27, let m be a given real
number, let s1 = 1 and, assuming we have deÞned sn, let sn+1 = m − 1

sn
.

Use the graphical method to conjecture about which real numbers m result in
convergence of the sequence {sn}∞n=1 and to conjecture about the value of the
limit (in terms of m) when the sequence converges.
(Hint: Use Exercise 19.28.)

Exercise 19.31: Let s1 = 0 and, assuming we have deÞned sn, let sn+1 =
1 + sn+1

5 . Determine whether the sequence {sn}∞n=1 converges and, if the se-
quence converges, Þnd its limit.

Exercise 19.32: Let s1 = 1 and, assuming we have deÞned sn, let sn+1 =
1 + 1

1+sn
. Determine whether the sequence {sn}∞n=1 converges and, if the se-

quence converges, Þnd its limit.
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Exercise 19.33: Let s1 = 1 and, assuming we have deÞned sn, let sn+1 =
s2
n+3
2sn

. Determine whether the sequence {sn}∞n=1 converges and, if the sequence
converges, Þnd its limit.

Exercise 19.34: Let s1 =
1
8 and, assuming we have deÞned sn, let sn+1 =

1
2s

2
n+1. Determine whether the sequence {sn}∞n=1 converges and, if so, Þnd its

limit.

Exercise 19.35: Let s1 = 1 and, assuming we have deÞned sn, let sn+1 =
s2
n−1. Determine whether the sequence {sn}∞n=1 converges and, if the sequence
converges, Þnd its limit.

Exercise 19.36: We know from Exercise 19.25 that the series Σ∞i=1
1
i! con-

verges. DeÞne the sequence {sn}∞n=1 of partial sums of Σ
∞
i=1

1
i! inductively; then

see if the method we used to compute the limit L near the end of Example 19.27
can be applied here to the sequence {sn}∞n=1 of partial sums to Þnd the exact
value of Σ∞i=1

1
i! .

The Þrst term s1 of an inductively deÞned sequence is called the initial
value of the sequence. In general, inductively deÞned sequences are unstable
with respect to their initial values. This means that with the same inductive
formula, small changes in the initial value can produce signiÞcant changes in
the properties of the resulting sequences � one sequence may converge while
others that start as near it as we wish may diverge or may converge but to
limits that are far away from the limit of the original convergent sequence. Our
Þnal exercise below illustrates these behaviors.

Exercise 19.37: We deÞne sequences {st,n}∞n=1 for any given real number
t as follows: st,1 = t and, assuming we have deÞned st,n, let

st,n+1 =

(
2st,n , if st,n ≤ 1

2

−1
2st,n +

5
4 , if st,n > 1

2 .

Find a real number t0 with the following properties: The sequence {st0,n}∞n=1

with inital value t0 converges to a number L; there are points t as close to t0
as we wish such that the sequences {st,n}∞n=1 with initial values t diverge to
−∞; and there are points t as close to t0 as we wish such that the sequences
{st,n}∞n=1 with initial values t converge to the same number M 6= L.

4. Arbitrary Closeness and Continuity via Sequences

We introduced the notions of arbitrary closeness and continuity in Chapter
II. We show how these concepts can be reformulated in terms of sequences.

Theorem 19.38: Let p ∈ R1, and let A ⊂ R1 such that A 6= ∅. Then
p ∼ A if and only if there is a sequence {sn}∞n=1 of points in A such that
limn→∞ sn = p.
Proof: Assume that p ∼ A. Then, by Theorem 2.3,
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(p− 1
n , p+

1
n) ∩A 6= ∅ for each n ∈ N.

Hence, we can let sn ∈ (p− 1
n , p+

1
n) ∩ A for each n ∈ N, thereby obtaining a

sequence {sn}∞n=1. Clearly, sn ∈ A for each n ∈ N and limn→∞ sn = p (by the
Archimedean Property (Theorem 1.22)).
Conversely, assume that there is a sequence {sn}∞n=1 of points in A such that

limn→∞ sn = p. Let S = {sn : n ∈ N}. Then, by the deÞnitions of convergence
of sequences and arbitrary closeness, we have that p ∼ S. Therefore, since
S ⊂ A, we have by Exercise 2.10 that p ∼ A. ¥
Our next theorem characterizes continuity of a function at a point in terms

of sequences. One value of the theorem is that we can analyze some properties
of continuous functions easier with sequences than with limits.

Theorem 19.39: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X.
Then f is continuous at p if and only if whenever {sn}∞n=1 is a sequence of points
in X converging to p, then the sequence {f(sn)}∞n=1 converges to f(p).
Proof: Assume that f is continuous at p. Let {sn}∞n=1 is a sequence in X

such that limn→∞ sn = p. Then, by Theorem 18.6, limn→∞ f(sn) = f(p).
Conversely, assume the sequence condition in our theorem. We show that f

is continuous at p using the deÞnition of continuity (below Exercise 2.22).
Let A ⊂ X such that p ∼ A. Then, by Theorem 19.38, there is a sequence

{sn}∞n=1 of points in A such that limn→∞ sn = p. Thus, by our assumption,
limn→∞ f(sn) = f(p). Hence, letting S = {sn : n ∈ N}, we have that f(p) ∼
f(S) (by the deÞnitions of convergence of sequences and arbitrary closeness).
Thus, since S ⊂ A and, hence, f(S) ⊂ f(A), we have by Exercise 2.10 that
f(p) ∼ f(A). This proves that f is continuous at p. ¥
For the remainder of the section, we discuss an aspect of the proofs of The-

orem 19.38 and Theorem 19.39.
In the Þrst part of the proof of Theorem 19.38, we used (without speciÞcally

saying so) a set - theoretic axiom called the Countable Axiom of Choice. This
axiom says that there is a choice function for any countably inÞnite collection
C of nonempty sets; that is, there is a function ϕ : C → ∪ C such that ϕ(C) ∈ C
for all C ∈ C. In the proof of Theorem 19.38, we implicitly applied the axiom
to the collection C = {(p− 1

n , p+
1
n) ∩A : n ∈ N}.

In the proof of Theorem 19.39, we used the part of Theorem 19.38 whose
proof used the Countable Axiom of Choice. Thus, in effect, we used the Count-
able Axiom of Choice in proving Theorem 19.39.
I see no way to avoid using of the Countable Axiom of Choice in the proofs of

Theorem 19.38 or Theorem 19.39. This is not to say that the Countable Axiom
of Choice is something to be avoided whenever possible! Rather, it suggests a
question: Does Theorem 19.38 or Theorem 19.39 imply the Countable Axiom
of Choice for (countable) collections of nonempty sets of real numbers? I note
that Theorem 19.38 and Theorem 19.39 extend directly to all metric spaces;
in the general setting of metric spaces, Theorem 19.38 implies Theorem 19.39
which, in turn, implies the Countable Axiom of Choice � see Norbert Brunner,
Sequential continuity, Kyungpook Math. J. 22(1982), 233.
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Theorem 3.11 is closely related to Theorem 19.39. However, I did not use
the Countable Axiom of Choice in the proof of Theorem 3.11; instead, I made
use of the sets Aδ (it is insightful to prove that part of Theorem 3.11 again,
this time using Theorem 19.38). Nevertheless, the proof of Theorem 19.39 used
Theorem 19.38, and the proof of Theorem 19.38 seems to rest on deÞning a
sequence with the designated properties; deÞning such a sequence, even in the
real line, seems to require the Countable Axiom of Choice (but I am not sure).
Although we are now aware of the Countable Axiom of Choice, we will

no longer mention the axiom or use it explicitly. Our failure to mention the
axiom when it is used will not bother you, and the axiom�s explicit use is
more distracting than helpful (see comments about the general Axiom of Choice
following the proof of Theorem 18.18).

Exercise 19.40: Let A,B ⊂ R1. If p ∼ A and q ∼ B, then p+ q ∼ A+B
where A+B = {a+ b : a ∈ A and b ∈ B}.
The result in Exercise 19.40 can be interpreted as showing that addition is

continuous; of course, since addition is a function from the plane R2 to the real
line R1, a complete understanding of this is predicated on knowing the notion
of arbitrary closeness for R2. We deÞne arbitrary closeness for any metric space
near the end of section 4 in the next chapter.

Exercise 19.41: A comment in the proof of Theorem 2.11 suggested that
a direct argument for (A ∪B)∼ ⊂ A∼ ∪ B∼ can be done with other methods,
and we gave a contrapositive argument for the containment. Now that Theorem
19.38 says how we can view arbitrary closeness in terms of sequences, a direct
argument for (A ∪B)∼ ⊂ A∼ ∪B∼ is easy. Give the argument.
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Chapter XX: Subsequences and Cauchy
Sequences

We continue our study of the basic properties of sequences that we began in
the preceding chapter.
Throughout the chapter (unless we say otherwise or context makes it ob-

vious), the term sequence means a sequence of points in R1 (i.e., a numerical
sequence).
In section 1 we introduce the important notion of a subsequence. In section 2

we prove that every bounded sequence has a convergent monotonic subsequence.
In section 3 we deÞne the notion of a Cauchy sequence and use the theorem in
section 2 to prove that every Cauchy sequence converges. This leads us, in
section 4, to revisit the Completeness Axiom in section 1 of Chapter I and
develop a notion of completeness for metric spaces in general.

1. Subsequences

We deÞne what we mean by a subsequence of a sequence and discuss the
notion. One value in considering subsequences is that even though a sequence
may not converge, the sequence may have many convergent subsequences that
are useful. The theorem in the next section gives an applicable condition under
which a convergent subsequence of a sequence exists.

DeÞnition: Let {sn}∞n=1 be a sequence. For any strictly increasing sequence
{ni}∞i=1 of natural numbers, the sequence {sni}∞i=1 is called a subsequence of
the sequence {sn}∞n=1. In other words, a subsequence of a sequence s is the
composition, s◦t, of s with any strictly increasing sequence t of natural numbers.
Note that a subsequence of a subsequence of {sn}∞n=1 is still a subsequence

of {sn}∞n=1. We denote subsequences of subsequences with triple subscripts,
{snik }∞k=1.
In the deÞnition of subsequence, the requirement that {ni}∞i=1 is strictly

increasing is important to remember. Consider the sequence { 1
n}∞n=1; the se-

quence all of whose terms are 1, as well as the sequence whose terms are
1, 1

2 ,
1
2 ,

1
3 ,

1
4 ,

1
5 , ..., are not subsequences of the sequence { 1

n}∞n=1 even though
their terms are terms of { 1

n}∞n=1.

Exercise 20.1: Determine all the convergent subsequences of {(−1)n}∞n=1.
Show that {(−1)n}∞n=1 has uncountably many subsequences but only countably
many convergent subsequences. (Countable sets are discussed in section 1 of
Chapter XV.)

Exercise 20.2: Prove the following (obvious) result carefully, referring dili-
gently to each item used in Chapter I (the axioms in section 1 of Chapter I,
assumptions about N in 1.18, and any theorem in Chapter I that must be used):
If {ni}∞i=1 is a strictly increasing sequence of natural numbers, then ni ≥ i

for all i ∈ N; hence, for any real number N , there exists k ∈ N such that ni ≥ N
for all i ≥ k.

208



It is evident from Exercise 20.2 that every subsequence of { 1
n}∞n=1 must

converge to 0, the limit of { 1
n}∞n=1. This observation about subsequences of

{ 1
n}∞n=1 illustrates the general result in the next exercise. The result in the
exercise is natural and is easy to prove, but would be false without requiring in
the deÞnition of subsequence that {ni}∞i=1 is strictly increasing.

Exercise 20.3: Every subsequence, {sni}∞i=1, of a convergent sequence
{sn}∞n=1 converges, and limi→∞ sni = limn→∞ sn.

Exercise 20.4: It follows from Exercise 15.2 that the set Q of all rational
numbers is countable. Thus, there is a one - to - one function f from N onto the
set Q of all rational numbers. What real numbers are limits of subsequences of
the sequence {f(n)}∞n=1 ?

2. The Bolzano Weierstrass Theorem

We prove the Bolzano -Weierstrass Theorem, which says that every bounded
sequence has a convergent monotonic subsequence. This is an existence theorem
� it may be difficult to Þnd a speciÞc convergent subsequence. For example, try
the following exercise:

Exercise 20.5: Find a convergent subsequence of the sequence {sin(n)}∞n=1.

The proof of the Bolzano -Weierstrass Theorem uses the result in Exercise
5.16, which says that every bounded inÞnite subset of R1 has a limit point.
Actually, the Bolzano -Weierstrass Theorem and the result in Exercise 5.16 are
equivalent: Half of the equivalence will be shown in the proof of the Bolzano -
Weierstrass Theorem; the other half of the equivalence is left for the reader to
prove in Exercise 20.8.

Theorem 20.6 (Bolzano -Weierstrass Theorem): Every bounded se-
quence has a convergent monotonic subsequence.

Proof: Let {sn}∞n=1 be a bounded sequence. Let A = {sn : n ∈ N} (the set
of values of {sn}∞n=1).
If A is a Þnite set, then there is a point a ∈ A such that sn = a for inÞnitely

many n. Hence, by a simple induction, we obtain a strictly increasing sequence
{ni}∞i=1 of natural numbers such that sni = a for all i ∈ N. Then the sequence
{sni}∞i=1 is a monotonic subsequence of {sn}∞n=1 and, clearly, {sni}∞i=1 converges
to a. This proves our theorem when A is a Þnite set. Therefore, we assume for
the rest of the proof the A is an inÞnite set.
Thus, by Exercise 5.16, A has a limit point p ∈ R1. We prove that there is

a monotonic subsequence of {sn}∞n=1 that converges to p.
For each k ∈ N, let

Lk = A ∩ (p− 1
k , p), Rk = A ∩ (p, p+ 1

k ).

Since p is a limit point of A, we have by Exercise 2.33 that (p− 1
k , p +

1
k ) ∩ A

is an inÞnite set for each k ∈ N. Hence, for each k ∈ N, at least one of the sets
Lk or Rk is inÞnite. Thus, Lk is inÞnite for inÞnitely many k or Rk is inÞnite
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for inÞnitely many k. We assume by symmetry that Lk is inÞnite for inÞnitely
many k ∈ N. Then, since Lk+1 ⊂ Lk for all k ∈ N, it follows immediately that
Lk is inÞnite for all k ∈ N. Note that p is a limit point of Lk for all k ∈ N.
We now use induction to deÞne a subsequence {sni}∞i=1 of {sn}∞n=1 with the

properties claimed by our theorem.
Let sn1

∈ L1. Assume inductively that we have deÞned snk ∈ Lk for some
k ∈ N; note that since snk ∈ Lk, snk < p. Then, since Lk+1 is an inÞnite set and
p is a limit point of Lk+1, there is a point snk+1

∈ Lk+1 such that nk+1 > nk
and snk+1 > snk . Therefore, by the Induction Principle (Theorem 1.20), we
have deÞned sni for each i ∈ N. In other words, we have deÞned a sequence
{sni}∞i=1.
From the constuction deÞning {sni}∞i=1, we see that {ni}∞i=1 is an increasing

sequence of natural numbers; hence, {sni}∞i=1 is a subsequence of {sn}∞n=1. Fur-
thermore, sni+1 > sni for each i ∈ N, which shows that {sni}∞i=1 is increasing.
Finally, since sni ∈ Li for each i ∈ N, we have that

p− 1
ki
< sni < p for each i ∈ N;

therefore, {sni}∞i=1 converges to p (by the Squeeze Theorem for Sequences (The-
orem 19.6) since { 1

ki
}∞i=1 converges to 0 by the Archimedean Property (Theorem

1.22)). ¥
Exercise 20.7: True or false: If {sn}∞n=1 is a bounded sequence such that

all convergent subsequences of {sn}∞n=1 converge to the same point, then the
sequence converges.

Exercise 20.8: Show how to prove the result in Exercise 5.16 from the
Bolzano -Weierstrass Theorem (Theorem 20.6). Thus, the two results are equiv-
alent (since we proved the other direction in the proof of Theorem 20.6).

3. Cauchy Sequences

We characterize convergent sequences in terms of a condition commonly
called the Cauchy criterion for convergence (Cauchy refers to the French math-
ematician Augustin Louis Cauchy, 1789 - 1857). The Cauchy criterion plays
an important role in studying convergence of sequences and series, especially
sequences and series of functions. Aside from that, the notion of a Cauchy se-
quence provides an appropriate generalization to the setting of metric spaces of
the Completeness Axiom in section 1 of Chapter I, as we will see in the next
section.

DeÞnition: A Cauchy sequence is a sequence {sn}∞n=1 with the following
property: For each ² > 0, there exists a number N such that

|si − sj| < ² for all i, j ≥ N .

Exercise 20.9: Every convergent sequence is a Cauchy sequence.
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We prove that every Cauchy sequence converges � the converse of the result
in Exercise 20.9 above. The proof is based on the Bolzano -Weierstrass Theo-
rem (Theorem 20.6): The Þrst lemma below enables us to apply the Bolzano -
Weierstrass Theorem, and the next lemma pinpoints the other ingredient in the
proof.

Lemma 20.10: Every Cauchy sequence is bounded.
Proof: Let {sn}∞n=1 be a Cauchy sequence. Then, by deÞnition (with ² = 1),

there is a natural number N such that

|si − sj | < 1 for all i, j ≥ N .
In particular, |si − sN | < 1 for all i ≥ N . Hence, only Þnitely many terms can
be at a distance more than 1 from sN , namely, the terms s1, s2, ..., sN−1. Thus,
we see that {sn}∞n=1 is bounded as follows: For any i ≥ N ,

|si| = |si − sN + sN | ≤ |si − sN |+ |sN | < 1 + |sN |;
therefore, lettingM = max {|s1| , |s2| , ..., |sN−1| , 1+|sN |}, it is clear that |sn| ≤
M for all n ∈ N.. ¥
We know from Exercise 20.3 that if {sn}∞n=1 is a convergent sequence with

limit L, then every subsequence of {sn}∞n=1 converges to L. The converse is
obvious (since a sequence is a subsequence of itself). Our next lemma shows
that a stronger result in the converse direction is true for Cauchy sequences.

Lemma 20.11: If some subsequence of a Cauchy sequence converges, then
the entire sequence converges (to the same limit as the subsequence).

Proof: Let {sn}∞n=1 be a Cauchy sequence such that some subsequence, say
{sni}∞i=1, converges. Let L = limi→∞ sni .
We now proceed to prove that limn→∞ sn = L.
Let ² > 0. Since {sn}∞n=1 is a Cauchy sequence, there exists N such that

(1) |si − sj | < ²
2 for all i, j ≥ N .

Since L = limi→∞ sni , there exists k ∈ N such that

(2) |snk − L| < ²
2 .

Now, for any n ≥ N , we have

|sn − L| = |sn − snk + snk − L| ≤ |sn − snk |+ |snk − L|
(1), (2)
< ²

2 +
²
2 = ².

Therefore, we have proved that limn→∞ sn = L. ¥
The proof of our theorem is now merely a matter of applying the Bolzano -

Weierstrass Theorem and the preceeding two lemmas:

Theorem 20.12: Every Cauchy sequence converges.
Proof: Let {sn}∞n=1 be a Cauchy sequence. By Lemma 20.10, {sn}∞n=1 is

a bounded sequence. Hence, by the Bolzano -Weierstrass Theorem (Theorem
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20.6), {sn}∞n=1 has a convergent subsequence. Therefore, by Lemma 20.11, the
sequence {sn}∞n=1 converges. ¥
Corollary 20.13: A sequence converges if and only if it is a Cauchy se-

quence.

Proof: Combine Exercise 20.9 and Theorem 20.12. ¥
It is natural to wonder whether the condition deÞning a Cauchy sequence

can be replaced by the following condition which involves only two successive
terms at a time: For each ² > 0, there exists a number N such that

(*) |sn+1 − sn| < ² for all n ≥ N .
The following example shows that this condition is not strong enough to imply
that the sequence is a Cauchy sequence.

Example 20.14: Let {sn}∞n=1 be the sequence deÞned by sn = Σni=1
1
i .

Since |sn+1 − sn| = 1
n+1 , it follows from the Archimedean Property (Theorem

1.22) that {sn}∞n=1 satisÞes condition (*) above. However, {sn}∞n=1 is not a
Cauchy sequence, which we show two ways: First, for any n ∈ N,

|s2n − sn| = Σn−1
i=0

1
2n−i ≥

1

2n
+
1

2n
+ · · ·+ 1

2n| {z }
n terms

= 1
2 ,

so {sn}∞n=1 is not a Cauchy sequence by the deÞnition of Cauchy sequence;
second, for any n ∈ N,

s2n = 1 +
1
2 +

¡
1
3 +

1
4

¢
+
¡
Σ8
i=5

1
i

¢
+
¡
Σ16
i=9

1
i

¢
+ · · ·+ ¡Σ2n

i=2n−1+1
1
i

¢
> 1 + 1

2 +
¡

1
4 +

1
4

¢
+ 4

8 +
8

16 + · · ·+ 2n−1

2n = 1 + n
¡

1
2

¢
,

which shows that {sn}∞n=1 is not bounded, hence {sn}∞n=1 is not a Cauchy
sequence by Lemma 20.10 (or Theorem 20.12).

Exercise 20.15: Let {sn}∞n=1 be the sequence deÞned by sn = Σni=1
1
i2 .

Show using the deÞnition of a Cauchy sequence that {sn}∞n=1 is a Cauchy Se-
quence. (The limit of the sequence {sn}∞n=1 is

π2

6 , but this is difficult to prove.)

(Hint: For any natural number i > 1, 1
(i−1)i =

1
i−1 − 1

i .)

Exercise 20.16: Fix any real number p ≥ 2, and let {sn}∞n=1 be the se-
quence deÞned by sn = Σni=1

1
ip . Show using Exercise 20.15 that the sequence{sn}∞n=1 converges. Be sure to include all details.

The sequence in Exercise 20.16 is the sequence of partial sums of an impor-
tant type of series called a p - series. In the next chapter we show that a p - series
converges if and only if p > 1 (Example 21.29). Exercise 20.16 shows that the
method we will use to prove this is not really necessary when p ≥ 2.
Exercise 20.17: Is the sequence { n!

10n }∞n=1 a Cauchy sequence?

Exercise 20.18: Is the sequence {sin(n)− cos(n)}∞n=1 a Cauchy sequence?
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4. Cauchy Sequences and the Completeness Axiom

We discuss how the notion of a Cauchy sequence leads to an appropriate
notion of completeness for metric spaces.
A metric space is a set X together with a distance function d for X (the

deÞnition of a distance function is in Exercise 1.30). As is customary, we use the
ordered pair notation (X,d) to denote a metric space X with distance function
d.
The general study of analysis takes place in metric spaces. We already know

that R1 with d(x, y) = |x− y| is a metric space (Exercise 1.30). We give a few
more examples of metric spaces simply to indicate the variety of spaces that
occur (we do not prove that d is a distance function for any of the examples):

Example 20.19: The following are metric spaces:
(1) Rn, the set of all n - tuples of real numbers, with

d((xi)
n
i=1, (yi)

n
i=1) =

p
Σni=1(xi − yi)2.

(2) The set of all continuous functions on [0, 1] with

d(f, g) = supx∈[0,1] |f(x)− g(x)|.

(3) The set of all functions on [0, 1] that have a continuous derivative with

d(f, g) = supx∈[0,1] (|f(x)− g(x)|+ |f 0(x)− g0(x)|)

(4) The set of all continuous functions on [0, 1] with

d(f, g) =
R 1

0 |f − g|.
(5) The set of all sequences of real numbers with

d((sn)∞n=1, (tn)
∞
n=1) = Σ

∞
n=1

1
2n

|sn−tn|
1+|sn−tn| .

(6) The set of all bounded sequences of real numbers with

d((sn)
∞
n=1, (tn)

∞
n=1) = supn∈N |sn − tn|.

(7) Any nonempty set X with

d(x, y) =

½
1 , if x 6= y
0 , if x = y.

The Completeness Axiom in section 1 of Chapter I played an important role
in most of the material in the previous chapters. In particular, the Completeness
Axiom was the central ingredient in the proofs many results that, ostensibly, had
nothing to do with the axiom; we mention only four such results: the existence
of square roots (Theorem 1.25), the Intermediate Value Theorem (Theorem
5.2), the Maximum-Minimum Theorem (Theorem 5.13), and the derivative

213



test for strictly increasing and strictly decreasing functions in Theorem 10.17.
We discussed the relationship between Theorem 10.17 and the Completeness
Axiom in detail after Exercise 10.18. Of course, the Completeness Axiom was
also used (indirectly) when any of the results just mentioned, or other results
like them, were used; for example, the Completeness Axiom was used indirectly
in the proof that continuous functions are integrable (Theorem 12.33).
Therefore, since metric spaces are the setting for analysis, it is only reason-

able that we should want a notion that we could use in general metric spaces to
the same advantage that we used the Completeness Axiom in R1. Of course, we
can not use the Completeness Axiom itself since its statement is in terms of an
order, which metric spaces almost never have. However, the result in the exer-
cise below will suggest a notion of completeness for metric spaces. We continue
our discussion after the exercise.

Exercise 20.20: The Completeness Axiom in section 1 of Chapter I is
equivalent to the statement every Cauchy sequence converges.
(Hint: To prove that the Completeness Axiom implies the statement every

Cauchy sequence converges, we merely need to recall various proofs in turn: the
proof of Theorem 5.11, then Exercise 5.16, then the proof of Theorem 20.6,
and, Þnally, the proof of Theorem 20.12. To prove the reverse implication, show
that statement every Cauchy sequence converges implies the Nested Interval
Property, and then apply Exercise 5.17).

Next, note that the deÞnition of a Cauchy sequence � unlike the Complete-
ness Axiom � has a direct generalization for any metric space:

DeÞnition: Let (X, d) be a metric space. A sequence {sn}∞n=1 of points of
X is called a Cauchy sequence with respect to d provided that for each ² > 0,
there is a number N such that

d(si, sj) < ² for all i, j ≥ N .

Also, note that the deÞnition of convergence for sequences in section 8 of
Chapter IV generalizes directly to metric spaces:

DeÞnition: Let (X, d) be a metric space, and let {sn}∞n=1 be a sequence
of points of X. We say that the sequence {sn}∞n=1 converges with respect to
d to a point p ∈ X provided that for each ² > 0, there exists N such that
d(sn, p) < ² for all n ≥ N . We call p the limit of the sequence {sn}∞n=1.
We write limn→∞ sn = p or {sn}∞n=1 → p to denote that a sequence {sn}∞n=1

converges to p.

Thus, we have natural deÞnitions of Cauchy sequences and convergent se-
quences for any metric space. In addition, the exercise above says that we could
have taken the statement every Cauchy sequence of real numbers converges to
be the Completeness Axiom in section 1 of Chapter I. Therefore, the follow-
ing deÞnition seems reasonable as a deÞnition for completeness in the general
setting of metric spaces.
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DeÞnition: A metric space (X, d) is said to be complete, or Cauchy com-
plete, provided that every Cauchy sequence with respect to d converges (to a
point of X).

The question of whether or not our deÞnition of a complete metric space is
valuable can only be decided later, on the merits of the theory that evolves.
We have probably created a misimpression that we want to correct. We

arrived at our deÞnition of completeness for metric spaces solely on the basis of
two facts: Cauchy completeness in R1 is equivalent to the Completeness Axiom
in Chapter I, and the deÞnition of a Cauchy sequence in R1 extends directly
to any metric space. Actually, there are other properties which, by the same
reasoning, could have become our deÞnition of completeness in metric spaces.
We will discuss one such property and indicate why the property would not be
appropriate as a deÞnition for completeness in metric spaces.
First, recall our deÞnitions of arbitrary closeness, limit point and bounded

set for subsets of R1 (in sections 1 and 4 of Chapter II and section 2 of Chapter
V); these notions have natural, straightforward analogues for metric spaces:

DeÞnition: Let (X, d) be a metric space, let p ∈ X and let A be a nonempty
subset of X. We let

distd(p,A) = glb {d(p, a) : a ∈ A}.
� p is arbitrarily close to A with respect to d, written p ∼d A provided that
distd(p,A) = 0.

� p is a limit point of A with respect to d provided that p ∼d A−{p} (which
presupposes A− {p} 6= ∅). We let A` denote the set of all limit points of
A.

� A of X is bounded with respect to d provided that (assuming A 6= ∅)
sup {d(a1, a2) : a1, a2 ∈ A} <∞;

also, by deÞnition, the empty set is bounded.

In view of the deÞnition above, the following property, which we originally
considered for R1 (in Exercise 5.16), makes sense in any metric space X :

(*) Every bounded inÞnite subset of X has a limit point in X.

Furthermore, the Completeness Axiom in section 1 of Chapter I is equivalent to
(*) when X = R1 (see Exercises 5.16 and 5.17; it is easy to prove that (*) for R1

implies the Nested Interval Property). Why then not use (*) as the deÞnition
of completeness for metric spaces in general?
We can not answer the question completely at this time. Nevertheless, we

can say that for metric spaces in general, (*) implies Cauchy completeness but
the converse implication is false (Exercises 20.21 and 20.22 below). The fact of
the matter is that (*) is too strong to be useful in general � not many metric
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spaces satisfy (*) � while, on the other hand, Cauchy completeness works well
(but, we must wait to Þnd this out).

