
Chapter I: The Real Numbers

Don�t play poker at someone�s house unless you know the rules of the house.
And don�t play mathematics unless you know the rules of the subject � the
axioms.
Accordingly, it is only fair that we set down the rules we will play by: the

axioms for the real numbers. This is simple enough to do. However, some basic
consequences of the axioms should also be presented so that you know how some
�rules� you have been taught, which are not axioms, follow from the axioms.
For example, �a minus times a minus is a plus�, �zero times any number is
zero�,�0 < 1�, �xy +

z
w =

xw+yz
yw � are not �rules� and formulas to be committed

to memory for future use; they all follow from the axioms. Once you understand
how they follow from the axioms, you will understand them better; put another
way, the axioms will focus your understanding.
We can not verify all the familiar consequences of the axioms. We verify

some of the more prominent consequences of the axioms; we hope that what we
do, and what you are asked to do in exercises, is enough to make you feel that
all the arithmetic you use could, indeed, be veriÞed from the axioms.
All this having been said, I have to admit to being slightly disingenuous.

I am referring to certain facts about the natural numbers 1, 2, 3, ... stated in
section 4 (1.18). These facts are not consequences of the axioms for the real
numbers listed in section 1; instead, they come from a way the natural numbers
can be constructed. We do not do the construction, but the facts are easy
for you to accept based on your past experience with the natural numbers. In
effect, we will accept certain facts about the natural numbers as though they
are axioms, but we postpone mentioning them until section 4.

1. The Axioms

We denote the set of real numbers by R1.
We state the axioms for the real numbers. You are familiar with most of

the axioms as the �rules of arithmetic�; the exception may be the Completeness
Axiom. The Completeness Axiom is necessary since the rational numbers sat-
isfy all the other axioms � thus, without the Completeness Axiom, we are not
guaranteed that

√
2, π, etc. are real numbers (we prove that positive numbers

have square roots in section 5).
(A) Addition Axioms. There is a function, +, deÞned on the Cartesian

product R1 ×R1 satisfying A1 -A5 below (we write a+ b to stand for +(a, b)):
A1: For any a, b ∈ R1, a+ b ∈ R1. (Closure)
A2: For any a, b ∈ R1, a+ b = b+ a. (Commutativity)
A3: For any a, b, c ∈ R1, (a+ b) + c = a+ (b+ c). (Associativity)
A4: There is a real number, denoted by 0, such that a+0 = a for all a ∈ R1.

(Identity)
A5: For each a ∈ R1, there is a real number, denoted by −a, such that

a+ (−a) = 0. (Inverse)
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(M) Multiplication Axioms. There is a function, ·, deÞned on the Carte-
sian product R1×R1 satisfying M1 -M5 below (we write a·b to stand for ·(a, b)):

M1: For any a, b ∈ R1, a · b ∈ R1. (Closure)
M2: For any a, b ∈ R1, a · b = b · a. (Commutativity)
M3: For any a, b, c ∈ R1, (a · b) · c = a · (b · c). (Associativity)
M4: There is a real number, denoted by 1, such that 1 6= 0 and a · 1 = a for

all a ∈ R1. (Identity)
M5: For each a ∈ R1 such that a 6= 0, there is a real number, denoted by

a−1 or by 1
a , such that a · a−1 = 1, equivalently, a · 1

a = 1. (Inverse)

(D) Distributive Axiom. For all a, b, c ∈ R1, a · (b+ c) = (a · b) + (a · c).
(O) Order Axioms. There is a relation, <, on R1 satisfying O1 -O4 below

(x < y is read x is less than y):
O1: For any x, y ∈ R1, one and only one of the following holds: x < y,

y < x, or x = y. (Trichotomy)
O2: If x, y, z ∈ R1 and if x < y and y < z , then x < z. (Transitivity)
O3: If x, y, z ∈ R1 and if x < y, then x+ z < y + z.
O4: If x, y, z ∈ R1 and if x < y and 0 < z, then x · z < y · z.
We write x ≤ y to mean x < y or x = y. We sometimes write y > x or

y ≥ x to mean x < y or x ≤ y, respectively. A number x is said to be positive
if x > 0, negative if x < 0 and nonnegative if x ≥ 0.
(C) Completeness Axiom.1 If A is a nonempty subset of R1 such that

A has an upper bound u (i.e., a ≤ u for all a ∈ A), then A has a least upper
bound ` (i.e., ` is an upper bound for A and ` ≤ u for all upper bounds u for
A). (See Remarks about the Completeness Axiom below.)

We summarize the axioms: Axioms (A), (M) and (D) say that R1 is a Þeld;
axioms (A), (M), (D) and (O) say that R1 is an ordered Þeld; axioms (A), (M),
(D), (O) and (C) say that R1 is a complete ordered Þeld. It can be shown that
there is a complete ordered Þeld and that there is only one complete ordered
Þeld (up to isomorphism). Thus, the reals are the unique complete ordered Þeld.

Remarks about the Completeness Axiom. We make three clarifying
observations about the Completeness Axiom.
First, the word has in the axiom is not intended to be possessive: the open

interval (0, 1) has 1 as an upper bound, but 1 /∈ (0, 1).
Second, a nonempty set A that has an upper bound has only one least upper

bound: If `1 and `2 were two different least upper bounds of A, then `1 < `2
(since `2 is an upper bound) and `2 < `1, in contradiction to O1.
Third, the requirement in the axiom that A be nonempty is necessary. This

is because every real number is an upper bound of the empty set ∅, which we
see as follows: If a real number x is not an upper bound of ∅, then a 6≤ x for
some a ∈ ∅, which is impossible since there is no point a in ∅.

1The Completeness Axiom is often called the Least Upper Bound Axiom. We will say more
about this in section 8.
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2. Some Notation, Intervals

Eventually, we adopt all the notation used in arithmetic and algebra. For
now, we minimize our notation to the notation in section 1 together with the
following convenient extensions of that notation:

� a
c stands for a · 1

c (assuming c 6= 0 � recall M5); in particular, a+b
c stands

for (a+ b) · 1
c and

a·b
c stands for (a · b) · 1

c .

� an = a · a · · · · · a| {z }
n terms

for a ∈ R1 and n = 1, 2, ... . (We discuss a
1
n in section

5, where we show a
1
n is a number for all a ≥ 0 and n = 1, 2, ... .)

� We frequently juxtapose order relations: for example, a < b ≤ c means
a < b and b ≤ c.

We use the usual notation for intervals. We divide intervals into three kinds:

1. Open intervals: (a, b), (a,∞), (−∞, a) and (−∞,∞) = R1, where

(a, b) = {x ∈ R1 : a < x < b}, a < b;
(a,∞) = {x ∈ R1 : x > a};
(−∞, a) = {x ∈ R1 : x < a}.

2. Closed intervals: [a, b], [a,∞) and (−∞, a], where
[a, b] = {x ∈ R1 : a ≤ x ≤ b}, a ≤ b;
[a,∞) = {x ∈ R1 : x ≥ a};
(−∞, a] = {x ∈ R1 : x ≤ a}.

3. Half - open (or half - closed) bounded intervals: [a, b) and (a, b], where

[a, b) = {x ∈ R1 : a ≤ x < b}, a < b;
(a, b] = {x ∈ R1 : a < x ≤ b}, a < b.

The notation for an open interval and an ordered pair is the same; neverthe-
less, the context will prevent confusion. In the notation for intervals, we used
∞ and −∞ only as abstract symbols; in particular, the symbols ∞ and −∞
never denote real numbers.

3. Algebra and Arithmetic

After stating the axioms in section 1, we remarked that the axioms say
that the reals are the unique complete ordered Þeld. Thus, if your previous
experience with real numbers leads you to believe that real numbers satisfy the
axioms, then you should believe that the axioms yield all the �facts� you have
used about real numbers all your life (except for what we have said about the
natural numbers in the introduction to the chapter). We show how some of these
facts are consequences of the axioms; many other facts are left as exercises for
you to do.
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Our Þrst theorem veriÞes cancellation for addition.

Theorem 1.1: Let x, y, z ∈ R1. If x+ y = x+ z, then y = z.

Proof: Since x + y = x + z and −x is a real number (by A5), clearly
(−x) + (x+ y) = (−x) + (x+ z). Hence, by A3,

((−x) + x) + y = ((−x) + x) + z).
Thus, by A2, (x + (−x)) + y = (x + (−x)) + z. Hence, by A5, 0 + y = 0 + z.
Hence, by A2, y + 0 = z + 0. Therefore, by A4, y = z. ¥
Theorem 1.2: If x, y ∈ R1 and x + y = 0, then y = −x. In other words,

the additive inverse −a of a in A5 is unique.
Proof: Since x+y = 0 by assumption and x+(−x) = 0 by A5, we have that

x+ y = x+ (−x).
Therefore, by Theorem 1.1, y = −x. ¥
The following corollary shows that the familiar adage �a minus times a minus

is a plus� is true:

Corollary 1.3: For any x ∈ R1, −(−x) = x.
Proof: By A5, x + (−x) = 0. Hence, by A2, (−x) + x = 0. Therefore, by

Theorem 1.2, x = −(−x). ¥
Theorem 1.4: For any x ∈ R1, x · 0 = 0.
Proof: We have

x+ (x · 0) M4= (x · 1) + (x · 0) D= x · (1 + 0) A4= x · 1 M4= x
A4
= x+ 0.

Therefore, by Theorem 1.1, x · 0 = 0. ¥
Theorem 1.5: For any x ∈ R1, −x = (−1) · x.
Proof: First, note that

x+ (−1) · x M4= (x · 1) + ((−1) · x) M2= (x · 1) + (x · (−1))
D
= x · (1 + (−1)) A5= x · 0 1.4= 0.

Therefore, by Theorem 1.2, (−1) · x = −x. ¥
Before we give our next theorem, we comment about the statement and the

proof of the theorem.
The conclusion of our next theorem is a compound statement, where the

two parts are connected with the word or. When two statements are connected
by or, we include the possibility that both statements may be true. This is not
always the case in common usage: �At 7:00 P.M., I will be in New Orleans or
I will be in Boston� obviously excludes both statements from being true. We
use �either ... or� when we mean one or the other but not both. If P and Q are
statements, then our meaning for the statement �P or Q� is called the inclusive
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disjunction of P and Q; the statement �either P or Q� is called the exclusive
disjunction of P and Q.
The proof of our next theorem illustrates a logical principle: To prove that

the disjunction of two statements P and Q is true, it is sufficient to assume one
of the statements is false and prove the other statement is true.
As you know from experience, the following theorem is useful in Þnding

solutions to equations and inequalities.
Theorem 1.6: If x, y ∈ R1 and x · y = 0, then x = 0 or y = 0.
Proof: Assume that x 6= 0. Then 1

x is a real number by M5. Thus, since
x · y = 0 by assumption and since 1

x · 0 = 0 by Theorem 1.4, we have that

1
x · (x · y) = 0.

Hence, by M3, ( 1
x · x) · y = 0. Thus, by M2, (x · 1

x) · y = 0. Therefore, by M5,
1 · y = 0. Hence, by M2, y · 1 = 0. Therefore, by M4, y = 0. ¥
The following theorem veriÞes cancellation for multiplication.

Theorem 1.7: If x, y ∈ R1 and y 6= 0, then y · xy = x.
Proof: Recall from the notation in section 2 that xy = x · 1

y . Therefore,

y · xy = y · (x · 1
y )

M2
= y · ( 1

y · x)
M3
= (y · 1

y ) · x
M5
= 1 · x

M2
= x · 1 M4= x. ¥

We now come to the familiar formula for adding fractions.

Theorem 1.8: If x, y, z, w ∈ R1 such that y 6= 0 and w 6= 0, then
x
y +

z
w =

x·w+y·z
y·w .

Proof: Recall from section 2 that the right - hand side of the equation is
shorthand for (x · w + y · z) · 1

y·w . Thus, we must Þrst know that
1
y·w is a real

number: Since y 6= 0 and w 6= 0, y · w 6= 0 by Theorem 1.6; therefore, 1
y·w is a

real number by M5.
Now,

(y ·w) · (xy + z
w )

D
= [(y ·w) · xy ] + [(y ·w) · zw ]

M2
= [(w · y) · xy ] + [(y ·w) · zw ]

M3
= [w · (y · xy )] + [y · (w · zw )]

1.7
= w · x+ y · z M2= x ·w + y · z.

Hence,

(*) 1
y·w · [(y · w) · (xy + z

w )] =
1
y·w · [x · w + y · z]
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Our theorem follows from (*) since the left - hand side of (*) is

1
y·w · [(y ·w) · (xy + z

w )]
M3
= [ 1

y·w · (y ·w)] · (xy + z
w )]

M2
= [(y ·w) · 1

y·w ] · (xy + z
w )]

M5
= 1 · (xy + z

w )
M2
= (xy +

z
w ) · 1

M4
= x

y +
z
w

and the right - hand side of (*) is

1
y·w · [x · w + y · z]

M2
= [x ·w + y · z] · 1

y·w =
x·w+y·z
y·w . ¥

Theorem 1.9: 0 < 1.
Proof: By M4, 0 6= 1. Hence, by O1, either 1 < 0 or 0 < 1 (not both).

Assume by way of contradiction that 1 < 0. Then, by 03,

1 + (−1) < 0 + (−1).

Thus, since 1 + (−1) = 0 by A5 and since 0 + (−1) A2= (−1) + 0 A4
= −1, we

have that 0 < −1. Hence, by O4, 0 · (−1) < (−1) · (−1). Therefore, by M2,
(−1) · 0 < (−1) · (−1). Hence, by Theorem 1.4, 0 < (−1) · (−1). Thus, since
(−1) · (−1) = −(−1) by Theorem 1.5, 0 < −(−1). Hence, by Corollary 1.3,
0 < 1. Therefore, we have a contradiction to our assumption that 1 < 0 (since
O1 says 1 < 0 and 0 < 1 can not both occur). ¥
Corollary 1.10: For any x ∈ R1, x < x+ 1.

Proof: By Theorem 1.9, 0 < 1. Hence, by O3, 0 + x < 1 + x. Thus, by A2,
x+ 0 < x+ 1. Therefore, since x+ 0 = x by A4, x < x+ 1. ¥
Exercise 1.11: For any x ∈ R1, x+ (−1) < x.
Exercise 1.12: Let x, y, z ∈ R1 such that x 6= 0. If x · y = x · z, then y = z.
Exercise 1.13: If x ∈ R1 such that x 6= 0, then (x−1)−1 = x.

Exercise 1.14: If x > 0, then −x < 0 and 1
x > 0.

Exercise 1.15: If x, y, z, w ∈ R1 such that y 6= 0 and w 6= 0, then
x
y · zw = x·z

y·w .

Exercise 1.16: If x < y and z < 0, then x · z > y · z.
Exercise 1.17: For any x ∈ R1 such that x 6= 0, x · x > 0.

4. The Natural Numbers

As mentioned in section 1, the reals are the unique complete ordered Þeld.
The existence of a complete ordered Þeld is proved by constructing one. The
process of constructing a complete ordered Þeld often begins with constructing
what will become the natural numbers. These are the numbers you have always
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seen denoted by 1, 2, 3, ... . We are not going to construct the natural numbers;
we merely assume the natural numbers are the numbers 1, 2, 3, ... and denote
the set of all natural numbers by N.
To attempt a little rigor, note that 1 is a real number by M4; then, by A1,

1 + 1 is a real number which we denote by 2; then, by A1, (1 + 1) + 1 is a
real number which we denote by 3; then, by A1, ((1 + 1) + 1) + 1 is a real
number which we denote by 4; and so on. However, what do we mean by �and
so on�? This is troublesome since we are indicating an inÞnite process that
is, heretofore, not well deÞned. How are we assured we have deÞned a set of
objects? We return to this later (after the proof of Theorem 1.20).
Even though we will not construct the natural numbers, we need to assume

facts about the natural numbers that are by - products of the construction. The
facts are easy to accept since they seem obvious from our experience with the
natural numbers. However, we emphsize that the facts are not merely intuitive
� they come from the construction of the natural numbers and they hold for
the �numbers� that are (properly) designated as the natural numbers in any
construction of a complete ordered Þeld.

1.18 Facts Assumed about N:

� 1 ∈ N and 1 ≤ n for all n ∈ N.

� If n,m ∈ N, then n+m ∈ N and n ·m ∈ N. (Closure)

� If n ∈ N, then n > 0 and n+ (−1) < n.
� If n ∈ N and n > 1, then n+ (−1) ∈ N.

� Well Ordering Principle: Every nonempty subset S of N has a least
member ` (i.e., there exists ` ∈ S such that ` ≤ s for all s ∈ S).

We illustrate the usefulness of the Well Ordering Principle by proving the
following seemingly obvious result (think about how you might prove the result
without using the Well Ordering Principle):

Theorem 1.19: There is no natural number between 0 and 1.
Proof: Let S = {x ∈ N : 0 < x < 1}, and assume by way of contradiction

that S 6= ∅. Then, by the Well Ordering Principle, there is a least member ` of
S. Since ` ∈ S, 0 < ` < 1. Hence, by O4,

0 · ` < ` · ` < 1 · `;

furthermore, 0 · ` = 0 (by M2 and Theorem 1.4), and 1 · ` = ` (by M2 and M4).
Thus, 0 < ` · ` < `. Combining this with the fact that ` < 1, we have

(*) 0 < ` · ` < ` < 1.
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Since ` ∈ S, ` ∈ N. Hence, by our assumption that N is closed under
multiplication (1.18), ` · ` ∈ N. Thus, since 0 < ` · ` < 1 (by (*)), ` · ` ∈ S.
Therefore, since ` · ` < ` (by (*)), ` is not the least member of S. This is a
contradiction to our choice of `. ¥
We now prove an important consequence of the Well Ordering Principle.

Theorem 1.20 (Induction Principle): For each n ∈ N, let Pn be a
statement. If P1 is true and if Pn+1 is true whenever Pn is true, then Pn is true
for all n ∈ N.
Proof: Let S = {n ∈ N : Pn is false}, and assume by way of contradiction

that S 6= ∅. Then, by the Well Ordering Principle, there is a least member ` of
S. Since P1 is true, 1 /∈ S; thus, ` 6= 1. Also, since ` > 0 (1.18), we see from
Theorem 1.19 that ` 6< 1. Hence, by O1, ` > 1. Thus, `+(−1) ∈ N (1.18); also,
` + (−1) < ` (1.18). Thus, since ` is the least member of S, P`+(−1) is true.
Hence, by assumption in our theorem, P[`+(−1)]+1 is true (note: P[`+(−1)]+1 is
indeed one of the statements in our theorem, for since `+ (−1) ∈ N and since
1 ∈ N (1.18), we know that [`+ (−1)] + 1 ∈ N (1.18)). This says that P` is true
since

[`+ (−1)] + 1 A3= `+ [(−1) + 1] A2= `+ [1 + (−1)] A5= `+ 0
A4
= `.

Therefore, having proved that P` is true, we have that ` /∈ S. This establishes
a contradiction. ¥
Recall our attempt at rigor in the second paragraph of the section. You

can now answer the questions we asked there: I invite you to use the Induction
Principle to deÞne the set of natural numbers in the manner indicated.
We prove one more theorem about the natural numbers. First, we moti-

vate the importance of the theorem by showing that it is needed in elementary
situations.
We recall the proof that the sequence { 1

n}∞n=1 converges to 0 as presented
in most calculus books (the proof that follows is taken verbatim from Edwards
and Penney, Calculus, Prentice Hall, Þfth edition, p. 627) :
� Suppose that we want to establish rigorously the intuitively evident fact

that the sequence { 1
n}∞n=1 coverges to zero,

limn→∞ 1
n = 0.

Because L = 0 here, we only need to convince ourselves that to each positive
number ² there corresponds an integer N such that¯̄

1
n

¯̄
= 1

n < ² if n ≥ N .

But evidently it suffices to choose any Þxed integer N > 1
² . Then n ≥ N implies

immediately that

1
n ≤ 1

N < ²,
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as desired (Fig. 11.2.3).�
The proof is �correct� but incomplete. In fact, the essential point is missed:

How do you know there is an integer N such that N > 1
² ? We correct the

deÞciency with our next theorem, which gives an important property of the
natural numbers. First, we prove a lemma; the lemma is obvious based on our
experience with the natural numbers.

Lemma 1.21: N has no upper bound.

Proof: Suppose by way of contradiction that N has an upper bound. Then,
since N 6= ∅ (because 1 ∈ N (1.18)), the Completeness Axiom says that N has
a least upper bound `. By Exercise 1.11, ` + (−1) < `. Hence, ` + (−1) can
not be an upper bound for N (since ` is the least upper bound for N). Thus,
there exists k ∈ N such that k 6≤ `+ (−1); hence, by O1, `+ (−1) < k. Hence,
` < k + (−(−1)) (use O3, and A3 -A5). Thus, since −(−1) = 1 by Corollary
1.3, ` < k + 1. Hence, by O1,

` 6≥ k + 1;
furthermore, k + 1 ∈ N (by 1.18 since k ∈ N and 1 ∈ N). Therefore, ` is not an
upper bound of N. This is a contradition (since ` is an upper bound of N). ¥
Theorem 1.22 (Archimedean Property): If x, y ∈ R1 and x > 0, then

there exists n ∈ N such that y < n · x.
Proof: Since x ∈ R1 and x 6= 0 (by O1), 1

x ∈ R1 (by M5). Thus, y · 1
x ∈ R1

(by M1). Hence, by Lemma 1.21, there exists n ∈ N such that y · 1
x < n (we are

also using O1 here). Thus, since x > 0, we have by O4 that

(y · 1
x) · x < n · x.

Therefore, since

(y · 1
x) · x

M3
= y · ( 1

x · x)
M2
= y · (x · 1

x)
M5
= y · 1 M4= y,

we have that y < n · x. ¥
Exercise 1.23: In line with the discussion preceding Lemma 1.21, prove

that for any given ² > 0, there exists N ∈ N such that N > 1
² .