Exercise 20.21: In the preceding paragraph, we said that if a metric space
has the property in (*), then the space is Cauchy complete. Prove this.
(Hint: Prove that Lemmas 20.10 and 20.11 hold in any metric space.)

Exercise 20.22: Prove that d in (2) of Example 20.19 is a distance function.
In connection with the discussion at the end of the section, prove that the metric
space in (2) is Cauchy complete but that the space contains an inÞnite set with
no limit point in the space.

Exercise 20.23: Prove that d in (4) of Example 20.19 is a distance function.
Is the metric space Cauchy complete?

Exercise 20.24: Prove that d in (7) of Example 20.19 is a distance function.
Find a simple necessary and sufficient condition for a sequence in this metric
space to be a Cauchy sequence (and prove your answer is correct). Is the metric
space complete? What subsets of the space have limit points?

Our Þnal two exercises are fundamental results in metric spaces that require
completeness.

Exercise 20.25: Let (X, dX) be a metric space, and let (Y, dY ) be a Cauchy
complete metric space. Let A ⊂ X, and let f : A→ Y be a uniformly continuous
function (which means that for each ² > 0, there is a δ > 0 such that if a1, a2 ∈ A
and dX(a1, a2) < δ, then dY (f(a1), f(a2)) < ²; compare with the deÞnition
above Exercise 12.28).
Then there is a unique uniformly continuous function g : A ∪ A` → Y such

that g|A = f . (The function g is called the uniformly continuous extension of
f .)

In the light of Exercise 20.25, you might want to revisit Exercise 16.21:
The exponential function f(t) = at is uniformly continuous on any closed and
bounded interval [a, b] by Theorem 12.31 and, thus, its restriction to the ratio-
nals in [a, b] is uniformly continuous.
Our next exercise concerns contraction maps. Let (X, d) be a metric space;

a function f : X → X is called a contraction map provided that there exists
λ < 1 such that for all x, y ∈ X, d(f(x), f(y)) ≤ λd(x, y).
Exercise 20.26: If (X, d) is a Cauchy complete metric space and f : X → X

is a contraction map, then f has a unique Þxed point (i.e., f(p) = p for some
unique point p ∈ X).
(Hint: Fix any point x ∈ X and prove that the sequence {fn(x)}∞n=1 is a

Cauchy sequence, where fn = f ◦ f ◦ · · · ◦ f with f appearing n times. Start
by showing that for any n, d(fn(x), fn+1(x)) ≤ λnd(x, f(x)); then use that the
sequence of partial sums of the series Σ∞i=1λ

i is a Cauchy sequence by Theorem
15.4.)

The result in Exercise 20.26 has numerous applications in differential equa-
tions and dynamical systems.
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Chapter XXI: Numerical Series

We introduced series very brießy in section 1 of Chapter XV. Recall that
a series Σ∞i=1ai is, by deÞnition, nothing more than the sequence {sn}∞n=1 of
partial sums sn = Σni=1ai. Thus, having developed a theory for sequences in
the last two chapters, we can use our understanding of sequences to develop a
theory for series. You may conclude there is nothing to do � simply apply our
work on sequences to series. However, series are special types of sequences and,
therefore, have an inherent structure that sequences in general do not have; we
devote this chapter and the next chapter to uncovering that structure.
There are two main problems in the theory of series � determining when

series converge and Þnding the exact sum of speciÞc convergent series. Finding
the exact value for the sum of a convergent series is almost always very difficult.
One exception is convergent geometric series, whose sums we found in Theorem
15.4. We Þnd the exact value for the sum of another series in the last section of
this chapter (others are in later chapters); however, in the meantime, we focus
on the problem of determining when series converge; solutions for this problem
are called convergence tests.
Convergence tests involve conditions on the terms of series. We present a

number of different kinds of convergence tests in this chapter and in the next
chapter.
In section 1, we state (as exercises) a few basic results about series in general.

In the next three sections, we prove and illustrate three types of convergence
tests � ith term tests (including the Alternating Series Test), comparison tests,
and the Integral Test. We conclude the chapter by Þnding the exact sum of an
important series; as a result, we prove that the base e of the natural logarithm
function is irrational.
We make general comments about series and notation.
Even though we denote a series by Σ∞i=1ai and think of a series as an inÞnite

sum, it must be pointed out that we are never actually adding an inÞnite number
of numbers together to obtain the sum of a series; instead, the sum of a series
is a limit of Þnite sums (the partial sums).
The notation Σ∞i=1ai has dual meanings � it represents a series as well as the

sum of a series. The context will make it clear which we mean.
We sometimes write Σ∞i=1ai < ∞ as shorthand for saying that the series

Σ∞i=1ai converges.
We include as a series any sum of the form Σ∞i=nai, where n is a given integer.

1. General Elementary Results

This section consists entirely of exercises accompanied by a few comments.
Our purpose is to provide readers a chance to refresh their understanding of the
deÞnitions under the heading Series in section 1 of Chapter XV. The exercises
are elementary in the sense that their veriÞcations only use the most basic results
about sequences in the previous two chapters.
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Our Þrst exercise gives the simple convergence relationship between a given
series Σ∞i=1ai and the series Σ

∞
i=nai.

Exercise 21.1: A series Σ∞i=1ai converges if and only if the series Σ
∞
i=nai

converges for all n ∈ N; furthermore, if either series converges, then Σ∞i=1ai =
Σ∞i=nai +Σ

n−1
i=1 ai for all n ∈ N such that n ≥ 2.

Exercise 21.2: If the series Σ∞i=1ai converges then, for each ² > 0, there is
a number N such that |Σ∞i=nai| < ² for all n ≥ N .
The termwise sum of two series, Σ∞i=1ai and Σ

∞
i=1bi, is the series Σ

∞
i=1(ai+bi);

the termwise difference of the series is the series Σ∞i=1(ai − bi) or the series
Σ∞i=1(bi − ai).
Exercise 21.3: Let Σ∞i=1ai and Σ

∞
i=1bi be two convergent series, say

Σ∞i=1ai = a and Σ∞i=1bi = b.

Then Σ∞i=1(ai + bi) = a+ b and Σ
∞
i=1(ai − bi) = a− b.

The termwise product of two series, Σ∞i=1ai and Σ
∞
i=1bi, is the series Σ

∞
i=1aibi.

Having just considered the termwise sum and the termwise difference of two se-
ries, we should now consider the termwise product of two series. However,
termwise products of series behave badly in two respects. First, the termwise
product of two convergent series may diverge (you will be asked to supply an
example in Exercise 21.17). Second, even when the termwise product of two con-
vergent series converges, the termwise product may not converge to the product
of the sums of the two series; for example, by Theorem 15.4, Σ∞i=1

¡
1
3

¢i
= 1

2

and Σ∞i=1

¡
1
3

¢i ¡1
3

¢i
= Σ∞i=1

¡
1
9

¢i
= 1

8 . We do not discuss termwise products
anymore at this time. Later, we consider termwise products in several exer-
cises; our most deÞnitive positive result is in the next chapter (Exercise 22.3).
Actually, Cauchy products (introduced in section 6 of Chapter XXII) are more
appropriate products for series than termwise products.
Our next exercise is the distributive law for constants over series.

Exercise 21.4: If c 6= 0, then a series Σ∞i=1ai converges if and only if the
series Σ∞i=1cai converges; if either series converges, then Σ

∞
i=1cai = cΣ

∞
i=1ai.

Next, we have a result about grouping Þnitely many terms of a convergent
series together inÞnitely often.

Exercise 21.5: Let Σ∞i=1ai be a series. Let ϕ : N → N be a strictly
increasing function such that ϕ(1) = 1. Let Σ∞i=1bi be the series whose i

th term
is the sum, in parentheses, of the terms aϕ(i)+1, aϕ(i)+2, · · · , aϕ(i+1) except when
i = 1, as seen below:

Σ∞i=1bi = (aϕ(1) + a2 + · · · aϕ(2)) + (aϕ(2)+1 + aϕ(2)+2 + · · · aϕ(3))

+ · · ·+ (aϕ(i)+1 + aϕ(i)+2 + · · · aϕ(i+1)) + · · · .
If the series Σ∞i=1ai converges, then the series Σ

∞
i=1bi converges and Σ

∞
i=1bi =

Σ∞i=1ai.
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We note that for divergent series, the grouping in Exercise 21.5 may result
in a convergent series. For example, the series 1+(−1)+1+(−1)+ · · · diverges,
but the series [1 + (−1)] + [1 + (−1)] + · · · converges.
Next, we adapt the Cauchy criterion for sequences to series:

Exercise 21.6 (Cauchy Criterion for Convergence of Series): A series
Σ∞i=1ai converges if and only if for each ² > 0, there is a number N such that

|Σni=mai| < ² whenever n ≥ m ≥ N .

Exercise 21.7: Determine whether the series Σ∞i=1

³
cos(1

i )− cos( 1
i+1)

´
con-

verges.

2. ith Term Tests

When trying to determine whether a series converges or diverges, the sim-
plest thing to check Þrst is whether the terms of the series converge to 0: If the
terms do not converge to 0, then the series diverges; this is called the ith Term
Test. Thus, the ith Term Test is a test for divergence, not convergence (the
converse of the ith Term Test is false, which we show after we prove the test).
We prove the ith Term Test and its companion, the Alternating Series Test.

The Alternating Series Test shows that the ith Term Test is a test for conver-
gence for alternating series that satisfy a simple condition (which we will show
is necessary). The ith term tests are useful because it is obviously easier to work
with the individual terms of a series than with the partial sums of a series.

Theorem 21.8 (ith Term Test): If Σ∞i=1ai <∞, then limi→∞ ai = 0.
Proof: Let sn = Σni=1ai for each n ∈ N. The key idea is to note that

ai = si − si−1 for all i ≥ 2.
Then, since limn→∞ sn and limn→∞ sn−1 exist and are equal,

limi→∞ ai = limi→∞(si − si−1)
19.3
= limi→∞ si − limi→∞ si−1 = 0. ¥

Exercise 21.9: Explain how the ith Term Test follows immediately from
the Cauchy Criterion for Convergence of Series (Exercise 21.6).

We can use the ith Term Test to see that a series diverges: Σ∞i=1(−1)n n
n+3

diverges by the test. However, we can not use the ith Term Test to show that a
series converges: limi→∞ 1

i = 0 (by Exercise 1.23), but the series Σ
∞
i=1

1
i diverges

since its sequence of partial sums is unbounded by Example 20.14.
Nevertheless, for certain types of series, the ith Term Test completely deter-

mines whether the series converges. Our next theorem illustrates this. First, we
give a deÞnition.

DeÞnition: An alternating series is a series for which the signs of consecu-
tive terms alternate; in other words, an alternating series is a series that can be
written in the form Σ∞i=1(−1)iai or Σ∞i=1(−1)i+1ai, where ai > 0 for all i ∈ N.
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The test in our next theorem is one of the easiest tests for convergence to
apply. We address the assumption that the terms are decreasing after we prove
the theorem.

Theorem 21.10 (Alternating Series Test): Let Σ∞i=1(−1)iai be an (al-
ternating) series such that

ai ≥ ai+1 > 0 for all i ∈ N.

Then Σ∞i=1(−1)iai converges if and only if limi→∞ ai = 0.
Proof: If Σ∞i=1(−1)iai converges, then limi→∞(−1)iai = 0 by the ith Term

Test (Theorem 21.8); therefore, limi→∞ ai = 0.
We prove the other half of the equivalence. The idea behind the proof is

to consider the sequence of even - numbered partial sums separately from the
sequence of odd - numbered partial sums. We proceed as follows.
Assume that

(1) limi→∞ ai = 0.

Let sn = Σni=1(−1)iai for each n ∈ N.
Note that we can write s2n in the following two ways:

(*) s2n = −(a1 − a2)− (a3 − a4)− · · ·− (a2n−1 − a2n)

and

(**) s2n = −a1 + (a2 − a3) + (a4 − a5) + · · ·+ (a2n−2 − a2n−1) + a2n.

By assumption in our theorem, ai − ai+1 > 0 for all i ∈ N. Thus, by (*),
the sequence {s2n}∞n=1 is decreasing and, by (**), the sequence {s2n}∞n=1 is
bounded below by −a1 and, hence, is bounded (since the sequence is decreasing).
Therefore, by the Bounded Monotonic Sequence Property (Theorem 19.20), we
have that

(2) {s2n}∞n=1 converges.

Finally, we turn our attention to the sequence of odd - numbered partial
sums. Clearly, s2n+1 = s2n − a2n+1 for each n ∈ N; hence, using (1) and (2) to
apply Theorem 19.3, we obtain

limn→∞ s2n+1
19.3
= limn→∞ s2n − limn→∞ a2n+1

(1)
= limn→∞ s2n.

(we used Exercise 20.3 in conjunction with (1) for the last equality). Therefore,
by Exercise 19.18, limn→∞ sn exists. ¥
After the proof of the ith Term Test, we noted that the series Σ∞i=1

1
i diverges.

Let us change this series by making consecutive terms alternate in sign, obtain-
ing Σ∞i=1(−1)i 1

i or Σ
∞
i=1(−1)i+1 1

i ; then we know from the Alternating Series
Test that both of these series converge. The series Σ∞i=1

1
i is called the harmonic

series, and the series Σ∞i=1(−1)i+1 1
i is called the alternating harmonic series.

It may seem in the Alternating Seres Test that we do not really need
the terms ai to be decreasing, but that it is enough to merely assume that
limi→∞ ai = 0 and that ai > 0 for each i. However, the series in the following
exercise shows that the assumption that the terms decrease to 0 is necessary:
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Exercise 21.11: Consider the alternating series Σ∞i=1(−1)iai, where for
each i ∈ N,

a2i−1 =
1
2i and a2i =

1
i+1 .

Prove that the series diverges even though limn→∞ ai = 0.

It is natural to wonder if there is an analogue of the Alternating Seres Test
for series whose terms change sign frequently (but not from each term to the
next). The example in the next exercise shows that, for a simple case, there is
no such analogue.

Exercise 21.12: Consider the series Σ∞i=1(−1)σ(i) 1
i , where σ deÞned below

makes the signs of the terms repeat in the pattern +,+,−,+,+,−, ... :

σ(i) =

(
0 , if i = 3j − 2 or 3j − 1 for some j ∈ N
1 , if i = 3j for some j ∈ N.

Prove that the series diverges even though the series is �almost alternating� and
satisÞes the other assumptions in the Alternating Seres Test.

Our next exercise gives an estimate of the error between the nth partial sum
and the sum of an alternating series when the series satisÞes the assumptions
in the Alternating Series Test.

Exercise 21.13: Let Σ∞i=1(−1)iai be a convergent (alternating) series such
that ai ≥ ai+1 > 0 for all i ∈ N. Then¯̄

Σ∞i=1(−1)iai −Σni=1(−1)iai
¯̄ ≤ an+1 for all n ∈ N.

Exercise 21.14: Assume that ai ≥ ai+1 > 0 for all i ∈ N. If Σ∞j=1aij <∞
for some subsequence {aij}∞j=1 of {ai}∞i=1, then Σ

∞
i=1(−1)iai <∞.

Exercise 21.15: Determine whether the series Σ∞i=1 cos(
1
i ) converges.

Exercise 21.16: True or false: The series Σ∞i=1(cos(x))
i sin(x) converges for

all x ∈ R1.

Exercise 21.17: Give an example of two convergent series, Σ∞i=1ai and
Σ∞i=1bi, such that the series Σ

∞
i=1aibi diverges.

3. Comparison Tests

We prove the Comparison Test and the Limit Comparison Test. The Com-
parison Test directly compares the terms of two series; the Limit Comparison
Test is concerned with the limit of the ratios of the terms of two series.

Theorem 21.18 (Comparison Test): Assume that 0 ≤ ai ≤ bi for each
i ∈ N. If Σ∞i=1bi <∞, then Σ∞i=1ai <∞.
Proof: Let sn = Σni=1ai and tn = Σ

n
i=1bi for each n ∈ N.

Since ai ≥ 0 for each i ∈ N, it is clear that the sequence {sn}∞n=1 is increasing;
also, the sequence {sn}∞n=1 is bounded since, by our assumptions that 0 ≤ ai ≤ bi
and Σ∞i=1bi <∞, we have
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0 ≤ sn ≤ tn ≤ Σ∞i=1bi for each n ∈ N.

Therefore, by the Bounded Monotonic Sequence Property (Theorem 19.20),
{sn}∞n=1 converges. ¥
Exercise 21.19: Series of the form Σ∞i=1

di
10i are called decimals and are de-

noted by .d1d2...di... . Prove that every decimal converges (in common language,
every decimal represents a real number).
(Hint: Make use of geometric series (Theorem 15.4).)

Theorem 21.20 (Limit Comparison Test): Let Σ∞i=1ai and Σ
∞
i=1bi be

two series whose terms are positive.

(1) If 0 < limi→∞ ai
bi
<∞, then either both of the series Σ∞i=1ai and Σ

∞
i=1bi

converge or both of them diverge.

(2) If limi→∞ ai
bi
= 0 and Σ∞i=1bi converges, then Σ

∞
i=1ai converges.

(3) If limi→∞ ai
bi
=∞ and Σ∞i=1bi diverges, then Σ

∞
i=1ai diverges.

Proof: We prove each part in turn.

Proof of part (1): Let L = limi→∞ ai
bi
. Then, since L > 0 (by assumption),

there is a number N such that¯̄̄
ai
bi
− L

¯̄̄
< L

2 for all i ≥ N .

Hence, L2 <
ai
bi
< 3L

2 for all i ≥ N . Thus, since bi > 0 for all i (by assumption),
we have

(*) L2 bi < ai <
3L
2 bi for all i ≥ N .

Now, if Σ∞i=1bi converges, then Σ
∞
i=1

3L
2 bi converges (by Exercise 21.4) and,

thus, Σ∞i=N
3L
2 bi converges (by Exercise 21.1). Hence, Σ

∞
i=Nai converges by (*)

and the Comparison Test (Theorem 21.18). Therefore, Σ∞i=1ai converges (by
Exercise 21.1).
On the other hand, if Σ∞i=1bi diverges, then Σ

∞
i=1

L
2 bi diverges (by Exercise

21.4) and, thus, Σ∞i=N
L
2 bi diverges (by Exercise 21.1). Hence, Σ

∞
i=Naidiverges by

(*) and the (contrapositive of) the Comparison Test. Therefore, Σ∞i=1ai diverges
(by Exercise 21.1).
This proves part (1) of our theorem.

Proof of part (2): Since limi→∞ ai
bi
= 0 (by assumption), there is a number

N such that aibi < 1 for all i ≥ N . Thus, since ai, bi > 0 for all i, we have

(**) 0 < ai < bi for all i ≥ N .
Since Σ∞i=1bi converges (by assumption), Σ

∞
i=Nbi converges (by Exercise

21.1). Hence, Σ∞i=Nai converges by (**) and the Comparison Test (Theorem
21.18). Therefore, Σ∞i=1ai converges (by Exercise 21.1).
This proves part (2) of our theorem.

Proof of part (3): Part (3) follows from part (2) by noting that since
limi→∞ ai

bi
=∞ (by assumption), we have by Exercise 18.3 that
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limi→∞ bi
ai
= 0;

therefore, by part (2), if Σ∞i=1ai converges, then Σ
∞
i=1bi converges, which proves

part (3) of our theorem. ¥
Obviously, the problem in applying the comparison tests is to Þnd a suitable

series to compare the given series with. There is no deÞnitive answer for this
problem, but we can suggest a working principle that is often effective when
the ith term of the original series is a quotient of algebraic functions of i (or
even when transcendental functions that are algebraic in i are involved): Try
comparing with the series that is obtained from the original series by eliminating
all expressions in the numerator and the denominator of the ith term except
those of the highest power. We illustrate as follows:

Example 21.21: Consider the series Σ∞i=1
i2+8i

i
9
2 +4

. According to the sugges-

tion above, we take as the comparison series the series Σ∞i=1
i2

i
9
2
, which reduces

to Σ∞i=1
1

i
5
2
. Now, with the Limit Comparison Test in mind, we see that

limi→∞

i2+8i

i
9
2 +4

1

i
5
2

= limi→∞ i
9
2 +8i

7
2

i
9
2 +4

= limi→∞
1+ 8

i

1+ 4

i
9
2

= 1;

furthermore, the series Σ∞i=1
1

i
5
2
converges (by Exercise 20.16). Therefore, by

part (1) of the Limit Comparison Test, the series Σ∞i=1
i2+8i

i
9
2 +4

converges.

Exercise 21.22: Determine whether the series Σ∞i=1
ln(i)
i3+i converges two

ways: (1) using the Comparison Test; (2) using the Limit Comparison Test.

Exercise 21.23: Determine whether the series Σ∞i=1
ln(i)+i2

i3+i converges.

Exercise 21.24: Determine whether the series Σ∞i=2
1

ln(i) converges two
ways: (1) using the Comparison Test; (2) using the Limit Comparison Test.

Exercise 21.25: Determine whether the series Σ∞i=1 sin(
1
i ) converges.

Exercise 21.26: True or false: If Σ∞i=1ai is a convergent series and {aik}∞k=1

is a subsequence of {ai}∞i=1, then the series Σ
∞
k=1aik converges.

Exercise 21.27: True or false: If ai ≥ 0 for all i ∈ N and the series Σ∞i=1ai
converges, then the series Σ∞i=1a

2
i converges.

Exercise 21.28: True or false: If Σ∞i=1ai is a convergent series whose terms
are all positive, then the series Σ∞i=1

√
ai
i converges.

4. The Integral Test

In Theorem 19.7 we initiated an important way to study convergence of
sequences � by using continuous functions deÞned on the interval [1,∞). This
led to using the derivative (speciÞcally, l�Hôpital�s rules) to study convergence of
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sequences. In this chapter and the two previous chapters, especially in exercises,
we have seen how well this works for sequences as well as for series. We now
come to the role that the integral plays in determining convergence or divergence
of series.
We are going to use integrals of continuous functions deÞned on the inter-

val [0,∞) to study convergence of series. The rudimentary idea that connects
integrals to convergence of series is very simple: any term ai of a series can be
interpreted as the (signed) area of a rectangle of height ai and width 1. We
explain how to apply the idea.
Assume that Σ∞i=1ai is a series whose terms are positive and that f is a

continuous decreasing function on [1,∞) such that f(i) = ai for each i; then,
for each natural number n ≥ 2 (see Þgures below),

Σni=2 ai ≤
R n

1
f ≤ Σn−1

i=1 ai;

it follows that limn→∞
R n

1
f <∞ if and only if the series Σ∞i=1ai converges (we

give a formal proof later). In this way, we have reduced the study of convergence
of many series to the study of integrals.
Before we explicitly state and prove the theorem that we have indicated

(namely, Theorem 21.31), we give an important example to illustrate what we
have just discussed.
Series of the form Σ∞i=1

1
ip , where p is a Þxed real number, are called p -

series. We know from Exercise 20.16 that p - series converge when p ≥ 2. We
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now determine all the values of p for which p - series converge. We note that the
exact values for the sums of many convergent p - series are not known.

Example 21.29: We show that the p - series Σ∞i=1
1
ip converges when p > 1

and that the series diverges when p ≤ 1.
The case when p > 0 and p 6= 1 relate to the discussion above. We Þrst

dispense with the other cases: If p < 0, then limi→∞ 1
ip = limi→∞ i−p = ∞

(since −p > 0), so the series Σ∞i=1
1
ip diverges by the i

th Term Test (Theorem
21.8). If p = 0, then the series obviously diverges. Finally, if p = 1, then the
series Σ∞i=1

1
ip diverges by Example 20.14 and Exercise 20.9.

We assume from now on that p > 0 and that p 6= 1.
Let f(x) = 1

xp for all x ≥ 1. Then, since f 0(x) = −px−p−1 (by Theorem
16.31) and −p < 0, we see that f 0(x) < 0 for all x; hence, by Theorem 10.17,
f is strictly decreasing. Next note that f is continuous (by Theorem 16.31 and
Theorem 6.14); hence, f |[1, t] is continuous for any t ≥ 1 (by Exercise 5.3).
Thus, letting

g(x) = x−p+1

−p+1 for all x ≥ 1

and noting that g0(x) = f(x) for all x ≥ 1 (by Theorem 16.31), we have by the
Fundamental Theorem of Calculus (Theorem 14.2) that

(*)
R t

1 f = g(t)− g(1) = 1
1−p

¡
1

tp−1 − 1
¢
for all t > 1.

Now, if p > 1, then limt→∞ 1
tp−1 = 0; hence, by (*),

limt→∞
R t

1
f = 1

1−p (−1) = 1
p−1 <∞.

Therefore, based on the discussion preceding the example, we conclude that the
series Σ∞i=1

1
ip converges when p > 1.

On the other hand, if 0 < p < 1, then limt→∞ 1
tp−1 =∞; thus, by (*),

limt→∞
R t

1 f =∞.
Therefore, according to the discussion preceding the example, we conclude that
the series Σ∞i=1

1
ip diverges when 0 < p < 1. This completes the veriÞcations for

the example.

We formulate our discussion at the beginning of the section into a theorem.
First, we introduce the following natural and convenient notation and terminol-
ogy.

DeÞnition: If
R t
a
f exists for all t ≥ a and limt→∞

R t
a
f exists (i.e., is Þnite),

then we denote the limit by
R∞
a f and say the integral

R∞
a f converges.

Exercise 21.30: If
R∞
a f converges and b ≥ a, then R∞b f converges andR∞

a
f =

R b
a
f +

R∞
b
f .
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Theorem 21.31 (Integral Test): Assume that Σ∞i=1ai is a series whose
terms are positive and that f is a continuous decreasing function on [1,∞) such
that f(i) = ai for each i. Then the series Σ∞i=1ai converges if and only if

R∞
1
f

converges.

Proof: We indicated the essential ideas for the proof at the beginning of the
section; we now Þll in the details.
We note for repeated use (usually without saying so) that

R b
a
f exists when-

ever 1 ≤ a ≤ b by Theorem 12.33 (and Exercise 5.3).
We Þrst prove the following (which are the inequalities we stated when we

referred to the Þgures above):

(1) Σni=2 ai ≤
R n

1 f ≤ Σn−1
i=1 ai for each n ∈ N such that n ≥ 2.

Proof of (1): Fix n ∈ N such that n ≥ 2. Since f is decreasing and f(i+1) =
ai+1 for all i ∈ N, we have that

ai+1 ≤ f(x) when i ≤ x ≤ i+ 1.
Hence, by Exercise 13.15,

ai+1 ≤
R i+1

i f for each i ∈ N.

Therefore,

Σni=2 ai ≤ Σn−1
i=1

R i+1

i
f
13.40
=

R n
1
f .

This proves the Þrst inequality in (1). The proof of the second inequality in (1)
is similar: Since f is decreasing and f(i) = ai for all i ∈ N, we have that

f(x) ≤ ai when i ≤ x ≤ i+ 1.
Hence, by Exercise 13.15,R i+1

i f ≤ ai for each i ∈ N.

Therefore, R n
1 f

13.40
= Σn−1

i=1

R i+1

i f ≤ Σn−1
i=1 ai.

This proves the second inequality in (1). Therefore, we have proved (1).

Now, we use (1) to prove the theorem.
Recall that we are assuming in the theorem that f(ai) = ai > 0 for each i

and that f is a continuous decreasing function on [1,∞). Thus, since any point
of [1,∞) is less than some natural number (by Theorem 1.22), we see that

(2) f(x) > 0 for all x ≥ 1.
Note from (1) that

(3)
R t

1 f ≤
R n

1 f when n− 1 ≤ t ≤ n and n ∈ N with n ≥ 2.
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Now, assume that
R∞

1
f converges. Then, by (3),

R t
1
f ≤ R∞

1
f for all t ≥ 1

(actually, the inequality is strict, but this is not important here). Thus, by the
Þrst inequality in (1), Σni=2 ai ≤

R∞
1
f for all n ∈ N such that n ≥ 2. Hence,

adding a1 to both sides,

Σni=1ai ≤ a1 +
R∞

1 f for all n ∈ N. .

Thus, since 0 < Σni=1ai for all n ∈ N, we have proved that the sequence of partial
sums of the series Σ∞i=1ai is bounded (by 0 and a1 +

R∞
1 f). Furthermore, the

sequence of partial sums is increasing (since ai > 0 for all i). Therefore, by
the Bounded Monotonic Sequence Property (Theorem 19.20), the sequence of
partial sums converges. In other words, the series Σ∞i=1ai converges.
Conversely, assume that

R∞
1
f does not converge. With the deÞnition ofR∞

1
f in mind, we recall from the beginning of the proof that

R t
1
f exists for all

t ≥ 1; note that R t
1
f ≥ 0 for all t ≥ 1 (by (2) and Exercise 12.25). Thus, sinceR∞

1
f does not converge, we see that

limt→∞
R t

1
f =∞.

Hence, by (3), limn→∞
R n

1 f =∞. Thus, by the second inequality in (1),

limn→∞Σn−1
i=1 ai =∞.

Therefore, the series Σ∞i=1ai diverges. ¥
In regard to the Integral Test, we should not be misled into believing that

the sum of the series is the value of the integral. The second Þgure near the
beginning of the section suggests that

Σ∞i=1ai >
R∞

1 f .

To give a speciÞc example, the series Σ∞i=1
1
i2 converges (Example 21.29) and it

is clear Σ∞i=1
1
i2 > 1; however,

R∞
1

1
x2 = 1.

Exercise 21.32: In connection with the preceding discussion, assume (as
in the Integral Test) that Σ∞i=1ai is a convergent series whose terms are positive
and that f is a continuous decreasing function on [1,∞) such that f(i) = ai for
each i. Prove or give a counterexample: Σ∞i=1ai >

R∞
1 f .

Exercise 21.33: We know from Example 21.29 that the series Σ∞i=1
1

i
3
2
con-

verges. Find n such that the sum of the Þrst n terms of the series approximates
the sum of the series within an accuracy of .1 ? What about an accuracy within
.01 ?

Exercise 21.34: Find all real numbers r such that the series Σ∞i=2
1

i(ln(i))r

converges.

Exercise 21.35: Determine whether the series Σ∞i=1
i
ei converges.
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Exercise 21.36: Determine whether the series Σ∞i=1

√
i5+i4+1

3i4+i2+2 converges.

Exercise 21.37: Determine whether the series Σ∞i=1 tan
−1( 1

i ) converges in
two ways: (1) using the Integral Test; (2) using the Limit Comparison Test
(Theorem 21.20).
(Hint: For (1), use ideas that we used to integrate the natural logarithm

function in section (5) of Chapter XVI, recalling the formula in Exercise 8.27.)

Exercise 21.38: Construct an example of a continuous function f deÞned
on [1,∞) such that R∞

1
f converges but the series Σ∞i=1f(i) diverges.

5. e as the Sum of a Series

At this point we postpone further development of convergence tests until the
next chapter. We brießy turn to the other main aspect of the theory of series,
that of Þnding the exact value of the sum of a convergent series. SpeciÞcally,
we show that the sum of the series Σ∞i=0

1
i! is the base e of the natural logarithm

function. (Recall that i! = i(i− 1)(i− 2) · · · (2)(1) and 0! = 1.)
So far, we know almost nothing about the number e. For example, Is e a

rational number? We originally deÞned e, somewhat abstractly, in Theorem
16.23 as the number whose value under the natural logarithm function is 1. We
represented e as the limit of a sequence in Exercise 16.27; we now represent
e as the sum of a series. After we prove that e = Σ∞i=0

1
i! , we use this series

representation of e prove that e is irrational.
We use the Binomial Theorem to prove that e = Σ∞i=0

1
i! . We prove the

Binomial Theorem by a counting argument; for this purpose, we introduce the
following combinatorial notions:

DeÞnition: Let n and k be nonnegative integers with k ≤ n.
� The following expression is called a binomial coefficient :

(nk) =
n!

k!(n−k)! .

� A choice of k distinct objects without regard to the order in which the
objects are chosen is called a combination. We let C(n, k) denote the
number of ways to choose k distinct objects from n distinct objects. By
convention (or since there is only one way to choose no objects), C(n, 0) =
1 and C(0, 0) = 1.

� An arrangement of k distinct objects in a given order is called a permuta-
tion. We let P (n, k) is the number of ways to choose and order k distinct
objects from n distinct objects; as in the case of combinations, P (n, 0) = 1
and P (0, 0) = 1.

We prove two lemmas concerning the deÞnitions we just gave.

Lemma 21.39: If k ≤ n are natural numbers, then
P (n, k) = n(n− 1)(n− 2) · · · (n− k + 1).
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Proof: There are n choices for the Þrst object and, for each Þrst choice, there
are n − 1 choices for the second object; thus, n(n − 1) is the number of ways
to pick and order the Þrst two objects. Then, for each Þrst and second choice,
there are n−2 choices for the third object, thus n(n−1)(n−2) ways to pick and
order the Þrst three objects; and so on, for a total of n(n−1)(n−2) · · · (n−k+1)
ways to pick and order k distinct objects from n distinct objects. ¥
Lemma 21.40: Let k ≤ n are nonnegative integers, then C(n, k) = (nk).
Proof: If k = 0, then (by deÞnitions) C(n, 0) = 1 and (nk ) =

n!
0!n! = 1. Thus,

the lemma is proved when k = 0.
Assume that k > 0, and let S be an n - element set (k ≤ n). If T be a

k - element subset of S then the number of ways to order the k elements of T
is, by deÞnition, P (k, k), which, by Lemma 21.39, is k!. Thus, the number of
ways to choose and order all k - element subsets of S is k! times the number of
k - element subsets of S, which is k!C(n, k). On the other hand, P (n, k) is, by
deÞntion, the number of ways to choose and order all k - element subsets of S.
Hence,

k!C(n, k) = P (n, k).

Therefore,

C(n, k) = P (n,k)
k!

21.39
= n(n−1)(n−2)···(n−k+1)

k! = n!
k!(n−k)! = (

n
k). ¥

The Binomial Theorem follows easily from Lemma 21.40:

Theorem 21.41 (Binomial Theorem): For any x, y ∈ R1 − {0} and any
n ∈ N,

(x+ y)n = Σnk=0 (
n
k)x

n−kyk.

Proof: Fix n. For reference, we note that

(*) (x+ y)n = (x+ y)(x+ y)(x+ y) · · · (x+ y)| {z }
n factors

.

We consider the x terms in the n factors as comprising n objects that are
distinct from one another by virtue of which factor they are in; the same for the
y terms. Then, Þxing k, we see that xn−kyk in the summation in the theorem
comes from choosing k y0s from k distinct factors in (*) and n− k x0s from the
other n − k distinct factors in (*). Thus, since the number of ways to choose
k y0s from the n distinct factors in (*) is C(n, k) (by the deÞnition of C(n, k)),
the total number of terms in (x+ y)n of the form xn−kyk is C(n, k) which, by
Lemma 21.40, is (nk). ¥
We can now prove our series representation for e.
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Theorem 21.42: e = Σ∞i=0
1
i! .

Proof: Note that for each integer n ≥ 0,
Σni=0

1
i! = 1 + 1 +

1
2! +

1
3! +

1
4! + · · ·+ 1

n!

≤ 1 + 1 + 1
2 +

1
22 +

1
23 + · · ·+ 1

2n−1

15.4
< 3;

therefore, since the sequence {Σni=0
1
i!}∞n=1 is increasing, we have by Theorem

19.20 that

(1) Σ∞i=0
1
i! converges.

We know from Exercise 16.27 that

(2) e = limn→∞
¡
1 + 1

n

¢n
.

For each n ∈ N,¡
1 + 1

n

¢n 21.41
= Σnk=0 (

n
k) 1

n−k ¡ 1
n

¢k
= Σnk=0

n!
k!(n−k)!

1
nk

= Σnk=0
n(n−1)···(n−[k−1])

nk
1
k! ≤ Σnk=0

1
k! .

Hence, by (1) and (2), e ≤ Σ∞k=0
1
k! .

Thus, we have left to prove that e ≥ Σ∞i=0
1
i! . Fix n,m ∈ N such that n ≥ m.

Then ¡
1 + 1

n

¢n 21.41
= Σnk=0 (

n
k) 1

n−k ¡ 1
n

¢k ≥ Σmk=0 (
n
k) 1

n−k ¡ 1
n

¢k
= 1 + n

¡
1
n

¢
+ n(n−1)

2!

¡
1
n

¢2
+ n(n−1)(n−2)

3!

¡
1
n

¢3

+ · · ·+ n(n−1)···(n−m+1)
m!

¡
1
n

¢m
= 1 + 1 + 1

2!

¡
n−1
n

¢
+ 1

3!

¡
n−1
n

¢ ¡
n−2
n

¢
+ · · ·+ 1

m!
n−1
n · · · n−m+1

n .

Hence, holding m Þxed, we obtain

e
(2)
= limn→∞

¡
1 + 1

n

¢n ≥ 1 + 1 + 1
2! +

1
3! + · · ·+ 1

m! for each m ∈ N.

Therefore, using (1) to know that limm→∞Σmi=0
1
i! exists, we have

e ≥ limm→∞Σmi=0
1
i! = Σ

∞
i=0

1
i! . ¥

The following corollary shows that the series Σ∞i=0
1
i! converges very quickly

to e. The corollary gives an estimate of the error between e and the nth partial
sum of the series Σ∞i=0

1
i! ; the estimate will enable us to prove that e is irrational

in Theorem 21.44.

Corollary 21.43: 0 < e−Σni=0
1
i! <

1
n!n for each n ≥ 1.

Proof: Fix n ≥ 1. Then, since e = Σ∞i=0
1
i! by Theorem 21.42, we have (by

Exercise 21.1) that

e−Σni=0
1
i! = Σ

∞
i=n+1

1
i! .
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Therefore,

e−Σni=0
1
i! =

1
(n+1)! +

1
(n+2)! +

1
(n+3)! +

1
(n+4)! + · · ·

< 1
(n+1)!

³
1 + 1

n+1 +
1

(n+1)2 +
1

(n+1)3 + · · ·
´

= 1
(n+1)!

³
1 +Σ∞i=1(

1
n+1)

i
´
15.4
= 1

(n+1)!

³
1 +

1
n+1

1− 1
n+1

´
= 1

(n+1)!

¡
1 + 1

n

¢
= 1

(n+1)!
n+1
n = 1

n!n . ¥

Theorem 21.44: e is irrational.
Proof: Suppose by way of contradiction that e is rational. Then e = m

n ,
where m and n are natural numbers. Hence, by Corollary 21.43,

0 < n!
¡
m
n −Σni=0

1
i!

¢
< 1

n < 1.

Thus, since n!
¡
m
n −Σni=0

1
i!

¢
= m(n− 1)!−Σni=0

n!
i! is obviously an integer and,

hence, a natural number, we have a contradiction to the fact that there is no
natural number strictly between 0 and 1 (Theorem 1.19). ¥
We obtain an inÞnite series representation for ex for any real number x in

Example 24.37.
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Chapter XXII: Absolute Convergence

Absolute convergence is a notion of convergence of series that is particularly
useful. We will see many examples of the use of absolute convergence when we
study power series in Chapter XXIV and Chapter XXV.
We introduce the notion of absolute convergence in section 1. Then, as

we did in the preceding chapter for convergence of series, we give tests for
absolute convergence of series. We restrict ourselves to the two principal tests
� the Ratio Test (in section 2) and the Root Test (in section 3). Then we
show a direct relationship between the two tests (section 4). Next, we discuss
a natural algebraic question about convergent series, namely, the question of
what happens to convergence when we commute the terms of a series inÞnitely
many times (section 5); although we could have asked this question a long time
ago, we could not have answered it without the notion of absolute convergence.
The Þnal section concerns Cauchy products of series; we will see that Cauchy
products behave in a more natural and predictable way than termwise products
do.
One Þnal comment: We will show that absolute convergence implies conver-

gence (Theorem 22.1); thus, the Ratio Test and the Root Test in this chapter
can be added to the tests for convergence in the previous chapter.

1. The Notion of Absolute Convergence

Consider the series Σ∞i=1
sin(i)
i2 . It looks like the series converges, but can we

tell from any of our previous tests? The series has inÞnitely many positive terms
and inÞnitely many negative terms, and the signs of the terms occur somewhat
irregularly in groups of 3 and 4 (e.g., although the Þrst 21 terms change signs
in groups of three, the next 4 terms are negative). Thus, we can not apply any
of our previous tests to the series Σ∞i=1

sin(i)
i2 ; furthermore, recall from Exercise

21.12 that the Alternating Series Test does not adapt to nonalternating series
even when the signs of their terms change in a regular pattern. On the other
hand, if we disregard changes in sign by considering the series Σ∞i=1

|sin(i)|
i2 , it

is easy to see that the new series converges: |sin(i)|
i2 < 1

i2 for each i and, thus,

the series Σ∞i=1
|sin(i)|
i2 converges by the Comparison Test (Σ∞i=1

1
i2 converges by

Example 21.29).
But, what about the original series Σ∞i=1

sin(i)
i2 ? Believe it or not, we have

stumbled into a way to easily show that the series converges: Simply note from
the Triangle Inequality that

(*)
¯̄̄
Σni=m

sin(i)
i2

¯̄̄
≤ Σni=m

¯̄̄
sin(i)
i2

¯̄̄
= Σni=m

|sin(i)|
i2 for all n ≥m

and apply the Cauchy Criterion for Convergence of Series (Exercise 21.6) as
follows: Let ² > 0; since the series Σ∞i=1

|sin(i)|
i2 converges, the Cauchy criterion

says there exists N such that Σni=m
|sin(i)|
i2 < ² when n ≥m ≥ N ; hence, by (*),
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¯̄̄
Σni=m

sin(i)
i2

¯̄̄
< ² when n ≥m ≥ N ;

therefore, the series Σni=m
sin(i)
i2 converges by the Cauchy criterion.

What we have done works in general. We state the general theorem after we
introduce terminology that we use from now on.

DeÞnition: A series Σ∞i=1ai is said to be absolutely convergent (or to con-
verge absolutely) provided that the series Σ∞i=1 |ai| converges.
Note that when all terms of a series are positive (or when all terms are

negative), absolute convergence is the same as convergence. Thus, when it is
not important to emphasize absolute convergence, we will often just say such
series are convergent.

Theorem 22.1: If a series is absolutely convergent, then the series con-
verges.

Proof: The proof merely consists of rewriting what we did above in the
general setting of the theorem; we leave this for the reader to do. ¥
Exercise 22.2: Prove Theorem 22.1 as indicated. Also, give an example to

show that the converse of Theorem 22.1 is false.

Thus, we have a new idea � using the series Σ∞i=1 |ai| to determine whether
the series Σ∞i=1ai converges. This is all well and good, but we need general tests
for absolute convergence that are easy to apply. We give two such tests in the
next two sections.
We know that the termwise product of two convergent series may diverge

(Exercise 21.17). The following exercise provides a positive result for conver-
gence of the termwise product. Although the result can be proved using only
results in Chapter XXI (take this as a hint), the statement of the result could not
be given in a concise way until we introduced the notion of absolute convergence.

Exercise 22.3: If the series Σ∞i=1ai is absolutely convergent and the series
Σ∞i=1bi is any convergent series, then the termwise product Σ

∞
i=1aibi is abso-

lutely convergent (but does not necessarily converge to (Σ∞i=1ai) (Σ
∞
i=1bi), as is

illustrated following Exercise 21.3).

2. The Ratio Test

The Ratio Test and the Root Test are standard tests used to determine
absolute convergence or divergence of series. Usually these tests are stated in
terms of simple limits (of ratios and roots, respectively, of terms of the series).
However, formulations of the tests in terms of upper and lower limits have much
broader application (we give an example for the Root Test in the next section,
Example 22.19) Thus, we present the tests in the more general form. This
necessitates an introduction to upper and lower limits, which we give quickly in
the Þrst part of the section. Then we prove the Ratio Test.
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Upper and Lower Limits

This part of the section consists of a deÞnition and exercises directly related
to the deÞnition. The deÞnition has three parts, but the deÞnition is mainly
terminology with no really new ideas involved. Hopefully the exercises will
enable the reader to gain familiarity with the deÞnition. We will use most of
the results in the exercises at one time or another.

DeÞnition: Let {si}∞i=1 be a sequence and let

A = {x ∈ R1 ∪ {±∞} : some subsequence of {si}∞i=1 converges to x}.

� The set A is called the set of all subsequential limits of {si}∞i=1, and each
point of A is called a subsequential limit of {si}∞i=1. The set A ∩ R1 is
called the set of all real subsequential limits of {si}∞i=1, and each point of
A ∩R1 is called a real subsequential limit of {si}∞i=1.

� The supA is called the upper limit (or limit superior) of the sequence
{si}∞i=1 and is denoted by limi→∞si.

� The inf A is called the lower limit (or limit inferior) of the sequence
{si}∞i=1 and is denoted by limi→∞si.

Exercise 22.4: Let {si}∞i=1 be a sequence. Then {si}∞i=1 converges or
{si}∞i=1 diverges to ∞ or to −∞ if and only if limi→∞si = limi→∞si, in which
case the upper (and lower) limit of {si}∞i=1 is the limit of {si}∞i=1 or is ∞ or
−∞, respectively.
Exercise 22.5: The set of all real subsequential limits of a sequence {si}∞i=1

is a closed set.
(Hint: Use Exercise 15.10.)

Exercise 22.6: For a sequence {si}∞i=1, limi→∞si is a subsequential limit
of {si}∞i=1.
(Hint: Use Exercise 22.5.)

Exercise 22.7: For a sequence {si}∞i=1 and for any p > limi→∞si, there
exists N such that si < p for all i ≥ N .
Exercise 22.8: If {si}∞i=1 is a bounded sequence, then limi→∞si is the only

subsequential limit of {si}∞i=1 that satisÞes the condition (about p) in Exercise
22.7. Hence, limi→∞si is the largest subsequential limit of {si}∞i=1.

Exercise 22.9: The lower limit limi→∞si satisÞes results analogous to those
in Exercises 22.6 - 22.8. Formulate the results for lower limits and prove them.

The Ratio Test

We are ready to state and prove the Ratio Test. After the proof, we give
two examples to illustrate the test.
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Theorem 22.10 (Ratio Test): Let Σ∞i=1ai be a series none of whose terms
is zero.

(1) If limi→∞
¯̄̄
ai+1

ai

¯̄̄
< 1, then the series Σ∞i=1ai is absolutely convergent.

(2) If limi→∞
¯̄̄
ai+1

ai

¯̄̄
> 1, then the series Σ∞i=1ai diverges.

(3) If limi→∞
¯̄̄
ai+1

ai

¯̄̄
≤ 1 ≤ limi→∞

¯̄̄
ai+1

ai

¯̄̄
, then there is no information about

the convergence of Σ∞i=1ai.

Proof: Under the assumption in part (1), there is a number r < 1 and a

natural number N such that
¯̄̄
ai+1

ai

¯̄̄
< r for all i ≥ N (by Exercise 22.7). Hence,

|ai+1| < |ai| r for all i ≥ N . Thus, for any given i ∈ N,

(*) |aN+i| < |aN+i−1| r < (|aN+i−2| r)r < · · · < |aN | ri.

Since 0 ≤ r < 1, the series Σ∞i=1 |aN | ri is a convergent geometric series
by Theorem 15.4. Thus, by (*) and the Comparison Test (Theorem 21.18),
the series Σ∞i=1 |aN+i| converges. Therefore, the series Σ∞i=1 |ai| converges by
Exercise 21.1. This proves part (1).of our theorem.
Under the assumption in part (2), there is a natural number M such that¯̄̄

ai+1

ai

¯̄̄
> 1 for all i ≥M , which says that |ai+1| > |ai| for all i ≥M . Hence, for

any given i ∈ N,

|aM+i| > |aM+i−1| > |aM+i−2| > · · · > |aM |.

Thus, since aM 6= 0, limi→∞ ai 6= 0. Therefore, by the ith Term Test (Theorem
21.8), the series Σ∞i=1ai diverges. This proves part (2) of our theorem.
The proof of part (3) can be done by considering only the two series Σ∞i=1

1
i2

and Σ∞i=1
1
i . However, we note that for any p - series Σ

∞
i=1

1
ip ,

limi→∞

¯̄̄̄
1

(i+1)p

1
ip

¯̄̄̄
= limi→∞

³
i
i+1

´p 18.6
= 1p = 1;

hence, limi→∞

¯̄̄̄
1

(i+1)p

1
ip

¯̄̄̄
= 1 = limi→∞

¯̄̄̄
1

(i+1)p

1
ip

¯̄̄̄
(by Exercise 22.4); therefore,

since a p - series converges when p > 1 and diverges when p ≤ 1 (by Example
21.29), we have proved part (3) of our theorem. ¥
The two series in the following exercise obviously diverge. Nevertheless, you

are asked to see whether the Ratio Test shows that they diverge.

Exercise 22.11: What does the Ratio Test say about the series Σ∞i=1i ?
What does the Ratio Test say about the series

Σ∞i=12
i−(−1)i = 22 + 21 + 24 + 23 + 26 + 25 + · · · ?
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We give two examples concerning the Ratio Test. In the Þrst example, we
illustrate how easy it is to apply the Ratio Test. In the second example, the
Ratio Test fails; this example will be especially important when we get to the
Root Test and the relationship between the Ratio Test and the Root Test.

Example 22.12: Consider the alternating series Σ∞i=1
(−1)i+1i!

(1)(3)(5)···(2i−1) . It is
easy to apply the Ratio Test to see that the series converges: For each i ∈ N,
let ai be the ith term of the series. Then¯̄̄

ai+1

ai

¯̄̄
=

¯̄̄̄
(−1)i+2(i+1)!

(1)(3)(5)···(2i+1)

(−1)i+1i!
(1)(3)(5)···(2i−1)

¯̄̄̄
= (i+1)!

i!
1

2i+1 =
i+1
2i+1 for all i ∈ N;

Hence, limi→∞
¯̄̄
ai+1

ai

¯̄̄
= 1

2 . Thus, limi→∞
¯̄̄
ai+1

ai

¯̄̄
= 1

2 < 1 (by Exercise 22.4).

Therefore, by part (1) of the Ratio Test, the series Σ∞i=1
(−1)i+1i!

(1)(3)(5)···(2i−1) converges
(absolutely). The Alternating Series Test (Theorem 21.10) can also be used to
show that the series converges, but some thought is required to see how (Exercise
22.14).

Example 22.13: Consider the series

Σ∞i=12
(−1)i−i = 1

22 +
1
21 +

1
24 +

1
23 +

1
26 +

1
25 + · · · .

We show that the Ratio Test says nothing about the series. (You will be asked
in Exercise 22.15 to prove that the series converges using a test in the previous
chapter.)
For each i ∈ N, let ai be the ith term of the series. Then, for all i ∈ N,¯̄̄

ai+1

ai

¯̄̄
= 2(−1)i+1−(i+1)

2(−1)i−i = 2(−1)i+1−i−1−(−1)i+i = 2(−1)i+1−(−1)i−1.

Thus, ¯̄̄
ai+1

ai

¯̄̄
=

(
2 , if i is odd

2−3 , if i is even.

Hence, limi→∞
¯̄̄
ai+1

ai

¯̄̄
< 1 < limi→∞

¯̄̄
ai+1

ai

¯̄̄
. Therefore, the Ratio Test says

nothing about the series.

The Þrst two exercises below concern the examples we just presented.

Exercise 22.14: Show that the series Σ∞i=1
(−1)i+1i!

(1)(3)(5)···(2i−1) in Example 22.12
converges using the Alternating Series Test (Theorem 21.10).

Exercise 22.15: Show that the series Σ∞i=12
(−1)i−i in Example 22.13 con-

verges using a test in the preceding chapter (no fair using the Root Test, which
we do not prove until the next section).

Exercise 22.16: Find all x such that the series Σ∞i=2
xi

ln(i) converges.
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3. The Root Test

We prove the Root Test and give two examples. The Þrst example begins a
comparison of the Root Test with the Ratio Test which we complete in section 4.
The second example gives us a speciÞc instance in which the Root Test applies
but in which the simpler limit form of the test does not apply.

Theorem 22.17 (Root Test): Let Σ∞i=1ai be a series.

(1) If limi→∞ i
p|ai| < 1, then the series Σ∞i=1ai is absolutely convergent.

(2) If limi→∞ i
p|ai| > 1, then the series Σ∞i=1ai diverges.

(3) If limi→∞ i
p|ai| = 1, then there is no information about the convergence

of Σ∞i=1ai.

Proof: The proof is similar to the proof of the Ratio Test, but some modi-
Þcations are needed (especially in the proof of parts (2) and (3)). We include
the details.
Under the assumption in part (1), we can choose r < 1 and a natural number

N such that i
p|ai| < r for all i ≥ N (by Exercise 22.7). Hence,

(*) |ai| < ri for all i ≥ N .

Since 0 ≤ r < 1, the series Σ∞i=1r
i is a convergent geometric series by Theo-

rem 15.4. Hence, the series Σ∞i=Nr
i converges by Exercise 21.1. Thus, by (*) and

the Comparison Test (Theorem 21.18), the series Σ∞i=N |ai| converges. There-
fore, the series Σ∞i=1 |ai| converges by Exercise 21.1. This proves part (1).of our
theorem.
Next, we prove part (2). Recall from Exercise 22.6 that limi→∞ i

p|ai| is the
limit of a subsequence,{ ik

p|aik |}∞k=1, of the sequence { i
p|ai|}∞i=1; hence, under

the assumption in part (2), ik

p|aik | > 1 for inÞnitely many k. Thus, |aik | > 1
for (the same) inÞnitely many k. Hence, limi→∞ ai 6= 0. Therefore, the series
Σ∞i=1ai diverges by the i

th Term Test (Theorem 21.8). This proves part (2) of
our theorem.
We prove part (3) using p - series (as we did in the proof of part (3) of the

Ratio Test). Fix p. We show that limi→∞ i

q
1
ip = 1. We can show this directly,

but we prefer to use encyclopedic recollection! The answer to Exercise 18.14
is that limx→∞ x

1
x = 1. Thus, since (xp)

1
x = (x

1
x )p (by part (4) of Theorem

16.30) and since the function g(y) = yp is continuous (by Theorem 16.31 and
Theorem 6.14), we have by Theorem 18.6 that

limx→∞(xp)
1
x = 1.

Hence,

limi→∞ i

q
1
ip = limi→∞

1

(ip)
1
i

4.19
= 1.
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Thus, limi→∞ i
p|ai| = 1 (by Exercise 22.4). Therefore, since a p - series con-

verges when p > 1 and diverges when p ≤ 1 (by Example 21.29), we have
proved part (3) of our theorem. ¥

We return to the series 1
22 +

1
21 +

1
24 +

1
23 + · · · = Σ∞i=12

(−1)i−i. We saw
in Example 22.13 that the ratio says nothing about the series. It is easy to
show that the series converges using more elementary tests than the Ratio Test
and the Root Test (Exercise 22.15); nevertheless, we will use the series as an
example for which the Ratio Test fails but the Root Test succeeds. We note
that the reverse can not happen � when the Ratio Test succeeds, the Root Test
succeeds, as we will prove in Theorem 22.23.

Example 22.18: For the reason mentioned above, we show that the Root
Test can be used to prove that the series 1

22 +
1
21 +

1
24 +

1
23 + · · · = Σ∞i=12

(−1)i−i

converges. Note that

i

q¯̄
2(−1)i−i¯̄ = ³2(−1)i

2i

´ 1
i

= 1
2

³
2

(−1)i

i

´
for each i ∈ N

and that

limi→∞ 2
(−1)i

i
16.23
= limi→∞ eln(2

(−1)i

i ) 16.22= limi→∞ e
(−1)i

i ln(2) 18.6= e0 = 1.

Hence,

limi→∞ i

q¯̄
2(−1)i−i¯̄ = limi→∞ 1

2

³
2

(−1)i

i

´
= 1

2 .

Thus, limi→∞ i
p|ai| = 1

2 (by Exercise 22.4). Therefore, by part (1) of the Root
Test, the series Σ∞i=12

(−1)i−i converges.

In many books, the Root Test and the Ratio Test are stated in terms of
whether the limit limi→∞ i

p|ai| is less than 1, greater than 1 (including ∞)
or equal to 1. Obviously, these formulations of the tests follow from ours (by
Exercise 22.4). Our next example shows that the Root Test we have given can
be used when the Root Test in terms of the simple limit limi→∞ i

p|ai| can not
be used (because the limit does not exist as a number or ∞).
Example 22.19: We consider the series

1
2 +

1
3 +

1
22 +

1
32 +

1
23 +

1
33 + · · ·+ 1

2i +
1
3i + · · · .

We show that the series has the properties mentioned above.
For each i ∈ N, the ith term, ai, of the Þrst series is given by

ai =


1

2
i+1

2

, if i is odd

1

3
i
2

, if i is even.

Hence,
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(*) i
p|ai| =


³

1

2
i+1

2

´ 1
i

=
¡

1
2

¢ i+1
2i , if i is odd³

1

3
i
2

´ 1
i

= 1√
3

, if i is even.

Since the exponential function
¡

1
2

¢x
is continuous and decreasing (by Corollary

17.20) and since the sequence { i+1
2i }∞i=1 decreases to its limit

1
2 , we see that

supi≥1, i odd

¡
1
2

¢ i+1
2i =

¡
1
2

¢ 1
2 = 1√

2
.

Thus, by (*),

supi≥1
i
p|ai| = 1√

2
.

Hence, limi→∞ i
p|ai| = 1√

2
. Therefore, by part (1) of the Root Test, the series

Σ∞i=1ai converges. However, since

limi→∞, i odd i
p|ai| (*)= limi→∞

¡
1
2

¢ i+1
2i 16.23,16.22

= limi→∞ e
i+1
2i ln( 1

2 )

= e
1
2 ln( 1

2 ) = 1√
2

and

limi→∞, i even i
p|ai| (*)= 1√

3
,

the limit limi→∞ i
p|ai| does not exist.

You may think that the series in Example 22.19 converges simply because
it is the termwise sum of two convergent geometric series. However, that only
proves that the series Σ∞i=1

¡
1
2i +

1
3i

¢
converges. Nevertheless, it is instructive

to work out a proof that the series in Example 22.19 converges using the series
Σ∞i=1

¡
1
2i +

1
3i

¢
.