Let ² > 0, and let ni ∈ N for each i ∈ N such that ni < ni+1 for each i.
Prove that there exists N such that 1

ni
< ² for all i ≥ N .

Exercise 1.24: 1 is the least upper bound of the open interval (0, 1).

5. Proof That Nonnegative Numbers Have nth Roots

We presented the axioms for the real numbers in section 1 and made certain
assumptions, which we take as axioms, about the natural numbers in section 4
(1.18). We claimed at the beginning of the chapter that all properties of real
numbers that you are familiar with can be proved on the basis of the axioms in
section 1 and the facts assumed about N in section 4 (1.18). We supported the
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claim in section 3. We support the claim further here by proving an important
theorem that everyone believes, but, perhaps, only from experience.
Let a ≥ 0 and let n be a natural number. We are all familiar with the symbols

n
√
a and a

1
n as representing the nth root of a. From past experience, we are use to

thinking of n
√
a as a number. We show that n

√
a is a number and that this result

follows from the axioms we have given. The proof of the theorem is very long �
about six pages. The reason for the length of the proof is not the difficulty of the
proof, but rather the fact that we carry out the details of many computations
in the proof. Our purpose for including detailed computations is to give you
further assurance that manipulations with arithmetic and inequalities that you
already know can be veriÞed rigorously. The main parts of the proof are broken
down into steps that will help you understand how the proof is organized.
For a real number a ≥ 0 and a natural number n, we deÞne an nth root of

a to be a nonnegative real number b such that bn = a. We will see that there
is only one nth root of each number a ≥ 0; thus, we can say the nth root of a
rather than an nth root of a. We denote the nth of a by a

1
n or n

√
a. (A further

discussion of roots of numbers is in section 4 of Chapter VIII, where we include
odd roots of negative numbers.)
The proof of our theorem is based on the Completeness Axiom. At the

beginning of section 1 we said that without the Completeness Axiom we are not
guaranteed that

√
2 is a real number. The proof of our theorem shows that with

the Completeness Axiom we can prove that
√
2 is a real number.

Theorem 1.25: For any real number a ≥ 0, there is a unique real number
b ≥ 0 such that bn = a. In other words, every nonnegative real number has a
unique (nonnegative) nth root.

Proof: We prove the theorem only for square roots. The proof for nth roots
uses similar ideas (with some computations aided by the Binomial Theorem
(Theorem 21.41), whose proof you can read now). Another proof for nth roots
is in section 4 of Chapter VIII, but that proof depends on previous material.
We Þrst dispense with the case when a = 0 : By Theorem 1.4, 0 is a square

root of 0 and, by Exercise 1.17 and O1, 0 is the only square root of 0.
Now, Þx a > 0. The proof centers around considering the following set:

S = {x ≥ 0 : x2 ≤ a}.
We show that S has a least upper bound b; then we show that b is the square

root of a.

Step 1: Proof that S has a least upper bound b

First, note that S 6= ∅ since 0 ∈ S by Theorem 1.4.
Next, we show that a + 1 is an upper bound for S. Assume by way of

contradiction that there is an x ∈ S such that x 6≤ a + 1. Then, by O1,
a+ 1 < x. Hence,

0 < a
1.10
< a+ 1 < x.
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Thus, a+ 1 > 0 and x > 0 (by O2); therefore, since a+ 1 < x, we see that

(a+ 1)2
O4
< x · (a+ 1) M2= (a+ 1) · x O4< x2;

also, using the Distributive Axiom (D) and various axioms in (A) and (M), we
see that

(a+ 1)2 = (a2 + 1) + (a+ a).

Hence, we have

(1) (a2 + 1) + (a+ a) < x2.

We obtain a contradiction to our assumption that x ∈ S by proving
(2) a < x2.

Proof of (2): Since a2 > 0 by Exercise 1.17, a2 + 1 > 0 by Corollary 1.10
and O2. Hence,

(a2 + 1) + (a+ a)
O3
> 0 + (a+ a)

A2
= (a+ a) + 0

A4
= (a+ a);

furthermore, since a > 0,

a+ a
O3
> 0 + a

A2
= a+ 0

A4
= a.

Combining the last two inequalities using O2, we obtain that

a < (a2 + 1) + (a+ a).

Therefore, by (1) and O2, a < x2. This proves (2).

By (2) and O1, x2 6≤ a. Hence, x /∈ S. This is a contradiction. Therefore,
a+ 1 is an upper bound for S.
We have proved that S 6= ∅ and that S has an upper bound. Therefore, by

the Completeness Axiom, S has a least upper bound b. This completes Step 1.

We note the following fact for use several times: Since n > 0 for all n ∈ N
(1.18), we have from Exercise 1.14 that

(3) 1
n > 0 for all n ∈ N.

Step 2: Proof that b > 0

We prove that b > 0 by Þnding a positive number in S that is smaller than
b.
Since a > 0, Theorem 1.22 says there exists n ∈ N such that 1 < n ·a. Thus,

by (3) and O4, 1 · 1
n < (n · a) · 1

n . Hence,
1
n < a (use M2 -M5). Thus, by (3)

and O4, we have that

(4)
¡

1
n

¢2
< a · 1

n .

We prove that the right - hand side of (4) is ≤ a as follows: Since 1 ≤ n
(1.18) and a > 0, we have by O4 that 1 · a ≤ n · a. Hence, a ≤ a · n (by M2 and
M4). Thus, since 1

n > 0 (by (3)),

11



a · 1
n

O4≤ (a · n) · 1
n

M3
= a · (n · 1

n)
M5
= a · 1 M4= a,

which proves that a · ( 1
n) ≤ a.

Now, having proved that a · ( 1
n) ≤ a, we have by (4) and O2 that¡

1
n

¢2
< a.

Therefore, since 1
n > 0 (by (3)) we have proved that 1

n ∈ S. Thus, since b is
an upper bound for S, b ≥ 1

n . Therefore, since
1
n > 0, b > 0 (by O2). This

completes Step 2.

We show that b2 = a by showing that b2 6> a and that b2 6< a (and then
applying O1).

Step 3: Proof that b2 6> a

Since b > 0 by Step 2, b+ b
O3
> 0 + b

A2
= b+ 0

A4
= b > 0; therefore, by O2, we

have that

(5) b+ b > 0.

Now, suppose by way of contradiction that b2 > a. Note from (5) and O1
that b+ b 6= 0 and, hence, that 1

b+b is a number by M5. We prove that

(6) b
2+(−a)
b+b > 0.

Proof of (6): By our assumption that b2 > a (by assumption), we see that

b2 + (−a) O3> a+ (−a) A5= 0;

thus, since 1
b+b > 0 (by (5) and Exercise 1.14), we have by O4 that

[b2 + (−a)] · 1
b+b > 0 · 1

b+b .

Therefore, since 0 · 1
b+b = 0 (by M2 and Theorem 1.4), we have proved (6).

By (6) and Theorem 1.22, there exists k ∈ N such that

1 < k · b2+(−a)
b+b .

Thus, since 1
k > 0 (by (3)), we see from O4 (using M2 -M5) that

(7) 1
k <

b2+(−a)
b+b .

We show that

(8) b+ (− 1
k ) > 0.

Proof of (8): Since a > 0,

a+ b2
O3
> 0 + b2

A2
= b2 + 0

A4
= b2;

12



hence, by O3 and A2 -A5, b2 > b2 + (−a). Thus, since 1
b+b > 0 (by (5) and

Exercise 1.14), we have by O4 that

(8i) b
2+(−a)
b+b < b2

b+b ;

Since b > 0 (by Step 2), b + b
O3
> 0 + b

A2
= b + 0

A4
= b; thus, again since b > 0,

(b+ b) · b O4> b2. Therefore, since 1
b+b > 0 (by (5) and Exercise 1.14), we have

[(b+ b) · b] · 1
b+b

O4
> b2 · 1

b+b =
b2

b+b ;

Thus, since [(b+ b) · b] · 1
b+b = b (by M2 -M5),

b > b2

b+b .

Hence, by (8i) and O2, b
2+(−a)
b+b < b. Thus, by (7) and O2, 1

k < b. Hence,

1
k + (− 1

k )
O3
< b+ (− 1

k );

Therefore, by A5, 0 < b+ (− 1
k ). This proves (8).

Next, we show that

(9)
¡
b+ (− 1

k )
¢2
> a.

Proof of (9): Since b+ b > 0 (by (5)), we see from (7) and O4 that

1
k · (b+ b) < b2+(−a)

b+b · (b+ b);

furthermore, using M2 -M5, we see that

b2+(−a)
b+b · (b+ b) = b2 + (−a).

Hence,

1
k · (b+ b) < b2 + (−a).

Thus, since 1
k · (b+ b)

M2
= (b+ b) · 1

k =
b+b
k , we have

b+b
k + [a+ (−b+b

k )]
O3
< [b2 + (−a)] + [a+ (− b+b

k )].

Hence, using A2 -A5, we see that

(9i) a < b2 + (− b+b
k ).

Since 1
k > 0 (by (3)),

1
k 6= 0 (by O1); hence,

¡
1
k

¢2
> 0 (by Exercise 1.17). Thus,

¡
1
k

¢2
+ [b2 + (− b+b

k )]
O3
> 0 + [b2 + (− b+b

k )];

13



hence, by A2 and A4,¡
1
k

¢2
+ [b2 + (−b+b

k )] > b
2 + (− b+b

k );

thus, by (9i) and O2, we have that

(9ii)
¡

1
k

¢2
+ [b2 + (− b+b

k )] > a.

We show that the left - hand side of (9ii) is
¡
b+ (− 1

k )
¢2
, which completes the

proof of (9). The computations that follow are tedious, but are done so that
you can see that what we prove depends only on the axioms (and some previous
theorems). We note that when we change from x

y to x · 1
y or vice versa, this

change is justiÞed by the notation in section 2; in particular, the change does
not use an axiom or a theorem. Now,¡

b+ (− 1
k )
¢2 D, M2

=
£
b2 + (b · ¡− 1

k

¢
)
¤
+
h
(b · ¡− 1

k

¢
) +

¡− 1
k

¢2
i

1.5
=
£
b2 + {b · ¡(−1) · 1

k

¢}¤+ h{b · ¡(−1) · 1
k

¢}+ ¡(−1) · 1
k

¢2
i

A3, M2, M3
= b2 +

£¡
((−1) · bk ) + ((−1) · bk )

¢
+
¡{(−1) · (−1)} · { 1

k}2
¢¤

1.5, 1.3
= b2 +

£¡
((−1) · bk ) + ((−1) · bk )

¢
+
¡
1 · { 1

k}2
¢¤

D, M2
= b2 +

£{(−1) · ( bk + b
k )}+ ({ 1

k}2 · 1)¤
1.8, M4
= b2 +

h
{(−1) · (k·b)+(k·b)

k2 }+ { 1
k}2
i

D, 1.5
= b2 + [(−k·(b+b)

k2 ) +
¡

1
k

¢2
]
1.15
= b2 + [−(kk · b+bk ) +

¡
1
k

¢2
]

M5, M4
= b2 + [− b+b

k +
¡

1
k

¢2
]
A2, A3
=

¡
1
k

¢2
+ [b2 + (−b+b

k )].

Therefore, as remaked after (9ii), we have proved (9).

We now show that

(10) b+ (− 1
k ) is an upper bound for S.

Proof of (10): Let y ∈ R1 such that y > b + (− 1
k ). We show that y /∈ S

(which proves (10) contrapositively by O1).
Since y > b+ (− 1

k ) and b+ (− 1
k ) > 0 (by (8)), we see from O2 that y > 0.

Thus, since y > b+ (− 1
k ), we have that

y2
04
> (b+ (− 1

k )) · y
M2
= y · (b+ (− 1

k ));

also, since b+ (− 1
k ) > 0 (by (8)) and y > b+ (− 1

k ), we have by O4 that

y · (b+ (− 1
k )) >

¡
(b+ (− 1

k )
¢2
.

Therefore, applying O2 to the two inequalities above, we have
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y2 >
¡
(b+ (− 1

k )
¢2
.

Hence, by (9) and O2, y2 > a. Thus, y2 6≤ a (by O1). Hence, y /∈ S. Therefore,
by the comment at the beginning of the proof of (10), we have proved (10).

Finally, we complete the proof for Step 3. SpeciÞcally, we obtain a contra-
diction to b being the least upper bound for S by showing that b + (− 1

k ) < b
and applying (10).
Since 1

k > 0 by (3), − 1
k < 0 by Exercise 1.14. Hence, by O3, (− 1

k )+b < 0+b;
thus, by A2 and A4, b + (− 1

k ) < b. Hence, by O1, b 6≤ b + (− 1
k ). Therefore,

by (10), b is not the least upper bound for S. This is a contradiction. The
contradiction is the result of our supposition near the beginning of the proof of
Step 3 that b2 > a. Therefore, b2 6> a. This completes Step 3.

Step 4: Proof that b2 6< a
We omit references to the use of axioms in section 1, some theorems and

exercises in section 3, and the assumptions in 1.18. In other words, we use the
familiar �rules� of arithmetic without reference; we invite the reader to Þll in
the details (which are similar to the details in Step 3).
Suppose by way of contradiction that b2 < a. Then, since a−b2

(b+b)+1 > 0, we
see from Theorem 1.22 that there exists m ∈ N such that

1 < m · a−b2

(b+b)+1 .

Hence, it follows that

(11) b2 + (b+b)+1
m < a.

Now, note that

(b+ 1
m)

2 = b2 + b+b
m + ( 1

m)
2 ≤ b2 + b+b

m + 1
m = b2 + (b+b)+1

m .

Hence, by (11),

(b+ 1
m)

2 < a;

furthermore, b+ 1
m > 0 (since b is an upper bound of S and 0 ∈ S). Therefore,

b+ 1
m ∈ S. However, since b < b+ 1

m , this contradicts that b is an upper bound
for S. The contradiction comes from our assumption that b2 < a. Therefore,
b2 6< a. This completes Step 4.

Step 5: Completing the proof

We know from Steps 3 and 4 that b2 6> a, and that b2 6< a. Therefore, by O1,
b2 = a. By Step 2, b > 0. Therefore, it only remains to prove the uniqueness
part of our theorem, that is, that b is the only nonnegative number such that
b2 = a. As in the proof of Step 4, we omit references to the use of the axioms
in section 1, etc.
Assume that c ≥ 0 and that c2 = a. We show that b = c. Since b2 = c2,

b2 + (−[c2]) = 0. Thus, since b2 + (−[c2]) = (b+ c)(b+ [−c]), we have that
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(b+ c)(b+ [−c]) = 0.

Thus, since b+ c 6= 0 (recall from Step 2 that b > 0), we have by Theorem 1.6
that b+ [−c] = 0. Therefore, b = c. ¥

6. The Betweenness Property for the Rational Numbers

The rational numbers are the numbers that can be written in the form m
n

or −m
n , where m,n ∈ N, together with the number 0. We denote the set of all

rational numbers by Q.
We prove a fundamental result about the rational numbers: There is a ra-

tional number between any two (different) real numbers.

Theorem 1.26: If a, b ∈ R1 such that a < b, then there is a rational number
r such that a < r < b.

Proof: As we did in the latter part of the proof of Theorem 1.25, we omit
references to the use of axioms in section 1, some theorems and exercises in
section 3, and assumptions in 1.18 (except when we use the Well Ordering
Principle).
The theorem is obvious when a < 0 < b (take r = 0). Thus, there are only

two cases to consider: a ≥ 0 and b ≤ 0.
Assume Þrst that a ≥ 0. Since a < b, b+(−a) > 0. Hence,by Theorem 1.22,

there exists n ∈ N such that 1 < n · (b + (−a)). (To envision the proof that
follows, rewrite the inequality as 1

n < b+ (−a).)
Let

S = {k ∈ N : a < k
n}.

By Lemma 1.21, n · a < k for some k ∈ N; thus, S 6= ∅. Hence, by the Well
Ordering Principle for N (1.18), S has a least member `. Since `, n ∈ N, `n ∈ Q.
Since ` ∈ S, a < `

n . We complete the proof for the case when a ≥ 0 by
proving that

(*) `
n < b.

Proof of (*): We Þrst prove that

(1) `+(−1)
n ≤ a.

Proof of (1): Suppose by way of contradiction that `+(−1)
n > a. Then, since

n > 0, `+ (−1) > n · a. Thus, since n · a ≥ 0 (here is where we use that a ≥ 0),
`+ (−1) > 0. Hence, ` > 1. Thus, since ` ∈ N, `+ (−1) ∈ N. Therefore, since
`+(−1)
n > a, we have that `+(−1) ∈ S; however, since `+(−1) < ` (by Exercise

1.11), this contradicts the fact that ` is the least member of S. Therefore, we
have proved (1).

Now, to prove (*), note from (1) that `
n + (− 1

n) ≤ a. Hence, `
n ≤ a + 1

n .
Also, 1

n < b+ (−a) by our choice of n. Therefore,
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`
n ≤ a+ 1

n < a+ (b+ (−a)) = b.
This proves (*) and, therefore, completes the proof of our theorem for the case
when a ≥ 0.
Finally, consider the case when b ≤ 0. Then 0 ≤ −b < −a; hence, having

already proved the theorem for this type of situation, there exists q ∈ Q such
that −b < q < −a. Therefore, a < −q < b and −q ∈ Q. ¥
Exercise 1.27: If a, b ∈ R1 such that a < b, then there are inÞnitely many

rational numbers in the open interval (a, b).

7. Absolute value

For any number a, the absolute value of a is denoted by |a| and is deÞned
by

|a| =
½
a , if a ≥ 0
−a , if a < 0.

Intuitively, |a| is how far a is from the origin 0 (without regard to whether
a is positive or negative). Thus, |a+ (−b)| can be thought of as the distance
between a and b. Therefore, we call |a+ (−b)| the distance between a and b (or
the distance from a to b).
We note four basic properties of absolute value (the reader should supply

proofs that the properties hold). The properties can be used to show that
the function that assigns to an ordered pair (a, b) of real numbers the number
|a+ (−b)| satisÞes the general deÞnition of a distance function (see Exercise
1.30).

1. |a| ≥ 0 for all a ∈ R1.

2. |a| = 0 if and only if a = 0.
3. |a · b| = |a| · |b| for all a, b ∈ R1.

4. |a+ b| ≤ |a|+ |b| for all a, b ∈ R1 (Triangle Inequality).

Exercise 1.28: If a ≥ 0, then |x| ≤ a if and only if −a ≤ x ≤ a.
Exercise 1.29:

¯̄|a|− |b|¯̄ ≤ |a− b| for all a, b ∈ R1.

Exercise 1.30: Let X be a set. A distance function (or metric) for X is
a real - valued function d deÞned on the Cartesian product X ×X that satisÞes
the following four conditions:

(1) d(x, y) ≥ 0 for all x, y ∈ X;
(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) = d(y, x) for all x, y ∈ X (Symmetry);

(4) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (Triangle Inequality).

DeÞne d(a, b) = |a+ (−b)| for all a, b ∈ R1. Prove that d is a distance
function (in the general sense just deÞned).
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8. Concluding Comments

The reader should now be convinced that familiar manipulations and prop-
erties of the real numbers can be veriÞed on the basis of the axioms for the real
numbers and various theorems in previous sections. Thus, we will no longer refer
to many of the axioms and theorems when we use them. There are some excep-
tions: We will refer to the Completeness Axiom, the Well Ordering Principle,
the Induction Principle and the Archimedean Principle when we use them.
From now on we use all the usual notation associated with arithmetic. For

example, we write a − b to mean a + (−b) and ab to mean a · b. In an ex-
pression involving combinations of addition and multiplication, we assume that
the juxtaposed multiplications are carried out Þrst; for example, ab + c means
(ab) + c.
We use the usual symbols for speciÞc numbers. In particular, we assume the

natural numbers are the numbers 1, 2, 3, ... with their familiar properties.
We assume standard arithmetic � the multiplication tables, long division,

etc. � without proof.
To summarize, having taken a bath, we have now drained away all the dirty

water !

We conclude by stating a dual to the Completeness Axiom.
The Completeness Axiom stated in section 1 is frequently called the Least

Upper Bound Axiom. We will often have occasion to use an equivalent formula-
tion of the axiom called the Greatest Lower Bound Axiom, which we state after
giving relevant terminology.
Let A ⊂ R1. A lower bound for A is a number x such that x ≤ a for all

a ∈ A. A greatest lower bound for A is a lower bound g for A such that g ≥ x
for all lower bounds x for A.

Greatest Lower Bound Axiom. If A is a nonempty subset of R1 such
that A has an lower bound, then A has a greatest lower bound.

It is easy to prove the Greatest Lower Bound Axiom is equivalent to the
Completeness Axiom in section 1. Thus, from the point of view of our develop-
ment, the Greatest Lower Bound Axiom is actually a theorem.
The analogues of remarks we made about the Completeness Axiom at the

end of section 1 apply to the Greatest Lower Bound Axiom. In particular, a
nonempty set with a lower bound has only one greatest lower bound.

Notation:

� lub, sup : We denote the least upper bound of a set A by lubA or by
supA (sup stands for supremum).

� glb, inf : We denote the greatest lower bound of a set A by glbA or by
inf A (inf stands for inÞmum).

� max, min : We sometimes use maxA and minA to stand for supA and
glbA, respectively. (We usually use max and min only when we know the
set A is Þnite.)
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Chapter II: The Notion of Arbitrary Closeness

In the Þrst two sections we study the notion of arbitrary closeness. We then
show that the notion leads in a natural intuitive way to the idea of continuous
functions.

1. Introduction to Arbitrary Closeness

We deÞne what it means for a real number to be arbitrarily close to a
nonempty set of real numbers. Then we present some examples and two basic
theorems.
If p is a real number and A is a nonempty set of real numbers, then the

inÞmum distance of p to A, denoted by dist(p,A), is deÞned by

dist(p,A) = glb {|p− a| : a ∈ A}.
DeÞnition. Let p ∈ R1 and let A ⊂ R1 such that A 6= ∅. We say that p

is arbitrarily close to A, denoted by writing p ∼ A, provided that A 6= ∅ and
dist(p,A) = 0.
We write p 6∼ A to mean that the number p is not arbitrarily close to the

set A.