Exercise 22.20: Prove that the series in Example 22.19 converges using
the idea just mentioned.

Exercise 22.21: Does the Ratio Test (Theorem 22.10) show that the series
in Example 22.19 converges?

4. Relationship between the Ratio Test and the Root Test

We know from experience that it is easier to compute ratios than to compute
roots. Thus, we are inclined to try the Ratio Test before we try the Root Test un-
less the general form of the terms of the series suggests otherwise. For example,

we would certainly try the Root Test Þrst for the series Σ∞i=1

³
3−5i
2+6i

´i
; indeed, the

Root Test easily shows that the series Σ∞i=1

³
3−5i
2+6i

´i
converges, whereas trying

the Ratio Test leads to an algebraic headache.
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When it is not clear whether to try the Ratio Test or the Root Test, which
should we try Þrst? We saw in Example 22.18 that the Root Test can succeed
when the Ratio Test fails. The reverse can not happen, as the theorem we will
prove shows. The signiÞcance of the theorem is that in spite of our natural
inclination to try the Ratio Test Þrst, we should try the Root Test Þrst (unless,
of course, features of the terms of the series suggest trying the Ratio Test).
It is convenient to have the following lemma for the proof of our theorem.

Lemma 22.22: Let {si}∞i=1 and {ti}∞i=1 be sequences such that si ≤ ti for
all i ∈ N. If limi→∞ ti = p (including p =∞), then limi→∞si ≤ p.
Proof: Let x = limk→∞ sik , where {sik}∞k=1 is a subsequence of {si}∞i=1.

Then, since sik ≤ tik for all k and since limk→∞ tik = p (by Exercise 20.3), we
see easily that x ≤ p. This proves that p is an upper bound for the set of all
subsequential limits of {si}∞i=1. Therefore, since limi→∞si is a subsequential
limit of {si}∞i=1 (by Exercise 22.6), we have that limi→∞si ≤ p. ¥
Theorem 22.23: If the Ratio Test shows absolute convergence or diver-

gence, then so does the Root Test. In fact, for any sequence {ai}∞i=1 none of
whose terms is zero,

limi→∞
¯̄̄
ai+1

ai

¯̄̄
≤ limi→∞ i

p|ai| ≤ limi→∞ i
p|ai| ≤ limi→∞ ¯̄̄ai+1

ai

¯̄̄
.

Proof: The second inequality is obvious. We prove the third inequality,
leaving the proof of the Þrst inequality for the reader (the proof of the Þrst
inequality similar to our proof below; it uses the reader�s results in Exercise
22.9 and the result for lower limits that is analogous to Lemma 22.22).

We assume for the proof that limi→∞
¯̄̄
ai+1

ai

¯̄̄
<∞ (otherwise, we are done).

Then we can choose p > limi→∞
¯̄̄
ai+1

ai

¯̄̄
. Hence, by Exercise 22.7, there is a

natural number N such that
¯̄̄
ai+1

ai

¯̄̄
< p for all i ≥ N . Thus, |ai+1| < |ai| p for

all i ≥ N . Therefore, for any given i > N ,
|ai| < |ai−1| p < (|ai−2| p)p < · · · < |aN | pi−N = |aN | p−Npi.

Hence, noting that p ≥ 0 in order to know that i
p|aN | p−N exists, we have that

(*) i
p|ai| < i

p|aN | p−N p for all i ≥ N .
Note that

limi→∞ i
p|aN | p−N 16.23,16.22

= limi→∞ e
1
i ln(|aN |p−N) = e0 = 1.

Hence, limi→∞ i
p|aN | p−N p = p (by Theorem 19.4). Thus, (*) and Lemma

22.22,

limi→∞ i
p|ai| ≤ p.
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Finally, having proved this last inequality for any p > limi→∞
¯̄̄
ai+1

ai

¯̄̄
, we have

proved that

limi→∞ i
p|ai| ≤ limi→∞ ¯̄̄ai+1

ai

¯̄̄
,

which is the third inequality in our theorem.
It is easy to see that the inequalities in our theorem prove the Þrst part of

our theorem: part (1) of the Ratio Test implies part (1) of the Root Test by the
third inequality in our theorem; part (2) of the Ratio Test implies part (2) of
the Root Test by the Þrst and second inequalities in our theorem. ¥
Exercise 22.24: Prove the Þrst inequality in Theorem 22.23.

Exercise 22.25: Find all x such that the series Σ∞i=1
(x−1)i

i2i converges.

Exercise 22.26: Find all x such that the series Σ∞i=1
10ix

i! converges.

Exercise 22.27: Is the series Σ∞i=1(−1)i
√
i+1−√i
i absolutely convergent?

5. Rearrangements of Series

One general question in the back of our minds when studying series is the
question of how much series behave like Þnite sums. When we started studying
series we saw some results about series that resemble results about Þnite sums
(the results in Exercises 21.3, 21.4 and 21.5). Since then we have not paid
any attention to the similarity or difference between series and Þnite sums. We
now focus on an aspect of comparing series with Þnite sums that is particularly
interesting: When can we commute the terms of a convergent series inÞnitely
many times and still, no matter how we commute the terms, have a convergent
series? And, when we can do this, must the sums of the series be the same?
We provide complete answers to the questions by the end of the section

(Theorem 22.35).
First, let us give an example of a convergent series such that for any given

real number, we can commute the terms of the series so that the new series
converges to the given real number. The procedure we use in the example will
actually be more important than the example itself.

Example 22.28: We show that we can commute the terms of the alternating
harmonic series Σ∞i=1(−1)i+1 1

i , which converges by Theorem 21.10, so the new
series can be made to converge to any real number whatsoever.
We Þrst make simple observations about the odd terms and the even terms of

Σ∞i=1(−1)i+1 1
i ; namely, Σ

∞
i=1

1
2i−1 = ∞ and Σ∞i=1

−1
2i = −∞. This is easily seen

as follows: The series Σ∞i=1
1
2i diverges (by Example 21.29 and Exercise 21.4)

and, therefore, its sequence of partial sums, which is increasing, must not have
an upper bound (by Theorem 19.20); thus, Σ∞i=1

1
2i =∞; hence, Σ∞i=1

−1
2i = −∞

and, since 1
2i−1 >

1
2i for each i ∈ N, Σ∞i=1

1
2i−1 = ∞ by the Comparison Test

(Theorem 21.18).
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Now, Þx any number x. Since Σ∞i=1
1

2i−1 =∞, we can use the Well Ordering
Principle (1.18) to let j1 be the Þrst natural number such that Σ

j1

i=1
1

2i−1 > x.
Similarly, since Σ∞i=1

−1
2i = −∞, we can let k1 be the Þrst natural number such

that

Σj1

i=1
1

2i−1 +Σ
k1
i=1

−1
2i < x.

Next, let j2 be the Þrst natural number greater than j1 such that

Σj2

i=1
1

2i−1 +Σ
k1
i=1

−1
2i > x.

Then let k2 be the Þrst natural number greater than k1 such that

Σj2

i=1
1

2i−1 +Σ
k2
i=1

−1
2i < x.

Continuing the process as indicated (we omit the formal induction), we arrive
at a series whose terms, in the order in which they occur, are

1
1 , ...,

1
2j1−1 ,

−1
2 , ...,

−1
2k1
, 1

2(j1+1)−1 , ...,
1

2j2−1 ,
−1

2(k1+1) , ...,
−1
2k2
, ... .

The terms of this new series are the terms of the alternating harmonic series,
and each term of the alternating harmonic series appears only once as a term
of the new series. Thus, we have obtained the new series solely by commuting
the terms of the alternating harmonic series. Finally, since limm→∞ 1

2jm−1 = 0

and limm→∞ 1
2km

= 0, it is easy to see from the construction that the sum of
the new series is x.

Exercise 22.29: In addition to what we showed in Example 22.28, show
that the terms of the alternating harmonic series Σ∞i=1(−1)i+1 1

i can be com-
muted so that the sum of the resulting series is ∞.
When we commute the terms of a series, the new series we obtain is called

a rearrangement of the original series. Let us note the precise deÞnition:

DeÞnition: A rearrangement of a series Σ∞i=1ai is a series of the form
Σ∞i=1aϕ(i), where ϕ is any one - to - one function from N onto N.

Rearrangements of Absolutely Convergent Series

It would seem that the procedure in Example 22.28 could be carried out more
generally. For which series can we do this? That is, what general properties
must a series have in order that for any given real number x, the procedure
in Example 22.28 produces a rearrangement of the series such that the sum of
the rearrangement is x ? On reviewing the procedure in Example 22.28, we see
that the sum of the positive terms of such a series should be ∞, the sum of the
negative terms should be −∞, and the limit of the positive terms, as well the
limit of the negative terms, should be 0 (which was used at the end of Example
22.28 to show x was the sum of the rearrangement).
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An absolutely convergent series Σ∞i=1ai does not have the properties just
mentioned: the sum of its positive terms, as well as the sum of its negative
terms, is Þnite since the sums lie between Σ∞i=1 − |ai| and Σ∞i=1 |ai|. However,
this leaves open the possibility that for some absolutely convergent series Σ∞i=1ai,
several real numbers between Σ∞i=1 − |ai| and Σ∞i=1 |ai| could be the sums of
rearrangements of the series. We show this can not happen; we are then led to
see if the procedure in Example 22.28 works for convergent series that are not
absolutely convergent.

Theorem 22.30: If a series Σ∞i=1ai is absolutely convergent, then every
rearrangement of Σ∞i=1ai converges to the sum Σ∞i=1ai.

Proof: Let Σ∞i=1aϕ(i) be a rearrangement of Σ∞i=1ai (ϕ as in the deÞnition of
rearrangement). Let ² > 0. Since the series Σ∞i=1 |ai| converges, we see from the
Cauchy criterion in Exercise 21.6 that there is a natural number N such that

(1) Σni=m |ai| < ² for all n ≥ m ≥ N .
Since ϕ maps N onto N, there is a natural number K ≥ N such that

(2) {1, 2, ..., N} ⊂ {ϕ(1),ϕ(2), ...,ϕ(K)}.
Now, let {sn}∞n=1 denote the sequence of partial sums of Σ

∞
i=1ai, and let

{tn}∞n=1 denote the sequence of partial sums of Σ
∞
i=1aϕ(i). Fix n ≥ K. Since

K ≥ N , each of the terms a1, a2, ..., aN appears exactly once in sn; by (2) and the
fact that ϕ is one - to - one, each of the terms a1, a2, ..., aN appears exactly once
in tn. Hence, the terms a1, a2, ..., aN will cancel one another in the difference
sn − tn. After we cancel as just indicated, the terms left in sn − tn are of the
form ai with i > N ; denote the terms left by b1, b2, ..., b`. Then,

|sn − tn| =
¯̄
Σ`i=1bi

¯̄ ≤ Σ`i=1 |bi|
(1)
< ².

We have proved that for any ² > 0, there exists K such that |sn − tn| < ²
for all n ≥ K. We also know from Theorem 22.1 that the series Σ∞i=1ai con-
verges, which means that limn→∞ sn = Σ∞i=1ai. Therefore, it follows easily that
limn→∞ tn = Σ∞i=1ai. This proves that the rearrangement Σ

∞
i=1aϕ(i) converges

to the sum of the series Σ∞i=1ai. ¥
Exercise 22.31: A series is absolutely convergent if and only if the series of

its nonnegative terms converges and the series of its negative terms converges.

Rearrangements of Conditionally Convergent Series

In line with the discussion leading to Theorem 22.30, we now focus on con-
vergent series that are not absolutely convergent. We show that the procedure
in Example 22.28 generalizes to apply to such series. For conciseness, we note
the following standard terminology.

DeÞnition: A series that converges but is not absolutely convergent is said
to be conditionally convergent.
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The following lemma addresses the conditions about divergence to ±∞ of
the positive and negative terms that we mentioned in the discussion preceding
Theorem 22.30.

Lemma 22.32: If Σ∞i=1ai is a conditionally convergent series, then the sum
of the series of nonnegative terms of Σ∞i=1ai is ∞ and the sum of the series of
negative terms of Σ∞i=1ai is −∞.
Proof: For each i ∈ N, let

pi =
|ai|+ai

2 =

½
ai , if ai ≥ 0
0 , if ai ≤ 0 , qi =

|ai|−ai
2 =

½
0 , if ai ≥ 0
−ai , if ai ≤ 0 .

We Þrst prove that

(*) Σ∞i=1pi =∞ and Σ∞i=1qi =∞
and then we show that the lemma follows easily from (*).

Proof of (*): If both the series Σ∞i=1pi and Σ
∞
i=1qi converged, then their

termwise sum would converge (by Exercise 21.3); however, since their termwise
sum satisÞes

Σ∞i=1 (pi + qi) = Σ
∞
i=1 |ai|,

their termwise sum diverges since the series Σ∞i=1ai is not absolutely convergent.
Hence, we have that

(1) Σ∞i=1pi diverges or Σ
∞
i=1qi diverges.

Now, note that for each n ∈ N,

Σni=1ai = Σ
n
i=1 (pi − qi) = Σni=1pi −Σni=1qi;

thus, since the series Σ∞i=1ai converges, the convergence of Σ
∞
i=1pi implies the

convergence of Σ∞i=1qi (by Exercise 21.3) and vice versa. Hence, by (1), it must
be that

(2) Σ∞i=1pi diverges and Σ
∞
i=1qi diverges.

Next, note that pi ≥ 0 for all i ∈ N; hence, the sequence {sn}∞n=1 of partial
sums of the series Σ∞i=1pi is increasing. Thus, by (2) and Theorem 19.20, the
sequence {sn}∞n=1 has no upper bound. Therefore, Σ

∞
i=1pi = ∞. Similarly,

Σ∞i=1qi =∞. This proves (*).
Finally, we use (*) to complete the proof of our lemma.
By (*), there are inÞnitely many nonnegative terms of the series Σ∞i=1ai, say

ai1 , ai2 , ..., ain , ... where the terms are indexed in the order in which they appear
(meaning i1 < i2 < · · · < in < · · · ). Then, for each n ∈ N, the Þrst in terms
of the series Σ∞i=1pi are the terms ai1 , ai2 , ..., ain together with (possibly) some
terms that are 0. Hence,

Σnj=1aij = Σ
in
j=1pj for each n ∈ N.
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Therefore, by (*), Σ∞j=1aij =∞.
Similarly, if ak1 , ak2 , ..., akn , ... are the negative terms (in order of appear-

ance) of the series Σ∞i=1ai, then

Σnj=1akj = −Σknj=1qj for each n ∈ N.

Therefore, by (*), Σ∞j=1akj = −∞. ¥
We now apply the procedure in Example 22.28 to prove the following the-

orem. Recall the deÞnitions of limn→∞sn and limn→∞sn at the beginning of
section 2 of this chapter.

Theorem 22.33: Any conditionally convergent series has a rearrangement
that converges to any real number or whose sum is ±∞. Moreover, let Σ∞i=1ai
be a conditionally convergent series, and let u ≤ v be real numbers or u = −∞
or v = ∞. Then there is a rearrangement Σ∞i=1aϕ(i) of Σ∞i=1ai such that the
sequence {sn}∞n=1 of partial sums of Σ

∞
i=1aϕ(i) satisÞes

limn→∞sn = u and limn→∞sn = v.

Proof: By Lemma 22.32, the series Σ∞i=1ai has inÞnitely many nonnegative
terms and inÞnitely many negative terms. Let b1, b2, ..., bi, ... denote the non-
negative terms of the series Σ∞i=1ai listed in the order in which they appear, and
let c1, c2, ..., ci, ... denote the negative terms of the series Σ∞i=1ai listed in the
order in which they appear.
We consider the case when u and v are Þnite.
By Lemma 22.32, Σ∞i=1bi = ∞. Hence, by the Well Ordering Principle

(1.18), there is a Þrst natural number j1 such that Σ
j1

i=1bi > v. Then, since
Σ∞i=1ci = −∞ (by Lemma 22.32), there is a Þrst natural number k1 such that

Σj1

i=1bi +Σ
k1
i=1ci < u.

Next, there is a Þrst natural number j2 > j1 such that (by Lemma 22.32)

Σj2

i=1bi +Σ
k1
i=1ci > v.

Then there is a Þrst natural number k2 > k1 such that (by Lemma 22.32)

Σj2

i=1bi +Σ
k2
i=1ci < u.

Continuing the procedure as indicated (we omit the formal induction), we obtain
a series whose terms, in the order in which they occur, are

b1, ..., bj1 , c1, ..., ck1 , bj1+1, ..., bj2 , ck1+1, ..., ck2 , ... .

Note that this new series uses each term of the series Σ∞i=1ai exactly once (and
uses only the terms ai); hence, the new series is a rearrangement of the original
series Σ∞i=1ai.
We denote the new series by Σ∞i=1di and its sequence of partial sums by

{sn}∞n=1.
For each n ∈ N, we let
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un = Σ
kn
i=1di, vn = Σ

jn
i=1di.

Since k1 < k2 < · · · < kn < · · · and j1 < j2 < · · · < jn < · · · , we have that
(1) the sequences {un}∞n=1and {vn}∞n=1 are subsequences of {sn}∞n=1.

Let us also note the following: Since the series Σ∞i=1ai converges, limi→∞ ai =
0 by the ith Term Test (Theorem 21.8); thus, since the indices ki and ji are
strictly increasing, we have that

(2) limi→∞ cki = 0 and limi→∞ bji = 0.

We now show that u and v are subsequential limits of {sn}∞n=1. It is clear
from the construction that for each n ∈ N,

|u− un| ≤ |ckn | and |v − vn| ≤ |bjn |.

Hence, we see from (2) that limn→∞ un = u and limn→∞ vn = v. Thus, by (1),
we have that

(3) u and v are subsequential limits of {sn}∞n=1.

Finally, we show that limn→∞sn = u and that limn→∞sn = v. Fix x < u.
Then, by (2), there exists N such that cki >

x+u
2 for all i ≥ N . It then

follows that no subsequence of {sn}∞n=1 converges to x. Hence, limn→∞sn ≥ u.
Therefore, by (3), limn→∞sn = u. A similar argument shows that limn→∞sn =
v.
This completes the proof of our theorem when u and v are Þnite. The proof

when one or both of u and v are inÞnite is left to the reader. ¥
Exercise 22.34: Prove Theorem 22.33 when u, v or both are inÞnite.

Main Theorem

We are now in a position to completely answer the questions we asked at
the beginning of the section:

Theorem 22.35: For any series Σ∞i=1ai, the following three statements are
equivalent to one another:

(1) Every rearrangement of the series Σ∞i=1ai converges.

(2) Every rearrangement of the series Σ∞i=1ai converges to the same sum.

(3) The series Σ∞i=1ai is absolutely convergent.

Proof: That (3) implies (2) is by Theorem 22.30. Obviously, (2) implies (1).
Finally, we prove that (1) implies (3). Assume that (1) holds. By Theorem

22.33, every conditionally convergent series has a nonconvergent rearrangement.
Hence, by (1), the series Σ∞i=1ai is not conditionally convergent. Thus, by the
deÞnition of conditionally convergent, the series Σ∞i=1ai either diverges or is
absolutely convergent. Now, note that the series Σ∞i=1ai is a rearrangement
of itself (by letting ϕ(i) = i for all i ∈ N); hence, by (1), the series Σ∞i=1ai
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converges. Therefore, the series Σ∞i=1ai is absolutely convergent. This proves
(3). ¥
For completeness, we remark that series for which every rearrangement con-

verges to the same sum are often said to be unconditionally convergent. Note
that Theorem 22.35 says that the unconditionally convergent series are the same
as the absolutely convergent series. Theorem 22.35 also shows that the phrase
�to the same sum� is superßuous in the deÞnition of unconditionally convergent.
In the Þgure below, we summarize convergence properties of series we have

studied; the abbreviations AC, UC, CC and D, respectively, stand for absolutely
convergent, unconditionally convergent, conditionally convergent and divergent.

Exercise 22.36: Give an example of a series that has only integers and ±∞
as sums of rearrangements and such that every integer, ∞ and −∞ are sums of
rearrangements of the series.

Exercise 22.37: Let S denote the sum of the alternating harmonic se-
ries Σ∞i=1(−1)i+1 1

i . The following series is a rearrangement of the alternating
harmonic series:

Σ∞i=1ai = 1 +
1
3 − 1

2 +
1
5 +

1
7 − 1

4 +
1
9 +

1
11 − 1

6 + · · ·+ 1
4i−3 +

1
4i−1 − 1

2i + · · ·

Show that the sum of the series Σ∞i=1ai is
3S
2 6= S by verifying the claims in

(1) - (4) below:

(1) S 6= 0.
(2) Σ∞i=1bi = 0 +

1
2 + 0− 1

4 + 0+
1
6 + 0− 1

8 + ... =
S
2 .

(3) The sequence of partial sums of the series Σ∞i=1ai is a subsequence of the
sequence of partial sums of the series Σ∞i=1

¡
(−1)i+1 1

i + bi
¢
.

(4) Σ∞i=1ai =
3S
2 6= S.
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6. Cauchy Products

We discussed the termwise product of series following Exercise 21.3. There
is another kind of product of series called the Cauchy product, which we deÞne
below.
The motivation for the Cauchy product of numerical series comes from power

series. We will study power series in Chapters XXIV and XXV. For our purpose
at this time, the term power series refers to a series of the form Σ∞i=0aix

i, where
ai is a constant for each i and x is a variable. No knowledge of power series is
needed for what we do here.
Let Σ∞i=0ai and Σ

∞
i=0bi be two numerical series, and consider the two power

series Σ∞i=0aix
i and Σ∞i=0bix

i. If we multiply the two power series together as
though they were polynomials and collect terms, we obtain the power series

a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2

+ · · ·+ (Σni=0aibn−i)x
n + · · · ;

this power series is called the Cauchy product of the two power series Σ∞i=0aix
i

and Σ∞i=0bix
i, and is denoted by

¡
Σ∞i=0aix

i
¢× ¡Σ∞i=0bix

i
¢
. The Cauchy product

of the numerical series Σ∞i=0ai and Σ
∞
i=0bi is the series we just deÞned but

without the x�s and is denoted by (Σ∞i=0ai)× (Σ∞i=0bi); in other words,

(Σ∞i=0ai)× (Σ∞i=0bi) = Σ
∞
n=0 (Σ

n
i=0aibn−i).

We see that Cauchy products, rather than termwise products, are the natural
product for series, even for numerical series. This is because if Σ∞i=0ai and Σ

∞
i=0bi

are numerical series, then the nth partial sum of their Cauchy product is the
Þnite sum obtained by multiplying the two polynomials Σni=0aix

i and Σni=0bix
i

together.
We know that termwise product of two convergent series may diverge (Ex-

ercise 21.17). The same unfortunate behavior occurs with Cauchy products:

Exercise 22.38: The series Σ∞i=0(−1)i 1√
i+1

converges, but its Cauchy prod-
uct with itself diverges.

However, if at least one of two convergent series converges absolutely, then
their Cauchy product converges and, moreover, it converges to the expected
value:

Theorem 22.39: If Σ∞i=0ai is absolutely convergent and Σ
∞
i=0bi is conver-

gent, then the Cauchy product (Σ∞i=0ai)×(Σ∞i=0bi) converges to (Σ
∞
i=0ai) (Σ

∞
i=0bi);

in other words, the Cauchy product converges to the product of the sums of the
two series Σ∞i=0ai and Σ

∞
i=0bi.

Proof: We Þrst establish some notation for use in our computations: For
each n ≥ 0, let cn be the nth term of (Σ∞i=0ai)× (Σ∞i=0bi), so

cn = Σni=0aibn−i,

and denote the nth partial sums of the three series by
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An = Σ
n
i=0ai, Bn = Σ

n
i=0bi, Sn = Σ

n
i=0ci.

Also, let A, B, and S denote the sums of the three series,

A = Σ∞i=0ai, B = Σ
∞
i=0bi, S = Σ

∞
i=0ci.

Finally, for each n ≥ 0, let
βn = Bn −B.

Our theorem claims that S = AB. We prove this by showing that

limn→∞ Sn = AB.

Note that for each n ≥ 0,
Sn = a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·+ (Σni=0aibn−i)

= a0Bn + a1Bn−1 + a2Bn−2 + · · ·+ anB0

= a0(B + βn) + a1(B + βn−1) + a2(B + βn−2) + · · ·+ an(B + β0)

= AnB +Σ
n
i=0aiβn−i.

Hence, letting γn = Σ
n
i=0aiβn−i for each n ≥ 0, we have proved that

Sn = AnB + γn for each n ≥ 0.

Thus, since limn→∞AnB = AB (by Theorem 19.4), our theorem will be proved
once we prove

(*) limn→∞ γn = 0.

Proof of (*): Let ² > 0. By assumption in our theorem, Σ∞i=0 |ai| <∞. We
let

α = Σ∞i=0 |ai|.

Since α < ∞, we see from Exercise 21.2 that there is a natural number N
such that

(1) Σ∞i=n |ai| < ² for all n > N .
Since Σ∞i=0bi converges and βn = Bn − B, we have that limn→∞ βn = 0;

hence, we can assume that N in (1) is large enough so that

(2) |βn| < ² for all n > N .
Next, note that for each n > N ,

γn = Σ
n
i=0aiβn−i = Σ

n−N−1
i=0 aiβn−i +Σni=n−Naiβn−i;
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hence, for each n > N ,

|γn| ≤
¯̄
Σn−N−1
i=0 aiβn−i

¯̄
+
¯̄
Σni=n−Naiβn−i

¯̄
≤ Σn−N−1

i=0 |ai|
¯̄
βn−i

¯̄
+
¯̄
Σni=n−Naiβn−i

¯̄
(2)
≤ Σn−N−1

i=0 |ai| ²+
¯̄
Σni=n−Naiβn−i

¯̄ ≤ α²+Σni=n−N |ai| ¯̄iβn−i¯̄.
Thus, letting β = max {|β0| , |β1| , ..., |βN |}, we have that

|γn| ≤ α²+ βΣni=n−N |ai| for all n > N .

Hence, by (1),

|γn| ≤ α²+ β² for all n > 2N .

Therefore, since ² > 0 was arbitrary, we have proved (*). ¥
We compare Theorem 22.39 with the result for termwise products in Exercise

22.3. The assumptions in both results are the same, but there are two notable
differences in the conclusions which we note below.
First, the termwise product is absolutely convergent (Exercise 22.3), whereas

the Cauchy product may not be absolutely convergent, as we show with the
following simple example: Just let Σ∞i=0ai be the absolutely convergent series
with a0 = 1 and ai = 0 for all i ≥ 1; then we see that the Cauchy product of
Σ∞i=0ai with the convergent series Σ

∞
i=0(−1)i 1

i+1 is conditionally convergent.
Second, the Cauchy product converges to the expected value, namely, to the

product of the sums of the two series (Theorem 22.39), whereas the termwise
product may not converge to the expected value (an example is in the discussion
following Exercise 21.3).
The second difference between Theorem 22.39 and the result in Exercise

22.3 seems more important than the Þrst. Thus, we are led to say that Cauchy
products behave better than termwise products.
Finally, we raise a natural question that we will answer later. Assume

that two series, Σ∞i=0ai and Σ
∞
i=0bi, converge and that their Cauchy product

(Σ∞i=0ai)× (Σ∞i=0bi) also converges. Then the question arises as to whether the
Cauchy product must converge to (Σ∞i=0ai) (Σ

∞
i=0bi). The answer is yes. How-

ever, the question is really a question about the continuity of power series; thus,
we are not prepared to verify the answer at this time. You will be asked to carry
out the veriÞcations at the end of section 3 of Chapter XXIV (Exercise 24.33).
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Chapter XXIII: Sequences of Functions

We studied numerical sequences in Chapter XIX and Chapter XX. Numerical
sequences are functions whose domains are the natural numbers. In this chapter
we study sequences of functions whose domains vary from being arbitrary sets
to being intervals. We apply what we learn to series of functions in the next
two chapters.
We study two notions of convergence of functions � pointwise convergence

and uniform convergence. In section 1 we present examples to show that the
properties of continuity, differentiability and integrability are not preserved un-
der pointwise convergence. In section 2 we introduce uniform convergence and
prove the Cauchy criterion for uniform convergence. In sections 3, 4 and 5 we
obtain results relating uniform convergence to continuity, differentiability and
integrability.

1. Pointwise Convergence

The following deÞnition expresses the most natural way to consider conver-
gence for a sequence of functions:

DeÞnition: Let X be a set, and let fn : X → R1 be a function for each
n ∈ N. We say that the sequence {fn}∞n=1 of functions converges pointwise
on X provided that for each x ∈ X, the sequence {fn(x)}∞n=1 of real numbers
converges (to a real number).
Assume that {fn}∞n=1 converges pointwise on X, and let f : X → R1 be

deÞned by

f(x) = limn→∞ fn(x) for each x ∈ X;

then we call f the pointwise limit of {fn}∞n=1, and we say that {fn}∞n=1 converges
pointwise to f on X.

Pointwise convergence is the simplest type of convergence of functions imag-
inable; unfortunately, however, pointwise convergence is not strong enough to
preserve continuity, differentiability or integrability. We show this in examples
below.
Let us Þrst show that the problem of the continuity of pointwise limits of

continuous functions can be viewed as a problem about interchanging the order
in which we take limits.
Let {fn}∞n=1 be a sequence of continuous functions converging pointwise on

a subset X of R1 to a function f . Let p ∈ X. By Corollary 3.13, f is continuous
at any isolated point of X. Thus, to examine the continuity of f at p, we may
as well assume p is a limit point of X. Then, by Corollary 3.13, f is continuous
at p if and only if

limx→p f(x) = f(p);
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thus, since limn→∞ fn(x) = f(x) for each x ∈ X, the continuity of f at p is
equivalent to having

limx→p limn→∞ fn(x) = f(p).

On the other hand, solely by our assumptions that each fn is continuous and
that {fn}∞n=1 converges pointwise to f , we have that

limn→∞ limx→p fn(x) = f(p).

Therefore, the continuity of f at p is equivalent to the following equality:

limx→p limn→∞ fn(x) = limn→∞ limx→p fn(x).

In other words, the question of whether a pointwise limit of a sequence of con-
tinuous functions is continuous at p is the same as asking whether the order in
which we take limits does not matter.
Similarly, questions about derivatives as well as integrals of pointwise limits

are really questions about the order in which we take limits. Thus, we sometimes
express examples and theorems in terms of the order in which limits are taken.

Example 23.1: We show that a pointwise limit of continuous functions
may not be continuous.
For each n ∈ N, deÞne the continuous function fn : [0, 1]→ R1 by f(x) = xn

for all x ∈ [0, 1]. Then the sequence {fn}∞n=1 converges pointwise to the function
f given by

f(x) =

½
0 , if x 6= 1
1 , if x = 1

and f is not continuous at x = 1.

Example 23.1 also shows that differentiability is not preserved by pointwise
convergence since the limit function is not continuous (recall Theorem 6.14).
Our next example is stronger.

Example 23.2: We give an example of a sequence {fn}∞n=1 of differentiable
functions whose pointwise limit is continuous but not differentiable.
The sequence {fn}∞n=1 comes from knowing beforehand that we want the

pointwise limit of the sequence to be the function f(x) = |x|; we can then
obtain fn by replacing f in the interval [− 1

n ,
1
n ] with part of a parabola that has

the correct values and the correct derivatives at the points ± 1
n . The formula is

as follows: For each n ∈ N, let

fn(x) =

(
nx2

2 + 1
2n , if −1

n ≤ x ≤ 1
n

|x| , if |x| ≥ 1
n .
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We show that the absolute value function f is the pointwise limit of the
sequence {fn}∞n=1 : If x 6= 0, then fn(x) = |x| = f(x) for all n sufficiently large,
and limn→∞ fn(0) = limn→∞ 1

2n = 0 = f(0).
It is easy to verify that each function fn is differentiable at every point of

R1 (use Theorem 6.15 for the points x = ± 1
n).

Finally, f is continuous on R1 (by Exercise 3.6) but f is not differentiable
at x = 0 (by Exercise 6.17).

Example 23.3: We give another example concerning pointwise limits and
derivatives; in contrast to Example 23.2, this time the pointwise limit is dif-
ferentiable but its derivative is not the pointwise limit of the derivatives of the
approximating sequence. Thus, the example shows that the order in which
we take pointwise limits and derivatives matters when the functions and their
pointwise limit are differentiable.
For each n ∈ N, let

fn(x) = xn − xn+1 for all x ∈ [0, 1].

Note that fn(1) = 0 for each n and that limn→∞ xn = 0 for each x such that
0 ≤ x < 1 (by Lemma 15.3); thus, the sequence {fn}∞n=1 converges pointwise
on [0, 1] to the zero function f . Since f 0n(x) = nxn−1 − (n+ 1)xn for each n, it
follows that the sequence {f 0n}∞n=1 converges pointwise on [0, 1] to the function
g given by

g(x) =

(
0 , if 0 ≤ x < 1
−1 , if x = 1.

Not only is g 6= f 0, but, in fact, g is not the derivative of any function by
Theorem 10.50.

Our Þnal two examples concern pointwise limits and integrals.

Example 23.4: We show that a sequence of integrable functions may con-
verge pointwise to a bounded function that is not integrable.
Let A be the set of all rational numbers in the interval [0, 1]. Since A is

countable, we can index the set A with the natural numbers, A = {ri : i ∈ N}.
For each n ∈ N, let An = {ri : i ≤ n} and deÞne the function fn : [0, 1] → R1

by

fn(x) =

(
0 , if x ∈ An
1 , if x /∈ An.

It is easy to see that the sequence {fn}∞n=1 converges pointwise on [0, 1] to the
function f : [0, 1]→ R1 given by

f(x) =

(
0 , if x ∈ A
1 , if x /∈ A.
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Each function fn is bounded and is continuous except at the Þnitely many
points of An; hence, each function fn is integrable over [0, 1] (by Exercise 12.34
or by Theorem 15.33; in fact, it is easy to see using upper and lower sums thatR 1

0 fn = 1 for each n). However, the pointwise limit f is not integrable over
[0, 1] since f is the function in Example 12.12 (or by Theorem 15.33).

Note that each function fn in Example 23.4 is discontinuous at only Þnitely
many points but that the pointwise limit of the functions is not continuous at
any point. In contrast, we mention the following result: The pointwise limit of
a sequence of continuous functions deÞned on an interval must be continuous
at some point of every open subinterval. We do not prove this result since
its proof involves an idea we have not discussed (namely, the Baire Category
Theorem); a proof is in the book by Ralph P. Boas, Jr. entitled A Primer of
Real Functions, published by the Mathematical Association of America (The
Carus Mathematical Monographs, Number 13, 1960, pp. 99 - 102).

Example 23.5: In analogy to what we showed for derivatives in Example
23.3, we show that the order in which we take limits and integrals matters.
SpeciÞcally, we construct a sequence {fn}∞n=1 of continuous functions on [0, 1]
that converges pointwise to the zero function such that

R 1

0
fn = 1 for each n.

We describe the function fn as follows: Let Tn be the isosceles triangle in
the upper half plane whose base is the segment on the x - axis from ( 1

n+1 , 0) to
( 1
n , 0) and whose area is equal to 1; the graph of fn on the interval [

1
n+1 ,

1
n ]

consists of the two nonhorizontal sides of the triangle Tn (a �tent�), and all
other values of fn are 0. In a formula, fn : [0, 1]→ R1 is deÞned as follows (the
point 2n+1

2n(n+1) is the midpoint between
1

n+1 and
1
n):

fn(x) =


4n2(n+ 1)2x− 4n2(n+ 1) , if 1

n+1 ≤ x ≤ 2n+1
2n(n+1)

−4n2(n+ 1)2x+ 4n(n+ 1)2 , if 2n+1
2n(n+1) ≤ x ≤ 1

n

0 , otherwise.

For any x > 0, fn(x) = 0 for all n such that 1
n < x (hence, for all but Þnitely

many n); thus, since fn(0) = 0 for all n, the sequence {fn}∞n=1 converges point-
wise to the zero function f . However, by the construction,

R 1

0 fn = 1, the area

of the triangle Tn. Therefore, limn→∞
R 1

0
fn 6=

R 1

0
f .

This completes our examples.

Exercise 23.6: Find the pointwise limit of the sequence of derivatives of
the functions fn in Example 23.1. Do the same for the functions fn in Example
23.2.

Exercise 23.7: For each n ∈ N, deÞne fn : [0,∞) → R1 by fn(x) =
¡
x
n

¢n
.

Find the pointwise limit of the sequence {fn}∞n=1.

Exercise 23.8: For each n ∈ N, let fn(x) = sin(nx)
n for all x ∈ R1. Find the

pointwise limit f of the sequence {fn}∞n=1 and determine whether the pointwise
limit of the sequence {f 0n}∞n=1 of derivatives is f

0.
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Exercise 23.9: For each n ∈ N, deÞne fn : [0, 1]→ R1

fn(x) = nx(1− x2)n for all x ∈ [0, 1].

Find the pointwise limit f of the sequence {fn}∞n=1. Is limn→∞
R 1

0 fn =
R 1

0 f ?

2. Uniform Convergence

To lead us to the deÞnition of uniform convergence, let us state the deÞnition
of pointwise convergence more explicitely than we did in the previous section:
A sequence {fn}∞n=1 converges pointwise on X to a function f if and only if for
each x ∈ X and each ² > 0, there exists N depending on x as well as ² such
that

|fn(x)− f(x)| < ² for all n ≥ N .

Uniform convergence only requires N to depend on ² :

DeÞnition: LetX be a set, and let fn : X → R1 (n ∈ N) and f : X → R1 be
functions. We say that the sequence {fn}∞n=1 of functions converges uniformly
on X to f , or that f is the uniform limit of {fn}∞n=1 on X, provided that for
each ² > 0, there exists N such that

|fn(x)− f(x)| < ² for all n ≥ N and all x ∈ X.

The following exercise will help familiarize you with the deÞnition of uniform
convergence:

Exercise 23.10: Let X be a nonempty set, and let fn : X → R1 (n ∈ N)
and f : X → R1 be bounded functions. For each n ∈ N, let

Mn = supx∈X |fn(x)− f(x)|.

Then Mn < ∞ for each n ∈ N and the sequence {fn}∞n=1 converges uniformly
on X to f if and only if limn→∞Mn = 0.

Obviously, uniform convergence is stronger than pointwise convergence; more
speciÞcally, uniform convergence to a function f implies pointwise convergence
to the same function f . We will see in subsequent sections that uniform con-
vergence is strong enough to eliminate �defects� illustrated by examples in the
preceding section.
We illustrate some ideas involved in proving uniform convergence as well as

nonuniform convergence with the following example. (The reader will discover
other techniques for proving uniform convergence and nonuniform convergence
by working Exercises 23.14 and 23.15.)

Example 23.11: For each n ∈ N, deÞne fn : [0,∞)→ R1 by

fn(x) =
nx

2n+x for all x ∈ [0,∞).
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We show that for any b ≥ 0, the sequence {fn|[0, b]}∞n=1 converges uniformly on
[0, b] but that the sequence {fn}∞n=1 does not converge uniformly on [0,∞).
Since uniform convergence to a function f implies pointwise convergence

to f , we Þrst Þnd the pointwise limit of the sequence {fn}∞n=1 For a given
x ∈ [0,∞),

limn→∞ fn(x) = limn→∞ nx
2n+x = limn→∞

x
2+ x

n

19.2, 19.5
= x

2 .

Hence, the sequence {fn}∞n=1 converges pointwise on [0,∞) to the function f
given by f(x) = x

2 for all x ∈ [0,∞).
Now, Þx b ≥ 0. We show that the sequence {fn|[0, b]}∞n=1 converges uni-

formly on [0, b] to f |[0, b]. The following calculations tell us how to proceed: For
all x ∈ [0, b],

(*) |fn(x)− f(x)| =
¯̄̄
nx

2n+x − x
2

¯̄̄
=
¯̄̄
−x2

4n+2x

¯̄̄
= x2

4n+2x ≤ x2

4n ≤ b2

4n .

All we have left to do is to incorporate (*) into the deÞnition of uniform conver-
gence: Let ² > 0. Then, by the Archimedean Property (Theorem 1.22), there is
a natural number N such that b

2

4² < N . Hence,
b2

4n < ² for all n ≥ N . Therefore,

|fn(x)− f(x)|
(*)
≤ b2

4n < ² for all n ≥ N and all x ∈ [0, b].
This proves that the sequence {fn|[0, b]}∞n=1 converges uniformly on [0, b] to f .
Finally, we show that {fn}∞n=1 does not converge uniformly on [0,∞). Since

a uniformly convergent sequence must converge uniformly to its pointwise limit,
the only function to which the sequence {fn}∞n=1 could converge uniformly on
[0,∞) is the function f . However, since

|fn(n)− f(n)| =
¯̄̄
n2

2n+n − n
2

¯̄̄
= n

6 for all n ∈ N,

the sequence {fn}∞n=1 does not converge uniformly on [0,∞) to f (since, by the
Archimedean Property, for any ² > 0, there exists j ∈ N such that 6² < j, so
|fn(n)− f(n)| > ² for all n ≥ j).
The Cauchy criterion came up in connection with convergence of numerical

sequences (section 3 of Chapter XX). We now use the criterion to characterize
uniform convergence in a useful way.

Theorem 23.12 (Cauchy Criterion for Uniform Convergence): Let
X be a set, and let fn : X → R1 be a function for each n ∈ N. Then the
sequence {fn}∞n=1 converges uniformly on X to a function f if and only if for
each ² > 0, there exists N such that

|fi(x)− fj(x)| < ² for all i, j ≥ N and all x ∈ X.
Proof: Assume that {fn}∞n=1 converges uniformly on X to a function f . Let

² > 0. Then there exists N such that

256



|fn(x)− f(x)| < ²
2 for all n ≥ N and all x ∈ X.

Therefore, for all i, j ≥ N and all x ∈ X,
|fi(x)− fj(x)| ≤ |fi(x)− f(x)|+ |f(x)− fj(x)| < ²

2 +
²
2 = ².

Conversely, assume the condition in our theorem involving ². Then, for
each Þxed point x ∈ X, the sequence {fn(x)}∞n=1 is a Cauchy sequence and,
hence, converges by Theorem 20.12. For each x ∈ X, we denote the limit of
the sequence {fn(x)}∞n=1 by f(x). This deÞnes a function f : X → R1; in other
words, f is the pointwise limit of the sequence {fn}∞n=1. In fact, as we now
show, f is the uniform limit of the sequence {fn}∞n=1: Let ² > 0; then, since we
are assuming the condition in our theorem for ², there exists N such that

(*) |fi(x)− fj(x)| < ²
2 for all i, j ≥ N and all x ∈ X;

thus, for any given n ≥ N , since limj→∞ fj(x) = f(x) for all x ∈ X,

|fn(x)− f(x)| = |fn(x)− limj→∞ fj(x)|
(*)
≤ ²

2 < ² for all x ∈ X.
This proves that {fn}∞n=1 converges uniformly on X to f . ¥
Exercise 23.13: Determine which of the sequences {fn}∞n=1 in Examples

23.1 - 23.5 converge uniformly on their domains to their pointwise limits. A good
explanation without all details suffices in most cases; however, give all details
for the sequence in Example 23.2.

Exercise 23.14: For each n ∈ N, deÞne fn : [0,∞)→ R1 by

fn(x) =
x

1+nx2 for all x ∈ [0,∞).
Determine whether the sequence {fn}∞n=1 converges uniformly on [0,∞).
Exercise 23.15: For each n ∈ N, deÞne fn : [0,∞)→ R1 by

fn(x) =
nx

1+n2x2 for all x ∈ [0,∞).
Determine whether the sequence {fn}∞n=1 converges uniformly on [0,∞).
Exercise 23.16: Let X be a set, and let {fn}∞n=1 and {gn}∞n=1 be sequences

of functions from X to R1 that converge uniformly on X to functions f and g,
respectively. Then the sequences {fn + gn}∞n=1 and {fn − gn}∞n=1 converge
uniformly on X to f + g and f − g, respectively.
Does {fn · gn}∞n=1 converge uniformly on X to f · g ?
Exercise 23.17: LetX be a set, and let fn : X → R1 be a bounded function

for each n ∈ N. If the sequence {fn}∞n=1 converges uniformly on X to a function
f , then f is bounded.

Exercise 23.18: This exercise shows that uniform convergence for bounded
functions is really just plain old convergence in a certain metric space.
Let X be a nonempty set, and let B(X) = {f : X → R1 : f is a bounded

function}. For each f, g ∈ B(X), let
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d(f, g) = supx∈X |f(x)− g(x)|.

Prove that d is a distance function for B(X). Then prove that convergence with
respect to d is uniform convergence; that is, if fn ∈ B(X) for all n ∈ N and
f ∈ B(X), then the sequence {fn}∞n=1 converges with respect to d to f if and
only if {fn}∞n=1 converges uniformly on X to f (convergence in metric spaces is
deÞned in section 4 of Chapter XX).
In addition, prove that the metric space (B(X), d) is Cauchy complete (for

which you will use Exercise 23.17).

Exercise 23.19: Let X ⊂ R1 let p ∈ X, and let fn : X → R1 and f :
X → R1 be functions. If the sequence {fn}∞n=1 converges uniformly on X to
f and {xn}∞n=1 is a sequence of points of X such that limn→∞ xn = p, then
limn→∞ fn(xn) = f(p). (See next exercise.)

Exercise 23.20: Show that uniform convergence can not be relaxed to
pointwise convergence in Exercise 23.19 by considering the sequence {fn}∞n=1,
where fn(x) = xn for each n ∈ N and all x ∈ [0, 1].
Exercise 23.21: Let {fn}∞n=1 be a sequence of continuous functions from

the closed and bounded interval [a, b] to R1 such that {fn}∞n=1 converges uni-
formly on [a, b] to a function f . Then, for each ² > 0, there exists δ > 0 such
that

|fn(x)− fn(y)| < ² for all n ∈ N and all x, y ∈ [a, b] such that |x− y| < δ.

(Hint: Make use of Theorem 12.31.)

3. Uniform Convergence and Continuity

In Theorem 23.22, we show that uniform convergence allows us to inter-
change the order in which we take limits. As a consequence, we obtain that the
uniform limit of continuous functions is continuous (Corollary 23.23). We con-
clude by giving a sufficient condition for pointwise convergence to imply uniform
convergence (Theorem 23.24).
Note that in Theorem 23.22 below, the point p is not necessarily a point of

X; this feature of the theorem is important as we will see when we prove our
result about derivatives in section 4.

Theorem 23.22: Let X ⊂ R1, let p ∈ R1 such that p is a limit point of
X (we do not assume that p ∈ X), and let fn : X → R1 and f : X → R1 be
functions. Assume that the sequence {fn}∞n=1 converges uniformly on X to f
and that

limx→p fn(x) = qn for each n ∈ N.

Then the limits limx→p f(x) and limn→∞ qn exist and are equal; in other words,

limx→p limn→∞ fn(x) = limn→∞ limx→p fn(x).
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Proof: Let ² > 0. By Theorem 23.12, there exists N such that

(1) |fi(x)− fj(x)| < ²
3 for all i, j ≥ N and all x ∈ X.

Fix i, j ≥ N . Then, since limx→p fn(x) = qn for each n ∈ N, the deÞnition
of limit gives us a δi > 0 such that

|fi(x)− qi| < ²
3 for all x ∈ X − {p} such that |x− p| < δi

and a δj > 0 such that

|fj(x)− qj | < ²
3 for all x ∈ X − {p} such that |x− p| < δj .

Hence, for all x ∈ X − {p} such that |x− p| < min {δi, δj},
|qi − qj | ≤ |qi − fi(x)|+ |fi(x)− fj(x)|+ |fj(x)− qj | < 2²

3 + |fi(x)− fj(x)|;

Thus, by (1), |qi − qj | < ². Hence, having proved this last inequality whenever
i, j ≥ N , we have proved that the sequence {qn}∞n=1 is a Cauchy sequence.
Therefore, by Theorem 20.12, the sequence {qn}∞n=1 converges, say

(2) limn→∞ qn = q.

We prove that limx→p f(x) = q, which will complete the proof of our theo-
rem. The proof is guided by the following inequality:

(3) |f(x)− q| ≤ |f(x)− fn(x)|+ |fn(x)− qn|+ |qn − q|
for all x ∈ X and n ∈ N.

We proceed as follows. By the uniform convergence of {fn}∞n=1 to f and by
(2), we can choose a single k ∈ N such that

(4) |f(x)− fk(x)| < ²
3 for all x ∈ X, and |qk − q| < ²

3 .

Furthermore, for this choice of k, since limx→p fk(x) = qk, there exists δ > 0
such that

(5) |fk(x)− qk| < ²
3 for all x ∈ X − {p} such that |x− p| < δ.

Then, for all x ∈ X − {p} such that |x− p| < δ, we see from (3), (4) and (5)
that

|f(x)− q| < ².

This proves that limx→p f(x) = q. ¥
Example 23.1 shows that pointwise convergence may not preserve continuity.

On the other hand, uniform convergence does preserve continuity:

Corollary 23.23: The uniform limit of continuous functions is continuous.
In fact, let X ⊂ R1, let p ∈ X, and let fn be a function from X to R1 such that
fn is continuous at p for each n = 1, 2, ...; if {fn}∞n=1 converges uniformly on X
to a function f , then f is continuous at p.
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Proof: The corollary follows immediately from Theorem 23.22 and Corollary
3.13. ¥
We can see from Example 23.5 that a sequence of continuous functions can

converge pointwise to a continuous function and, yet, the convergence may not
be uniform. Thus, under the assumption that f is the pointwise limit of {fn}∞n=1,
the converse of Corollary 23.23 is false. However, with additional conditions,
the converse of Corollary 23.23 is true. We present one such theorem (the
assumptions in the theorem about X are each necessary � see Exercise 23.25).

Theorem 23.24: Let X be a closed and bounded subset of R1. Let {fn}∞n=1

be a sequence of continuous functions fromX to R1 such that {fn}∞n=1 converges
pointwise to a continuous function f on X. If

fn(x) ≥ fn+1(x) for all n ∈ N and x ∈ X,
then {fn}∞n=1 converges uniformly on X to f .
Proof: For each n ∈ N, let gn = fn − f . We prove that {gn}∞n=1 converges

uniformly on X to the zero function g (from which our theorem follows, as we
will see).
Note the following four facts (the Þrst of which is by Corollary 4.4; the other

three follow immediately from the assumptions in our theorem):

(1) gn is continuous on X for each n ∈ N;
(2) gn(x) ≥ 0 for all n ∈ N and x ∈ X;
(3) {gn}∞n=1 converges pointwise on X to the zero function g;

(4) gn(x) ≥ gn+1(x) for all n ∈ N and x ∈ X.
Let ² > 0. For each x ∈ X, there is by (2) and (3) a natural number nx such

that 0 ≤ gnx(x) < ². Thus, since gnx is continuous at x (by (1)), we see from
Exercise 3.14 that there is an open interval Jx such that x ∈ Jx and

0 ≤ gnx(y) < ² for all y ∈ Jx ∩X.
Therefore, by (4), we have that

(5) 0 ≤ gn(y) < ² for all n ≥ nx and all y ∈ Jx ∩X.
We have shown that for each x ∈ X, there are a natural number nx and

an open interval Jx such that x ∈ Jx and such that (5) holds. The collection
C = {Jx : x ∈ X} is then an open cover of X; hence, by Exercise 15.13, C has a
Þnite subcover S, say

S = {Jx1 , Jx2 , ..., Jxk}, k <∞.
In other words,

(6) X ⊂ ∪ki=1Jxi

and (5) holds for each Jxi , which we state explicitly:

(7) 0 ≤ gn(y) < ² for all n ≥ nxi and all y ∈ Jxi ∩X.
Now, let
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N = max {nx1 , nx2 , ..., nxk}.
Fix n ≥ N and x ∈ X. Then, by (6), x ∈ Jxm for some m; thus, since

n ≥ nxm , we have by (7) that 0 ≤ gn(x) < ². This proves that
0 ≤ gn(x) < ² for all n ≥ N and all x ∈ X,

which proves that

(8) {gn}∞n=1 converges uniformly on X to the zero function g.

Finally, note that gn + f = fn for each n ∈ N and g + f = f . Therefore, by
(8) and Exercise 23.16, {fn}∞n=1 converges uniformly on X to f . ¥
Exercise 23.25: Show that Theorem 23.24 fails when X is bounded but

not closed by considering the functions fn : (0, 1]→ R1 deÞned by

fn(x) =
1

nx+1 for each n ∈ N and all x ∈ X.
Also, show that Theorem 23.24 fails when X is closed but not bounded.

Exercise 23.26: Prove that Theorem 23.24 remains true when we replace
the assumption fn(x) ≥ fn+1(x) with the assumption fn(x) ≤ fn+1(x) for all
n ∈ N and x ∈ X (and retain the other assumptions).

4. Uniform Convergence and Differentiability

Although uniform convergence preserves continuity, uniform convergence
does not preserve differentiability; this is shown by Example 23.2. Moreover, a
sequence {fn}∞n=1 of differentiable functions may converge uniformly to a dif-
ferentiable function and, yet, the sequence {f 0n}∞n=1 of derivatives may not even
converge pointwise to any function (see Exercise 23.8).
If we assume that both of the sequences {fn}∞n=1 and {f 0n}∞n=1 converge

uniformly on an interval, then the limit of {f 0n}∞n=1 is the derivative of the limit
of {fn}∞n=1. The following theorem is more general:

Theorem 23.27: Let fn : [a, b] → R1 be differentiable for each n ∈ N
such that for some point p ∈ [a, b], the sequence {fn(p)}∞n=1 converges. If the
sequence {f 0n}∞n=1 of derivatives converges uniformly on [a, b] to a function g,
then {fn}∞n=1 converges uniformly on [a, b] to a function f and f

0 = g, thus

f 0(x) = limn→∞ f 0n(x) for all x ∈ [a, b].
Proof: Let ² > 0. Since {fn(p)}∞n=1 converges, {fn(p)}∞n=1 is a Cauchy

sequence (by Exercise 20.9); hence, there exists N1 such that

(1) |fi(p)− fj(p)| < ²
2 for all i, j ≥ N1.

Since {f 0n}∞n=1 converges uniformly on [a, b], Theorem 23.12 shows there
exists N2 such that

(2)
¯̄
f 0i(x)− f 0j(x)

¯̄
< ²

2(b−a) for all i, j ≥ N2 and all x ∈ [a, b].
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Fix i, j ∈ N such that i, j ≥ N2, and Þx y, z ∈ [a, b] such that y 6= z.
Note that fi − fj is differentiable (by Theorem 7.3) and, hence, continuous (by
Theorem 6.14); therefore, by the Mean Value Theorem (Theorem 10.2), there
is a point c such that

fi(z)−fj(z)−(fi(y)−fj(y))
z−y = (fi − fj)0(c) 7.3= f 0i(c)− f 0j(c).

Hence,

|fi(z)− fj(z)− fi(y) + fj(y)| =
¯̄
f 0i(c)− f 0j(c)

¯̄ |z − y|.
Thus, by (2), we have proved the following:

(3) |fi(z)− fj(z)− fi(y) + fj(y)| < ²
2(b−a) |z − y| for

all i, j ≥ N2 and all y, z ∈ [a, b] such that y 6= z;
Since ²

2(b−a) |z − y| ≤ ²
2 for all y, z ∈ [a, b], we have by (3) that

(4) |fi(z)− fj(z)− fi(y) + fj(y)| < ²
2

for all i, j ≥ N2 and all y, z ∈ [a, b].
Next, let

N = max {N1, N2}.
Note from the Triangle Inequality that for any i, j ∈ N and x ∈ [a, b],

|fi(x)− fj(x)| ≤ |fi(x)− fj(x)− fi(p) + fj(p)|+ |fi(p)− fj(p)|;
hence, by (1) and (4),

|fi(x)− fj(x)| < ² for all i, j ≥ N and all x ∈ [a, b].
Therefore, by Theorem 23.12, we have proved that

(5) {fn}∞n=1 converges uniformly on [a, b] to a function f .

This proves the Þrst part of our theorem.
It remains to prove that f 0 = g, where g is as in our theorem.
Fix a point q ∈ [a, b]. Let X = [a, b]− {q}. DeÞne functions ϕn,ϕ : X → R1

as follows:

ϕn(x) =
fn(x)−fn(q)

x−q for each n ∈ N, ϕ(x) = f(x)−f(q)
x−q .

By (5), {fn}∞n=1 converges pointwise on [a, b] to f ; Hence, it follows using
Theorems 19.3 and 19.4 that

(6) {ϕn}∞n=1 converges pointwise on X to ϕ|X.
Note from Exercise 6.10 that

(7) limx→q ϕn(x) = f 0n(q) for each n ∈ N.

We prove that the convergence in (6) is actually uniform. For all i, j ∈ N
and all x ∈ X,
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¯̄
ϕi(x)− ϕj(x)

¯̄
=
¯̄̄
fi(x)−fi(q)

x−q − fj(x)−fj(q)
x−q

¯̄̄
= |fi(x)−fj(x)−fi(q)+fj(q)|

|x−q| ;

hence, by (3),¯̄
ϕi(x)− ϕj(x)

¯̄
< ²

2(b−a) for all i, j ≥ N and all x ∈ X.

Thus, by Theorem 23.12,

(8) {ϕn}∞n=1 converges uniformly on X to ϕ|X.
With Theorem 23.22 in mind, we note the following: q is a limit point of X;

{ϕn}∞n=1 converges uniformly on X to ϕ|X by (8); and, by (7),

limx→q ϕn(x) = f 0n(q) for each n ∈ N.

Hence, by Theorem 23.22, the limits limx→q ϕ(x) and limn→∞ f 0n(q) exist and

limx→q ϕ(x) = limn→∞ f 0n(q);

furthermore, by the deÞnition of ϕ and Exercise 6.10,

limx→q ϕ(x) = f 0(q).

Therefore, f is differentiable at q and f 0(q) = limn→∞ f 0n(q) = g(q) (by the
deÞnition of g in our theorem). ¥
Exercise 23.28: Let C1([a, b]) = {f : [a, b]→ R1 : the Þrst derivative of f

exists and is continuous on [a, b]}. For each f, g ∈ C1([a, b]), let (see Example
20.19 (3))

d(f, g) = supx∈[a,b] (|f(x)− g(x)|+ |f 0(x)− g0(x)|)

Then d is a distance function for C1([a, b]) and the metric space (C1([a, b]), d)
is Cauchy complete.