Example 2.1: 0 ∼ (0, 1), p ∼ (0, 1) if p ∈ (0, 1), and 2 6∼ (0, 1).
Example 2.2: Every real number is arbitrarily close to the set Q of rational

numbers.

Theorem 2.3: Let p ∈ R1 and let A ⊂ R1 such that A 6= ∅. Then p ∼ A if
and only if for each open interval I such that p ∈ I, I ∩A 6= ∅.
Proof: Assume that there is an open interval I = (a, b) such that p ∈ I and

I ∩A = ∅. Then
A ⊂ (−∞, a] ∪ [b,∞);

thus, since a < p < b,

dist(p,A) ≥ min{p− a, b− p} > 0.
Therefore, p 6∼ A.
Conversely, assume that p 6∼ A. Then dist(p,A) > 0. Let J be the open

interval given by

J = (p− dist(p,A), p+ dist(p,A)).
Then p ∈ J since dist(p,A) > 0. In addition, J ∩ A = ∅ since if x ∈ J , then
|p− x| < dist(p,A) and, therefore, x /∈ A. ¥
Lemma 2.4: Let p ∈ R1 and let (a, b) be an open interval such that p ∈

(a, b). Then there exists ² > 0 such that (p− ², p+ ²) ⊂ (a, b).
Proof: Let
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² = min{p− a, b− p}.
Since p ∈ (a, b), ² > 0. Since ² ≤ p− a, a ≤ p− ² and, since ² ≤ b− p, p+ ² ≤ b;
therefore, (p− ², p+ ²) ⊂ (a, b). ¥
Theorem 2.5: Let p ∈ R1 and let A ⊂ R1 such that A 6= ∅. Then p ∼ A if

and only if for each ² > 0, (p− ², p+ ²) ∩A 6= ∅.
Proof: It follows easily from Lemma 2.4 that the condition involving ² here

is equivalent to the condition involving I in Theorem 2.3. Therefore, Theorem
2.5 follows from (and is actually a reformulation of) Theorem 2.3. ¥

2. The Set of Points Arbitrarily Close to a Set

If A is a nonempty set of real numbers, we let A∼ denote the set of all real
numbers that are arbitrarily close to A; in other words,

A∼ = {x ∈ R1 : x ∼ A}.
It is convenient to extend the notation to the empty set ∅ by making the in-
tuitively reasonable assumption that no real number is arbitrarily close to the
empty set; in symbols, ∅∼ = ∅.
Exercise 2.6: For any open interval (a, b), what is (a, b)∼ ? (As for all

exercises, prove that your answer is correct).

Theorem 2.7: For any A ⊂ R1, A ⊂ A∼.
Proof: Since ∅∼ = ∅ (by deÞnition), the theorem is true when A = ∅. So,

assume that A 6= ∅. Let p ∈ A. If I is an open interval such that p ∈ I, then
p ∈ I ∩A and, hence, I ∩A 6= ∅. Therefore, by Theorem 2.3, p ∈ A∼. ¥
Example 2.8: If A is a Þnite subset of R1, then A∼ = A.

Example 2.9: N∼ = N; if A = { 1
n : n ∈ N}, then A∼ = A ∪ {0}.

Exercise 2.10: If A ⊂ B, then A∼ ⊂ B∼.
Theorem 2.11: For any A,B ⊂ R1, (A ∪B)∼ = A∼ ∪B∼.
Proof: Since A ⊂ A ∪ B, A∼ ⊂ (A ∪ B)∼ by Exercise 2.10; similarly,

B∼ ⊂ (A ∪B)∼. Therefore, A∼ ∪B∼ ⊂ (A ∪B)∼.
We prove the reverse containment, namely, (A ∪B)∼ ⊂ A∼ ∪B∼.
Assume Þrst that A = ∅. Then A ∪B = B and, hence,

(A ∪B)∼ = B∼ = ∅∼ ∪B∼ = A∼ ∪B∼.
Similarly, if B = ∅, then (A ∪ B)∼ = A∼ ∪ B∼. This proves that if A = ∅ or
B = ∅, then (A ∪B)∼ = A∼ ∪B∼.
So, we assume from now on that A 6= ∅ and B 6= ∅. We prove that (A∪B)∼ ⊂

A∼ ∪ B∼ with a contrapositive argument (a direct argument can not be done
with the present methods: see Exercise 2.12).
Assume that p ∈ R1 such that p /∈ A∼ ∪B∼. Then, by Theorem 2.5, there

exist ²1, ²2 > 0 such that
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(p− ²1, p+ ²1) ∩A = ∅ and (p− ²2, p+ ²2) ∩B = ∅.

Hence, letting ² = min{²1, ²2}, we see that ² > 0 and that
(p− ², p+ ²) ∩ (A ∪B) = ∅.

Therefore, by Theorem 2.5, p /∈ (A ∪B)∼. ¥
Exercise 2.12: Concerning a comment in the proof of Theorem 2.11, Þnd

the ßaw in the following direct argument for (A ∪B)∼ ⊂ A∼ ∪B∼ :
As in the proof of Theorem 2.11, we can assume that A 6= ∅ and B 6= ∅.

Now, let p ∈ (A ∪B)∼. Then, by Theorem 2.5, (p− ², p+ ²) ∩ (A ∪B) 6= ∅ for
each ² > 0. Hence,

[(p− ², p+ ²) ∩A] ∪ [(p− ², p+ ²) ∩B] 6= ∅ for each ² > 0.

Thus, (p− ², p+ ²) ∩ A 6= ∅ or (p− ², p+ ²) ∩B 6= ∅ for each ² > 0. Hence, by
Theorem 2.5, p ∈ A∼ or p ∈ B∼. Therefore, p ∈ A∼ ∪B∼.
Exercise 2.13: If A1, A2, ..., An are Þnitely many subsets of R1, then

(∪ni=1Ai)
∼ = ∪ni=1A

∼
i .

Exercise 2.14: Would the result in Exercise 2.13 remain true for inÞnitely
many subsets of R1 ? In other words, if {Ai : i ∈ I} is an inÞnite collection of
subsets of R1, then is it true that

(∪{Ai : i ∈ I})∼ = ∪{A∼i : i ∈ I}) ?

Theorem 2.15: For any A ⊂ R1, (A∼)∼ = A∼.
Proof: By Theorem 2.7, A ⊂ A∼. Therefore, by Exercise 2.10, A∼ ⊂ (A∼)∼.
To prove the reverse containment, Þrst note that (A∼)∼ ⊂ A∼ if A = ∅

(since ∅∼ = ∅); hence, we assume for the proof that A 6= ∅. Thus, A∼ 6= ∅ by
Theorem 2.7. Now, let p ∈ (A∼)∼. Let I be an open interval such that p ∈ I.
Then, since A∼ 6= ∅ and p ∈ (A∼)∼, I ∩ A∼ 6= ∅ by Theorem 2.3. Hence, there
exists a point q ∈ I ∩ A∼. Thus, since A 6= ∅, I ∩ A 6= ∅ by Theorem 2.3. We
have proved that I ∩A 6= ∅ for any open interval I such that p ∈ I. Therefore,
again by Theorem 2.3, p ∈ A∼. ¥
Exercise 2.16: If A1, A2, ..., An are Þnitely many subsets of R1, then

(∩ni=1Ai)
∼ ⊂ ∩ni=1A

∼
i .

Exercise 2.17: Give an example of two subsets A and B of R1 such that
(A ∩B)∼ 6= A∼ ∩B∼.
Exercise 2.18: Would the result in Exercise 2.16 remain true for inÞnitely

many subsets of R1 ?
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3. The DeÞnition of Continuity

You have surely had some experience with the idea of a continuous function;
based on your experience, you know the intuitive meaning of continuity � a
continuous function is a function that does not jump. Did you ever stop and try
to Þgure out what it really means to say that a function does not jump? Let us
examine this idea.
In general, a question asked in a negative way is harder to deal with than

the corresponding question posed in the positive way. So, we ask What does it
mean for a function to jump? If a function jumps, it seems reasonable that it
must jump at some point in its domain. Thus, we ask What does it mean for a
function to jump at a point p in the domain of the function? Certainly, everyone
has an instinctive feeling � some mental picture � for what this means. Let us
consider an example that everyone will agree is stereotypical of the (intuitive)
idea of a function jumping at p :

Example 2.19: DeÞne f : R1 → R1 by

f(x) =

½
0 , if x ≤ 0
1 , if x > 0.

The function f jumps at p = 0. Surely you agree. But what is the underlying
reason you agree? The reason is that if you look at positive numbers that are
as close as you like to 0, but not equal to 0, their values under f are one unit
away from f(0).

Let us look at another example, one that is more complicated than the
previous one.

Example 2.20: DeÞne f : R1 → R1 by

f(x) =

½
0 , if x is rational
1 , if x is irrational.

The function seems to jump at every point p. Why? If p is irrational, then you
know from Theorem 1.26 that there rationals as close to p as you like, and the
value of f at each rational is one unit away from f(p). If p is rational, then (by
the natural analogue of Theorem 1.26 for irrationals) there irrationals as close
to p as you like, and the value of f at each irrational is one unit away from f(p).

The two examples shed light on what it means for a function to jump at p.
One need only observe the common thread in the two examples: The function
f in each example jumps at p because there is a set A such that p is arbitrarily
close to A but f(p) is not arbitrarily close to f(A). Notice that we say the
condition holds for some set A, not for every set. Indeed, there are some sets
A in the examples such that p is arbitrarily close to A and f(p) is arbitrarily
close to f(A). You can see this by taking A to be any set containing p in both
examples or, as is more illustrative, by taking A = (−∞, 0) in Example 2.19
and by taking A to be the set of all rationals except p when p is rational in
Example 2.20.
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Our discussion suggests the following deÞnition:

DeÞnition. Let X ⊂ R1, let f : X → R1, and let p ∈ X. We say that
f jumps at p provided that there is a subset, A, of X such that p ∼ A but
f(p) 6∼ f(A).
Exercise 2.21: DeÞne f : R1 → R1 by

f(x) =

(
1
x , if x 6= 0
0 , if x = 0.

Then f jumps at 0.

Exercise 2.22: DeÞne f : R1 → R1 by

f(x) =

(
sin( 1

x) , if x 6= 0
0 , if x = 0.

Then f jumps at 0.

We do not claim that our deÞnition for a function to jump at a point is
�correct� � that can only be ascertained by checking numerous examples to
see if the deÞnition Þts our intuition, and by seeing if the deÞnition leads to
appropriate theoretical developments. At this point, we accept the deÞnition
and use it to deÞne continuity which, after all, is why we wanted the deÞnition
in the Þrst place.

DeÞnition. Let X ⊂ R1, let f : X → R1, and let p ∈ X. We say that
f is continuous at p provided that f does not jump at p. In other words, f is
continuous at p provided that whenever A ⊂ X and p ∼ A, then f(p) ∼ f(A).
We say that f is continuous on X (or just continuous when the domain X

is clear) provided that f does not jump at any point of X.

A simple kind of function that we know from past experience is continuous
is a function whose graph is a straight line. We show this kind of function
is continuous in the sense of the deÞnition above. Thus, the example lends
credibility to our deÞnition of continuity.

Example 2.23: Fix m, b ∈ R1, and let f : R1 → R1 be given by

f(x) = mx+ b, all x ∈ R1.

The function f is continuous.
To prove this, let p ∈ R1 and let A ⊂ R1 such that p ∼ A.
If m = 0, then f(p) = b and f(A) = {b}; thus, since b ∼ {b} by Theorem 2.7,

we have that f(p) ∼ f(A). This proves that f is continuous at p when m = 0.
Next, assume that m > 0. We show that f(p) ∼ f(A) by using Theorem

2.3. For this purpose, let I = (a, c) be an open interval such that f(p) ∈ I. Let
J be the open interval deÞned by
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J = (a−bm , c−bm ).

We see that p ∈ J as follows: Since f(p) ∈ I, a < mp+b < c; thus, since m > 0,
a−b
m < p < c−b

m , so p ∈ J . Therefore, since p ∼ A, we have by Theorem 2.3 that
there is a point x ∈ J ∩A. Since x ∈ J , a−bm < x < c−b

m ; thus, since m > 0,

a < mx+ b < c;

hence, f(x) ∈ I. Also, since x ∈ A, f(x) ∈ f(A). Hence, f(x) ∈ I ∩ f(A). This
proves that any open interval containing f(p) has a nonempty intersection with
f(A). Thus, by Theorem 2.3, f(p) ∼ f(A). Therefore, we have proved that f
is continuous at p when m > 0.
Finally, assume that m < 0. Then the proof that f is continuous at p is

similar to the proof whenm > 0: Let I be as before, redeÞne J to be the interval
( c−bm , a−bm ), and make the obvious changes necessitated by the assumption that
m < 0.

We prove in the next chapter that our deÞnition of continuity is correct
in the sense that it is equivalent to the deÞnition of continuity that you have
(probably) seen in your study of calculus. So, why did we deÞne continuity as
we did? The answer is purely philosophical: We adhere to the principle that
a deÞnition should convey as much as possible the fundamental idea behind the
notion being deÞned.

Exercise 2.24: DeÞne f : R1 → R1 by letting f(x) = x2. Then f is
continuous.

Exercise 2.25: DeÞne f : R1 − {0} → R1 by letting f(x) = 1
x . Then f is

continuous.

Exercise 2.26: DeÞne f : [0, 1]→ R1 by

f(x) =

½
x , if x = 1

n for some n ∈ N
0 , otherwise.

At what points p is f continuous ?

Exercise 2.27: Any function f : N → R1 is continuous.

4. Limit Points and Isolated Points

Limit points and isolated points of sets will be important in our discussion
of limits in the next chapter.
DeÞnition. Let X ⊂ R1. A point p ∈ R1 is called a limit point of X

provided that p ∼ X − {p} 2. A point of X that is not a limit point of X is
called an isolated point of X.
We let X` denote the set of all limit points of X.

2X − {p} denotes all the points of X except p (if p /∈ X, obviously X − {p} = X). More
generally, for any two sets A and B, A − B = {x ∈ A : x /∈ B}; the set A − B is called the
complement of B in A.

24



Exercise 2.28: What are the limit points of {15} ? What are the limit
points of the interval (0, 1) ? What are the limit points of Q ? What are the
limit points of X = { 1

n : n ∈ N} ?
Exercise 2.29: For any A ⊂ R1, A∼ = A ∪A`.
Exercise 2.30: If A,B ⊂ R1 such that A ⊂ B, then A` ⊂ B`.
Exercise 2.31: For any A,B ⊂ R1, (A ∪B)` = A` ∪B`.
Exercise 2.32: For any A ⊂ R1, (A`)` ⊂ A`. Must (A`)` = A` ?
Exercise 2.33: Let A ⊂ R1, and let p ∈ R1. Then p is a limit point of A

if and only if for each ² > 0, the open interval (p− ², p + ²) contains inÞnitely
many points of A.

Exercise 2.34: Let X ⊂ R1 and let A ⊂ X. If p is an isolated point of X,
then p ∼ A if and only if p ∈ A.
We conclude with a simple theorem that shows that functions are always

continuous at any isolated point of their domain. In other words, continuity is
only in question at points of the domain that are limit points of the domain.

Theorem 2.35: Let X ⊂ R1, let f : X → R1 be a function, and let p be an
isolated point of X. Then f is continuous at p.

Proof: We prove that f is continuous at p by showing that f satisÞes the
deÞnition of continuity at p (which is below Exercise 2.22).
Let A ⊂ X such that p ∼ A. Then, by Exercise 2.34, p ∈ A. Hence,

f(p) ∈ f(A). Thus, by Theorem 2.7, f(p) ∼ f(A). Therefore, we have proved
that f is continuous at p. ¥
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Chapter III: The Notion of Limit

We deÞne and discuss the notion of limit of a function, commonly denoted
in calculus by limx→p f(x). In section 2, we reformulate the notion of limit
completely in terms of arbitrary closeness. In section 3, we use the result in
section 2 to show that our deÞnition of continuity in the preceding chapter is
equivalent to the deÞnition of continuity as presented in calculus. In section
4, we present our rationale for introducing continuity before limits (which is
contrary to common practice). In the Þnal section, we discuss one - sided limits.

1. The DeÞnition of Limit

You encountered limits in calculus. We state the deÞnition for limx→p f(x)
as it is presented in calculus but in a slightly more general way � we replace the
assumption in the calculus deÞnition that f is deÞned at all points x 6= p in an
open interval about p with the less restrictive assumption that p is a limit point
of the domain of f . (See the comments at the end of section 5.)

DeÞnition. Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1 such
that p is a limit point of X. We say that L is the limit of f as x approaches p,
written limx→p f(x) = L, provided that for any given number ² > 0, there is a
number δ > 0 such that for all x ∈ X − {p} such that |x− p| < δ, we have

|f(x)− L| < ².
The deÞnition is complicated. Let us interpret the deÞnition informally as a

game: You give me any error ² > 0, meaning that you will allow the values of f
to deviate from L but only by less than ²; I win the game if for any such allowed
error, I can Þnd a δ - neighborhood of p such that the values of the function f
on the neighborhood with p removed are within the prescribed error ² from L.
It is important in the deÞnition of limit that we did not require p to be a point

of X. Indeed, many important limits are considered when p is not a point of X.
For example, the derivative of a function f at a point p is limh→0

f(p+h)−f(p)
h ;

the expression f(p+h)−f(p)
h deÞnes a function of h for which 0 is not in its domain.

We also note that the requirement that p be a limit point of X is important
in the deÞnition. For if p is not a limit point of X, then any number whatsoever
is a limit of f as x approaches p, even when p ∈ X; this is seen by taking
δ = dist(p,X − {p}) (try this for any function f : N → R1 and any choice of
L). What we are suggesting here is that the requirement that p be a limit point
of X makes the limit unique (if the limit exists); we now prove that this is the
case.

Theorem 3.1: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X. If limx→p f(x) = L1 and limx→p f(x) = L2,
then L1 = L2.
Proof: Suppose by way of contradiction that L1 6= L2. Let ² =

|L1−L2|
2 ,

and note that ² > 0. Since limx→p f(x) = Li for each i = 1 and 2, there exist
δ1, δ2 > 0 satisfying the following for each i = 1 and 2 :
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(*) For all x ∈ X − {p} such that |x− p| < δi, |f(x)− Li| < ².
Now, let δ = min{δ1, δ2}, and note that δ > 0. Thus, since p ∼ X − {p}, we

have by Theorem 2.5 that

(p− δ, p+ δ) ∩ (X − {p}) 6= ∅.
Hence, there is a point x0 ∈ (p − δ, p + δ) ∩ (X − {p}). Thus, since δ ≤ δi for
each i = 1 and 2, we see from (*) that

|f(x0)− Li| < ² for each i.
Therefore,

|L1 − L2| = |L1 − f(x0) + f(x0)− L2| ≤ |L1 − f(x0)|+ |f(x0)− L2| < 2².

Thus, since ² = |L1−L2|
2 , |L1 − L2| < |L1 − L2|; however, this is impossible. ¥

It is convenient to have the following general agreement: When we consider
an algebraic expression as being a function, we assume, often without saying so,
that the domain of the function is the largest set of real numbers for which the
expression makes sense (unless we say otherwise).
In the example below, we illustrate the thought process for computing limits

of speciÞc functions. The thought process is important even though we establish
general theorems for evaluating limits in the next chapter.

Example 3.2: limx→7
1
x−4 =

1
3 . To prove this, let ² > 0. We want to Þnd

a δ > 0 such that for all x ∈ R1 − {4} (which is the understood domain of the
function f(x) = 1

x−4),

(*)
¯̄̄

1
x−4 − 1

3

¯̄̄
< ² when x 6= 7 and |x− 7| < δ.

We start our search for δ by writing
¯̄̄

1
x−4 − 1

3

¯̄̄
in a way that tells us how its

value depends on |x− 7| :
(1)

¯̄̄
1

x−4 − 1
3

¯̄̄
=
¯̄̄

3−(x−4)
3(x−4)

¯̄̄
=
¯̄̄
−x+7

3(x−4)

¯̄̄
= |x−7|

3|x−4| .

Next, we make an initial restriction on δ so that we can bound the size of
the last expression in (1) when |x− 7| < δ. This means we want δ small enough
so that if |x− 7| < δ, then x is bounded away from 4. This happens for any
Þxed δ < 3. So, we assume temporarily that δ ≤ 1 and, of course, that δ > 0.
(We will see when we make our Þnal choice for δ why we do not simply take
δ = 1 here).
Now, we examine what our assumption |x− 7| < δ ≤ 1 says about the size

of
¯̄̄

1
x−4 − 1

3

¯̄̄
. Since |x− 7| < δ ≤ 1, we see that x > 6 and, thus, 2 < |x− 4|.

Hence,

1
|x−4| <

1
2 .
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Thus, |x−7|
3|x−4| <

|x−7|
6 . Therefore, by (1), we have that

(2)
¯̄̄

1
x−4 − 1

3

¯̄̄
< |x−7|

6 when 0 < δ ≤ 1.
We now make our Þnal choice for δ and verify that our choice works. Note

that |x−7|
6 < ² if |x− 7| < 6², and let

δ = min{1, 6²}.

Then, for all x ∈ R1 − {4} such that x 6= 7 and |x− 7| < δ, we have¯̄̄
1

x−4 − 1
3

¯̄̄ (2)
< |x−7|

6 < 6²
6 = ².

This proves (*).

Exercise 3.3: Prove that limx→1
x
x−3 =

−1
2 .

Exercise 3.4: Prove that limx→2 4x+ 5 = 13.

Exercise 3.5: Prove that limx→4
x−4

x2−2x−8 =
1
6 .

Exercise 3.6: Prove that limx→p |x| = |p|.
Exercise 3.7: Prove that limx→p

√
x =

√
p for all p ≥ 0. (Note: f(x) = √x

is a function on [0,∞) by Theorem 1.25.)

Exercise 3.8: Prove that limx→−3
|x+3|
x+3 does not exist.

Exercise 3.9: Assume that limx→p f(x) =
√
82−9, where p is a limit point

of the domain X of f . Prove that there is a δ > 0 such that f(x) > 0 for all
x ∈ X − {p} such that |x− p| < δ. If p ∈ X, must f(p) > 0 ?
Exercise 3.10: Give an example of functions f, g : R1 → R1 such that

limx→0 f(x) = 0, limx→0 g(x) = 0, and limx→0
f(x)
g(x) = 23.

2. Limits in Terms of Arbitrary Closeness

We reformulate the deÞnition of limit entirely in terms of the notion arbitrary
closeness. We use the reformulation in the next section.

Theorem 3.11: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X. Then limx→p f(x) = L if and only if whenever
A ⊂ X such that p ∼ A− {p}, then L ∼ f(A− {p}).
Proof: Assume that limx→p f(x) = L. Let A ⊂ X such that p ∼ A − {p}.

We show that L ∼ f(A − {p}) by using Theorem 2.5. Let ² > 0. Then, since
limx→p f(x) = L, there exists δ > 0 such that for all x ∈ X − {p} such that
|x− p| < δ, we have

|f(x)− L| < ².
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Since p ∼ A− {p}, there is a point x0 ∈ (p− δ, p+ δ) ∩ (A− {p}) by Theorem
2.5. Hence, |x0 − p| < δ and x0 ∈ X − {p}. Thus, |f(x0)− L| < ²; also, since
x0 ∈ A− {p}, f(x0) ∈ f(A− {p}). Hence,

f(x0) ∈ (L− ²,L+ ²) ∩ f(A− {p}).

We have shown that for any ² > 0, (L− ², L+ ²) ∩ f(A− {p}) 6= ∅. Therefore,
by Theorem 2.5, L ∼ f(A− {p}).
Conversely, assume that limx→p f(x) 6= L. Then there exists ² > 0 such

that for every δ > 0, there is a point xδ ∈ X − {p} such that |xδ − p| < δ and
|f(xδ)− L| ≥ ². In other words, the following set is nonempty for each δ > 0 :

Aδ = {x ∈ X − {p} : |x− p| < δ and |f(x)− L| ≥ ²}.

Now, let A = ∪δ>0Aδ. Since Aδ 6= ∅ for each δ > 0, we see that
(p− δ, p+ δ) ∩A 6= ∅ for each δ > 0.

Hence, by Theorem 2.5, p ∼ A. Thus, since p /∈ A, we have that
(1) p ∼ A− {p}.

Since |f(x)− L| ≥ ² for all x ∈ A,
(L− ², L+ ²) ∩ f(A) = ∅,

which gives (L−², L+ ²)∩f(A−{p}) = ∅. Thus, by Theorem 2.5, we have that
(2) L 6∼ f(A− {p}).

Finally, we see from (1) and (2) that the condition in the second part of our
theorem is false for the set A we have deÞned. ¥

3. The Limit Characterization of Continuity

We show that our deÞnition of continuity in the preceding chapter is equiva-
lent to the deÞnition of continuity as presented in calculus. In other words, the
standard deÞnition of continuity (in terms of limits) is, for us, a theorem. The
reason for this seemingly strange development is discussed in section 4.

Theorem 3.12: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X
such that p is a limit point of X. Then f is continuous at p if and only if
limx→p f(x) = f(p).
Proof: Assume that f is continuous at p. Then, for any A ⊂ X such that

p ∼ A − {p}, we see from our deÞnition of continuity that f(p) ∼ f(A− {p}).
Therefore, by Theorem 3.11, limx→p f(x) = f(p).
Conversely, assume that f is not continuous at p. Then, by our deÞnition of

continuity, there exists A ⊂ X such that p ∼ A but f(p) 6∼ f(A).
Since f(p) 6∼ f(A), f(p) /∈ f(A) (by Theorem 2.7); hence, p /∈ A, which

shows that A = A − {p}. Thus, since p ∼ A and f(p) 6∼ f(A), we have that
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p ∼ A−{p} and f(p) 6∼ f(A−{p}). Therefore, limx→p f(x) 6= f(p) by Theorem
3.11. ¥
The theorem we just proved characterizes continuity only at limit points of

X. The following corollary completes the characterization.

Corollary 3.13: Let X ⊂ R1, let f : X → R1 be a function, and let
p ∈ X. Then f is continuous at p if and only if p is an isolated point of X or
limx→p f(x) = f(p) when p is a limit point of X.
Proof: Assume that f is continuous at p and that p is not an isolated point

of X. Then p is a limit point of X and, hence, limx→p f(x) = f(p) by Theorem
3.12. This proves that continuity at p implies the second conditions in the
corollary.
Conversely, if p is an isolated point of X, then f is continuous at p by

Theorem 2.35. If p is a limit point of X and if limx→p f(x) = f(p), then f is
continuous at p by Theorem 3.12. ¥
Exercise 3.14: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X.

Then f is continuous at p if and only if for any open interval I such that f(p) ∈ I,
there is an open interval J such that p ∈ J and f(J) ⊂ I.

4. Limits in Terms of Continuity

In all calculus books, limits are deÞned before continuity and continuity is
then deÞned in terms of limits. In our presentation, we have reversed the order
for introducing these ideas. The reason we have done this is our realization that
in trying to understand limits, you are really trying to understand continuity;
the theorem below explains this. It is my opinion that continuity is simpler and
easier to understand than limits. Thus, why not introduce continuity Þrst and
use it as a vehicle for building up intuition for the more subtle idea of limits.
In general terms, the following theorem says that limx→p f(x) exists if and

only if the function f can be deÞned or redeÞned at p so that the resulting
function is continuous at p.

Theorem 3.15: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X. Then limx→p f(x) = L if and only if the
function g : X ∪ {p}→ R1 given by

g(x) =

(
f(x) , if x ∈ X
L , if x = p

is continuous at p.

Proof: Note that g(x) = f(x) for all x ∈ X − {p}. Thus, we see eas-
ily from the deÞnition of limit (section 1) that limx→p f(x) = L if and only
if limx→p g(x) = L. Thus, since L = g(p), limx→p f(x) = L if and only if
limx→p g(x) = g(p). Therefore, by Theorem 3.12, limx→p f(x) = L if and only
if g is continuous at p. ¥
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5. One - sided Limits

A point in the real line can be �approached� from the left and from the
right. This simple observation leads us to a way to break limits down into two
cases � limits from the left and limits from the right. Considering the two cases
separately is sometimes helpful in computing limits or in showing limits do not
exist. This is especially true when a function is deÞned by a formula that changes
at a point (the change can happen explicitly or implicitly � compare Exercises
3.17 and 3.18). We prove a theorem that can be applied in such situations.
We note the deÞnition of the restriction of a function. Let X and Y be sets,

and let f : X → Y be a function. For any set X0 ⊂ X, the restriction of f
to X0, denoted by f |X0, is the function from X0 to Y deÞned in the following
simple way:

(f |X0)(x0) = f(x0), all x0 ∈ X.
We deÞne one - sided limits:

DeÞnition. Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X ∩ (−∞, p]. We say L is the limit of f as
x approaches p from the left, or the left - hand limit of f as x approaches p,
written limx→p− f(x) = L, provided that

limx→p(f |X ∩ (−∞, p])(x) = L.
Similarly, assuming that p is a limit point of X ∩ (p,∞], we say L is the limit of
f as x approaches p from the right, or the right - hand limit of f as x approaches
p, written limx→p+ f(x) = L, provided that

limx→p(f |X ∩ [p,∞))(x) = L.
The following terminology is descriptive and will help make statements suc-

cinct: Let X ⊂ R1 and let p ∈ R1; we call p a two - sided limit point of X
provided that p is a limit point ofX∩(−∞, p] and p is a limit point ofX∩[p,∞).
Theorem 3.16: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a two - sided limit point of X. Then limx→p f(x) = L if and only
if

limx→p− f(x) = L = limx→p+ f(x).

Proof: Assume that limx→p f(x) = L. Let ² > 0. Then, by the deÞnition of
limit, there exists δ > 0 such that for all x ∈ X − {p} such that |x− p| < δ,

|f(x)− L| < ².
Therefore, it is clear that |f(x)− L| < ² for all x ∈ X ∩ (−∞, p), as well as for
all x ∈ X ∩ (p,∞), such that |x− p| < δ. This proves that

limx→p− f(x) = L = limx→p+ f(x).
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Conversely, assume that limx→p− f(x) = L = limx→p+ f(x). Let ² > 0.
Since limx→p− f(x) = L and since (by deÞnition)

limx→p− f(x) = limx→p(f |X ∩ (−∞, p])(x),

there exists δ1 > 0 such that for all x ∈ X ∩ (−∞, p) such that |x− p| < δ1,

|(f |X ∩ [p,∞])(x)− L| < ²;

similarly, since limx→p+ f(x) = L, there exists δ2 > 0 such that for all x ∈
X ∩ (p,∞) such that |x− p| < δ2,

|(f |X ∩ [p,∞])(x)− L| < ².

Therefore, letting δ = min{δ1, δ2}, we see that for all x ∈ X − {p} such that
|x− p| < δ,

|f(x)− L| < ².

This proves that limx→p f(x) = L (note: for us to conclude that limx→p f(x) =
L, the deÞnition of limit in section 1 requires us to know that p is a limit point
of X; this follows from Exercise 2.30 since p is a limit point of X ∩ (−∞, p]). ¥
We conclude with comments about limits and one - sided limits. When we

deÞned limx→p f(x) in section 1, we did not make the common assumption that
the point p lies in an open interval contained in the domain of f . Thus, for
example, we can properly write limx→p

√
x even when p = 0, whereas common

practice forces authors to write limx→0+

√
x. In general, when the domain of f

is an interval, we write limx→p f(x) whether p is an end point of the interval or
not, whereas other authors are forced to make the distinction. In this situation,
we consider the distinction between limits and one - sided limits a distraction �
a nuisance � rather than substantive. On the other hand, there are situations in
which it is important to consider one - sided limits. By deÞning limits as we did,
all our general theorems about limits in the next chapter automatically hold for
their one - sided analogues.

Exercise 3.17: Find limx→3 f(x) (if the limit exists) when

f(x) =

(
x+ 1 , if x ≤ 3
−4x+ 16 , if x > 3.

Exercise 3.18: Find limx→4
|x−4|
x−4 (if the limit exists).

Exercise 3.19: Find limx→0
x2

|x| (if the limit exists).

Exercise 3.20: Find limx→1
x−1

|x2+x−2| (if the limit exists).
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Chapter IV: Limit Theorems

We prove theorems about limits of sums, differences, products and quotients
of functions whose limits separately exist. We obtain general results about
continuity as corollaries; as consequences, we show that all polynomials are
continuous and that all rational functions are continuous (on their domains).
We then prove theorems about limits of compositions of functions, including the
Substitution Theorem. Next, we prove the simple but useful Squeeze Theorem.
Finally, we brießy discuss limits of sequences.
All our theorems concerning limits hold for one - sided limits (see the com-

ments at the end of the last section of Chapter III). We keep this in mind rather
than stating the one - sided versions of the theorems.

1. Limits for Sums and Differences

We prove theorems about limits and continuity of sums and differences of
two functions. We then extend the sum theorems to Þnitely many functions.

DeÞnition. Let X ⊂ R1, and let f, g : X → R1 be functions. The sum of
f and g is the function f + g : X → R1 deÞned by

(f + g)(x) = f(x) + g(x) for all x ∈ X.
Similarly, the difference of f and g is the function f − g : X → R1 deÞned by

(f − g)(x) = f(x)− g(x) for all x ∈ X.
We Þrst prove that the limit of the sum of two functions whose limits sepa-

rately exist is the sum of the limits of the two functions. Note that this shows,
in particular, that the limit of the sum exists (provided that the separate limits
exist).

Theorem 4.1: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ R1

such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M ,

then limx→p(f + g)(x) = L+M .
Proof: Let ² > 0. We want to Þnd a δ > 0 such that for all x ∈ X − {p}

such that |x− p| < δ, |(f + g)(x)− (L+M)| < ².
The clue to how to Þnd δ comes from rewriting |(f + g)(x)− (L+M)| so

that expressions related to different assumptions in the theorem are grouped
together:

|(f + g)(x)− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |.

Thus, we want to Þnd a δ > 0 such that |f(x)− L| < ²
2 and |g(x)−M | < ²

2 for
all x ∈ X − {p} such that |x− p| < δ. It is fairly easy to Þnd such a δ; we now
prove the theorem using what we have just observed as a guide (a cheat sheet!).
Since limx→p f(x) = L, there is a δ1 > 0 such that for all x ∈ X − {p} such

that |x− p| < δ1,
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|f(x)− L| < ²
2 .

Since limx→p g(x) = M , there is a δ2 > 0 such that for all x ∈ X − {p} such
that |x− p| < δ2,

|g(x)−M | < ²
2 .

Let δ = min{δ1, δ2}. Then δ > 0 and for all x ∈ X − {p} such that |x− p| < δ,
|(f + g)(x)− (L+M)| ≤ |f(x)− L|+ |g(x)−M | < ²

2 +
²
2 = ². ¥

Our next theorem is the analogue of Theorem 4.1 for the difference of two
functions.

Theorem 4.2: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ R1

such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M ,

then limx→p(f − g)(x) = L−M .
Exercise 4.3: Prove Theorem 4.2.

Corollary 4.4: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ X.
If f and g are continuous at p, then f + g and f − g are continuous at p.
Proof: The corollary follows immediately from Theorem 4.1 and Theorem

4.2 using Corollary 3.13. ¥
We extend Theorem 4.1 to the sum of Þnitely many functions. The sum of

Þnitely many functions is deÞned inductively: Having already deÞned the sum
of two functions, assume inductively that we have deÞned the sum of n functions
(with the same domain) for some natural number n ≥ 2; then, for any n + 1
functions with the same domain, deÞne f1 + · · ·+ fn + fn+1 to be the function
(f1 + · · ·+ fn) + fn+1 (see Theorem 1.20).

Theorem 4.5: Let X ⊂ R1, let fi : X → R1 be a function for each
i = 1, 2, ..., n , and let p ∈ R1 such that p is a limit point of X. If

limx→p fi(x) = Li for each i = 1, 2, ..., n ,

then limx→p(f1 + f2 + · · ·+ fn)(x) = L1 + L2 + · · ·+ Ln.
Proof: We prove the theorem by induction on the number n of functions.

The Induction Principle is Theorem 1.20.
The theorem is obviously true when n = 1.
Assume inductively that for some natural number k, the theorem is true for

any k functions.
Let f1, f2, ..., fk+1 be any k + 1 functions satisfying the assumptions in the

theorem; that is, for each i = 1, 2, ..., k + 1, fi is a function from X to R1 such
that limx→p fi(x) = Li. Then, by our inductive assumption,
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limx→p(f1 + f2 + · · ·+ fk)(x) = L1 + L2 + · · ·+ Lk.

Thus, since limx→p fk+1(x) = Lk+1, Theorem 4.1 gives us that

limx→p((f1 + f2 + · · ·+ fk) + fk+1)(x) = (L1 + L2 + · · ·+ Lk) + Lk+1.

Therefore, by our deÞnition of Þnite sums of functions,

limx→p(f1 + f2 + · · ·+ fk + fk+1)(x) = L1 + L2 + · · ·+ Lk + Lk+1.

This proves the theorem is true for k + 1 functions under the assumption that
it is true for k functions.
The theorem now follows from the Induction Principle. ¥
Corollary 4.6: Let X ⊂ R1, and let p ∈ X. If each of Þnitely many

functions is continuous at p, then the sum function is continuous at p.

Proof: Apply Theorem 4.5 and Corollary 3.13. ¥
Exercise 4.7: Give an example of two functions f, g : R1 → R1 such that

for some point p ∈ R1, limx→p(f+g)(x) exists but limx→p f(x) and limx→p g(x)
do not exist.

Exercise 4.8: Are there two functions f, g : R1 → R1 such that for some
point p ∈ R1, limx→p(f + g)(x) and limx→p f(x) both exist but limx→p g(x)
does not exist ?

2. Limits for Products

We prove theorems about limits and continuity of products of Þnitely many
functions.

DeÞnition. Let X ⊂ R1, and let f, g : X → R1 be functions. The product
of f and g is the function f · g : X → R1 deÞned by

(f · g)(x) = f(x)g(x) for all x ∈ X.

We Þrst prove that the limit of the product of two functions whose limits
separately exist is the product of the limits of the two functions.

Theorem 4.9: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ R1

such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M ,

then limx→p(f · g)(x) = LM .
Proof: Let ² > 0. We want to Þnd a δ > 0 such that for all x ∈ X − {p}

such that |x− p| < δ, |(f · g)(x)− LM | < ².
As in the proof of Theorem 4.1, the clue for Þnding δ comes from rewriting

|(f · g)(x)− LM | so that expressions related to different assumptions in the
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theorem are grouped together. To group the proper expressions, we employ the
trick of subtracting and adding an expression, namely, Lg(x) :

|(f · g)(x)− LM | = |f(x)g(x)− Lg(x) + Lg(x)− LM |
≤ |g(x)(f(x)− L)|+ |L(g(x)−M)|
= |g(x)| |f(x)− L|+ |L| |g(x)−M |.

Thus, we want to Þnd a δ > 0 such that for all x ∈ X−{p} such that |x− p| < δ,
(*) |g(x)| |f(x)− L| < ²

2 and (**) |L| |g(x)−M | < ²
2 .

We show how to Þnd such a δ as follows.
We Þrst bound |g(x)| : Since limx→p g(x) = M , there is a δ1 > 0 such that

for all x ∈ X − {p} such that |x− p| < δ1, |g(x)−M | < 1; hence, by Exercise
1.29,

¯̄|g(x)|− |M |¯̄ < 1. Thus, we have that
(1) |g(x)| < 1 + |M | for all x ∈ X − {p} such that |x− p| < δ1.

Next, with (1) and (*) in mind, we note that since limx→p f(x) = L, there
is a δ2 > 0 such that

(2) |f(x)− L| < ²
2(1+|M|) for all x ∈ X − {p} such that |x− p| < δ2.

Then we see from (1) and (2) that min{δ1, δ2} is a δ that makes (*) hold for all
x ∈ X − {p} such that |x− p| < δ.
Next, we Þnd a δ3 > 0 that makes (**) hold for all x ∈ X − {p} such that

|x− p| < δ3. Our immediate inclination is to use that limx→p g(x) = M to
choose δ3 > 0 such that |g(x)−M | < ²

2|L| for the relevant points x, hence
(**) holds. However, this obviously does not work when L = 0; nevertheless, if
L = 0, then any δ3 > 0 makes (**) hold for the relevant points x. Thus, we can
take two cases in deÞning δ3 � the case when L 6= 0 and the case when L = 0 �
or we can use the trick of considering the positive number ²

2(1+|L|) . We choose
the latter: Since limx→p g(x) =M , there is a δ3 > 0 such that

(3) |g(x)−M | < ²
2(1+|L|) for all x ∈ X − {p} such that |x− p| < δ3.

Finally, let δ = min{δ1, δ2, δ3}. Then δ > 0 and for all x ∈ X − {p} such
that |x− p| < δ, we see using (1), (2) and (3) that

|(f · g)(x)− LM | ≤ |g(x)| |f(x)− L|+ |L| |g(x)−M |
< (1 + |M |) ²

2(1+|M|) + |L| ²
2(1+|L|) <

²
2 +

²
2 = ². ¥

Corollary 4.10: LetX ⊂ R1, let f, g : X → R1 be functions, and let p ∈ X.
If f and g are continuous at p, then f · g is continuous at p.
Proof: Simply apply Theorem 4.9 and Corollary 3.13. ¥
We extend Theorem 4.9 to the product of Þnitely many functions. The

product of Þnitely many functions is deÞned inductively in the same way that
we deÞned the sum of Þnitely many functions in the preceding section.

Theorem 4.11: Let X ⊂ R1, let fi : X → R1 be a function for each
i = 1, 2, ..., n , and let p ∈ R1 such that p is a limit point of X. If
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limx→p fi(x) = Li for each i = 1, 2, ..., n ,

then limx→p(f1 · f2· · · · ·fn)(x) = L1L2 · · ·Ln.
Exercise 4.12: Prove Theorem 4.11.

Corollary 4.13: Let X ⊂ R1, and let p ∈ X. If each of Þnitely many
functions is continuous at p, then the product function is continuous at p.

Proof: Apply Theorem 4.11 and Corollary 3.13. ¥
Exercise 4.14: Give an example of two functions f, g : R1 → R1 such that

for some point p ∈ R1, limx→p(f · g)(x) exists but limx→p f(x) and limx→p g(x)
do not exist.

Exercise 4.15: Are there two functions f, g : R1 → R1 such that for some
point p ∈ R1, limx→p(f · g)(x) and limx→p f(x) both exist but limx→p g(x) does
not exist ?

3. Continuity of Polynomials

We are now in a position to easily prove the important fact that all polyno-
mials are continuous.

DeÞnition. A polynomial is a function f that can be written in the form

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnxn, all x ∈ R1,

where c0, c1, ..., cn are constants.
The constants c0, c1, ..., cn are called the coefficients of the polynomial f ; ci

is called the ith coefficient of f . If cn 6= 0, we say that f is a polynomial of
degree n.

Note that we say f is a polynomial if it can be written in the form indicated.
Thus, for example, the function f deÞned by f(x) = 3(x − 4)(x6 + 5x2)3 is a
polynomial.
We use the following functions in the proof that polynomials are continuous:

A constant function is a function all of whose values are the same (i.e., a poly-
nomial of degree 0); the identity function is the function f given by f(x) = x
for all x ∈ R1.