5. Uniform Convergence and Integrability

We know from Example 23.4 and Example 23.5 that integrals do not behave
well with respect to pointwise limits. We show that uniform convergence pre-
serves integrability and that the integral of the uniform limit is the limit of the
integrals.

Theorem 23.29: Let {fn}∞n=1 be a sequence of functions that are integrable
over [a, b]. If {fn}∞n=1 converges uniformly on [a, b] to a function f , then f is
integrable over [a, b] and R b

a f = limn→∞
R b
a fn.
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Proof: We use the notation UP , LP , Mi(f), mi(f) and ∆xi, which we
introduced at the beginning of section 2 of Chapter XII.
We Þrst prove that f is integrable over [a, b]. Let ² > 0. Then, by the

deÞnition of uniform convergence, there is a natural number k such that

(1) |fk(x)− f(x)| < ²
3(b−a) for all x ∈ [a, b].

Since fk is integrable over [a, b], we have by Theorem 12.15 that there is a
partition P = {x0, x1, ..., xm} of [a, b] such that

(2) UP (fk)− LP (fk) < ²
3 .

By (1), f(x) < fk(x) + ²
3(b−a) for all x ∈ [a, b]; hence, considering ²

3(b−a) as
the function on [a, b] that is constantly ²

3(b−a) , we have that

(3) UP (f) ≤ UP (fk + ²
3(b−a))

13.2≤ UP (fk) + UP (
²

3(b−a)) = UP (fk) +
²
3 .

By (1), f(x) > fk(x)− ²
3(b−a) for all x ∈ [a, b]; hence, as in the proof of (3),

we have that

(4) LP (f) ≥ LP (fk − ²
3(b−a))

13.2≥ LP (fk) + LP (
−²

3(b−a)) = LP (fk)− ²
3 .

Now, by (3) and (4), UP (f)−LP (f) ≤ UP (fk)−LP (fk)+ 2²
3 ; hence, by (2),

UP (f)− LP (f) < ².

Therefore, by Theorem 12.15, we have proved that f is integrable over [a, b].

Finally, we prove that
R b
a
f = limn→∞

R b
a
fn. Let ² > 0. Then, by the

deÞnition of uniform convergence, there is a natural number N such that

(5) |fn(x)− f(x)| < ²
b−a for all n ≥ N and all x ∈ [a, b].

Let n ≥ N ; then, since f and fn are integrable over [a, b],

¯̄̄R b
a f −

R b
a fn

¯̄̄
13.12
=

¯̄̄R b
a (f − fn)

¯̄̄ 13.17≤ R b
a |f − fn|

(5), 13.14
≤ R b

a
²
b−a

12.13
= ².

Therefore, we have proved that limn→∞
R b
a fn =

R b
a f . ¥

Exercise 23.30: For each n ∈ N, deÞne fn : [0, 1]→ R1 by

fn(x) =

(
n− n2x , if 0 ≤ x < 1

n

0 , if 1
n ≤ x ≤ 1.

Find the pointwise limit f of {fn}∞n=1, and show that
R 1

0
f 6= limn→∞

R b
a
fn.

(This example is simpler than Example 23.5, but it is not as strong as Example
23.5 since the function f here is not continuous.)
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Exercise 23.31: Use Theorem 23.29 to prove the following weaker (but
useful) version of Theorem 23.27: Assume that the sequence {fn}∞n=1 converges
pointwise on [a, b] to f , that the sequence {f 0n}∞n=1 of derivatives converges uni-
formly on [a, b] to g, and that f 0n is continuous for each n. Then f is differentiable
and f 0 = g.
(Hint: Use the Fundamental Theorem of Calculus (Theorem 14.2).)

Exercise 23.32: Use Exercise 23.17 and Theorem 15.33 to give another
proof that the uniform limit of integrable functions on [a, b] is integrable over
[a, b] (the Þrst conclusion of Theorem 23.29).

Exercise 23.33: Give an example to show that Theorem 23.29 does not
extend to integrals over unbounded intervals (as deÞned above Exercise 21.30);
more precisely, give an example of a sequence {fn}∞n=1 of functions deÞned
on [1,∞) such that {fn}∞n=1 converges uniformly on [1,∞) to a function f ,R∞

1 fn <∞ for each n ∈ N,
R∞

1 f <∞ and, yet,R∞
1
f 6= limn→∞

R∞
1
fn.

Exercise 23.34: Let X = {f : [0, 1] → R1 : f is continuous} with the
distance function d given by

d(f, g) =
R 1

0
|f − g| for all f, g ∈ X

(see Exercise 20.23). True or False: If the sequence {fn}∞n=1 of continuous
functions converges on [0, 1] with respect to d to a continuous function f , then
{fn}∞n=1 converges pointwise on [0, 1] to f . (Convergence with respect to a
metric is the second deÞnition below Exercise 20.20.)
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Chapter XXIV: Power Series

In section 1 of Chapter XV we deÞned a numerical series to be its sequence
of partial sums. We now deÞne a series Σ∞i=1fi of functions fi : X → R1 to be
the sequence {Σni=1fi}∞n=1 of its partial sums.
Thus, our study of numerical series and of sequences of functions in the

previous three chapters sets the stage for examining series of functions.
In section 1 we present three general results for series of functions that follow

directly from previous results about sequences of functions. Throughout the rest
of the chapter we focus on power series. Proofs of most of our results on power
series use one or another of the theorems in section 1 or use consequences of the
theorems in section 1.
A power series is a series that can be written in the form a0+Σ

∞
i=1ai(x−c)i.

It is convenient and customary to write the general form for a power series as
Σ∞i=0ai(x− c)i, where we understand that the Þrst term a0(x− c)0 is a0 when
x = c (i.e., 00 = 1 here, Chapter XVIII notwithstanding!). Note that if n ≥ 0
and ki ≥ 0 are integers and ki < ki+1 for each i, then the series Σ∞i=nai(x− c)ki
is a power series (since it can be written in the required form by using zeros for
missing terms).
We show that power series always converge on an interval (section 2). We

then study properties of power series on their intevals of convergence � uniform
convergence and continuity (section 3), differentiation and integration (section
4).
We continue our study of power series in the next chapter, where we inves-

tigate the Taylor series for a function.

1. General Results for Series of Functions

We know from sections 1 and 2 of Chapter XXIII what it means for a se-
quence of functions to converge pointwise or uniformly; thus, we know what it
means for a series Σ∞i=1fi of functions converges pointwise or uniformly. Nev-
ertheless, we state the deÞnition for completeness and to emphasize what the
limit (or sum) of a convergent series of functions is understood to be.

DeÞnition: Let X be a set, and let fi : X → R1 be a function for each
i ∈ N. We say that the series Σ∞i=1fi converges pointwise (uniformly) on X
provided that the sequence {Σni=1fi}∞n=1 of partial sums converges pointwise
(uniformly, respectively) on X to the function f given by f(x) = Σ∞i=1fi(x) for
each x ∈ X. We call f the limit or sum of the series Σ∞i=1fi.

We prove three fundamental theorems about the sum of a series of functions.
The Þrst theorem concerns continuity of the sum, the second theorem concerns
differentiability of the sum, and the third theorem concerns integrability of the
sum. We apply the theorems to power series in sections 3 and 4.
Our Þrst theorem is due to Karl Weierstrass (1815 - 1897):

266



Theorem 24.1 (Weierstrass M Test): Let X be a set, and let Σ∞i=1fi be
a series of functions fi : X → R1 such that for each i, |fi(x)| ≤Mi for all x ∈ X.
If Σ∞i=1Mi < ∞, then the series Σ∞i=1fi converges uniformly on X. Hence, if
each fi is continuous on X, then Σ∞i=1fi is continuous on X.

Proof: Let {sn}∞n=1 be the sequence of partial sums of the series Σ
∞
i=1fi.

Let ² > 0. Then, since Σ∞i=1Mi < ∞, we have by Exercise 21.6 that there
exists N such that

Σni=mMi < ² for all n ≥ m ≥ N .

Thus, for all n ≥ m ≥ N and all x ∈ X, we have (assuming m > 1)

|sn(x)− sm−1(x)| = |Σni=mfi(x)| ≤ Σni=m |fi(x)| ≤ Σni=mMi < ².

Hence, by applying Theorem 23.12 to the sequence {sn}∞n=1, we obtain that
{sn}∞n=1 converges uniformly on X. This proves that the series Σ

∞
i=1fi converges

uniformly on X (recall deÞnition at the beginning of the section).
To prove the last part of our theorem, assume that each fi is continuous

on X. Then, by Corollary 4.6, each partial sum sn = Σ
n
i=1fi is continuous on

X. Also, as we already proved, {sn}∞n=1 converges uniformly on X to Σ∞i=1fi.
Therefore, Σ∞i=1fi is continuous on X by Corollary 23.23. ¥
Our next theorem says that under certain conditions, we can Þnd the deriva-

tive of the sum of a series of differentiable functions by differentiating the series
term by term (just as we do to Þnd the derivative of a polynomial).

Theorem 24.2: Let Σ∞i=1fi be a series of differentiable functions fi : [a, b]→
R1 such that the series Σ∞i=1fi(p) converges for some point p ∈ [a, b]. If the series
Σ∞i=1f

0
i converges uniformly on [a, b], then the series Σ

∞
i=1fi converges uniformly

on [a, b] and

(Σ∞i=1fi)
0 = Σ∞i=1f

0
i .

Proof: For each n ∈ N, let sn = Σni=1fi. By assumption, the sequence
{sn(p)}∞n=1 converges; also, since

s0n
7.2
= Σni=1f

0
i for each n ∈ N,

the sequence {s0n}∞n=1 converges uniformly on [a, b] to the function Σ
∞
i=1f

0
i .

Therefore, by Theorem 23.27, the sequence {sn}∞n=1 converges uniformly on
[a, b] to the function Σ∞i=1fi and

(Σ∞i=1fi)
0 = Σ∞i=1f

0
i . ¥

Finally, we prove a theorem concerning when we can integrate the sum of a
series of integrable functions term by term.
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Theorem 24.3: Let Σ∞i=1fi be a series of functions fi : [a, b]→ R1 such that
fi is integrable over [a, b] for each i. If the series Σ∞i=1fi converges uniformly on
[a, b], then Σ∞i=1fi is integrable over [a, b] andR b

a Σ
∞
i=1fi = Σ

∞
i=1

R b
a fi.

Proof: For each n ∈ N, let sn = Σni=1fi. By assumption, the sequence
{sn}∞n=1 converges uniformly on [a, b] to the function Σ

∞
i=1fi. Therefore, by

Theorem 23.29, the function Σ∞i=1fi is integrable over [a, b] andR b
a Σ

∞
i=1fi

23.29
= limn→∞

R b
a sn = limn→∞

R b
a Σ

n
i=1fi

13.4
= limn→∞Σni=1

R b
a
fi = Σ

∞
i=1

R b
a
fi. ¥

Exercise 24.4: If X is a set and a series Σ∞i=1fi of functions converges
uniformly on X, then the sequence {fi}∞i=1 converges uniformly on X to the
zero function.

Exercise 24.5: The series Σ∞i=1
sin(ix)

2i converges uniformly on R1.

Exercise 24.6: The series Σ∞i=1
(−1)i

i+x2 converges uniformly on R1.
(Hint: Use Exercise 21.13.)

Exercise 24.7: Consider a �double sequence� {ai,j}∞i,j=1. If

Σ∞j=1 |ai,j | = bi <∞ for each i and Σ∞i=1bi <∞,
then the order of summations over i and j separately can be interchanged; that
is,

Σ∞i=1Σ
∞
j=1ai,j = Σ

∞
j=1Σ

∞
i=1ai,j .

(Hint: Let X = { 1
n : n ∈ N} ∪ {0}. For each i ∈ N, deÞne fi : X → R1 by

fi(
1
n) = Σ

n
j=1ai,j and fi(0) = Σ

∞
j=1ai,j (why is fi(0) < ∞ ?). Let gn = Σni=1fi

and let g = Σ∞i=1fi. Proceed as indicated in the four steps below:

1. Use Theorem 24.1 to show that g is continuous at 0, hence limn→∞ g( 1
n) =

Σ∞i=1Σ
∞
j=1ai,j .

2. limk→∞ gn( 1
k ) = limk→∞Σ

n
i=1Σ

k
j=1ai,j = limk→∞Σkj=1Σ

n
i=1ai,j .

3. Explain why Theorem 23.22 can be applied to show Σ∞i=1Σ
∞
j=1ai,j =

limn→∞Σ∞j=1Σ
n
i=1ai,j .

4. Complete the proof.)

2. The Interval of Convergence of Power Series

The deÞnition of a power series is in the introduction to this chapter.
It is somewhat surprising that the set of points at which a power series

converges is always an interval. We prove this in Theorem 24.10, which shows
that a power series is actually absolutely convergent at each point of the interval
except possibly at the end points. Then we give examples that illustrate all
possible intervals that can be the set of points at which a power series converges.
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You should keep in mind throughout our discussion of power series that
absolute convergence implies convergence (by Theorem 22.1).
We use upper limits of sequences, which we discussed at the beginning of

section 2 of Chapter XXII.

Lemma 24.8: If {si}∞i=1 is a sequence of nonnegative numbers and b > 0,
then

limi→∞bsi = b limi→∞si

where, if limi→∞si =∞, we interpret b∞ to be ∞.
Proof: Assume Þrst that limi→∞si = ∞. Then, by Exercise 22.6, there

is a subsequence {sij}∞j=1 such that limj→∞ sij = ∞. Thus, since b > 0,
limj→∞ bsij =∞. Hence, limi→∞bsi =∞. Therefore, limi→∞bsi = b limi→∞si.
This proves our lemma when limi→∞si =∞.
Therefore, we assume from now on that

(1) limi→∞si <∞.
Let

A = {x ∈ R1 : some subsequence of {si}∞i=1 converges to x}

and let

B = {x ∈ R1 : some subsequence of {bsi}∞i=1 converges to x}.

By the deÞnition of upper limit, we have that

(2) limi→∞si = supA and limi→∞bsi = supB.

Since b 6= 0, we see from Theorem 19.4 that x ∈ A if and only if bx ∈ B. In
other words,

(3) bA = B, where bA = {bx : x ∈ A}.
By (1) and Exercise 22.6,

¡
limi→∞si

¢ ∈ A. Thus, A is nonempty and, since
si ≥ 0 for all i, A is also bounded. Therefore, since b > 0, we can apply Lemma
13.7 to obtain that

(4) sup bA = b supA.

Finally,

limi→∞bsi
(2)
= supB

(2)
= sup bA

(4)
= b supA

(2)
= b limi→∞si. ¥

Exercise 24.9: Prove that Lemma 24.8 remains true for any sequence
{si}∞i=1. Is it necessary to assume in Lemma 24.8 that b > 0 ?

We now prove our main theorem.
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Theorem 24.10: Let Σ∞i=0ai(x− c)i be a power series, and let

σ = limi→∞ i
p|ai|.

(1) If 0 < σ < ∞, then Σ∞i=0ai(x − c)i is absolutely convergent (hence,
convergent) at all x such that |x− c| < 1

σ , and Σ
∞
i=0ai(x− c)i diverges at all x

such that |x− c| > 1
σ .

(2) If σ = 0, then Σ∞i=0ai(x−c)i is absolutely convergent (hence, convergent)
at all real numbers x.

(3) If σ =∞, then Σ∞i=0ai(x− c)i diverges at all real numbers x 6= c.
Proof: We will use the Root Test (Theorem 22.17). For this purpose, note

that

limi→∞ i
p|ai(x− c)i| = limi→∞( ip|ai| |x− c|) 24.8= σ |x− c|

(σ |x− c| =∞ when σ =∞ by the convention adopted in Lemma 24.8). There-
fore, by the Root Test, Σ∞i=0ai(x−c)i is absolutely convergent at all x such that
σ |x− c| < 1 and Σ∞i=0ai(x − c)i diverges at all x such that σ |x− c| > 1. Our
theorem now follows easily. ¥
Theorem 24.10 shows that the set of all the points x at whch a power series

Σ∞i=0ai(x− c)i converges is an interval centered at c. This leads to the following
terminology:

DeÞnition: Let Σ∞i=0ai(x− c)i be a power series.
� The interval of convergence of Σ∞i=0ai(x−c)i is the set of all real numbers
x for which Σ∞i=0ai(x− c)i converges.

� The radius of convergence of Σ∞i=0ai(x − c)i is the radius of the interval
of convergence of Σ∞i=0ai(x − c)i (as measured from the center c of the
interval of convergence). We will see in forthcoming examples that the
radius of convergence may be 0, any positive number, or ∞.

� The interior of the interval I of convergence of Σ∞i=0ai(x − c)i, denoted
by int(I), is the interval of convergence without its end points (more
generally, the interior of a subset X of R1 is the largest open set contained
in X). Thus, if r is the radius of convergence of Σ∞i=0ai(x− c)i, then the
interior of the interval of convergence of Σ∞i=0ai(x − c)i is (c − r, c + r)
when 0 < r <∞, R1 when r =∞, and ∅ when r = 0.

Let Σ∞i=0ai(x − c)i be a given power series for which we have found that
σ in Theorem 24.10 satisÞes the condition in part (1). Then we know that
(c − 1

σ , c +
1
σ ) is the interior of the interval I of convergence; however, we can

not conclude that I = (c − 1
σ , c +

1
σ ). The reason is that Theorem 24.10 says

nothing about the convergence of the series at the end points c± 1
σ . In fact, the

series may or may not converge at one or another of the end points c± 1
σ ; thus,
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we must be careful to check the end points in order to Þnd the entire interval
of convergence (see examples below).
We remark that the deÞnition of the interval of convergence of a power series

is not speciÞcally tied in a computational way to Theorem 24.10; indeed, it is
sometimes preferable to Þnd the interval of convergence using the Ratio Test
(see Example 24.17) or other methods.
The statement of Theorem 24.10 is somewhat technical. It will be convenient

to have the following less speciÞc formulation of parts (1) and (2) of the theorem:

Corollary 24.11: Let Σ∞i=0ai(x − c)i be a power series with interval of
convergence I and radius of convergence r, where 0 < r ≤ ∞. Then the series
Σ∞i=0ai(x − c)i is absolutely convergent at all x such that |x− c| < r and, if
r <∞, the series Σ∞i=0ai(x− c)i diverges when |x− c| > r.

Examples of Intervals of Convergence

The six examples that follow illustrate all the types of intervals of conver-
gence that a power series can have. Regarding the types of intervals not in the
examples, see the comment following Example 24.17; also, see Exercise 24.18.

Example 24.12: We give an example of a power series whose interval of
convergence is a bounded open interval.
Consider the power series Σ∞i=1x

i. By Theorem 24.10 (note that σ = 1
here), Σ∞i=1x

i is absolutely convergent when |x| < 1 and diverges when |x| > 1.
Clearly, Σ∞i=1x

i also diverges when x = ±1. Hence, the interval of convergence
of Σ∞i=0x

i is the open interval (−1, 1), and the radius of convergence is 1. We
note that what we have shown also follows from Theorem 15.4. In fact, Theorem
15.4 shows that the series Σ∞i=1x

i represents the function f given by f(x) = x
1−x

on the interval (−1, 1); thus, it is interesting to observe that even though f is
naturally deÞned at x = −1, the series Σ∞i=1x

i does not represent f on [−1, 1).
Our next two examples involve the two types of bounded half - open intervals.

Example 24.13: We give an example of a power series whose interval of
convergence is of the form [a, b).
Consider the power series Σ∞i=1

1
i (x− 1)i. By Example 19.8, limi→∞ i

1
i = 1;

hence, by Theorem 19.5, limi→∞ i

q
1
i = 1. Thus, by Exercise 22.4,

limi→∞ i

q
1
i = 1.

Therefore, by Theorem 24.10, Σ∞i=1
1
i (x − 1)i is absolutely convergent when|x− 1| < 1 and diverges when |x− 1| > 1. Hence, to determine the interval

of convergence, we have to see what happens at the points x = 0 and x = 2.
When x = 0, our series becomes the alternating harmonic series Σ∞i=1(−1)i 1

i ,
which converges (by Theorem 21.10); on the other hand, when x = 2, our se-
ries becomes the harmonic series Σ∞i=1

1
i , which diverges (by Example 21.29).

Therefore, the interval of convergence of Σ∞i=1
1
i (x−1)i is the half - open interval

[0, 2).

271



Example 24.14: We give an example of a power series whose interval of
convergence is of the form (a, b].
This example is easily done by changing the series in example 24.13 to the

series Σ∞i=1
(−1)i

i (x− 1)i. Then, as in the previous example, the series converges
on (0, 2), but the convergence - divergence behavior at the end points is opposite
to that in the preceding example. Therefore, the interval of convergence is (0, 2].

Example 24.15: We give an example of a power series whose interval of
convergence is a bounded closed interval with different end points.
Consider the series Σ∞i=1

1
i2x

i. By Example 19.8, limi→∞ i
1
i = 1; hence, by

Theorem 19.4, limi→∞ i
2
i = 1. Thus,

limi→∞ i

q
1
i2 = limi→∞

1

i
2
i

19.5
= 1;

therefore, by Exercise 22.4,

limi→∞ i

q
1
i2 = 1.

Hence, by Theorem 24.10, Σ∞i=1
1
i2x

i is absolutely convergent when |x| < 1 and
diverges when |x| > 1. Furthermore, the series Σ∞i=1

1
i2x

i is absolutely convergent
when x = ±1 since the series Σ∞i=1

1
i2 converges by Example 21.29 and, hence,

the series Σ∞i=1

¯̄
1
i2 (−1)i

¯̄
converges. Therefore, the interval of convergence of

Σ∞i=1
1
i2x

i is the closed interval [−1, 1]. Unlike the previous two examples, the
interval of convergence for this example is the same as the interval on which the
series is absolutely convergent.

Example 24.16: We give an example of a power series whose interval of
convergence is a single point (i.e., the closed interval [c, c]).
The series Σ∞i=1i

ixi only converges when x = 0 by part (3) of Theorem 24.10
since limi→∞

i
√
ii = limi→∞i = ∞. Therefore, the interval of convergence of

Σ∞i=1i
ixi is the closed interval [0, 0] and the radius of convergence is 0.

Example 24.17: We give an example of a power series whose interval of
convergence is (−∞,∞).
Of course, there is the trivial example, namely, Σ∞i=00x

i. But, let us give a
more meaningful and important example:
Consider the series Σ∞i=0

1
i!x

i. In order to apply Theorem 24.10, we would

need to compute limi→∞ i

q
1
i! . It is much easier to use the Ratio Test (Theorem

22.10): For any given x,

limi→∞

¯̄̄̄
xi+1

(i+1)!

xi

i!

¯̄̄̄
= limi→∞

¯̄̄
x
i+1

¯̄̄
= 0;

hence, by part (1) of the Ratio Test, the series Σ∞i=0
1
i!x

i is absolutely convergent
at any given x. Therefore, the interval of convergence of Σ∞i=0

1
i!x

i is (−∞,∞)
and the radius of convergence is∞. (You may suspect from Theorem 21.42 that
Σ∞i=0

1
i!x

i = ex for all x ∈ R1; this is true, as we show in Example 24.37).
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The only types of intervals we have not considered in the examples above
are intervals of the forms (a,∞), (−∞, a), [a,∞) and (−∞, a]. None of these
types of intervals can be intervals of convergence by Theorem 24.10. Also, note
the following exercise:

Exercise 24.18: Our purpose in Examples 24.12 - 24.16 was to illustrate
all types of bounded intervals of convergence that a power series can have. In
the examples, the Þve types of bounded intervals had speciÞc end points. Show
that the speciÞc nature of the end points did not matter; that is, for each of the
Þve types of bounded intervals with arbitrary end points a and b, construct a
power series whose interval of convergence is that interval.

Exercise 24.19: Find the interval I of convergence of the power series
Σ∞i=1

(−1)i

3√i x
i.

Exercise 24.20: Find the interval I of convergence of the power series
Σ∞i=1

1+(−1)i

3(i!) xi.

Exercise 24.21: Find the interval I of convergence of the power series
Σ∞i=1

√
i(5x+ 2)i.

3. Uniform Convergence of Power Series

A power series may not converge uniformly on the entire interior of its inter-
val of convergence; examples illustrating this are in Exercises 24.24 and 24.25.
However, we prove that a power series converges uniformly on any closed and
bounded interval in the interior of its interval of convergence (Theorem 24.22).
This theorem is of central importance to our development of the calculus of
power series in the next section.
Even though uniform convergence may not be present, we prove that a power

series is always continuous on its entire interval of convergence (Corollary 24.30).
This result is a consequence of Abel�s Theorem on uniform convergence (Theo-
rem 24.29).
We conclude with an application of the continuity of power series to Cauchy

products of numerical series (Exercise 24.33); we brießy discussed the applica-
tion at the end of section 6 of Chapter XXII.

Theorem 24.22: Let Σ∞i=0ai(x − c)i be a power series with interval of
convergence I. Then, for any α > 0 such that [c− α, c+ α] ⊂ int(I), the series
Σ∞i=0ai(x− c)i converges uniformly on [c− α, c+ α].
Proof: Let r ≤ ∞ denote the radius of convergence of Σ∞i=0ai(x − c)i. Let

J = [c−α, c+α] and let p = c+α. We make two observations in order to apply
the Weierstrass M Test (Theorem 24.1), which will prove our theorem.
First, since |p− c| = α < r, Σ∞i=0

¯̄
ai(p− c)i

¯̄
converges by Corollary 24.11;

thus, since p− c = α,
Σ∞i=0

¯̄
aiα

i
¯̄
<∞.
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Second, for all x ∈ J and all i,¯̄
ai(x− c)i

¯̄
= |ai| |x− c|i ≤ |ai|αi =

¯̄
aiα

i
¯̄
.

Therefore, we can now apply Theorem 24.1 to see that Σ∞i=0ai(x− c)i con-
verges uniformly on J . ¥
We note the following corollary (which is a special case of our main result

about continuity in Corollary 24.30).

Corollary 24.23: Assume that Σ∞i=0ai(x−c)i is a power series with interval
of convergence I. DeÞne f : I → R1 by

f(x) = Σ∞i=0ai(x− c)i for all x ∈ I.

Then f is continuous on int(I).

Proof: Let p ∈ int(I). Then there is a closed interval [c− α, c+ α] ⊂ int(I)
such that p ∈ (c− α, c+ α). Therefore, f is continuous at p by Theorem 24.22
and by Corollary 23.23 applied to the partial sums Σni=0ai(x − c)i (which are
continuous by Theorem 4.16). ¥
In the next section we strengthen Corollary 24.23 by proving that the func-

tion f is differentiable on int(I) (Theorem 24.35).
The following three exercises below illustrate the necessity of considering

closed and bounded subintervals of int(I) in Theorem 24.22.

Exercise 24.24: We know from Example 24.13 that the interval of conver-
gence of Σ∞i=1

1
i (x−1)i is the half - open interval [0, 2). Thus, by Theorem 24.22,

the series Σ∞i=1
1
i (x− 1)i is converges uniformly on any closed interval [², 2− ²],

² > 0. However, prove that the series Σ∞i=1
1
i (x−1)i does not converge uniformly

on [0, 2). (Compare with Exercise 24.27.)

Exercise 24.25: The interval of convergence of the power series Σ∞i=0
1
i!x

i is
R1 by Example 24.17. Prove that Σ∞i=0

1
i!x

i does not converge uniformly on R1.
(Hint: Find a lower bound for Σ∞i=0

1
i!x

i − Σni=0
1
i!x

i in terms of n and x for
all x > 0.)

Exercise 24.26: The interval of convergence of the power series Σ∞i=1x
i is

the open interval (−1, 1) by Theorem 15.4. Prove that Σ∞i=1x
i does not converge

uniformly on (−1, 1).
(Hint: From the proof of Theorem 15.4, Σni=1x

i = x−xn+1

1−x when−1 < x < 1.)
The power series in Exercise 24.24 is conditionally convergent at the end

point of its interval I of convergence and not uniformly convergent on I. In
contrast, the following exercise shows that absolute convergence at an end point
implies uniform convergence on the entire interval of convergence.

Exercise 24.27: Let Σ∞i=0ai(x − c)i be a power series whose interval of
convergence I includes an end point η. If Σ∞i=0ai(η−c)i is absolutely convergent,
then Σ∞i=0ai(x− c)i is uniformly convergent on I.
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Exercise 24.28: Assume that the power series Σ∞i=0ai(x− c)i converges on
the open interval I = (c − α, c+ α), where α > 0, and that ai 6= 0 for at least
one i. Then there exists ² > 0 such that Σ∞i=0ai(x− c)i 6= 0 for all x 6= c such
that |x− c| < ². (An interesting application is in Exercise 25.28.)