Theorem 4.16: All polynomials are continuous on R1.

Proof: Any constant function and the identity function are continuous, as
we showed in Example 2.23. Thus, for any Þxed real number c and for any
Þxed natural number k, the function f(x) = cxk (all x ∈ R1) is continuous by
Corollary 4.13. Our theorem now follows from Corollary 4.6. ¥
Theorems really make life easy: Can you imagine proving with epsilons and

deltas, without theorems about limits, that the function f given by f(x) =
6x89 + 168

31 x
25 −√17x13 + 49 is continuous?
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Exercise 4.17: At which real numbers p is the function f given by f(x) =
8x3−64
2(x−2) continuous ?

Exercise 4.18: Is the function f given by f(x) = x2−x
x a polynomial ?

4. Limits for Quotients

We prove theorems about limits and continuity of quotients of two functions.

DeÞnition. Let X ⊂ R1, and let f, g : X → R1 be functions such that
g(x) 6= 0 for any x ∈ X. The quotient of f and g is the function f

g : X → R1

deÞned by

f
g (x) =

f(x)
g(x) for all x ∈ X.

We prove that the limit of the quotient of two functions whose limits sepa-
rately exist is the quotient of the limits of the two functions provided, of course,
that the limit of the function in the denominator is not zero. When the limit
of the denominator is zero, the limit of the quotient may or may not exist:
limx→0

1
x does not exist and limx→0

x
x = 1.

We prove a lemma about reciprocals; then our theorem about limits of quo-
tients follows easily using the theorem about limits of products (Theorem 4.9).

Lemma 4.19: Let X ⊂ R1, let g : X → R1 be a function such that g(x) 6= 0
for any x ∈ X, and let p ∈ R1 such that p is a limit point of X. If

limx→p g(x) =M 6= 0,

then limx→p 1
g (x) =

1
M .

Proof: Let ² > 0. We want to Þnd a δ > 0 such that for all x ∈ X − {p}
such that |x− p| < δ,

¯̄̄
1
g (x)− 1

M

¯̄̄
< ².

As we did in proofs of previous theorems of this type, let us Þrst examine
what is involved in Þnding δ. We rewrite

¯̄̄
1
g (x)− 1

M

¯̄̄
so that the expression that

we know can be made small, namely |g(x)−M |, is by itself (and hope that we
can take care of the rest):¯̄̄

1
g (x)− 1

M

¯̄̄
=
¯̄̄

1
g(x) − 1

M

¯̄̄
=
¯̄̄
M−g(x)
Mg(x)

¯̄̄
= 1

|M|
1

|g(x)| |g(x)−M |.

Hence, we want to Þnd a δ > 0 such that for all x ∈ X−{p} such that |x− p| < δ,
1
|M|

1
|g(x)| |g(x)−M | < ².

We now proceed with the proof, using what we have written as a guide.
Since limx→p g(x) =M , we see easily using Exercise 1.29 that

limx→p |g(x)| = |M |.
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Thus, since M 6= 0, there is a δ1 > 0 such that

(1) |g(x)| > |M|
2 for all x ∈ X − {p} such that |x− p| < δ1.

Since M 6= 0, M
2²

2 > 0 (use of the quantity M2²
2 comes from (1) and the

observations we referred to as a guide). Thus, since limx→p g(x) = M , there is
a δ2 > 0 such that

(2) |g(x)−M | < M2²
2 for all x ∈ X − {p} such that |x− p| < δ2.

Now, let δ = min{δ1, δ2}. Then δ > 0 and for all x ∈ X − {p} such that
|x− p| < δ, we see from (1) and (2) that¯̄̄

1
g (x)− 1

M

¯̄̄
= 1

|M|
1

|g(x)| |g(x)−M | < 1
|M|

2
|M|

M2²
2 = ². ¥

Theorem 4.20: Let X ⊂ R1, let f, g : X → R1 be functions such that
g(x) 6= 0 for any x ∈ X, and let p ∈ R1 such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M 6= 0,

then limx→p fg (x) =
L
M .

Proof: Observe that f
g = f · 1

g ; then use Lemma 4.19 to apply Theorem 4.9
to the product f · 1

g . ¥

Corollary 4.21: Let X ⊂ R1, let f, g : X → R1 be functions such that
g(x) 6= 0 for any x ∈ X, and let p ∈ X. If f and g are continuous at p, then f

g
is continuous at p.

Proof: Use Theorem 4.20 and Corollary 3.13. ¥
Exercise 4.22: Give an example of two functions f, g : R1 → R1, g(x) 6=

0 for all x ∈ R1, such that for some point p ∈ R1, limx→p fg (x) exists but
limx→p f(x) and limx→p g(x) do not exist.

Exercise 4.23: Are there two functions f, g : R1 → R1, g(x) 6= 0 for all
x ∈ R1, such that for some point p ∈ R1, limx→p fg (x) and limx→p f(x) both
exist but limx→p g(x) does not exist ?

Exercise 4.24: Are there two functions f, g : R1 → R1, g(x) 6= 0 for all
x ∈ R1, such that for some point p ∈ R1, limx→p fg (x) and limx→p g(x) both
exist but limx→p f(x) does not exist ?

5. Continuity of Rational Functions

DeÞnition. A rational function is a function that can be written as a
quotient of two polynomials.

The following theorem is trivial to prove in view of what we have already
done.

Theorem 4.25: Every rational function is continuous on its domain.
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Proof: By Theorem 4.16, polynomials are continuous on R1. Therefore, our
theorem follows from Corollary 4.21. ¥
Exercise 4.26: Is the function f given by f(x) = 1

( 1
x )
(all x 6= 0) a rational

function ?

6. Compositions of Functions and Limits

We prove a theorem about the continuity of compositions of functions and
a generalization concerning limits of compositions.

DeÞnition. Let X, Y , and Z be sets, and let f : X → Y and g : Y → Z be
functions. The composition f followed by g is the function from X to Z denoted
by g ◦ f and deÞned by letting

(g ◦ f)(x) = g(f(x)), all x ∈ X.
We often use the phrase the composition of f and g when the context makes it
clear (or unimportant) which function is Þrst.3

Perhaps you have never drawn the graph of a composition of two speciÞc
functions. If not, try the following exercise:

Exercise 4.27: Let f, g : [0, 1]→ [0, 1] be deÞned by

f(x) =

½
x+ 1

2 , if 0 ≤ x ≤ 1
2−2x+ 2 , if 1

2 ≤ x ≤ 1
, g(x) =

½ −x+ 1
2 , if 0 ≤ x ≤ 1

2
2x− 1 , if 1

2 ≤ x ≤ 1.
Draw the graphs of f ◦ f , g ◦ f and f ◦ g.
Our Þrst theorem concerns the continuity of the composition of two func-

tions. The theorem is simple to prove using only the deÞnition of continuity
(above Example 2.23).

Theorem 4.28: Let X,Y,Z ⊂ R1, and let f : X → Y and g : Y → Z
be functions. If f is continuous at p and g is continuous at f(p), then g ◦ f is
continuous at p.

Proof: Let A ⊂ X such that p ∼ A. Then, by the deÞnition of continuity,
f(p) ∼ f(A). Thus, since g is continuous at f(p), g(f(p)) ∼ g(f(A)). Hence,
we have proved that for any A ⊂ X such that p ∼ A,

(g ◦ f)(p) ∼ (g ◦ f)(A).
Therefore, g ◦ f is continuous at p. ¥
Our next theorem is called the Substitution Theorem because it says that un-

der certain conditions, limx→p(g◦f)(x) can be found by substituting limx→p f(x)
3 In the deÞnition of composition, the order of the functions is important: f ◦ g is not

deÞned on all of Y when g(Y ) 6⊂ X; furthermore, even if X = Y = Z, g ◦ f is almost always
different from f ◦ g.
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into the function g. After we prove the theorem, we discuss the assumptions in
the theorem.

Theorem 4.29 (Substitution Theorem): Let X,Y,Z ⊂ R1, and let
f : X → Y and g : Y → Z be functions. Let p ∈ R1 such that p is a limit point
of X. If limx→p f(x) = L and if g is continuous at L, then

limx→p(g ◦ f)(x) = g(L).
Proof: We use Theorem 3.11. Let A ⊂ X such that p ∼ A − {p}. Then,

since limx→p f(x) = L, we have by Theorem 3.11 that

L ∼ f(A− {p}).
Thus, since g is continuous at L, the deÞnition of continuity (above Example
2.23) gives us that

g(L) ∼ g[f(A− {p})].
Hence, we have proved that for any A ⊂ X such that p ∼ A− {p},

g(L) ∼ (g ◦ f)(A− {p}).
Therefore, by Theorem 3.11, limx→p(g ◦ f)(x) = g(L). ¥
Theorem 4.28 follows immediately from Theorem 4.29 using the characteri-

zation of continuity in Corollary 3.13. Nevertheless, we presented Theorem 4.28
Þrst since it is less technical than Theorem 4.29 and since it is obviously the
origin for Theorem 4.29.
The analogue of Theorem 4.29 for limits as x approaches inÞnity is in Theo-

rem 18.6. It may enhance your understanding of Theorem 4.29 to read the proof
of Theorem 18.6 now and adapt the proof to give an �epsilon - delta proof� of
Theorem 4.29.
There is a natural question to ask about Theorem 4.29. It is the question

of whether the analogous theorem is true when we interchange the assumptions
about f and g; that is, assume f is continuous at p and limy→f(p) g(y) = L,
and then conclude that limx→p(g ◦ f)(x) = L. Of course, the assumption that
limy→f(p) g(y) = L, makes no sense unless f(p) is a limit point of Y (recall the
deÞnition of limit at the beginning of Chapter III). So, let�s add the assumption
that f(p) is a limit point of Y to our other assumptions here. Now, what can
go wrong? We see the problem when we try to prove the result:
Let A ⊂ X such that p ∼ A − {p}. Then, by our assumption that f is

continuous at p,

f(p) ∼ f(A− {p}).
Now, according to Theorem 3.11, we must prove L ∼ g(f(A− {p})) in order to
know that limx→p(g ◦ f)(x) = L. The deÞnition of arbitrary closeness (section
1 of Chapter II) says that L ∼ g(f(A− {p})) means
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dist(L, g(f(A− {p})) = 0.
Could dist(L, g(f(A − {p})) > 0 ? In other words, could g(f(A − {p})) be
bounded away from L ? The simplest thing that could happen that would make
g(f(A− {p})) be bounded away from L is the following: f(A− {p}) is a single
point q at which g jumps and for which g(q) 6= L. This suggests considering f
to be the constant function f(x) = q and letting g be a function that jumps at
q but for which g(q) 6= L = limy→q g(y). You should now be prepared to write
down a counterexample to the analogue of Theorem 4.29 that we have tried to
prove:

Exercise 4.30: Using the preceding discussion as a guide, Þnd functions
f, g : R1 → R1 such that f is continuous at p = 0, limy→f(p) g(y) = L, but
limx→p(g ◦ f)(x) 6= L.
Exercise 4.31: If f : R1 → R1 is a function such that limx→p f(x) exists

for some point p ∈ R1, then limx→p |f(x)| = |limx→p f(x)|.
Exercise 4.32: If f : R1 → R1 is a function such that limx→p f(x) exists

for some point p ≥ 0, then limx→p
p
f(x) =

p
limx→p f(x).

Exercise 4.33: For any two functions f, g : R1 → R1, deÞne the maximum
function of f and g, written f

W
g, and the minimum function of f and g,

written f
V
g, as follows: For each x ∈ R1,

(f
W
g)(x) = max{f(x), g(x)} , (f

V
g)(x) = min{f(x), g(x)}.

Prove that if f and g are continuous at p, then f
W
g and f

V
g are continuous

at p.
(Hint: What is x+y

2 + |x−y|
2 for real numbers x and y ?)

7. The Squeeze Theorem
The name Squeeze Theorem is very descriptive of what the theorem says:

Consider three functions f, g and h deÞned on X into R1 satisfying the condi-
tions (where p is a limit point of X)

g(x) ≤ f(x) ≤ h(x), all x ∈ X − {p}, limx→p g(x) = limx→p h(x);

the conditions suggest that the function f is squeezed by the functions g and h
as x approaches p; the Squeeze Theorem says that f is then forced to have the
same limit as x approaches p that g and h have.
The Squeeze Theorem is one of those theorems that is easy to prove but

that states an important and useful point of view. The idea of squeezing to
obtain a limit will come up in other contexts (e.g., the deÞnition of the integral
in Chapter XII).

Theorem 4.34 (Squeeze Theorem): Let X ⊂ R1, and let p ∈ R1 such
that p is a limit point of X. Assume that f, g, h : X → R1 are functions such
that

g(x) ≤ f(x) ≤ h(x), all x ∈ X − {p}, limx→p g(x) = limx→p h(x) = L.

Then limx→p f(x) = L.
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Proof: We prove the theorem using only the deÞnition of limit.
Let ² > 0. Since limx→p g(x) = L and limx→p h(x) = L, there exist δ1, δ2 > 0

such that

|g(x)− L| < ² for all x ∈ X − {p} such that |x− p| < δ1

and

|h(x)− L| < ² for all x ∈ X − {p} such that |x− p| < δ2.

Let δ = min{δ1, δ2}. Then, for all x ∈ X − {p} such that |x− p| < δ,
L− ² < g(x), h(x) < L+ ²

Thus, since g(x) ≤ f(x) ≤ h(x), we must have that L− ² < f(x) < L+ ² for all
x ∈ X − {p} such that |x− p| < δ. This proves that limx→p f(x) = L. ¥
Exercise 4.35: Find limx→0 x sin(

1
x).

Exercise 4.36: Find limx→0

√
x3 + x+ 1 sin( 1

x).

8. Limits of Sequences

We brießy introduce sequences and limits of sequences for use later. We
will present an in - depth study of the general theory of sequences beginning
with Chapter XIX. In the meantime, we will not use sequences often, and the
material we present here is all we need.
In this section, we will see that the standard deÞnition of limits for sequences

can be considered to be a special case of the notion of limits for functions as
deÞned in section 1 of Chapter III. As a consequence, almost all theorems about
limits of functions that we have proved are automatically true for limits of
sequences (Theorem 4.38).
A sequence is simply a function deÞned on the set N = {1, 2, ...}. The

range of a sequence can consist of any types of objects (for example, a sequence
of statements, a sequence of vectors, a sequence of numbers and statements
together, and so on). If s is a sequence, we denote the value of s at n by sn
(i.e., sn = s(n)). We often denote a sequence s by writing {sn}∞n=1.
We want to focus on sequences whose values are real numbers. Such se-

quences are sometimes called numerical sequences. We prefer to just use the
term sequence rather than numerical sequence; thus, unless we say otherwise
or it is evident from context, we assume that the values of a sequence are real
numbers.
We say that a sequence {sn}∞n=1 coverges to a point p provided that for each

² > 0, there exists N such that |sn − p| < ² for all n ≥ N ; we call p the limit of
the sequence {sn}∞n=1. We write limn→∞ sn = p or {sn}∞n=1 → p to denote that
a sequence {sn}∞n=1 converges to p.
A sequence that converges is called a convergent sequence; a sequence that

does not converge is called a divergent sequence.
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For example, the sequence { 1
n}∞n=1 converges to 0 by the second part of

Exercise 1.23 with ni = n for each i. However, we remind the reader that the
fact that { 1

n}∞n=1 converges to 0 (as well as Exercise 1.23) depends essentially
on the Archimedean Property � see the discussion leading to Lemma 1.21.
On the other hand, the sequence {(−1)n}∞n=1 diverges (can you see why?).
We reformulate the deÞnition of limits of sequences in terms of limits of func-

tions as deÞned at the beginning of Chapter III. At Þrst glance, the two notions
of limit seem incompatible: limits of sequences are concerned with unbounded
domain values, whereas limits of functions in Chapter III are involved only with
bounded domain values. Nevertheless, the deÞnition of limx→p f(x) in Chapter
III does not require p to be a point of the domain X of f ; this is the underlying
reason that we are able to formulate limits of sequences in terms of limits of
functions as follows:

Exercise 4.37: Let {sn}∞n=1 be a sequence, and let f : { 1
n : n ∈ N} → R1

be the function deÞned by f( 1
n) = sn for each n ∈ N. Then {sn}∞n=1 → p if and

only if lim 1
n→0 f(

1
n) = p.

Theorem 4.38: Results about limits in Chapter III and in this chapter
apply to limits of sequences as well (except for Theorem 3.16).

Proof: The theorem is immediate from Exercise 4.37. ¥
We remark the fundamental notions of arbitrary closeness and continuity,

which we introduced in Chapter II, can each be reformulated in terms of se-
quences. The reformulations are postponed until we begin a systematic study
of sequences in Chapter XIX. The relevant results are Theorem 19.38 and The-
orem 19.39; you are well prepared to read the results and their proofs now: the
only background you need, aside from what we have already covered, is the
analogue of Theorem 4.29 for limits as x approaches inÞnity (Theorem 18.6).
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Chapter V: Two Properties of Continuous
Functions

Of all the properties of continuous functions that I know, two properties
stand out as being the most important. Both properties concern continuous
functions on intervals: Let I be an interval, and let f : I → R1 be a contin-
uous function; then any number between two values of f is a value of f ; if I
is a closed and bounded interval, then f has a (unique) largest value, and a
(unique) smallest value. We verify the two properties and give applications (in
the exercises). We will see many more applications in subsequent chapters.

1. The Intermediate Value Theorem

A continuous function deÞned on a subset of R1 may have two values such
that no number between those two values is a value of the function. For example,
let X = {0, 1} and deÞne f by letting f(0) = 0 and f(1) = 1. In fact, this kind
of behavior can always happen when X is not an interval:

Exercise 5.1: Let X be any nonempty subset of R1 such that X is not an
interval. Then there is a continuous function f : X → R1 such that for some
two values, f(a) and f(b), no number between f(a) and f(b) is a value of f .

However, the behavior illustrated above can not occur when the domain of
a continuous function is an interval:

Theorem 5.2 (Intermediate Value Theorem): Let I be an interval,
and let f : I → R1 be continuous. Then every number that lies between two
values of f is a value of f . In other words, f(I) is an interval.

Proof: Assume that x0, x1 ∈ I, with x0 < x1, and that c ∈ R1 such that

(1) f(x0) < c < f(x1).

We prove that c is a value of f . (We will also need to prove that c is a value
of f when f(x1) < c < f(x0); we do this after we prove the theorem under the
assumption in (1).)
We begin with a simple observation: Since x0, x1 ∈ I and I is an interval, it

is clear that

(2) [x0, x1] ⊂ I.
The following set A is central to the proof:

A = {x ∈ [x0, x1] : f(x) < c}.

By (1), x0 ∈ A; hence, A 6= ∅. Also, x1 is an upper bound for A by the way A
is deÞned. Therefore, there is a least upper bound ` for A by the Completeness
Axiom (section 1 of Chapter I). Since x0 ∈ A and x1 is an upper bound for A,
it is clear that
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(3) ` ∈ [x0, x1].

We prove that f(`) = c (note that f is deÞned at ` by (2) and (3)). We
prove that f(`) = c by proving (4) and (5) below.

(4) f(`) ≥ c.
Proof of (4): Suppose by way of contradiction that f(`) < c. Then, since f is

continuous at `, there is an open interval J such that ` ∈ J and f(J) ⊂ (−∞, c)
(by Exercise 3.14). Since f(`) < c, we see from (1) that ` 6= x1; hence, by
(3), ` < x1. Thus, there exists p ∈ J such that ` < p < x1. Hence, by (3),
p ∈ [x0, x1]. Therefore, by (2), p ∈ I, so f is deÞned at p. Thus, since p ∈ J ,
f(p) ∈ (−∞, c). Hence, since p ∈ [x0, x1], we have that p ∈ A. Therefore, since
` < p, we have a contradiction to ` being an upper bound for A. This proves
(4).

(5) f(`) ≤ c.
Proof of (5): Suppose by way of contradiction that f(`) > c. Then, since f is

continuous at `, there is an open interval J 0 such that ` ∈ J 0 and f(J 0) ⊂ (c,∞)
(by Exercise 3.14). Since f(`) > c, we see from (1) that ` 6= x0; hence, by
(3), ` > x0. Thus, since ` is the least upper bound of A, there is a point
a ∈ A ∩ J 0. Since a ∈ A, f(a) < c; on the other hand, since a ∈ J 0, f(a) > c.
This establishes a contradiction. Therefore, we have proved (5).

By (4) and (5), f(`) = c. This proves the theorem under the assumption in
(1).
To complete the proof of the theorem, we must consider the case when (1)

is changed to f(x1) < c < f(x0) (and, as before, x0 < x1). We can prove the
theorem for this case by going through the proof we have done and making the
necessary adjustments; however, we prefer to sieze this opportunity to introduce
a standard technique � a trick.
Observe that we have proved the theorem for any continuous function g :

I → R1 and for any point b ∈ R1 such that g(x0) < b < g(x1), where x0, x1 ∈ I
and x0 < x1, We can use this to prove the theorem for the given function f
when f(x1) < c < f(x0), as follows:
Assume that x0, x1 ∈ I, with x0 < x1, and that c ∈ R1 such that the reverse

inequalities in (1) hold, namely,

f(x1) < c < f(x0).

Consider the function g = −f . Then g is continuous by Corollary 4.10 and
g(x0) < −c < g(x1).

Hence, by the observation in the preceding paragraph, there is a point p ∈ I
such that g(p) = −c. Clearly, then, f(p) = c. ¥
Remember the �trick� employed in the last part of the proof of the Interme-

diate Value Theorem and use the trick to your advantage in the future.
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The Intermediate Value Theorem is an existence theorem � it tells us that
certain values of the function exist, but it does not tell us where in the domain
a particular value of the function is attained. In addition, the proof is not
constructive � the proof does not locate where a particular value is attained.
For example, see Exercise 5.5.
We will see many applications of the Intermediate Value Theorem. We

mention one application that is particularly important: We use the Intermediate
Value Theorem to characterize one - to - one continuous functions on intervals as
being either strictly increasing or strictly decreasing (Theorem 8.4); this leads
to a proof of the Inverse Function Theorem (Theorem 8.7).
If X is any subset of R1 and f : X → R1 is continuous, then the Intermediate

Value Theorem can be applied to intervals contained in X. We see why this is
so from the Þrst exercise below.