Abel�s Theorem

We know from Corollary 24.23 that a power series is continuous on the
interior of its interval of convergence. We show that a power series is continuous
on its interval of convergence even when the interval of convergence includes an
end point (Corollary 24.30). The following theorem, due to Niels Abel (1802 -
1829), shows even more:

Theorem 24.29 (Abel�s Theorem): Let Σ∞i=0ai(x− c)i be a power series
with interval of convergence I and radius of convergence r < ∞. If c + r ∈ I
(i.e., Σ∞i=0air

i converges), then Σ∞i=0ai(x−c)i converges uniformly on [c, c+r]; if
c− r ∈ I (i.e., Σ∞i=0ai(−r)i converges), then Σ∞i=0ai(x− c)i converges uniformly
on [c− r, c].
Proof: We only prove the Þrst part of the theorem (the proof of the second

part is similar).
Assume that c+ r ∈ I; that is, Σ∞i=0air

i converges. Let

Aj = Σ∞i=jair
i for all j,

and note from Exercise 21.1 that Aj <∞ and that Aj −Aj+1 = ajr
j for all j.

Thus, since we can assume that r > 0, we have that

(1) aj =
Aj−Aj+1

rj for all j.

Now, let ² > 0. Then, since Σ∞i=0air
i converges, there exists N such that

(by Exercise 21.2)

(2) |Aj | =
¯̄
Σ∞i=jair

i
¯̄
< ²

2 for all j ≥ N .
Fix x such that c ≤ x < c+ r and Þx n ≥ N . Then

Σ∞i=nai(x− c)i
(1)
= Σ∞i=n

Ai−Ai+1

ri (x− c)i

= Σ∞i=n
³
Ai
ri (x− c)i − Ai+1

ri (x− c)i
´

= An
rn (x− c)n +Σ∞i=n

³
−Ai+1

ri (x− c)i + Ai+1

ri+1 (x− c)i+1
´

= An
rn (x− c)n +Σ∞i=n Ai+1

ri+1 [−r(x− c)i + (x− c)i+1]

= An
rn (x− c)n + (x− c)nΣ∞i=nAi+1

ri+1 [−r(x− c)i−n + (x− c)i−n+1]

= An
rn (x− c)n + (x− c)nΣ∞i=nAi+1

ri+1 (x− c)i−n[−r + (x− c)]
= An

rn (x− c)n + (x− c)n[−r + (x− c)]Σ∞i=n Ai+1

ri+1 (x− c)i−n.
Thus, since x− c ≥ 0 and −r + (x− c) < 0 and since r > 0,
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¯̄
Σ∞i=nai(x− c)i

¯̄
≤ |An|

rn (x− c)n + (x− c)n[r − (x− c)]Σ∞i=n |Ai+1| (x−c)i−n
ri+1 .

Hence, by (2),¯̄
Σ∞i=nai(x− c)i

¯̄
< ²

2rn (x− c)n + (x− c)n[r − (x− c)] ²2Σ∞i=n (x−c)i−n
ri+1 .

Thus, since (x−c)i−n
ri+1 =

¡
x−c
r

¢i−n 1
rn+1 ,¯̄

Σ∞i=nai(x− c)i
¯̄
< ²

2rn (x− c)n + (x− c)n[r − (x− c)] ²
2rn+1Σ

∞
i=n

¡
x−c
r

¢i−n
;

also, since 0 ≤ x−c
r < 1,

Σ∞i=n
¡
x−c
r

¢i−n 15.4
= 1 +

x−c
r

1−x−c
r

= r
r−(x−c) .

Hence, ¯̄
Σ∞i=nai(x− c)i

¯̄
< ²

2rn (x− c)n + (x− c)n[r − (x− c)] ²
2rn+1

r
r−(x−c)

= ²
2rn (x− c)n + (x− c)n ²

2rn =
²
rn (x− c)n = ²

¡
x−c
r

¢n
.

Thus, since 0 ≤ x−c
r < 1, ¯̄

Σ∞i=nai(x− c)i
¯̄
< ².

We have proved that for any ² > 0, there exists N (depending only on the
fact that Σ∞i=0air

i converges) such that

(3)
¯̄
Σ∞i=nai(x− c)i

¯̄
< ² for all n ≥ N and all x ∈ [c, c+ r).

The inequality in (3) also holds when x = c+r by (2) with j = n. Therefore,
we have proved that Σ∞i=0ai(x− c)i converges uniformly on [c, c+ r]. ¥
Corollary 24.30: Every power series is continuous on its entire interval of

convergence.

Proof: Let I denote the interval of convergence of a power series Σ∞i=0ai(x−
c)i. The case when I is an open interval (including when I = R1) is taken care
of by Corollary 24.23. So, assume that I is not an open interval. Then I is a
bounded half - open interval or a bounded closed interval (recall the comment
above Exercise 24.18); hence, the corollary follows from Abel�s Theorem and
Corollary 23.23 (applied to the partial sums Σni=0ai(x − c)i on one and/or the
other intervals [c, c+ r] and [c− r, c].) ¥
Exercise 24.31: If Σ∞i=0ai(x − c)i be a power series with interval of con-

vergence I, then Σ∞i=0ai(x− c)i converges uniformly on any closed and bounded
subinterval of I. Hence, if I itself is a closed interval, then Σ∞i=0ai(x − c)i
converges uniformly on I.

We summarize some main aspects of what we have shown. Let I denote the
interval of convergence of some power series Σ∞i=0ai(x − c)i. The power series
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always converges uniformly on any closed and bounded subinterval of I (Exercise
24.31). Assume that I contains an end point η, say η < c. Then, whereas
Abel�s Theorem shows that mere conditional convergence at η is strong enough
to guarantee uniform convergence on [η, c], the example in Exercise 24.24 shows
that conditional convergence at η is not strong enough to guarantee uniform
convergence on all of I. On the other hand, the result in Exercise 24.27 shows
that absolute convergence at η guarantees uniform convergence of the power
series on all of I.

Exercise 24.32: Look carefully at the proof of Abel�s Theorem; state the
theorem in a slightly more general way so that the proof of the more general
result is essentially the same as the proof of Abel�s Theorem and so that the
more general result immediately implies Theorem 24.22. (Thus, we could have
written the section more concisely!)

We conclude with an application of Abel�s Theorem to numerical series.
The application concerns Cauchy products, which we introduced in section 6 of
Chapter XXII.
First, recall that when the termwise product of two convergent numerical

series converges, it is not necessarily the case that the termwise product con-
verges to the product of the sums of the two series (a simple example is in the
discussion following Exercise 21.3). This does not happen for Cauchy products:

Exercise 24.33: If Σ∞i=0ai, Σ
∞
i=0bi and (Σ

∞
i=0ai)× (Σ∞i=0bi) each converge,

then

(Σ∞i=0ai)× (Σ∞i=0bi) = (Σ
∞
i=0ai) (Σ

∞
i=0bi).

(Hint: Show that the three power series Σ∞i=0aix
i, Σ∞i=0bix

i and
¡
Σ∞i=0aix

i
¢×¡

Σ∞i=0bix
i
¢
converge on the interval [0, 1]. Recall Theorem 22.39.)

4. Calculus of Power Series

We show that derivatives and integrals of power series can be computed the
same way that they are computed for polynimials � term by term. We show
that term - by - term differentiation is valid at each point of the interior of the
interval of convergence (Theorem 24.35) and that term - by - term integration is
valid over any closed subinterval of the interior of the interval of convergence
(Theorem 24.41). We conclude with an application to numerical series; namely,
our theorem on integration of power series and other results enable us to Þnd
the value of the series Σ∞i=1(−1)i 1

i (Exercise 24.43).

Differentiating Power Series

We require the following lemma for proving our theorem about differentiating
power series.

Lemma 24.34: If the power series Σ∞i=0ai(x− c)i has radius of convergence
r ≤ ∞, then the power series Σ∞i=1iai(x− c)i−1 also has radius of convergence
r.
Proof: By Theorem 24.10, it suffices to show that
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(*) limi→∞ i
p|ai| = limi→∞ i

p|iai|.
Proof of (*): By Exercise 22.7, limi→∞ i

p|iai| is the largest subsequential
limit of { i

p|iai|}∞i=1. Also, note that since
i
√
i ≥ 1 for all i, i

p|ai| ≤ i
p|iai| for all

i. Thus, since limi→∞ i
p|ai| is a subsequential limit of { i

p|ai|}∞i=1 (by Exercise
22.6), we have that

(1) limi→∞ i
p|ai| ≤ limi→∞ i

p|iai|.
Now, assume by way of contradiction that

limi→∞ i
p|ai| < limi→∞ i

p|iai|.
Then there is a point p such that

(2) limi→∞ i
p|ai| < p < limi→∞ i

p|iai|.
By Exercise 22.6, there is a subsequence {ijaij}∞j=1 such that

limj→∞ ij

q¯̄
ijaij

¯̄
= limi→∞ i

p|iai|.
Hence, by (2), there exists N such that

(3) ij

q¯̄
ijaij

¯̄
> p for all j ≥ N .

Since limi→∞
i
√
i = 1 (by Example 19.8), limj→∞ ij

p
ij = 1 (by Exercise

20.3); hence, we see from (3) that there exists M such that

ij

q¯̄
aij
¯̄
> p for all j ≥M .

It follows that limi→∞ i
p|ai| > p; however, this contradicts (2). Hence, we have

proved that

(4) limi→∞ i
p|ai| ≥ limi→∞ i

p|iai|.
By (1) and (4), we have proved (*). ¥
Theorem 24.35: Let Σ∞i=0ai(x − c)i be a power series with interval of

convergence I. DeÞne f : I → R1 by

f(x) = Σ∞i=0ai(x− c)i for all x ∈ I.
Then f is differentiable at all points in int(I) and

f 0(x) = Σ∞i=1iai(x− c)i−1 for all x ∈ int(I).
Proof: Fix α > 0 such that [c−α, c+ α] ⊂ int(I) (we assume that int(I) 6=

∅ since, otherwise, the theorem is true vacuously). We need only prove our
theorem for all x ∈ [c− α, c+ α].
Let J be the interval of convergence of Σ∞i=1iai(x− c)i−1. By Lemma 24.34,

int(J) = int(I). Hence, [c − α, c + α] ⊂ int(J). Thus, by Theorem 24.22,
Σ∞i=1iai(x− c)i−1 converges uniformly on [c−α, c+α]. Therefore, by Theorem
24.2,

278



³
Σ∞i=0ai(x− c)i

´0
= Σ∞i=1iai(x− c)i−1 for all x ∈ [c− α, c+ α]. ¥

One point about Theorem 24.35 should be clariÞed: Even though the radii
of convergence of the power series for f and f 0 are the same (by the theorem),
the intervals of convergence of f and f 0 may be different. This is because the
interval of convergence of f 0 may omit an end point of the interval of convergence
of f . We give an example in the following exercise:

Exercise 24.36: By Example 24.13, the interval of convergence of the power
series Σ∞i=1

1
i (x− 1)i is [0, 2). DeÞne f on [0, 2) by f(x) = Σ∞i=1

1
i (x− 1)i for all

x ∈ [0, 2). Find the interval of convergence of f 0. Is f differentiable at x = 0 ?
At the end of Example 24.17, we said that Σ∞i=0

1
i!x

i = ex for all x ∈ R1; we
are now in a position to prove this.

Example 24.37: As an application of Theorem 24.35, we show that the
series Σ∞i=0

1
i!x

i converges to ex for all x ∈ R1.
Let f(x) = Σ∞i=0

1
i!x

i. We showed in Example 24.17 that f is deÞned on all
of R1. Hence, by Theorem 24.35, we see that for any given point x ∈ R1,

f 0(x) = Σ∞i=1
1
i! (i)x

i−1 = Σ∞i=1
1

(i−1)!x
i−1 = Σ∞i=0

1
i!x

i = f(x).

Thus, by Exercise 16.25, there is a constant c such that f(x) = cex for all
x ∈ R1. Therefore, since f(0) = 1 (remember, 00 = 1), c = 1 and f(x) = ex.

We strengthen Theorem 24.35 in the corollary below. First, we introduce
some terminology and notation.

DeÞnition: Let f be a function that is differentiable at a point p. We
deÞne the nth derivative of f at p, written f(n)(p), by induction as follows:
f(1)(p) = f 0(p) and, assuming that f(k)(p) exists and that f (k) is differentiable
at p for a given k ∈ N, f (k+1)(p) = (f (k))0(p). (Do not confuse the notation f (n)

with the notation fn for the nth iterate of f used in the latter part of section 3 of
Chapter XIX.) In addition, it is convenient to adopt the notational convention
that f(0) = f .
We say that a function f is inÞnitely differentiable at a point p provided

that f (n)(p) exists for all n ∈ N; we say that f is inÞnitely differentiable on a
set X provided that f is inÞnitely differentiable at each point of X.

Corollary 24.38: Let Σ∞i=0ai(x − c)i be a power series with interval of
convergence I. Then the function f : I → R1 deÞned by

f(x) = Σ∞i=0ai(x− c)i for all x ∈ I

is inÞnitely differentiable on int(I) and, for any n ∈ N,

f(n)(x) = Σ∞i=n(i)(i− 1) · · · (i− n+ 1)ai(x− c)i−n for all x ∈ int(I).

Hence, f (n)(c) = n!an for each n ≥ 0 (recall that f (0) = f).
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Proof: The Þrst part of the corollary follows by a straightforward induction
using Theorem 24.35. The formula f (n)(c) = n!an comes from setting x = c
in the formula for f(n)(x) in the Þrst part and observing that all terms in the
summation are zero except the Þrst term, which is n!an (recall our conventional
agreement at the beginning of the chapter that 00 = 1 for power series). ¥
The formula f(n)(c) = n!an in Corollary 24.38 is more interesting than it

may appear to be at Þrst glance: Assume that a function f can be represented
by a power series on an open interval I centered at c, say f(x) = Σ∞i=0ai(x− c)i
for all x ∈ I; then the formula f(n)(c) = n!an shows that the coefficients ai of
the power series representation of f are uniquely and completely determined by
f(c) and the values of the derivatives of f at the single point c.
A word of caution: A function f that is inÞnitely differentiable on an

open interval I centered at c may not be represented by the power series

Σ∞i=0
f(i)(c)
i! (x− c)i. An example is in the next chapter (Example 25.1); in fact,

we devote the next chapter to investigating when such a representation is valid.

Exercise 24.39: DeÞne f : (−1, 1) → R1 by f(x) = x
1−x . Find a simple

formula for f (n)(0) for each n = 1, 2, ... .
(Hint: Use Theorem 15.4.)

Integrating Power Series

We use the result in the following exercise in the proof of our theorem about
integrability; the proof of the result is similar to the proof Lemma 24.34, and
you are asked to Þll in the details.

Exercise 24.40: If the power series Σ∞i=0ai(x−c)i has radius of convergence
r ≤ ∞, then the power series Σ∞i=0

ai
i+1(x− c)i+1 also has radius of convergence

r.

Theorem 24.41: Let Σ∞i=0ai(x − c)i be a power series with interval of
convergence I. Then, for any a, b ∈ int(I) such that a ≤ b, Σ∞i=0ai(x − c)i is
integrable over [a, b] (with respect to x) andR b

a
Σ∞i=0ai(x− c)i = Σ∞i=0

R b
a
ai(x− c)i

= Σ∞i=0
ai
i+1 (b− c)i+1 −Σ∞i=0

ai
i+1(a− c)i+1.

Proof: Fix a, b ∈ int(I) such that a ≤ b. Then, by Exercise 24.31, Σ∞i=0ai(x−
c)i converges uniformly on [a, b]. Also, each term ai(x − c)i of the series is
integrable over [a, b] by Theorem 12.33. Hence, by Theorem 24.3, Σ∞i=0ai(x−c)i
is integrable over [a, b] andR b

a Σ
∞
i=0ai(x− c)i = Σ∞i=0

R b
a ai(x− c)i.

Thus, sinceR b
a
ai(x− c)i 14.2= ai

i+1(b− c)i+1 − ai
i+1(a− c)i+1 for each i,
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we have thatR b
a Σ

∞
i=0ai(x− c)i = Σ∞i=0

³
ai
i+1(b− c)i+1 − ai

i+1(a− c)i+1
´
;

furthermore, since a, b ∈ int(I), we see from Lemma 24.40 that each of the series
Σ∞i=0

ai
i+1(b−c)i+1 and Σ∞i=0

ai
i+1(a−c)i+1 converges. Therefore, by Exercise 21.3,R b

a
Σ∞i=0ai(x− c)i = Σ∞i=0

ai
i+1(b− c)i+1 −Σ∞i=0

ai
i+1(a− c)i+1. ¥

Exercise 24.42: True or false: If the interval of convergence of the power
series Σ∞i=0ai(x− c)i is the interval [a, b], thenR b

a Σ
∞
i=0ai(x− c)i = Σ∞i=0

ai
i+1(b− c)i+1 −Σ∞i=0

ai
i+1(a− c)i+1.

Exercise 24.43: Prove that Σ∞i=1(−1)i 1
i = ln(

1
2) as follows:

First, show that 1
1−t = Σ

∞
i=1t

i−1 when −1 < t < 1 by using Theorem 15.4;

then use Theorem 14.2 and Theorem 24.41 to show that ln( 1
1−x) = Σ

∞
i=1

xi

i when−1 < x < 1; Þnally, apply Corollary 24.30. Other results are also needed; show
all details.
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Chapter XXV: Taylor Series

We say that a real - valued function f deÞned on an interval I centered at c
is represented on I by a power series at c provided that

f(x) = Σ∞i=0ai(x− c)i for all x ∈ I.

We are concerned with the question of what functions f can be represented
by a power series. In other words, we shift our emphasis from starting with
a power series and obtaining a function on the interval of convergence, as in
the preceding chapter, to starting with a function and trying to obtain a power
series that represents the function.
Corollary 24.38 shows that our investigation is restricted to special types of

functions and to power series that have a particular form: If a function f is
represented on an interval I by a power series Σ∞i=0ai(x−c)i, then f is inÞnitely
differentiable on int(I) and the coefficients ai are unique, namely

f(x) = Σ∞i=0
f(i)(c)
i! (x− c)i for all x ∈ I.

For any function f that is inÞnitely differentiable at a point c, we call the

power series Σ∞i=0
f(i)(c)
i! (x− c)i the Taylor series of f at c (whether or not the

series represents f on an interval centered at c). Taylor series are named after

Brook Taylor (1685 - 1731). The Taylor series Σ∞i=0
f(i)(c)
i! xi of f at 0 is called

the Maclaurin series of f , named after Colin Maclaurin (1698 - 1746).
For example, the function ex is represented on R1 by its Maclaurin series

(Example 24.38).
It is natural to conjecture that any function that is inÞnitely differentiable

on an open interval I centered at c is represented on I by its Taylor series at c, or
at least that it is represented by its Taylor series at c on some small subinterval
of I centered at c. However, this is not the case as we will show in Example
25.1.
Thus, we are led to try to Þnd conditions under which an inÞnitely differ-

entiable function is represented by its Taylor series at c on an open interval
centered at c. We give such conditions in terms of the remainder that we deÞne
in section 2. We write the remainder in two ways (sections 3 and 4); we give
applications of the two forms of the remainder to the evaluation of integrals and
to the approximation of values of functions and integrals (mostly in exercises).
In the Þnal section, we study properties that functions which are represented

by their Taylor series have in common with polynomials. Among other results,
we prove the following theorem: If a function is represented by its Taylor series
at c on some open interval I centered at c, then the function is represented by
its Taylor series at any point b of I on the largest subinterval of I centered at
b (Theorem 25.27). This result sounds straightforward, but it requires a clever
proof with new ideas. In addition to the new ideas involved in the proof of the
theorem, the proof of the theorem is partly based on the Lagrange form of the
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remainder which we introduced in section 3; thus, we change our emphasis from
computational applications of the remainder in sections 3 and 4 to a theoretical
application.
We remark that in addition to the inherent scholarly reasons for studying

Taylor series, there is a practical reason as well. Many calculators and comput-
ers use Taylor polynomials to provide provide approximate evaluations for tran-
scendental functions (the trigonometric functions, the logarithmic functions, the
exponential functions, the hyperbolic functions, and so on). In order to evaluate
the limitations of answers provided by technology, it is important to understand
the method that is used by technology (see the comment in Exercise 25.17).

1. InÞnitely Differentiable Functions Not Represented by Taylor
Series

As mentioned in the introduction, the natural conjecture � an inÞnitely
differentiable function on an open interval I centered at c is represented by
its Taylor series at c � is false. The key to constructing a counterexample to
the conjecture comes from Exercise 24.28: Suppose that we were able to Þnd
an inÞnitely differentiable function g on [0,∞) such that g(n)(0) = 0 for all
n ≥ 0 and such that g(x) > 0 for all x > 0; then, extending g to h by letting
h(x) = g(−x) for all x < 0, we see that h is inÞnitely differentiable but that, by
Exercise 24.28, h is not represented on any open interval (−a, a) by its Maclaurin
series. However, Þnding a function g with the required properties is not as easy
as we may imagine. One such function is deÞned by g(x) = e

−1

x2 when x > 0
and g(0) = 0 (it is not easy to show that g(n)(0) = 0 for all n ≥ 0; we do so in
Example 25.1).
We give three examples of functions f that are inÞnitely differentiable on

R1 but that are not represented on R1 by their Maclaurin series. In the Þrst
example, the Maclaurin series converges on R1 but does not converge to f except
at x = 0. In the second example, f is represented by its Maclaurin series on an
open interval but not on all of R1. In the third example, the Maclaurin series
for f diverges at all x 6= 0 (this example is in Exercise 25.3).
Example 25.1: DeÞne f : R1 → R1 by

f(x) =

(
e
−1

x2 , if x 6= 0
0 , if x = 0.

Then f is inÞnitely differentiable on R1 but the Maclaurin series of f is con-
stantly zero.
By various previous results, f is inÞnitely differentiable at each x 6= 0 (use

Corollary 16.24, Theorem 7.13 and the Chain Rule (Theorem 7.23)). Thus, we
must show that f is inÞnitely differentiable at x = 0 and that the Maclaurin
series of f is constantly zero; speciÞcally, we must show that f(i)(0) exists and
is 0 for all integers i ≥ 0. We Þrst prove (1) and (2) below.
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(1) For each i ∈ N and each x 6= 0, f(i)(x) = e
−1

x2 Pi(
1
x),

where Pi(t) is a polynomial in t.

Proof of (1): Fix x 6= 0. Using Corollary 16.24, the Chain Rule (Theorem
7.23) and Lemma 7.5, we see that

(*) f(1)(x) = e
−1

x2
¡

2
x3

¢
;

hence, letting P1(t) = 2t
3 for all t ∈ R1, we have that

f (1)(x) = e
−1

x2 P1(
1
x).

Now, assume inductively that for some i ∈ N, f (i)(x) = e
−1

x2 Pi(
1
x), where Pi(t)

is a polynomial in t. Then

f(i+1)(x)
7.4
= e

−1

x2
¡
Pi(

1
x)
¢0
+ Pi(

1
x)
³
e
−1

x2

´0
7.23
= e

−1

x2 P 0i (
1
x)
¡−1
x2

¢
+ Pi(

1
x)
³
e
−1

x2

´0
(*)
= e

−1

x2 P 0i (
1
x)
¡−1
x2

¢
+ Pi(

1
x)e

−1

x2
¡

2
x3

¢
= e

−1

x2
£
P 0i (

1
x)
¡−1
x2

¢
+ Pi(

1
x)
¡

2
x3

¢¤
;

hence, letting Pi+1(t) = −t2P 0i (t) + 2t3Pi(t) for all t ∈ R1, we have that

f(i+1)(x) = e
−1

x2 Pi+1(
1
x).

Therefore, by the Induction Principle (Theorem 1.20), we have proved (1).

(2) For each integer k ≥ 0, limx→0
e
−1
x2

xk
= 0.

Proof of (2): On making the substitution u = 1
x , we see using Exercise 18.4

that (2) becomes

(#) limu→∞ uk

eu2 = 0 for each integer k ≥ 0.

Clearly, (#) holds when k = 0. Assuming inductively that (#) holds for some
integer k ≥ 0, we see that (#) holds for k+ 1 as follows (the Þnal equality uses
Theorem 18.5 for the case of Theorem 4.9):

limu→∞ uk+1

eu2

18.9
= limu→∞

(k+1)uk

2ueu2 = limu→∞ k+1
2u

uk

eu2

18.5
= 0.

Therefore, (2) holds by the Induction Principle (Theorem 1.20).

Finally, we show that f (i)(0) = 0 for all integers i ≥ 0. By deÞnition,
f(0)(0) = f(0) = 0. Assume inductively that f (i)(0) = 0 for some i ≥ 0. Then,
letting Pi be as in (1), say

Pi(t) = Σ
m
n=0ant

n for all t ∈ R1,
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we have

f(i+1)(0)
6.10
= limx→0

f(i)(x)−f(i)(0)
x−0

(1)
= limx→0

e
−1
x2 Pi(

1
x )

x

= limx→0

³
e
−1

x2 Σmn=0an
¡

1
x

¢n+1
´
= limx→0

³
Σmn=0e

−1

x2 an
¡

1
x

¢n+1
´

thus, since limx→0 e
−1

x2 an
¡

1
x

¢n+1 (2)
= 0 for each n, we have by Theorem 4.5 that

f(n+1)(0) = 0.

Therefore, by the Induction Principle, we have proved that f (i)(0) = 0 for all i.

Example 25.2: We give an example of an inÞnitely differentiable function
f on R1 such that f is represented by its Maclaurin series on an open interval
centered at 0 but such that f is not represented by its Maclaurin series on all
of R1.
DeÞne f : R1 → R1 by letting f(x) = 1

1+x2 for all x ∈ R1. It is easy to check
that f is inÞnitely differentiable on R1. We Þnd the Maclaurin series for f as
follows: By Theorem 15.4 (and Exercise 21.1)

1
1−r = Σ

∞
i=0r

i when −1 < r < 1;

hence, substituting −x2 for r, we obtain that

(*) f(x) = Σ∞i=0(−x2)i = Σ∞i=0(−1)ix2i when −1 < x < 1.

Thus, the series Σ∞i=0(−1)ix2i is the Maclaurin series for f for all x ∈ R1.
Therefore, the Maclaurin series for f only converges when −1 < x < 1 (by (*)
and Theorem 15.4).

Exercise 25.3: DeÞne f : R1 → R1 by

f(x) = Σ∞i=0e
−i cos(i2x) for all x ∈ R1.

Prove that f is, indeed, deÞned at each x ∈ R1 (i.e., Σ∞i=0e
−i cos(i2x) <∞ for

all x ∈ R1) and that f is inÞnitely differentiable at each x ∈ R1 using Theorems
24.1 and 24.2. Prove that the Maclaurin series for f diverges for each x 6= 0 as
follows:
Since the odd terms of the Maclaurin series are all 0, we need only consider

the even terms. Fix x ∈ R1 such that x 6= 0. For any given k ∈ N, verify that
the absolute value of the (2k)th term of the Maclaurin series satisÞes¯̄̄

f(2k)(0)
(2k)! x

2k
¯̄̄
= x2k

(2k)!Σ
∞
i=0e

−i(i2)2k > x2k

(2k)!e
−2k

¡
(2k)2

¢2k

= 1
(2k)!

³
x(2k)2

e

´2k

>
³
x(2k)2

2ke

´2k

=
¡

2kx
e

¢2k
,

and apply the ith Term Test (Theorem 21.8) to see that the Maclaurin series
for f diverges at x.
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2. Taylor Polynomials and the Remainder Term

We deÞne and discuss Taylor polynomials and remainder terms in general.
Let I be an interval centered at c, and let f : I → R1 be a function that is

at least n times differentiable at c. The polynomial Σni=0
f(i)(c)
i! (x− c)i is called

the nth - degree Taylor polynomial of f at c. For each x ∈ I, we let

Rn(x; c) = f(x)−Σni=0
f(i)(c)
i! (x− c)i;

Rn(x; c) is called the nth remainder term at x. (The notation and terminology
do not reßect the dependence of the remainder term on f , but it will always be
clear from context what function f we are considering.)
We brießy discuss the relationship between Taylor polynomials and linear

approximation. Recall that one motivation for the derivative at the beginning
of Chapter VI was the idea of a tangent line; this led to a discussion of linear
approximation in section 3 of Chapter VI. The equation for linear approximation
is the equation of the tangent line to the graph of a differentiable function f at
the point (c, f(c)),

y = f(c) + f 0(c)(x− c);
clearly, f(c)+ f 0(c)(x− c) is the Taylor polynomial of f at c of degree 1. Thus,
Taylor polynomials are a natural extension of linear approximation.
Moreover, if T is a Taylor polynomial of f at c of degree n > 1, then T

almost always approximates f on a (small) open interval at c more accurately
than linear approximation does. This is because the Þrst n derivatives of T
at c are the same as the Þrst n derivatives of f at c � in particular, even
when n = 2, T takes into account the shape (concavity) of the curve y =
f(x), whereas linear approximation does not take into account the shape of
the curve. On the other hand, with respect to numerical computations, there
is a disadvantage in using Taylor polynomials of high degree rather than linear
approximation: it is obviously more complicated to compute approximate values
for f(x) using Taylor polynomials of degree greater than 1 than it is using linear
approximations.
We complete this section with a simple theorem.