Exercise 5.3: The restriction of a continuous function is continuous (the
restriction of a function is deÞned in the second paragraph of section 5 of Chapter
III); in fact, if f : X → R1 is continuous at a point p ∈ X and if X 0 ⊂ X such
that p ∈ X0, then f |X0 is continuous at p.

Exercise 5.4: Use Theorem 5.2 to give a very short (and elegant) proof
that every positive real number has a positive square root (which we proved
earlier in Theorem 1.25).

Exercise 5.5: Let f(x) = 35√
2x14+5x10+9x8+3x4+7

. Show that f(x) = 10
7 for

some x ∈ [0, 1].
Exercise 5.6: Prove that if f is a polynomial of odd degree, then f has a

root (i.e., f(x) = 0 for some x ∈ R1).
Give an example of a polynomial of even degree that does not have a root.

Exercise 5.7: If f : [0, 1] → [0, 1] is continuous, then f(p) = p for some
point p. (For any function f , a point p such that f(p) = p is called a Þxed point
of the function f .)

Exercise 5.8: Assume that f : [0, 1] → R1 is continuous, f(0) ≤ 0 and
f(1) ≥ 1. Then the equation f(x) = x2 has a solution.

Exercise 5.9: You leave your home at 8 P.M. and walk to a friend�s home,
arriving at 8 : 30 P.M. You stay overnight, and the next evening you leave your
friend�s home at 8 P.M. and arrive home at 8 : 30 P.M., retracing exactly the
same route as the evening before. At some time between 8 P.M. and 8 : 30 P.M.,
you are at exactly the same place on the route both evenings. Why?

Exercise 5.10: No interval is the union of two or more (including inÞnitely
many) mutually disjoint open intervals.
(Hint: Assume to the contrary, and Þnd a continuous function that contra-

dicts the Intermediate Value Theorem (Theorem 5.2).)
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2. The Maximum-Minimum Theorem

A continuous function deÞned on an interval may not have a largest or
smallest value (e.g., f(x) = x for 0 < x < 1). On the other hand, when the
interval is closed and bounded, any continuous function on the interval has both
a largest value and a smallest value; this result is called the Maximum-Minimum
Theorem. The theorem fails for bounded intervals that are not closed (by the
example above) and for closed intervals that are not bounded (by restricting
f(x) = x to the closed interval [1,∞)).
We devote this section to proving the Maximum-Minimum Theorem, which

is Theorem 5.13.
We introduce terminology that we use throughout the section (and later).

DeÞnition: We deÞne bounded set, bounded function, maximum value and
minimum value (extreme values).

� A subset X of R1 is a bounded set provided that there exists M > 0 such
that X ⊂ (−M,M).

� A function f : X → R1 is a bounded function, or is bounded on X, provided
that f(X) is a bounded set.

� The maximum value, or largest value, of a function f : X → R1 is the
value f(p), if it exists, such that f(p) ≥ f(x) for all x ∈ X.

� The minimum value, or smallest value, of a function f : X → R1 is the
value f(p), if it exists, such that f(p) ≤ f(x) for all x ∈ X.

� Taken together, the maximum value and the minimum value of a function
(if they exist) are called the extreme values of the function.

We Þrst prove a general theorem commonly called the Nested Interval Prop-
erty. The Nested Interval Property seems to have nothing to do with the sub-
ject at hand; however, the property is the basis for the proof the Maximum-
Minimum Theorem. The proof of the Nested Interval Property only uses the
Completeness Axiom; thus, we could have presented the result and its proof
back in Chapter I. We waited until now in order to give an immediate applica-
tion of the result to a situation that is far removed from the result itself. Thus,
the use of the Nested Interval Property to prove the Maximum-Minimum The-
orem illustrates the many diverse and unexpected applications of the Nested
Interval Property.

Theorem 5.11 (Nested Interval Property): Let I1, I2, ..., In, ... be closed
and bounded intervals such that In ⊃ In+1 for each n. Then

∩∞n=1In 6= ∅.

Proof: For each n = 1, 2, ... , let In = [an, bn]. Since In ⊃ In+1 for each n,
we see easily that
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(1) ai ≤ bj for all i, j = 1, 2, ... .
Let A = {an : n = 1, 2, ...}. By (1), b1 is an upper bound for A. Therefore,

since A 6= ∅, A has a least upper bound ` (by the Completeness Axiom).
We show that ` ∈ ∩∞n=1In, which proves the theorem.
Since ` is an upper bound for A, an ≤ ` for each n. Hence, to show that

` ∈ ∩∞n=1In, we are left to show that ` ≤ bn for each n. But this is easy to show:
If it were true that ` > bj for some j, then, since bj is an upper bound for A by
(1), ` would not be the least upper bound for A. ¥
The Nested Interval Property is simply another way of stating the Com-

pleteness Axiom; you will be asked to prove this (Exercise 5.17).
Next, we prove a preliminary lemma. The lemma will be subsumed by our

main theorem; nevertheless, the lemma is a convenient way to break the proof
of our main theorem into two parts.

Lemma 5.12: If f : [a, b]→ R1 is continuous, then f is bounded.

Proof: Let

A = {x ∈ [a, b] : f([a, x]) is bounded}.

We prove the lemma by proving that b ∈ A.
Since a ∈ A, A 6= ∅; also, b is an upper bound for A. Therefore, by the

Completeness Axiom, there is a least upper bound ` for A.
We prove that b ∈ A by proving that ` ∈ A and then proving that ` = b.
Note that ` ∈ [a, b] (since a ∈ A and b is an upper bound for A). Hence, f is

deÞned at ` and, therefore, f is continuous at `. Thus, by Exercise 3.14, there
is an open interval J = (s, t) in R1 such that

(1) ` ∈ J = (s, t) and f(J) ⊂ (f(`)− 1, f(`) + 1).
We now prove that ` ∈ A (draw a picture as the proof progresses). Since

a ∈ A, we assume for the proof that ` 6= a; hence, ` ∈ (a, b]. Thus, since
` ∈ J = (s, t) (by (1)) and since ` is the least upper bound for A, there is a
point x ∈ A such that s < x ≤ `. Since x ∈ A, f([a, x]) is bounded. Also, since
[x, `] ⊂ J (by (1)), f([x, `]) is bounded (by (1)). Thus, since the union of two
bounded sets is bounded and since f([a, x]) ∪ f([x, `]) = f([a, `]), we have that
f([a, `]) is bounded. Therefore, since ` ∈ [a, b], we have proved that ` ∈ A.
Finally, we show that ` = b. Suppose by way of contradiction that ` 6= b.

Then, since ` ∈ [a, b], ` < b. Thus, since ` ∈ J (by (1)), there is a point
z ∈ [a, b] ∩ J such that z > `. Since `, z ∈ J , we see that [`, z] ⊂ J ; hence, by
(1), f([`, z]) is bounded. Also, since ` ∈ A (proved above), f([a, `]) is bounded.
Hence, f([a, `]) ∪ f([`, z]) is bounded. Thus, f([a, z]) is bounded. Therefore,
since z ∈ [a, b], we have proved that z ∈ A. Thus, since z > `, we have a
contradition to the fact that ` is an upper bound for A. Therefore, ` = b.
We have proved that ` ∈ A and that ` = b. Hence, b ∈ A. Therefore, from

the deÞnition of A, we see that f is bounded. ¥
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We are ready to prove our main theorem. The proof illustrates an important
technique - the bisection procedure - that has numerous applications in calculus
as well as in other areas such as continuum theory, dynamics and chaos.

Theorem 5.13 (Maximum-Minimum Theorem): If f : [a, b] → R1

is continuous, then f has a (unique) maximum value and a (unique) minimum
value. Thus, f([a, b]) is a closed and bounded interval.

Proof: Since the theorem is trivially true when a = b, we assume for the
proof that a < b. We prove that f has a maximum value; the proof that f has
a minimum value is left for the reader (Exercise 5.14).
By Lemma 5.12, f([a, b]) is bounded. Therefore (since f([a, b]) is nonempty),

we have by the Completeness Axiom that f([a, b]) has a least upper bound `.
We prove that ` is a value of f ; obviously, then, ` is the maximum value of

f .
We inductively deÞne closed and bounded intervals I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·

by bisecting, as follows: Let I1 = [a, b], and note that ` = lub f(I1). Assume
inductively that we have deÞned a closed and bounded interval In = [an, bn]
for some n ≥ 1 such that ` = lub f(In). Let m denote the midpoint of In (i.e.,
m = an+bn

2 ). Then, since ` = lub f(In), we see easily that

(i) ` = lub f([an,m]) or (ii) ` = lub f([m, bn]).

DeÞne In+1 to be [an,m] if (i) holds and deÞne In+1 to be [m, bn] if (ii) holds
and (i) does not hold. Then, by the Induction Principle (Theorem 1.20), we
have deÞned In for each n = 1, 2, ... .
The intervals In have the following three important properties, each of which

follows easily from the way we deÞned the intervals:

(1) For each n, In ⊃ In+1 and In is a closed and bounded interval;

(2) the length of In is 1
2n−1 (b− a) for each n;

(3) ` = lub f(In) for each n.

By (1) and the Nested Interval Property (Theorem 5.11), there is a point
p ∈ ∩∞n=1In.
We prove that f(p) = `. Suppose, as will lead to a contradiction, that

f(p) 6= `. Then, since ` is an upper bound for f([a, b]), f(p) < `. Hence,
f(p) ∈ (−∞, f(p)+`

2 ).

Thus, since f is continuous at p, we see from Exercise 3.14 that there is an open
interval J such that p ∈ J and

f(J) ⊂ (−∞, f(p)+`
2 ).

Since J is an open interval containing p and since p ∈ In for all n, it follows
from (2) that Ik ⊂ J for some k. Therefore,

f(Ik) ⊂ (−∞, f(p)+`
2 ).
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Hence, f(p)+`
2 is an upper bound for f(Ik). Thus, since

f(p)+`
2 < `, we have a

contradiction to (3). Therefore, f(p) = `.
We have proved that ` is the maximum value of f . Finally, assuming we

have proved that f has a minimum value m (Exercise 5.14), we see that f([a, b])
is a closed and bounded interval: For by Theorem 5.2, f([a, b]) = [m, `]. ¥
The Maximum-Minimum Theorem and its proof have the same inherent

characteristics as the Intermediate Value Theorem and its proof: The Maxi-
mum-Minimum Theorem is an existence theorem, and its proof does not tell us
what the extreme values of f are or where in the domain [a, b] they are attained.
Let us illustrate. Consider the function f deÞned on the interval [0, 6] by

f(x) = 4x3 − 36x2 + 77x;

we know from the Maximum-Minimum Theorem that f has extreme values on
[0, 6]; however, we do not know (at this time) what the extreme values are or
at which points in [0, 6] they are attained. See if you can Þnd them, even with
a hand calculator (but, no calculus allowed!).
Finding extreme values and where they are attained is a very important

problem; differential calculus is designed to provide solutions to the problem. We
will return to the problem of Þnding extreme values in our study of derivatives.
We focus on the problem in Chapters IX and X (you will be asked to analyze
the example above in Exercises 10.21 and 10.38).

Exercise 5.14: Finish the proof of Theorem 5.13 by proving that f has a
minimum value.

Exercise 5.15: There are two positive real numbers such that the sum of
their squares is

√
3 and such that their product is as large as possible.

Exercise 5.16: Use the bisection procedure in the proof of Theorem 5.13
to prove that any bounded inÞnite subset of R1 has a limit point in R1.

Exercise 5.17: Prove that the Nested Interval Property (Theorem 5.11) is
equivalent to the Completeness Axiom. (The proof of Theorem 5.11 shows that
the Completeness Axiom implies the Nested Interval Property).

Exercise 5.18: In addition to the assumptions for the Nested Interval Prop-
erty (Theorem 5.11), assume that the length of the interval In is less than 1

n .
Then ∩∞n=1In contains exactly one point.

Exercise 5.19: True or false: If f : (a, b]→ R1 is continuous, then f has a
maximum value or f has a minimum value.

Exercise 5.20: If X is an unbounded subset of R1, then there is a contin-
uous function f : X → R1 such that f is unbounded.

Exercise 5.21: Is there a continuous function on R1 that attains each of
its values exactly twice?

Exercise 5.22: Is there a continuous function on R1 that attains each of
its values exactly three times?
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Chapter VI: Introduction to the Derivative

The derivative of a function at a point is a general notion with numerous
interpretations. The two most prominent interpretations are the instantaneous
rate of change of a function at a point and the slope of the tangent line to the
graph of a function at a point. In section 1 we Þrst discuss the physical and
geometric ideas that lead to the deÞnition of the derivative; then we present
the formal deÞnition of the derivative and illustrate the deÞnition in connection
with tangent lines. In section 2 we relate differentiability to continuity. In the
last section, we discuss linear approximation.

1. DeÞnition of the Derivative

The deÞnition of the derivative of a function took almost two millennia to be
developed and rigorously understood. The notion comes from classical geometry.
For centuries, geometers were concerned with Þnding tangents to surfaces.

Apollonius (262 - 190 B.C.) constructed tangents to conic sections. R. Descartes
(1596 - 1650) used tangents to circles to Þnd tangents to curves by �Þtting� a
circle to a point on the curve and declaring the tangent to the circle at the
point to be the tangent to the curve at the point. P. Fermat (1601 - 1665) found
tangents to curves using the so - called difference quotient we use today.4

But tangents to curves are not just a curiosity for geometers: Tangents
to curves can describe physical action. We mention two examples. The Þrst
example concerns the tangent line itself, and the second example concerns the
slope of the tangent line.
A tangent line to a curve can be interpreted as the path along which an

object would naturally move were the object not constrained. You can see this
experimentally: Attach a small weighty object to one end of a piece of string,
twirl the object while holding the other end of the string, and then let go � the
object goes in the direction tangent to its originally circular path at the point
where it was released.
The slope of the tangent line to a curve at a point can be thought of as

representing the velocity of a particle at the point. But wait! We all know what
velocity is � distance

time � but what is velocity at a point � 0
0 ? Not hardly! And

this is where the notion of limit steps in: Let d(t) denote the distance a particle
has moved from its initial position at time t = 0 to its position at time t > 0;
assume that the particle is at a point p at time t = t0. Then the velocity v(p) of
the particle at the point p should be the limit of the velocities over times t 6= 0
as t→ t0 (if the limit exists):

v(p) = limt→0
d(t0+t)−d(t0)

t .

4Fermat used difference quotients without the notion of limit, which came later. The
modern day deÞnition of limit is due to K. Weierstrass (1815 - 1897), but the essence of the
notion is traceable back to I. Newton (1642 - 1727), who thought in terms of �ultimate ratios�
of inÞnitesimal increments (without a deÞnition).
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We call v(p) the instantaneous velocity of the particle at x = p, and we call
d(t0+t)−d(t0)

t the average velocity of the particle over time t (t 6= 0). Thus, the
instantaneous velocity at p is the limit of the average velocities.
Now, note that for each time t 6= 0, the expression d(t0+t)−d(t0)

t is the slope
of the secant line joining the points (t0, d(t0)) and (t0 + t, d(t0 + t)) on the
graph of the function d. The limit of these slopes, limt→0

d(t0+t)−d(t0)
t , should

be considered to be the slope of the tangent line to the graph of the function d
at (t0, d(t0)).
We conclude that we have two interpretations for limt→0

d(t0+t)−d(t0)
t : the

instantaneous velocity of a particle at time t0, and the slope of the tangent line
to the graph of the function d at (t0, d(t0)).
The derivative of a function (which we deÞne below) is merely a general

formulation of what we have described. Indeed, there is no reason whatsoever
to restrict what we have done to the setting of moving particles or to slopes
of tangent lines. Nevertheless, the preceding discussion gives us an intuitive
understanding, a point of reference if you like, for the deÞnition of derivative.

DeÞnition: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X such
that p is a limit point of X. We say that f is differentiable at p provided that
the limit

limh→0
f(p+h)−f(p)

h

exists, in which case we call the limit the derivative of f at p, denoted by f 0(p).
We say that f is differentiable on X (or just differentiable when the domain

X is evident) provided that f is differentiable at each point of X.
If f is differentiable on X, then the derivative of f (on I) is the function f 0

that assigns the value f 0(x) to each point x ∈ X.
With the discussion above in mind, we sometimes use descriptive terminol-

ogy: We call f 0(p) the slope of the tangent line to the graph of f at (p, f(p));
when we consider f to be the distance an object has traveled with respect to a
variable x (usually time), we call f 0(p) the instantaneous velocity of the object
at x = p. The descriptive phrases are no longer just intuitive ideas � as of now,
they are deÞned to be the derivative of f at p.

We see that, in general, f 0(p) can be thought of as the instantaneous rate of
change of f at p. Rate of change can refer to a number of physical quantities
that change, for example, with time: The size of a population, the Þnancial
return on an investment, the amount of rainfall, the amount of a product pro-
duced in a chemical reaction or in a business, etc. The study of derivatives is,
therefore, the study of many ideas at the same time. This illustrates a major
aspect of the beauty of mathematics � the ability of mathematics to unify a
number of seemingly different ideas.
The deÞnition of the derivative at a point presupposes that the point is in

the domain of the function and that the point is a limit point of the domain.
Thus, when we assume that a function is differentiable at a point, we do not
explicitly mention the conditions about the point.
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Before proceeding, we make two comments about the deÞntion of derivative.
Our Þrst comment concerns terminology. Assume that f : [a, b] → R1 is

a differentiable function. Then, according to our terminology, f 0(a) and f 0(b)
are derivatives. This terminology contrasts with the usual terminology: in other
books, f 0(a) and f 0(b) are called one - sided derivatives (i.e., derivatives from the
right or from the left, respectively). The reason we prefer our terminology goes
back to our comments about limits in the last section of Chapter III (above
Exercise 3.17). We will consider one - sided derivatives when there is a good
reason to do so; for example, one situation in which one - sided derivatives come
up naturally is in the next section.
Our second comment is a clariÞcation concerning the limit in the deÞnition

of derivative. In order that limh→0
f(p+h)−f(p)

h make sense, 0 must be a limit
point of {h ∈ R1 : p + h ∈ X} (as required in the deÞnition of limit in section
1, Chapter III); the reader should check that this is so:

Exercise 6.1: If X ⊂ R1 and p is a limit point of X, then 0 is a limit point
of {h ∈ R1 : p+ h ∈ X}.
We conclude the section with three examples. The examples illustrate vari-

ous aspects of the deÞnition of the derivative in relation to tangent lines.
We have deÞned the slope of the tangent line to the graph of a function f

at (p, f(p)) to be f 0(p); thus, we had better make sure that when the graph of
f itself is a line, then f 0(p) is the slope of the line (in the sense of precalculus):

Example 6.2: Let f(x) = mx+ b, the slope - intercept form of a line with
slope m. We show that f 0(p) =m for any point p ∈ R1 :

f 0(p) = limh→0
f(p+h)−f(p)

h = limh→0
m(p+h)+b−(mp+b)

h = limh→0
mh
h

= limh→0m = m.

Our next example illustrates how to Þnd the equation of the tangent line to
the graph of a function at a point of the graph.

Example 6.3: Let f(x) = x2 (all x ∈ R1). We Þnd the equation of the
tangent line to the graph of f at the point (3, 9). We Þrst compute the derivative
of f : For any given point x,

f 0(x) = limh→0
f(x+h)−f(x)

h = limh→0
(x+h)2−x2

h = limh→0
2xh+h2

h

= limh→0 2x+ h
4.16
= 2x+ 0 = 2x.

Thus, f 0(3) = 6. Therefore, the equation of the tangent line to the graph of f
at the point (3, 9) is y − 9 = 6(x− 3), or y = 6x− 9.
In geometry we are accustomed to a tangent line being on �one side� of

the curve and only touching the curve at the point of tangency. The following
example shows that tangent lines as we have deÞned them do not always behave
that way:

Example 6.4: Let f(x) = x3 (all x ∈ R1). Then, for any given point x,
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f 0(x) = limh→0
f(x+h)−f(x)

h = limh→0
x3+3x2h+3xh2+h3−x3

h

= limh→0
h(3x2+3xh+h2)

h = limh→0 3x
2 + 3xh+ h2 4.16

= 3x2.

Hence, f 0(0) = 0, so the equation of the tangent line to the graph of f at (0, 0)
is y = 0; therefore, since x3 < 0 when x < 0 and x3 > 0 when x > 0, the tangent
line crosses the graph of f � the tangent line is not even locally on one side of
the graph of f . Next, note that since f 0(1) = 3, the equation of the tangent line
to the graph of f at (1, 1) is y = 3x − 2; therefore, the tangent line intersects
the graph of f at the two points (1, 1) and (−2,−8).
Exercise 6.5: Find the points at which the function f(x) = x

x+1 is differ-
entiable and Þnd its derivative at those points.

Exercise 6.6: Find the points at which the function f(x) =
√
x is differen-

tiable and Þnd its derivative at those points.

Exercise 6.7: Find the points at which the function f(x) =
√
x2 + 1 is

differentiable and Þnd its derivative at those points.

Exercise 6.8: Let f(x) = 1√
x
. Find the equation of the tangent line to the

graph of f at the point (4, 1
2).

Exercise 6.9: Assume that f is a function deÞned on an open interval I
and that f is differentiable at some point p ∈ I with f 0(p) 6= 0. Then there
exists δ > 0 such that for all x ∈ I with x 6= p and |x− p| < δ, f(x) 6= f(p).
Exercise 6.10: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X

such that p is a limit point of X. Then f is differentiable at p if and only if
limx→p

f(x)−f(p)
x−p exists, in which case limx→p

f(x)−f(p)
x−p = f 0(p).

Exercise 6.11: Assume that f is a function deÞned on an open interval I
and that f is differentiable at some point p ∈ I. Find

limh→0
f(p+h)−f(p−h)

h .

Exercise 6.12: Assume that f is a function deÞned on an open interval I
and that f is differentiable at some point p ∈ I. Find

limh→0
f(p+2h)−f(p)

h .

Exercise 6.13: Let f be a function deÞned on an open interval I such that
f is differentiable at some point p ∈ I. Let ϕ be a function deÞned on an open
interval J about 0 such that ϕ is continuous at 0, ϕ(0) = 0, and ϕ(x) 6= 0 when
x 6= 0. Then

limh→0
f(p+ϕ(h))−f(p)

ϕ(h) = f 0(p).

(Hint: The formula

g(y) =

(
f(p+y)−f(p)

y , if y 6= 0
f 0(p) , if y = 0.

deÞnes a function g on some open interval about 0. Make use of g.)
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2. Differentiability and Continuity

In the forthcoming discussion, we assume that the functions are deÞned on
intervals (or at least on sets that have no isolated points).
Continuity and differentiability can be thought of as smoothness conditions

on the graph of a function: Continuity says the graph of a continuous function
is smooth enough so that the function does not jump; differentiability says the
graph of a differentiable function is smooth enough to have a (unique) tangent
line at each point. The natural question is Are the two smoothness conditions
related? In other words, does differentiability imply continuity, does continuity
imply differentiability, or does neither imply the other?
It seems reasonable to expect that differentiability implies continuity: if the

graph of a function is smooth enough to have a (unique) tangent line at each
point of its graph, then the graph of the function should be smooth enough to
keep the function from jumping. However, our experience with Example 6.4
shows that tangent lines do not always work the way we expect, so we had
better proceed with caution.
We want to try to show that if limh→0

f(p+h)−f(p)
h exists, then limx→p f(x) =

f(p) (recall Theorem 3.12). To have a chance to prove this, we need to write
x in terms of h (or h in terms of x); we have essentially already done this in
Exercise 6.10, which says that

limh→0
f(p+h)−f(p)

h = limx→p
f(x)−f(p)

x−p .

Now, can you see what to do next? Think about it before reading the proof of
the theorem below.

Theorem 6.14: Let X ⊂ R1, and let f : X → R1 be a function. If f is
differentiable at p, then f is continuous at p.

Proof: We want to prove limx→p f(x) = f(p) (recall Theorem 3.12). The
key to answering the question in the preceding discussion is the observation that
writing limx→p f(x) = f(p) is the same as writing limx→p(f(x)− f(p)) = 0.
To see why what we just said works, recall that limx→p

f(x)−f(p)
x−p = f 0(p) (by

Exercise 6.10) and that limx→p(x− p) = 0 (by Theorem 4.16); then

limx→p(f(x)− f(p)) = limx→p f(x)−f(p)
x−p (x− p) 4.9= f 0(p) · 0 = 0.

Therefore, limx→p f(x) = f(p). ¥
Now, having proved that differentiability implies continuity, we address the

question of whether the converse is true: Does continuity imply differentiability?
If you worked Exercise 6.6, you already know the answer is no: The function
f(x) =

√
x is continuous at every point of [0,∞), but the function is not dif-

ferentiable at p = 0. Perhaps you think this example is not very satisfactory
because 0 is an end point of the interval on which f is deÞned � indeed, unusual
things can happen at end points. But we can extend the function f so that the
resulting function is continuous on the entire real line and not differentiable at
0 : Simply let
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g(x) =

( √
x , if x ≥ 0

0 , if x < 0.

�OK,� you say, �the example with g is Þne, but maybe we should extend
the notion of tangent line to include x = 0 as a tangent line to the graph of
f(x) =

√
x at the origin.�

�Yes, we can do that,� I reply, �but that�s a subject for another time.�
An example showing something is false is one thing; a general principle

showing why it is false is quite another. What is a general underlying principle
that would lead easily to many continuous functions that are not differentiable?
The key to answering the question is to carefully examine why g in the

discussion above is not differentiable; if you do so, you will arrive naturally at
the notion of one - sided derivatives, deÞned below, and the simple theorem that
follows.

DeÞnition. Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X such
that p is a limit point of X ∩ (−∞, p]. We say f is differentiable from the left
at p, written f 0−(p), provided that the function f |X ∩ (−∞, p] is differentiable
at p, in which case f 0−(p) is the derivative of f |X ∩ (−∞, p] at p. We call f 0−(p)
the left - hand derivative of f at p (when it exists).
Similarly, assuming that p is a limit point of X∩ [p,∞), we say f is differen-

tiable from the right at p, written f 0+(p), provided that the function f |X∩[p,∞)
is differentiable at p, in which case f 0+(p) is the derivative of f |X ∩ [p,∞) at p.
We call f 0+(p) the right - hand derivative of f at p (when it exists).

Theorem 6.15: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X
such that p is a two - sided limit point of X. Then f is differentiable at p if and
only if f 0−(p) = f 0+(p), in which case

f 0−(p) = f 0(p) = f 0+(p).

Proof: The theorem follows immediately from the theorem on one - sided
limits (Theorem 3.16). ¥
We can now easily construct many functions that are continuous on R1 but

that are not differentiable at certain points. All we need to do is cut and paste:
Start with two functions, f and g, that are continuous on R1, that agree at a
point p, but that have different derivatives at p (e.g., two functions whose graphs
are straight lines with different slopes); then cut the domains at p and paste the
restricted functions together, thereby forming the new function h given by

h(x) =

(
f(x) , if x ≤ p
g(x) , if x > p.

The effect is that h has a �corner� in its graph at p which keeps h from being
differentiable at p (but the �corner� does not keep h from being continuous).
We give a speciÞc example.
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Example 6.16: Let

h(x) =

½
x , if x ≤ 0
3x , if x > 0.

Then h is continuous (by Theorem 4.16 and Exercise 5.3 when x 6= 0, and by
Theorem 3.12 and Theorem 3.16 when x = 0), and h is not differentiable at
x = 0 by Theorem 6.15.

One - sided derivatives can be used to show that lines that really look like
tangent lines are not tangent lines in the sense that we have deÞned them.
Consider the function f : R1 → R1 given by

f(x) =

½
x2 , if x ≤ 0√
x , if x > 0.

Draw a picture of the graph of f and it will look like the x - axis is tangent to
the graph of f at the origin. However, using one - sided derivatives (Theorem
6.15), we see that f is not differentiable at x = 0; thus, the x - axis is not tangent
to the graph of f at the origin. Note that the x - axis is tangent to the graph
of f |(−∞, 0] at the origin but that the x - axis is not tangent to the graph of
f |[0,∞) at the origin.
We summarize the section in terms of our discussion at the beginning of

the section: The smoothness that differentiability imposes on the graph of a
function is stronger than the smoothness that continuity imposes on the graph.

Exercise 6.17: The function f given by f(x) = |x| is continuous at every
point of R1, but f is not differentiable at 0.

Exercise 6.18: Let

f(x) =

½
x , if x ≤ 0
x2 + x , if x > 0.

Is there a tangent line to the graph of f at the point (0, 0) ?

Exercise 6.19: Are there constants a and b such that the function f given
by

f(x) =

½
x2 + 5 , if x ≤ 1
ax+ b , if x > 1

is differentiable?

Exercise 6.20: Are there constants a and b such that the function f given
by

f(x) =

½
ax+ 2 , if x ≤ b
x3 + 3 , if x > b

is differentiable?
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Exercise 6.21: Give an example of a function that is continuous on R1 and
that is not differentiable at any integer.

Exercise 6.22: Give an example of a function that is continuous on R1 and
that is not differentiable at any of the points 1, 1

2 ,
1
3 , ... .

Exercise 6.23: Give an example of a function that is continuous on [0,∞)
and that is not differentiable at 0, 1, 1

2 ,
1
3 , ... .

Exercise 6.24: Let

f(x) =

½
x |x| , if x is rational
0 , if x is irrational.

Determine all points x at which f is differentiable.

Exercise 6.25: True or false: If f : R1 → R1 is a function such that f 0−(0)
and f 0+(0) both exist, then f is continuous at 0.

Exercise 6.26: Find all differentiable functions f : R1 → R1 such that
f ◦ f = f .

3. Linear Approximation

We refer to a function whose graph is a straight line as a linear function (not
to be confused with linear functions in the setting of linear algebra).
We can immediately determine the exact value of a given linear function at

any particular point; for example, if f(x) = 2x + 7, then f(65) = 137. On the
other hand, it is more difficult, sometimes impossible, to determine exact values
of other types of functions � for example,

√
65 and sin(65).

Consider the tangent line to graph of a differentiable function f at a point
(p, f(p)); the tangent line is a fairly good approximation to the graph of f near
the point (p, f(p)). Thus, tangent lines should provide a way to Þnd fairly close
approximate values for functions such as

√
x and sin(x).

The general procedure of using tangent lines to Þnd approximate values is
called linear approximation. We describe the procedure as follows: We are given
(perhaps implicitly) a differentiable function f and a point x0 at which we want
to approximate f(x0). We Þrst Þnd a point p close to x0 for which we know the
value f(p). Next, we determine the equation of the tangent line to the graph
of f at (p, f(p)). Finally, we use the formula for the tangent line to obtain the
desired approximation.
We illustrate:

Example 6.27: We approximate
√
65 using linear approximation. We are

implicitly given the function f(x) =
√
x. The function f is differentiable at

every x > 0 and the derivative is f 0(x) = 1
2
√
x
(which you know if you worked

Exercise 6.6). We know
√
64 = 8 and

√
81 = 9, so we choose p = 64 since 64

is closer to 65 than 81 is (we could choose 65.61, which we Þnd by computing
(8.1)2, but our point here is to avoid such tedious computations). The equation
of the tangent line to the graph of f at (64, 8) is
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y = 1
2
√

64
x+ 4 = 1

16x+ 4.

We write the equation of the tangent line using function notation, y(x) = 1
16x+4,

to show explicitly that we consider y to be a function of x. Then, Þnally,

y(65) = 65
16 + 4 =

129
16 ,

which is our linear approximation to
√
65.

We could expand the approximation in Example 6.27 into its decimal equiv-
alent, 8.0625. If we wanted accuracy only to three decimal places to the right
of the decimal point, would we round up or round down? We can numerically
determine the answer:

(8.062)2 = 64. 996 and (8.063)2 = 65. 012,

thus we would round down to 8.062. However, if you know what the graph of
f(x) =

√
x looks like, then you know that all tangent lines to the graph of f lie

above the graph of f (except where they touch the graph); therefore, rounding
down is a good bet when we use linear approximation to estimate the square
root of any positive number.

Exercise 6.28: Approximate (5.137)3 using linear approximation.
Assume you only want accuracy to two decimal places to the right of the

decimal point; would you round your answer up or would you round your answer
down? Explain why without Þnding the decimal representing (5.137)3,

Exercise 6.29: Approximate sin(31◦) using linear approximation. (Use
that the derivative of sin(x) is cos(x) when x is radian measure, which we will
prove in Theorem 8.20; 1◦ = π

180 radians.)
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Chapter VII: Derivatives of Combinations

We show that various combinations of differentiable functions (including
compositions) are differentiable; we derive formulas for the derivatives of the
combinations in terms of the derivatives of the functions separately. We ap-
ply our results to show that polynomials are differentiable and that rational
functions are differentiable where they are deÞned.

1. Sums, Differences, Products and Quotients

We show that sums, differences, products and quotients of two differentiable
functions are differentiable; in the process, we derive formulas for the derivatives
of the combined functions in terms of the derivatives of the functions separately.
We apply our results in the next section to show polynomials and rational
functions are differentiable.

Theorem 7.1: Let X ⊂ R1, and let f, g : X → R1 be functions. If f and g
are each differentiable at p, then f + g is differentiable at p and

(f + g)0(p) = f 0(p) + g0(p).

Proof: Using Theorem 4.1 for the third equality below, we have

limh→0
(f+g)(p+h)−(f+g)(p)

h = limh→0
f(p+h)−f(p)+g(p+h)−g(p)

h

= limh→0[
f(p+h)−f(p)

h + g(p+h)−g(p)
h ]

4.1
= limh→0

f(p+h)−f(p)
h + limh→0

g(p+h)−g(p)
h = f 0(p) + g0(p). ¥

Corollary 7.2: Let X ⊂ R1, and let f1, f2, ..., fn : X → R1 be Þnitely many
functions. If each of the functions f1, f2, ..., fn is differentiable at p, then the
sum function f1 + f2 + · · ·+ fn is differentiable at p and

(f1 + f2 + · · ·+ fn)0(p) = f 01(p) + f 02(p) + · · ·+ f 0n(p).
Proof: The corollary follows from Theorem 7.1 by a simple induction (much

like the proof of Theorem 4.5). ¥
Theorem 7.3: Let X ⊂ R1, let f, g : X → R1 be functions. If f and g are

each differentiable at p, then f − g is differentiable at p and
(f − g)0(p) = f 0(p)− g0(p).

Proof: The proof is similar to the proof of Theorem 7.1 using Theorem 4.2
(instead of Theorem 4.1). ¥
We know from the previous two theorems that derivatives �distribute over�

sums and differences. Furthermore, the proofs of the two theorems use noth-
ing more than the corresponding results about limits. Therefore, since limits
�distribute over� products (Theorem 4.9), it is natural to expect that deriva-
tives would do the same; in other words, we should expect that if f and g are
differentiable at p, then
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(f · g)0(p) = f 0(p)g0(p).
So, let�s try to verify the formula and see what happens:

(f · g)0(p) = limh→0
(f ·g)(p+h)−(f ·g)(p)

h = limh→0
f(p+h)g(p+h)−f(p)g(p)

h ;

this might not look promising, but remember the trick we used in proving the
limit theorem for products (Theorem 4.9)? We subtracted and added an expres-
sion that enabled us to isolate expressions that related directly to the assump-
tions in the theorem. Let�s try that here. Since we want to isolate the difference
quotients for f and g, let�s subtract and add f(p)g(p+ h) to the numerator of
the second difference quotient above. The limit then becomes

limh→0
f(p+h)g(p+h)−f(p)g(p+h)+f(p)g(p+h)−f(p)g(p)

h

= limh→0[g(p+ h)
f(p+h)−f(p)

h + f(p)g(p+h)−g(p)
h ]

This doesn�t look at all like f 0(p)g0(p)! In fact, since limh→0 g(p+ h) = g(p) by
Theorem 6.14 (and Theorem 3.12), we have uncovered a completely unexpected
formula:

(f · g)0(p) = g(p)f 0(p) + f(p)g0(p)
(for this step, we are using the sum and product theorems for limits (Theorems
4.1 and 4.9)).
Thus, even though our initial guess about a formula for the derivative of a

product was wrong, we have discovered the following theorem:

Theorem 7.4: Let X ⊂ R1, and let f, g : X → R1 be functions. If f and g
are each differentiable at p, then f · g is differentiable at p and

(f · g)0(p) = f(p)g0(p) + g(p)f 0(p).
Proof: The proof is in the discussion above. ¥
It is an understatement to say that the formula in Theorem 7.3 is not intu-

itive. But, at the very least, could we have known that our original �formula� �
(f ·g)0(p) = f 0(p)g0(p) � could not be true before we tried to prove it? Yes, if we
had tried to apply our �formula� in any one of several simple cases, such as to
the product x · x or even to the function x written as 1x (we already computed
the relevent derivatives in Examples 6.2 and 6.3).
Do we now discard our false formula so no one will know we made such a

silly mistake? No! We turn our mistake into a question: For what differentiable
functions f and g on R1 is it true that (f · g)0(x) = f 0(x)g0(x) for all x ∈ R1 ?
We return to this question later.
Next, we show that the quotient of two differentiable functions is differ-

entiable and, at the same time, we derive a formula for the derivative of the
quotient.
Note that a quotient f

g can be viewed as the product f · 1
g . Therefore,

to simplify the proof of our theorem about quotients, we Þrst prove a lemma
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concerning reciprocals. We did the same thing when we proved the theorem on
limits of quotients in section 4 of Chapter IV (Lemma 4.19 and Theorem 4.20).

Lemma 7.5: Let X ⊂ R1, and let g : X → R1 be a function. If g is
differentiable at p and g(p) 6= 0, then 1

g is differentiable at p and

( 1
g )
0(p) = −g0(p)

[g(p)]2 .

Proof: We begin by trying to get a feeling for what is going on:

( 1
g )
0(p) = limh→0

1
g(p+h)− 1

g(p)

h = limh→0
1
h
g(p)−g(p+h)
g(p+h)g(p) ;

hence, isolating the difference quotient for g from the rest, we have

(1) ( 1
g )
0(p) = limh→0[

g(p+h)−g(p)
h

−1
g(p+h)g(p) ].

Now, we see what to do: We evaluate the limits of the two quotients on the
right - hand side of (1) separately.
Since g is differentiable at p, we have that

(2) limh→0
g(p+h)−g(p)

h = g0(p).

Since g is continuous at p by Theorem 6.14, limh→0 g(p + h) = g(p) by
Theorem 4.29; thus, since g(p) 6= 0, limh→0

1
g(p+h) =

1
g(p) by Lemma 4.19.

Therefore, by the limit theorem on products (Theorem 4.9), we have

(3) limh→0
−1

g(p+h)g(p) =
−1

[g(p)]2 .

By (1), (2) and (3), we can apply the limit theorem on products again to
obtain that

(1
g )
0(p) = g0(p) −1

[g(p)]2 =
−g0(p)
[g(p)]2 .

Have we proved the lemma? Yes, except for a technical detail: Even though
g(p) 6= 0, there may be values h for which g(p + h) = 0, in which case the
expression 1

g(p+h) , which we used throughout the proof, does not make sense.
However, this is easy to take care of: As already observed above (3),

limh→0 g(p+ h) = g(p) 6= 0;

thus, there is a δ > 0 such that

|g(p+ h)| > |g(p)|
2 when p+ h ∈ X and |h| < δ;

hence, g(p + h) 6= 0 for such h. Therefore, by stipulating at the beginning of
the proof that all values h in the proof are restricted to those for which |h| < δ,
we take care of the matter. ¥
Theorem 7.6: Let X ⊂ R1, and let f, g : X → R1 be functions. If f and g

are each differentiable at p and g(p) 6= 0, then f
g is differentiable at p and
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(fg )
0(p) = g(p)f 0(p)−f(p)g0(p)

[g(p)]2 .

Proof: Since f
g = f · 1

g ,

(fg )
0(p) = (f · 1

g )
0(p) 7.4= f(p)( 1

g )
0(p) + 1

g(p)f
0(p)

7.5
= f(p)−g

0(p)
[g(p)]2 +

1
g(p)f

0(p) = −f(p)g0(p)+g(p)f0(p)
[g(p)]2 . ¥

Exercise 7.7: Assume that (f + g)(x) = x3 + 5x − 3, where f and g are
differentiable functions and f 0(4) = 2. Find g0(4).

Exercise 7.8: Assume that (f · g)(x) = 3x
x2+8 , where f and g are differen-

tiable functions such that f(2) = 4 and f 0(2) = 5. Find g0(2).

Exercise 7.9: Assume that fg (x) = x
2+2x, where f and g are differentiable

functions such that f(2) = 2 and f 0(2) = 3. Find g0(2).

Exercise 7.10: Let f and g be differentiable functions with g(x) 6= 0 for all
x. Assume that the equation of the tangent line to the graph of f at (2, f(2))
is 3x− y− 5 = 0 and that the equation of the tangent line to the graph of fg at
(2, fg (2)) is 2x+ y + 4 = 0. Find the equation of the tangent line to the graph
of g at (2, g(2)).

2. Differentiating Polynomials and Rational Functions

In Chapter IV we showed that polynomials and rational functions are con-
tinuous. We now prove these types of functions are differentiable.
Our results will follow immediately from theorems in the preceding section

once we prove a lemma.

Lemma 7.11: The function f(x) = xn is differentiable for each n = 1, 2, ... .
In fact, for each n = 1, 2, ...,

(xn)0 = nxn−1.

Proof: We prove the lemma by induction (Theorem 1.20).
We already know that f(x) = x is differentiable and that x0 = 1 = 1x0

(Example 6.2); in other words, the lemma is true when n = 1.
Assume inductively that the lemma is true for a given natural number k.
We show using our inductive assumption that (xk+1)0 = (k + 1)xk.
Note that xk+1 = xxk and that, by our inductive assumption, (xk)0 = kxk−1.

Thus, since x0 = 1, we can apply Theorem 7.3 on products to obtain

(xk+1)0 = (xxk)0 = x(xk)0 + (xk)x0 = x(kxk−1) + xk

= kxk + xk = (k + 1)xk.

The lemma now follows from the Induction Principle (Theorem 1.20). ¥
Theorem 7.12: Every polynomial is differentiable. Furthermore, if

f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnxn,

64



then

f 0(x) = c1 + 2c2x+ 3c3x2 + · · ·+ ncnxn−1.

Proof: By Theorem 7.4 on products and Lemma 7.11, (cxm)0 = cmxm−1

for any constant c and any m = 1, 2, ... . Therefore, the theorem follows from
Corollary 7.2. ¥
Theorem 7.13: Every rational function is differentiable on its domain.
Proof: Every point of the domain of a rational function is a limit point of its

domain (you are asked to prove this in Exercise 7.14). Therefore, our theorem
follows from Theorem 7.12 and Theorem 7.6. ¥
We close with a word of caution about computing derivatives. We know from

Lemma 7.11 that (x4)0 = 4x3. However, this does not say that ((2x)4)0 = 4(2x)3;
in fact, since (2x)4 = 16x4, we see from Lemma 7.11 and Theorem 7.4 on
products that ((2x)4)0 = (16x4)0 = 64x3. In other words, in general, if f is
differentiable, Lemma 7.11 does not tell us how to differentiate (f(x))n or even
whether (f(x))n is differentiable. We will learn about this in the next section.