Theorem 25.4: Assume that f is deÞned on an interval I centered at c and
that f is inÞnitely differentiable at c. Then f is represented on I by its Taylor
series at c if and only if

limn→∞Rn(x; c) = 0 for each x ∈ I.
Proof: The theorem follows from the deÞnition of convergence of a series

since the nth degree Taylor polynomial of f at c is simply the nth partial sum
of the Taylor series of f at c. ¥
Even though Theorem 25.4 is very obvious, the theorem points establishes a

method for determining when a function is represented by its Taylor series. We
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will Þnd two ways to evaluate remainder terms (Theorems 25.6 and 25.18), and
we will apply the results in various ways.

Exercise 25.5: Prove that any polynomial is represented by its Taylor series
on R1 at any point c.
Find the Taylor series for the polynomial f(x) = x4− 3x2+2x+5 at c = 2.

3. The Lagrange Form of the Remainder

In Theorem 25.6, we give a formula for Rn(x; c) in terms of the (n + 1)st

derivative of the function f . The formula is called the Lagrange form of the
remainder. Joseph -Louis Lagrange (1736 - 1813) was the Þrst person to state
the Mean Value Theorem; in fact, when n = 0, the Lagrange form of the
remainder reduces to

f(x)− f(c) = f 0(z)(x− c),
which is the formula in the Mean -Value Theorem (Theorem 10.2). This suggests
proving Theorem 25.6 by using the Mean Value Theorem, which we will do (we
actually use Rolle�s Theorem).
The Lagrange form of Rn(x; c) is similar to the (n+1)st term of the Taylor

series for f at c; however, note that f(n+1) is evaluated at a point z 6= c in the
theorem.

Theorem 25.6 (Lagrange Remainder Theorem): Let I be an open
interval centered at c, and let f : I → R1 be a function that is n + 1 times
differentiable on I for a given Þxed n. Then, for each point x ∈ I, there is a
point z strictly between x and c (unless x = c, in which case z = c) such that

Rn(x; c) =
f(n+1)(z)

(n+1)! (x− c)n+1.

Proof: Fix x ∈ I. Since the theorem is obvious if x = c (recall that 00 = 1
for series), we assume that x 6= c. Then we can deÞne a function g : I → R1 as
follows:

g(t) = f(x)−Σni=0
f(i)(t)
i! (x− t)i −Rn(x; c) (x−t)n+1

(x−c)n+1 for all t ∈ I.

We see that g(x) = 0 and g(c) = 0 since

g(x) = f(x)−Σni=0
f(i)(x)
i! (x− x)i −Rn(x; c) (x−x)n+1

(x−c)n+1

= f(x)− f(0)(x) = 0
and

g(c) = f(x)−Σni=0
f(i)(c)
i! (x− c)i −Rn(x; c) (x−c)n+1

(x−c)n+1

= Rn(x; c)−Rn(x; c) = 0.
Thus, since g is differentiable on I (because f is n+1 times differentiable on I),
Rolle�s Theorem (Lemma 10.1) shows that there is a point z strictly between x
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and c such that g0(z) = 0. On the other hand, differentiating g at z directly by
using formulas in Chapter VII, we obtain (remember, x is Þxed)

g0(z) = 0−
³
Σni=1

f(i)(z)
i! i(x− z)i−1(−1) +Σni=0

f(i+1)(z)
i! (x− z)i

´
− Rn(x,c)

(x−c)n+1 (n+ 1)(x− z)n(−1)

= Σni=1
f(i)(z)
(i−1)! (x− z)i−1 −Σni=0

f(i+1)(z)
i! (x− z)i

+(n+ 1) Rn(x,c)
(x−c)n+1 (x− z)n

= −f(n+1)(z)
n! (x− z)n + (n+ 1) Rn(x,c)

(x−c)n+1 (x− z)n.
Thus, since g0(z) = 0,

−f(n+1)(z)
n! (x− z)n + (n+ 1) Rn(x,c)

(x−c)n+1 (x− z)n = 0,

which, since z 6= x, gives us that

Rn(x; c) =
f(n+1)(z)

(n+1)! (x− c)n+1. ¥

Let X be a set, and let F be a family of real - valued functions deÞned on
X. We say that the family F is uniformly bounded on X provided that there is
a number M such that

|f(x)| < M for all f ∈ C and all x ∈ X.

Corollary 25.7: Let I be an open interval centered at c, and let f : I → R1

be a function that is inÞnitely differentiable on I. If the family of all derivatives
of f is uniformly bounded on I, then f is represented on I by its Taylor series
at c.

Proof: By the deÞnition of uniformly bounded (above), there is a number
M > 0 such that

(1)
¯̄
f (n+1)(z)

¯̄
<M for all integers n ≥ 0 and all z ∈ I.

Now, Þx a point x ∈ I. Let ² > 0. Since the series Σ∞n=0
(x−c)n+1

(n+1)! converges

by the Ratio Test (Theorem 22.10), we have that limn→∞
(x−c)n+1

(n+1)! = 0 by the

ith Term Test (Theorem 21.8). Hence, there exists N such that¯̄̄
(x−c)n+1

(n+1)!

¯̄̄
< ²

M for all n ≥ N .

Thus, by (1) and Theorem 25.6,

|Rn(x; c)| < ² for all n ≥ N .
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We have proved that limn→∞Rn(x; c) = 0 for each x ∈ I. Therefore, by
Theorem 25.4, f is represented on I by its Taylor series at c. ¥
We discuss the function f(x) = sin(x) in the next two examples.

Example 25.8: The function f(x) = sin(x) is represented on R1 by its
Maclaurin series. This follows immediately from Corollary 25.7 since the deriva-
tives of sin(x) are ± cos(x) and ± sin(x), which are uniformly bounded on R1.
In addition, we can easily compute the Maclaurin series for sin(x) as follows:

f (0)(0) = 0, f (1)(0) = 1, f (2)(0) = 0, f (3)(0) = −1, f(4)(0) = 0

at which point the pattern begins to repeat since f (4)(x) = sin(x). Therefore,
for all x ∈ R1,

sin(x) = 1x− 1
3!x

3 + 1
5!x

5 + · · · = Σ∞i=0
(−1)i

(2i+1)!x
2i+1.

Example 25.9: The Þrst three nonzero terms of the Maclaurin series for
sin(x) in the preceding example approximate sin(1) as 101

120 . Thus, since the
coefficient of x6 in the Maclaurin series for sin(x) is 0, we can use R6(1; 0) to
estimate the error between sin(1) and 101

120 . Hence,¯̄
sin(1)− 101

120

¯̄
= |R6(1; 0)| 25.6=

¯̄̄
− cos(z)

7! (1− 0)7
¯̄̄
≤ 1

7! =
1

5040 .

Corollary 25.7 is somewhat limited since even very simple functions whose
families of derivatives are not uniformly bounded are represented on an open
interval by their Taylor series at the center point c; for example, the function
f(x) = x2 is obviously represented on R1 by its Maclaurin series, but f (1) is
not bounded. Nevertheless, we can easily extend Corollary 25.7 to a situation
where the derivatives of f are need not be uniformly bounded on the entire
given interval I :

Corollary 25.10: Let I be an open interval centered at c, and let f : I → R1

be a function that is inÞnitely differentiable on I. Let I1 ⊂ I2 ⊂ I3 ⊂ · · · be
open intervals centered at c such that I = ∪∞n=1In. If the family of all derivatives
of f is uniformly bounded on In for each n, then f is represented on I by its
Taylor series at c.

Proof: For each n = 1, 2, ..., f is represented on In by its Taylor series at c
by Corollary 25.7. ¥
The Þrst three exercises below are concerned with Corollary 25.10.

Exercise 25.11: In Example 24.38, we showed that the function f(x) = ex

is represented on R1 by its Maclaurin series. Explain why this fact follows
immediately from Corollary 25.10.

Exercise 25.12: Show how to work Exercise 25.11 using the Lagrange
Remainder Theorem (Theorem 25.6). Compare your work with what you did
to work Exercise 25.11.
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Exercise 25.13: Can Corollary 25.10 be used to show that the function
f(x) = x

1−x is represented on (−1, 1) by its Maclaurin series?
(Hint: See Exercise 24.39.)

Exercise 25.14: Let f(x) = cos(x) for all x ∈ R1. Prove that f is rep-
resented on R1 by its Maclaurin series and Þnd the Maclaurin series series for
f .

Exercise 25.15: Note that we can not use the Fundamental Theorem of
Calculus (Theorem 14.2) to evaluate

R 1

0 sin(x
2) since we do not know a speciÞc

function whose derivative is sin(x2). Evaluate (write)
R 1

0
sin(x2) in the form

of a numerical series. Estimate the answer to within three decimal places of
accuracy using Exercise 21.13.

Exercise 25.16: DeÞne f : R1 → R1 by

f(x) =

(
sin(x)
x , if x 6= 0

1 , if x = 0.

This is the function f in Exercise 18.30, where we asked if you thought the
function is inÞnitely differentiable at x = 0. We can now answer this question
easily: Use Example 25.8 to Þnd the Maclaurin series for f and to conclude
that f is represented on R1 by its Maclaurin series; therefore, f is inÞnitely
differentiable by Theorem 24.35.
Find a concise formula for f (n)(0).

Exercise 25.17: Let f be the function in Exercise 25.16. Use the Þrst three
(nonzero) terms of the Maclaurin series for f to show that

R 1

−1 f is approximately
1703
900 . (As in Exercise 25.15, we have no way to evaluate this integral exactly
except as an inÞnite series. Most hand calculators will not give an answer for
the integral since the integral is entered as

R 1

−1
sin(x)
x and there is a division by

zero that the calculator can not handle.)

4. The Integral Form of the Remainder

In Theorem 25.18, we give a formula for Rn(x; c) in terms of an integral of
the (n+1)st derivative of the function f (and other terms). The formula is called
the integral form of the remainder. We give an example of when the integral
form of the remainder can be applied to show that a function can be represented
by its Taylor series but the Lagrange form of the remainder can not be applied
for that purpose (Example 25.19). Just as in the case of the Lagrange form of
the remainder, the integral form for the remainder is useful for estimating the
error between the value of a function and the values of its Taylor polynomials.

Theorem 25.18 (Integral Remainder Theorem): Let I be an open
interval centered at c, and let f : I → R1 be a function that is n + 1 times
differentiable on I. Then, for each point x ∈ I,

Rn(x; c) =
R x
c
f(n+1)(t)

n! (x− t)n dt.
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Proof: Fix x ∈ I. Since the lemma is obvious when x = c, we assume that
x 6= c. DeÞne a function g : I → R1 as follows (g is the Þrst two expressions for
the function g in the proof of Theorem 25.6):

g(t) = f(x)−Σni=0
f(i)(t)
i! (x− t)i for all t ∈ I.

We observe the following (for the Þrst equality, recall from the introduction
to Chapter XXIV that 00 = 1 for power series):

(1) g(x) = 0 and g(c) = Rn(x; c).

Since f is n+ 1 times differentiable on I, g is differentiable on I. Hence, as
in the proof of Theorem 25.6,

g0(t) = −f(n+1)(t)
n! (x− t)n.

Hence, by part (2) of the Fundamental Theorem of Calculus (Theorem 14.2),R x
c −f(n+1)(t)

n! (x− t)n dt = g(x)− g(c).
Thus, by (1), R x

c −f(n+1)(t)
n! (x− t)n dt = −Rn(x; c).

Therefore, sinceR x
c −f(n+1)(t)

n! (x− t)n dt 13.11= − R xc f(n+1)(t)
n! (x− t)n dt,

we have proved our theorem. ¥
We can apply the Integral Remainder Theorem in situations when we can

not apply the Lagrange Remainder Theorem or Corollary 25.10. We illustrate
with the following example:

Example 25.19: Let f(x) = ln(x) for all x ∈ (0, 2). We can not use the
Lagrange Remainder Theorem or Corollary 25.10 to show that f is represented
on (0, 2) by its Taylor series at 1. The reason is that

(*) f(n)(x) = (−1)n+1 (n−1)!
xn for all n ≥ 1 and all x ∈ (0, 2)

and, thus, the family of derivatives of f is not uniformly bounded on any open
interval at at 1.
However, we can use the Integral Remainder Theorem to show that f is

represented on (0, 2) by its Taylor series at 1 : Fix x ∈ (0, 2); then
Rn(x; c)

25.18
=

R x
1

(−1)n+2 n!
xn+1

n! (x− t)n dt 13.11= (−1)n+2

xn+1

R x
1 (x− t)n dt

14.2
= (−1)n+2

xn+1

³
(x−1)n+1

n+1

´
= (−1)n+2

n+1

¡
x−1
x

¢n+1

and, thus, limn→∞Rn(x; c) = 0 by Lemma 15.3. Therefore, by Theorem 25.4,
f is represented on (0, 2) by its Taylor series at 1. Thus, as is worth noting, we
see from (*) that ln(x) = Σ∞i=1(−1)i+1 1

i (x− 1)i for all x ∈ (0, 2).
Exercise 25.20: Evaluate

R 1

0
(1− t)4et using Theorem 25.18.
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5. Analytic Functions

A function that is represented by its Taylor series at c on some open interval
centered at c is said to be analytic at c. A function that is analytic at each
point of an open interval I is said to be analytic on I.
It is natural to think of analytic functions as being the inÞnite analogue of

polynomials. This leads us to try to Þnd properties that analytic functions have
in common with polynomials. We obtain three basic properties of analytic func-
tions that are analogues of properties of polynomials (Theorem 25.21, Theorem
25.27 and Exercise 25.28).
One elementary property of polynomials is that two polynomials with the

same value and the same derivatives at a given point are actually the same
polynomial. Analytic functions have the same property:

Theorem 25.21: Let I be an open interval, and let f, g : I → R1 be
functions that are analytic on I. If there is a point p ∈ I such that

f (n)(p) = g(n)(p) for all n ≥ 0,
then f = g.

Proof: Let

A = {x ∈ I : f(n)(x) = g(n)(x) for all n ≥ 0}.
We prove that A is an open set. Let a ∈ A. Since f and g are analytic at a,

there exists ² > 0 such that

(1) f(x) = Σ∞i=0
f(i)(a)
i! (x− a)i and g(x) = Σ∞i=0

g(i)(a)
i! (x− a)i

for all x ∈ J²(a) = (a− ², a+ ²).
Since a ∈ A, f (i)(a) = g(i)(a) for all i ≥ 0. Hence, by (1), g(x) = f(x) for

all x ∈ J²(a). Thus, clearly, for each i ≥ 0, g(i)(x) = f (i)(x) for all x ∈ J²(a).
Hence, J²(a) ⊂ A. This proves that each point of A lies in an open interval
contained in A. Therefore, A is an open set by Theorem 15.6.
Next, we prove that A contains all its limit points in I. Let q ∈ I such that

q is a limit point of A. Then, by Exercise 2.29, q ∼ A. Hence, by Theorem
19.38, there is a sequence {ai}∞i=1 of points in A such that

(2) limi→∞ ai = q.

Since ai ∈ A for each i, we have that
(3) f(n)(ai) = g

(n)(ai) for all n and for all i.

Since f and g are inÞnitely differentiable at q (by Corollary 24.38), f (n)

and g(n) are continuous at q for each n (by Theorem 6.14). Thus, by (2) and
Theorem 19.39,
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limi→∞ f (n)(ai) = f
(n)(q) and limi→∞ g(n)(ai) = g

(n)(q) for each n.

Therefore, by (3),

f (n)(q) = g(n)(q) for each n.

This proves that q ∈ A. Therefore, we have proved that A contains all its limit
points in I.
Next, we prove that A = I (the argument we are about to give is not

necessary for those readers who are familiar with connected sets). Suppose by
way of contradiction that A 6= I. Then there is a point t ∈ I such that t /∈ A.
We assume without loss of generality that p < t, and we let

B = {x ∈ A : x < t}.

Then, since p ∈ A, we have that B 6= ∅. Hence, lubB = ` exists. If ` ∈ A, then,
since A is an open set, it follows easily that ` is not the least upper bound of A,
a contradiction. Hence, ` /∈ A. Then it follows easily using Theorem 19.39 that
` is a limit point of A; thus, since A contains all its limit points in I, we again
have that ` ∈ A, a contradiction. Therefore, we have proved that A = I.
Finally, since A = I, f (n)(x) = g(n)(x) for all n ≥ 0 and all x ∈ I. Therefore,

since f (0) = f and g(0) = g, we have in particular that f = g. ¥
Another property of polynomials is that they are represented on R1 by their

Taylor series at every point of R1 (Exercise 25.5). We prove the analogue of this
for analytic functions in Theorem 25.27.
The proof of Theorem 25.27 is somewhat intricate, and we break the proof

down into several lemmas. We prove three lemmas about power series and a
lemma about Taylor series. The Þrst two lemmas together give a characteriza-
tion for lower bounds of the radius of convergence of a power series (Corollary
25.24). We state the Þrst two lemmas separately since the characterization we
obtain is not speciÞc enough in one direction to be able to be used directly in
the proof of Theorem 25.27.

Lemma 25.22: Assume that the power series Σ∞i=0ai(x − c)i has radius
of convergence at least r, where r > 0. Then, for each number α such that
0 < α < r, there exists β > 0 such that

|ai| ≤ β
αi for all i.

Proof: Fix α such that 0 < α < r. Let I = (c − r, c + r), and note that
I is contained in the interval of convergence of Σ∞i=0ai(x − c)i. Thus, since
c+α ∈ I, the series Σ∞i=0aiα

i converges. Hence, by the ith Term Test (Theorem
21.8), limi→∞ aiαi = 0. Thus, there exists β > 0 such that β ≥

¯̄
aiα

i
¯̄
for all i.

Therefore, since α > 0,

|ai| ≤ β
αi for all i. ¥
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Lemma 25.23: Let Σ∞i=0ai(x− c)i be a power series. Assume that α,β > 0
satisfy

|ai| ≤ β
αi for all i.

Then, for all x such that |x− c| < α, the series Σ∞i=0ai(x− c)i converges (abso-
lutely).

Proof: Fix x such that |x− c| < α. Then

Σ∞i=0

¯̄
ai(x− c)i

¯̄
= Σ∞i=0 |ai| |x− c|i ≤ Σ∞i=0

β
αi |x− c|i = Σ∞i=0β

¯̄
x−c
α

¯̄i
.

Thus, since
¯̄
x−c
α

¯̄
< 1, the series Σ∞i=0β

¯̄
x−c
α

¯̄i
converges by Theorem 15.4 (and

Exercise 21.1). Hence, by the Comparison Test (Theorem 21.18), the series
Σ∞i=0

¯̄
ai(x− c)i

¯̄
converges. Therefore, by Theorem 22.1, we have that the series

Σ∞i=0ai(x− c)i converges. ¥
The preceding two lemmas give the following characterization:

Corollary 25.24: Let r > 0. A power series Σ∞i=0ai(x − c)i has radius of
convergence at least r if and only if for each number α such that 0 < α < r,
there exists β > 0 such that

|ai| ≤ β
αi for all i.

Our next lemma concerns the sum of a speciÞc power series. We use the
lemma in the proof of Lemma 25.26.

Lemma 25.25: For any given integer n ≥ 0 and any x such that−1 < x < 1,
Σ∞i=n

i!
(i−n)!x

i−n = n!
(1−x)n+1 .

Proof: DeÞne f : (−1, 1)→ R1 by

f(x) = 1
1−x for all x ∈ (−1, 1).

An easy induction using the way we differentiate quotients (Theorem 7.6)
shows that

(1) f(n)(x) = n!
(1−x)n+1 for all n ≥ 0 and all x ∈ (−1, 1).

By Theorem 15.4, Σ∞i=1x
i = x

1−x for all x ∈ (−1, 1); hence, by Exercise 21.1,

f(x) = Σ∞i=0x
i for all x ∈ (−1, 1).

Thus, by Corollary 24.38,

(2) f(n)(x) = Σ∞i=n
i!

(i−n)!x
i−n.

Our lemma follows from (1) and (2). ¥
It is convenient to have the following technical lemma since we use it twice

in the proof of Theorem 25.27.
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Lemma 25.26: Assume that a function f is represented by its Taylor series
at c on an open interval I = (c− η, c+ η). Let p ∈ I. Then, for any number α
such that |p− c| < α < η, there is a number β > 0 such that¯̄

f (n)(p)
¯̄ ≤ n!βα

(α−|p−c|)n+1 for all n ≥ 0.

Proof: Let ai =
f(i)(c)
i! for each integer i ≥ 0. Then, by assumption,
f(x) = Σ∞i=0ai(x− c)i for all x ∈ I.

Hence, by Corollary 24.38, we have that

(1) f(n)(p) = Σ∞i=n
i!

(i−n)!ai(p− c)i−n for all n ≥ 0.
Fix α such that |p− c| < α < η. Then, since the series Σ∞i=0ai(x − c)i

converges for each x ∈ I, we have by Lemma 25.22 that there exists β > 0 such
that

(2) |ai| ≤ β
αi for all i.

Now, for any integer n ≥ 0,¯̄
f (n)(p)

¯̄ (1)≤ Σ∞i=n
i!

(i−n)! |ai| |p− c|i−n
(2)
≤ Σ∞i=n

i!
(i−n)!

β
αi |p− c|i−n

= β
αnΣ

∞
i=n

i!
(i−n)!

³
|p−c|
α

´i−n 25.25
= β

αn
n!

(1− |p−c|
α )

n+1

= n!βα
(α−|p−c|)n+1 . ¥

We are now ready to prove our main theorem. The proof makes use of the
Lagrange Remainder Theorem (Theorem 25.6).

Theorem 25.27: Assume that a function f is represented by its Taylor
series at c on an open interval I = (c−η, c+η) centered at c. Then f is analytic
on I. Moreover, let b ∈ I, and let J denote the largest subinterval of I centered
at b; in other words,

J = (b− τ , b+ τ), where τ = η − |b− c|;

then f |J is represented by its Taylor series at b on the entire open interval J .
Proof: Let b and J be as in the theorem.
By Lemma 25.26, we have that for any α such that |b− c| < α < η, there

exists β > 0 such that¯̄
f (n)(b)

¯̄ ≤ βα(n!)
(α−|b−c|)n+1 for all n ≥ 0;

thus, letting γ = βα
α−|b−c| and λ = α− |b− c|, we have¯̄̄

f(n)(b)
n!

¯̄̄
≤ γ

λn for all n ≥ 0.
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Hence, by Lemma 25.23, the series Σ∞n=0
f(n)(b)
n! (x− b)n converges for all x such

that |x− b| < λ. Furthermore, we could have chosen α as close to η as we
wished, which means that we can assume that λ is as close to η− |b− c| = τ as
we wish; therefore, since J = (b− τ , b+ τ), we have shown that

(1) Σ∞n=0
f(n)(b)
n! (x− b)n converges for all x ∈ J .

We deÞne a function g : J → R1 using (1) by

g(x) = Σ∞i=0
f(i)(b)
i! (x− b)i for all x ∈ J .

We will show that g(x) = f(x) for all x ∈ J , which will complete the proof of
our theorem.
We Þrst prove that g = f in an open subinterval J² of J about b. Let

J² = (b− ², b+ ²), where ² = 1
4(η − |b− c|).

Fix a point q ∈ J². Since f is represented by its Taylor series at c on
I = (c−η, c+η), f is inÞnitely differentiable on J² (by Corollary 24.38). Hence,
we can apply the Lagrange Remainder Theorem (Theorem 25.6) to see that for
each n ≥ 0, there is a point zn strictly between q and b (unless q = b, in which
case zn = b) such that

f(x)−Σni=0
f(i)(b)
i! (q − b)i = f(n+1)(zn)

(n+1)! (q − b)n+1.

Therefore, to show that g(q) = f(q), it suffices to show that

(#) limn→∞
f(n+1)(zn)

(n+1)! (q − b)n+1 = 0.

Proof of (#): We assume throughout the proof of (#) that b > c (the proof
when b < c is analogous, and the theorem we are proving is obvious when b = c).
We Þrst consider the case when q < b. Then q < zn < b for all n. Fix α

such that |b− c| < α < η. Then, since |zn − c| < α < η, we see form Lemma
25.26 that there exists β > 0 such that¯̄

f (n+1)(zn)
¯̄ ≤ (n+1)!βα

(α−|zn−c|)n+2 .

Thus, since α− |b− c| < α− |zn − c| for all n, we have that¯̄
f (n+1)(zn)

¯̄
< (n+1)!βα

(α−|b−c|)n+2 .

Hence, we have that

(i)
¯̄̄
f(n+1)(zn)

(n+1)! (q − b)n+1
¯̄̄
< βα

α−|b−c|
³

|q−b|
α−|b−c|

´n+1

.

Now, note that |b− c|+ ² < η; thus, we can assume that α > |b− c|+ ². Then
|q−b|

α−|b−c| < 1. Therefore, it follows from (i) and Lemma 15.3 that
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limn→∞
¯̄̄
f(n+1)(zn)

(n+1)! (q − b)n+1
¯̄̄
= 0.

This proves (#) when q < b.
To Þnish the proof of (#), assume that q > b. Then b < zn < q for all n. Fix

α such that |q − c| < α < η. Then, since |zn − c| < α < η, we see form Lemma
25.26 that there exists β > 0 such that¯̄

f (n+1)(zn)
¯̄ ≤ (n+1)!βα

(α−|zn−c|)n+2 .

Thus, since α− |q − c| < α− |zn − c| for all n, we have that¯̄
f (n+1)(zn)

¯̄
< (n+1)!βα

(α−|q−c|)n+2 .

Hence, we have that

(ii)
¯̄̄
f(n+1)(zn)

(n+1)! (q − b)n+1
¯̄̄
< βα

α−|q−c|
³

|q−b|
α−|q−c|

´n+1

.

Note that

|b− c|+ 2² = |b− c|+ 1
2(η − |b− c|) = 1

2(η + |b− c|) < η;

Hence, we can assume that α > |b− c|+ 2². Then |q−b|
α−|q−c| < 1. Therefore, we

see from (ii) and Lemma 15.3 that

limn→∞
¯̄̄
f(n+1)(zn)

(n+1)! (q − b)n+1
¯̄̄
= 0.

This completes the proof of (#).

Since we proved (#) for any point q ∈ J², we have proved that g|J² =
f |J². Hence, by the way we deÞned g, we have proved that f is analytic at b.
Therefore, since b was any point of I, we have proved that f is analytic on I.
This proves the Þrst part of the theorem.
We prove the last part of the theorem using the Þrst part and Theorem

25.21. Since g = f on J², g(n)(b) = f (n)(b) for all n ≥ 0. Thus, the deÞnition of
g may be written as

g(x) = Σ∞i=0
g(i)(b)
i! (x− b)i for all x ∈ J .

In other words, g is represented by its Taylor series at b on J . Hence, by the Þrst
part of the theorem, g is analytic on J . Also, by the Þrst part of the theorem,
f is analytic on J . Thus, since g(n)(b) = f(n)(b) for all n ≥ 0, we have by
Theorem 25.21 that g = f on J . Therefore, in view of the way we originally
deÞned g, we have that f |J is represented by its Taylor series at b on the entire
open interval J . ¥
Recall that a nonconstant polynomial has only Þnitely many roots (Exercise

9.21). This is false for analytic maps: the sine function is analytic (Example
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25.8) but sin(nπ) = 0 for all n = ±1,±2, ... (also, see Exercise 25.29). However,
nonconstant analytic functions have the next best property � their roots are
isolated � which you are asked to prove:

Exercise 25.28: If f is a nonconstant analytic function on an open interval
I, then {x ∈ I : f(x) = 0} does not have a limit point in I. Thus, f has only
Þnitely many roots in any closed and bounded subinterval of I.
(Hint: Make use of Exercise 24.28.)

Exercise 25.29: In relation to the preceding exercise, give an example of
an analytic function on a bounded open interval I that has inÞnitely many roots
in I.

Exercise 25.30: If f is analytic on an open interval I, then there is a largest
open interval J containing I for which there is an analytic function g on J such
that g|I = f . (The function g is called the analytic continuation of f .)
(Hint: By Theorem 25.21, if ϕ and ψ are analytic functions on an open

interval K ⊃ I such that ϕ|I = f and ψ|I = f , then ϕ = ψ.)
Exercise 25.31: Let f and g be analytic at a point c. Quote results in

previous chapters that show that f +g, f−g and the product f ·g is analytic at
c. (The result for fg , g(c) 6= 0, is also true, but not by merely quoting previous
results.)

Final Comments

We conclude with two suggestions for the further study of analytic functions.
First, we have only covered very few of the many important basic results

about analytic functions of a real variable. A treatment of such results is in, for
example, the book by Steven G. Krantz and Harold R. Parks entitled A Primer
of Real Analytic Functions, published by Birkhäuser (Boston, Basel, Berlin),
1992. This book also contains important results about analytic functions of
several variables.
Second, analytic functions of a complex variable is a fascinating and profound

subject with numerous applications to other areas of mathematics and to the
physical sciences. The complex plane is a natural setting for analytic functions
since, for example, the �pathology� exhibited by the examples in section 1
does not exist for functions of a complex variable � namely, if a function f
on the complex plane C is differentiable (meaning that for each point z0 ∈ C,
limz→(0,0)

f(z)−f(z0)
z−z0

exists), then f is represented locally by a power series. (For
this reason, differentiable functions of a complex variable are called analytic
rather than differentiable often before the result we just stated is proved.) You
are well prepared to begin your study of complex function theory.
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