Exercise 7.14: Prove the statement every point of the domain of a rational
function is a limit point of its domain, which we used in the proof of Theorem
7.13. (No fair using that polynomials have only Þnitely many roots).

Exercise 7.15: (xn)0 = nxn−1 for each n = −1,−2, ... .
Exercise 7.16: Find f 0(2) for each of the following functions f :

f(x) = −4x5 + 2
x3 − 7; f(x) = 3x2−2x+1

(2x−1)2 ; f(x) = x
(4x−6)3 .

Exercise 7.17: Let f(x) = x
(1+ 1

x )2 . Find the equation of the tangent line

to the graph of f at (1, f(1)).

Exercise 7.18: Find a function whose derivative is 3x5 − 2x2 + 1.

Exercise 7.19: Find a function whose derivative is 1
x3 − (4x2 + 1)3.

Exercise 7.20: Is there a polynomial of degree 3 that has horizontal tangent
lines to its graph at three different points?

Exercise 7.21: Recall our discussion of the bogus formula (f · g)0(x) =
f 0(x)g0(x) following Theorem 7.4. When do polynomials f and g satisfy the
formula?

3. The Chain Rule

We have proved that the composition of two continuous functions is contin-
uous (Theorem 4.28). We now prove that the composition of two differentiable
functions is differentiable and derive a formula for the derivative of the compo-
sition. The formula is called the Chain Rule (Theorem 7.23). The Chain Rule is
useful in computing derivatives and has far - reaching theoretical consequences.
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We will see applications of the Chain Rule in the next chapter (e.g., proof of
Theorem 8.16) and in other chapters as well.
Assume that f and g are differentiable functions. Let us try to Þnd out

what the derivative of the composition g ◦ f should be. First, using the form in
Exercise 6.10 for appearance sake only,

(g ◦ f)0(p) = limx→p g(f(x))−g(f(p))
x−p (if the limit exists).

Next, as we have done on numerous occasions, we manipulate algebraically to
obtain expressions that relate to our assumptions. Since we are assuming that
f is differentiable, we want the difference quotient f(x)−f(p)

x−p to appear as part
of what we take the limit of to get (g ◦ f)0(p). We force this to happen by
multiplying and dividing the expression g(f(x))−g(f(p))

x−p by f(x)− f(p), thereby
obtaining

(g ◦ f)0(p) = limx→p g(f(x))−g(f(p))
f(x)−f(p)

f(x)−f(p)
x−p .

Like the proverbial ostrich, we bury our head in the sand in order to believe
that we have not divided by 0. Since limx→p[f(x)−f(p)] = 0 by Theorems 6.14
and 3.12, limx→p

g(f(x))−g(f(p))
f(x)−f(p) looks a lot like g0(f(p)). If the limit is g0(f(p),

then we can apply our theorem on limits of products (Theorem 4.9) to arrive at

(g ◦ f)0(p) = limx→p g(f(x))−g(f(p))
f(x)−f(p) limx→p

f(x)−f(p)
x−p = g0(f(p))f 0(p).

We have found a possible formula for (g ◦ f)0(p); we have not veriÞed the
formula (or even proved that g◦f is differentiable) since we may have divided by
0 in our computations. The following lemma overcomes this obstacle: the lemma
will allow us to avoid limits of quotients with f(x)− f(p) in the denominator,
thereby verifying that the formula is indeed correct (Theorem 7.23).

Lemma 7.22: Let X,Y,Z ⊂ R1, and let f : X → Y and g : Y → Z
be functions. Assume that f is continuous at p and that g is differentiable at
f(p) = q. DeÞne G : Y → R1 by

G(y) =

(
g(y)−g(q)
y−q , if y 6= q

g0(q) , if y = q.

Then limx→pG(f(x)) = g
0(q) and

G(f(x)) f(x)−f(p)
x−p = g(f(x))−g(f(p))

x−p , all x ∈ X − {p}.
Proof: Since g is differentiable at q, we see from Exercise 6.10 that

limy→q
g(y)−g(q)
y−q = g0(q) = G(q);

hence, G is continuous at q by Theorem 3.12. Thus, since f is continuous at p
and f(p) = q, G◦f is continuous at p by Theorem 4.28. Therefore, by Theorem
3.12,
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limx→p(G ◦ f)(x) = (G ◦ f)(p) = G(f(p)) = G(q) = g0(q).
This proves the Þrst part of the lemma.
To verify the equation in the second part of the lemma, let x ∈ X − {p}.

Assume Þrst that f(x) 6= q. Then, by the deÞnition of G,
G(f(x)) = g(f(x))−g(q)

f(x)−q ;

thus, since q = f(p),

G(f(x))f(x)−f(p)
x−p = g(f(x))−g(f(p))

f(x)−f(p)
f(x)−f(p)

x−p = g(f(x))−g(f(p))
x−p .

This veriÞes the equation in the second part of the lemma when f(x) 6= q.
Finally, when f(x) = q, we have f(x) = f(p), so both sides of the equation are
equal to 0. ¥
Theorem 7.23 (Chain Rule): Let X,Y,Z ⊂ R1, and let f : X → Y and

g : Y → Z be functions. Assume that f is differentiable at p and that g is
differentiable at f(p) = q. Then g ◦ f is differentiable at p and

(g ◦ f)0(p) = g0(f(p))f 0(p).
Proof: All the work is done (we can apply Lemma 7.22 below since f is

continuous at p by Theorem 6.14):

(g ◦ f)0(p) 6.10= limx→p
g(f(x))−g(f(p))

x−p
7.22
= limx→pG(f(x))

f(x)−f(p)
x−p ;

also, limx→pG(f(x)) = g0(q) (by Lemma 7.22) and limx→p
f(x)−f(p)

x−p = f 0(p)
(by Exercise 6.10). Therefore, we can apply Theorem 4.9 on limits of products
to obtain

(g ◦ f)0(p) = g0(q)f 0(p) = g0(f(p))f 0(p). ¥

We conclude by illustrating how to use the Chain Rule in Þnding derivatives.

Example 7.24: Let f(x) = (4x+ 5)12. Note that f = h ◦ g, where
g(x) = 4x+ 5, h(y) = y12.

Hence, by the Chain Rule,

f 0(x) = h0(g(x))g0(x) = 12(g(x))11(4) = 48(4x+ 5)11.

Exercise 7.25: Find f 0(3) for each of the following functions f :

f(x) = 1
(1−x)5 ; f(x) =

√
x6 + 3x2 + 1; f(x) = [x+ (x− x3)6]7.

Exercise 7.26: Assume that (g ◦ f)(x) = x
x+1 , where f and g are differen-

tiable functions such that f(1) = 4 and g0(4) = 5. Find f 0(1).

Exercise 7.27: Assume that (g ◦ f)(x) = x4 + 3x, where f and g are
differentiable functions such that f(2) = 3 and f 0(2) = 5. Find g0(3).
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Chapter VIII: The Inverse Function Theorem

The Inverse Function Theorem is concerned with one - to - one differentiable
functions deÞned on an interval. The theorem tells us when the inverse of such
a function is differentiable and provides a formula for the derivative.
After necessary preliminary results, we prove the Inverse Function Theorem

in section 3. We apply the theorem in section 4 to show that rational powers of
x are differentiable (where deÞned and for x 6= 0). We study the trigonometric
functions in section 5: We show that the trigonometric functions are differ-
entiable, and then we apply the Inverse Function Theorem to show that the
inverse trigonometric functions are differentiable. We obtain formulas for the
derivatives of rational powers, trigonometric functions and inverse trigonometric
functions.

1. One - to - one Functions and Inverses

We recall some notions and notation from precalculus.
Let X and Y be sets. A function f : X → Y is said to be one - to - one

provided that whenever x1, x2 ∈ X and x1 6= x2, then f(x1) 6= f(x2).
Assume that f : X → Y is one - to - one. Then we can deÞne a function

g : f(X)→ X as follows: For each y ∈ f(X), g(y) is the unique point in X that
maps to y under f . In other words, f(g(y)) = y for all y ∈ f(X); in addition,
g(f(x)) = x for all x ∈ X. The function g is called the inverse of f , which we
denote from now on by f−1.
Do not confuse the notation f−1 with 1

f ; f
−1 is the (unique) function such

that f ◦f−1 is the identity function on f(X) and f−1 ◦f is the identity function
on X.
Let X ⊂ R1, and let f : X → R1 be one - to - one. Then the graph of f−1

is obtained by reßecting the graph of f about the line y = x in the plane. The
reason is quite simple: The reßection about y = x changes a point (x, f(x)) to
the point (f(x), x), and f−1(f(x)) = x.
The simple relation between the graphs of f and f−1 just mentioned can

provide geometric intuition for the Inverse Function Theorem and for some re-
sults preceding it. In particular, examining the graphs of f and f−1 in the same
picture can serve to motivate the results and provide insight. I leave it to the
reader to draw pictures of continuous one - to - one functions on intervals, to-
gether with their inverses, and differentiable one - to - one functions on intervals,
together with their inverses, before reading further � try to predict (from the
pictures) a geometric characterization of one - to - one continuous functions on
intervals, and try to determine what the formula should be for the derivative of
f−1 in terms of the derivative of f .

2. Continuity of the Inverse Function

We prove that the inverse of a one - to - one continuous function on an interval
is continuous. We will use this result in the next section to prove that the
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inverse of a differentiable function (on an interval) is differentiable. The pattern
should be familiar from the preceding chapter: There we used the continuity of
compositions (in the proof of Lemma 7.22) in proving the Chain Rule.
Our result about continuity of the inverse function is Theorem 8.6. We prove

the result by Þrst characterizing one - to - one continuous functions deÞned on
intervals in a geometric way. The terminology for the characterization is as
follows:

DeÞnition: Let X ⊂ R1 and let f : X → R1 be a function. We say that f
is increasing on X provided that whenever x1, x2 ∈ X such that x1 < x2, then
f(x1) ≤ f(x2); f is strictly increasing on X provided that whenever x1, x2 ∈ X
such that x1 < x2, then f(x1) < f(x2).
Similarly, f is decreasing on X ( or strictly decreasing on X) provided that

whenever x1, x2 ∈ X such that x1 < x2, then f(x1) ≥ f(x2) (or f(x1) > f(x2),
respectively).
If Y ⊂ X, we say f is increasing (strictly increasing, etc.) on Y to mean

f |Y is increasing (strictly increasing, etc.) on Y .

Exercise 8.1: Let X ⊂ R1 and let f : X → R1 be a function. If f is
strictly increasing on X, then f−1 is strictly increasing on f(X); if f is strictly
decreasing on X, then f−1 is strictly decreasing on f(X).

It is obvious that if a function f is either strictly increasing or strictly de-
creasing, then f is one - to - one. Our characterization theorem says that the
converse is also true when f is continuous on an interval (Theorem 8.4). We
Þrst prove a lemma; we use the lemma in the proof of the characterization the-
orem and in the proof of the subsequent theorem about the continuity of the
inverse function. The proof of the lemma uses the Intermediate Value Theorem
and the Maximum -Minimum Theorem.

Lemma 8.2: Let f : [a, b]→ R1 be a one - to - one continuous function.

(1) If f(a) < f(b), then f is strictly increasing on [a, b], f([a, b]) = [f(a), f(b)],
and f−1 is strictly increasing on [f(a), f(b)].

(2) If f(a) > f(b), then f is strictly decreasing on [a, b], f([a, b]) = [f(b), f(a)],
and f−1 is strictly decreasing on [f(b), f(a)].

Proof: We prove part (1); part (2) follows easily from part (1) (Exercise 8.3).
Assume that f(a) < f(b). Then, by the last part of Theorem 5.13,

f([a, b]) = [c, d] for some c < d.

We show that f(a) = c and f(b) = d. Since f([a, b]) = [c, d], there exist
s, t ∈ [a, b] such that f(s) = c and f(t) = d. Let J denote the closed interval
with end points s and t (i.e., J = [s, t] if s < t and J = [t, s] if t < s). Since
f(s) = c and f(t) = d and since f(J) ⊂ [c, d], we see by the Intermediate Value
Theorem (Theorem 5.2) that f(J) = [c, d]. Thus, since f(a), f(b) ∈ [c, d], there
exist p, q ∈ J such that f(p) = f(a) and f(q) = f(b). Now, since f is one - to -
one on [a, b], p = a and q = b. Hence, a, b ∈ J . Thus, J = [a, b]. Therefore,
s = a or b, and t = a or b; furthermore, if s = b, then t = a, and we have
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f(b) = f(s) = c < d = f(t) = f(a),

which contradicts our assumption that f(a) < f(b). Hence, s = a and, conse-
quently, t = b. Therefore, f(a) = c and f(b) = d.
We have proved the following:

(*) f([a, b]) = [f(a), f(b)].

We use (*) to prove that f is strictly increasing on [a, b]. Suppose that f is
not strictly increasing on [a, b]. Then, since f is one - to - one, there are points
x1 and x2 such that

a ≤ x1 < x2 ≤ b and f(x1) > f(x2).

Furthermore, x1 > a (otherwise, x1 = a and, hence, f(a) > f(x2), which
contradicts (*)); also, since f is one - to - one and a 6= x2, we see from (*) that
f(a) < f(x2). To summarize, we have that

a < x1 and f(a) < f(x2) < f(x1).

Thus, by the Intermediate Value Theorem (Theorem 5.2), there exists a point
c ∈ (a, x1) such that f(c) = f(x2). However, this contradicts that f is one - to -
one (since c < x1 < x2). Therefore, we have proved that f is strictly increasing
on [a, b].
Finally, we have shown that f is strictly increasing on [a, b] and that f([a, b]) =

[f(a), f(b)] (by (*)); therefore, by Exercise 8.1, f−1 is strictly increasing on
[f(a), f(b)].
This completes the proof of part (1) of the lemma; part (2) is left as Exercise

8.3. ¥
Exercise 8.3: Finish the proof of Lemma 8.2 by showing how part (2)

follows quickly from part (1).

We are now ready to prove the characterization theorem.

Theorem 8.4: Let I be an interval, and let f : I → R1 be a continuous
function. Then f is one - to - one if and only if f is either strictly increasing on
I or strictly decreasing on I.

Proof: If f is either strictly increasing on I or strictly decreasing on I, then
it is clear that f is one - to - one. Therefore, we need only prove the converse.
Any interval can be written as a countable union of closed and bounded

intervals [an, bn], n = 1, 2, ..., where [an, bn] ⊂ [an+1, bn+1] for all n. For ex-
ample, (a, b) = ∪∞n=1[a +

b−a
2n , b − b−a

2n ], [a, b) = ∪∞n=1[a, b − b−a
2n ], (a,∞) =∪∞n=1[a+

1
n , a+ n], and so on. Thus, whatever kind of interval the interval I in

our theorem is (excluding the trivial case when I = [a, a]), we have

I = ∪∞n=1[an, bn], [an, bn] ⊂ [an+1, bn+1] for all n, a1 < b1.
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Now, assume that f : I → R1 is one - to - one. Then either f(a1) < f(b1) or
f(b1) < f(a1).
Assume Þrst that f(a1) < f(b1). Then, by part (1) of Lemma 8.2, f is

strictly increasing on [a1, b1]. Assume inductively that f is strictly increasing
on [ak, bk] for some given k. Since f is one - to - one, either f(ak+1) < f(bk+1)
or f(bk+1) < f(ak+1). If f(bk+1) < f(ak+1), then we see from part (2) of
Lemma 8.2 that f is strictly decreasing on [ak+1, bk+1], hence on [ak, bk]; this
contradicts our inductive assumption that f is strictly increasing on [ak, bk].
Hence, f(ak+1) < f(bk+1). Therefore, by part (1) of Lemma 8.2, f is strictly
increasing on [ak+1, bk+1]. Hence, by the Induction Principle (Theorem 1.20),
we have proved that f is strictly increasing on [an, bn] for all n. Therefore, since
I = ∪∞n=1[an, bn], it follows easily that f is strictly increasing on I.
We leave the case when f(a1) > f(b1) as an exercise (Exercise 8.5). ¥
Exercise 8.5: Finish the proof of Theorem 8.4 (by taking care of the case

when f(a1) > f(b1)).

Finally, we prove our main theorem.

Theorem 8.6: Let I be an interval. If f : I → R1 is a one - to - one
continuous function, then f−1 is continuous on f(I).

Proof: By Theorem 8.4, f is either strictly increasing on I or strictly de-
creasing on I. We assume that

(1) f is strictly increasing on I.

By (1) and Exercise 8.1, we have that

(2) f−1 is strictly increasing on f(I).

Now, to prove that f−1 is continuous on f(I), let p ∈ f(I). We prove that
limy→p f−1(y) = f−1(p).
Let ² > 0. Let q = f−1(p).
By the Intermediate Value Theorem, f(I) is an interval. We take two cases:

Case 1: p is not an end point of f(I). Then it follows from (2) that q is not
an end point of I. Hence, we can assume that ² is small enough so that

[q − ², q + ²] ⊂ I.

Thus, since f is strictly increasing on [q − ², q + ²] (by (1)), we have
(3) f(q − ²) < f(q) = p < f(q + ²).
By (1), f is strictly increasing on [q−², q+²]; hence, by Lemma 8.2, we have

that

(4) f([q − ², q + ²]) = [f(q − ²), f(q + ²)].
Now, let

δ = min{p− f(q − ²), f(q + ²)− p}.
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By (3), δ > 0. Assume that |y − p| < δ. Then y ∈ (f(q − ²), f(q + ²)) since
f(q − ²) = p− [p− f(q − ²)] ≤ p− δ < y < p+ δ

≤ p+ [f(q + ²)− p] = f(q + ²).
Hence, by (4), f−1(y) ∈ (q−², q+²); in other words, ¯̄f−1(y)− q¯̄ < ². Therefore,
since q = f−1(p),

¯̄
f−1(y)− f−1(p)

¯̄
< ². Thus, we have proved that

limy→p f−1(y) = f−1(p).

Therefore, f−1 is continuous at p by Theorem 3.12.

Case 2: p is an end point of f(I). Then it follows from (2) that q is an end
point of I, and it is easy to modify the argument for Case 1 to prove that f−1

is continuous at p (replace [q − ², q + ²] with either [q, q + ²] or [q − ², q], and
make the obvious adjustments in the rest of the proof for Case 1). ¥

3. The Inverse Function Theorem

We prove the main theorem of the chapter. The assumption in the theorem
that f 0(p) 6= 0 is unconditionally necessary (see Exercise 8.8).
Theorem 8.7 (Inverse Function Theorem): Let I be an interval, let

f : I → R1 be a one - to - one continuous function, and let p ∈ I. If f is
differentiable at p and f 0(p) 6= 0, then f−1 is differentiable at f(p) = q and

(f−1)0(q) = 1
f 0(p) =

1
f 0(f−1(q)) .

Proof: We will use Lemma 7.22 with f in the lemma replaced by f−1 here
and g in the lemma replaced by f here (thus, the roles of p and q in the lemma
are switched here). The function F deÞned below is the function G in Lemma
7.22 with the replacements just mentioned:

F (x) =

(
f(x)−f(p)

x−p , if x 6= p
f 0(p) , if x = p.

The assumptions of Lemma 7.22 are satisÞed since f−1 is continuous at q (by
Theorem 8.6) and f is differentiable at f−1(q) = p (by assumption in our
theorem). Hence, by Lemma 7.22 (as adjusted here),

limy→q F (f
−1(y)) = f 0(p).

Thus, since f 0(p) 6= 0 (by assumption), limy→q 1
F (f−1(y)) =

1
f 0(p) by Lemma

4.19. Therefore, using the formula for F for the Þrst equality below,

1
f 0(p) = limy→q

1
f(f−1(y))−f(p)

f−1(y)−p
= limy→q

f−1(y)−p
f(f−1(y))−f(p)

= limy→q
f−1(y)−f−1(q)

y−q
6.10
= (f−1)0(q). ¥
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Exercise 8.8: The assumption that f 0(p) 6= 0 in Theorem 8.7 is absolutely
necessary: If I is an interval and f : I → R1 is a one - to - one differentiable
function such that f 0(p) = 0 for some point p, then f−1 is not differentiable
at f(p). Prove this result, and explain why the result is to be expected from a
picture of the graphs of f and f−1.

Exercise 8.9: In the proof of Theorem 8.7, we proved that f−1 is differ-
entiable at q by deriving the formula for (f−1)0(q). If we had known before-
hand that f−1 is differentiable at q, then we could have derived the formula
for (f−1)0(q) using the Chain Rule (Theorem 7.23). Show how to derive the
formula for (f−1)0(q) using the Chain Rule under the assumption that f−1 is
differentiable at q (and the assumptions about f in Theorem 8.7).

Exercise 8.10: Find (f−1)0(1) when f(x) = x7 + x3 + x+ 1.

Exercise 8.11: Find (f−1)0(6) when f(x) =
√
x3 + 2x+ 3.

Exercise 8.12: Let f : R1 → R1 be a one - to - one differentiable function
such that f(3) = 4 and f 0(3) = 1

4 . Let h =
1
f−1 . Find h0(4).

4. Differentiating Rational Powers

We know that for all integers n, xn is differentiable and (xn)0 = nxn−1 (by
Lemma 7.11 and Exercise 7.15). We extend the result to expressions of the form
x
m
n , where m and n are integers (n 6= 0) and x 6= 0. The proof is an application

of the Inverse Function Theorem (Theorem 8.7) and the Chain Rule (Theorem
7.23).
We begin by examining the function f(x) = xn, where n is a natural number.

We need to distinguish between the case when n is even and the case when n is
odd; the reason will be apparent when we use the following lemma as a guide
for deÞning the nth root function.

Lemma 8.13: Let n be a natural number, and let f(x) = xn for all x ∈ R1.

(1) If n is even, then f is strictly increasing, hence one - to - one, on [0,∞)
and f([0,∞)) = [0,∞).
(2) If n is odd, then f is strictly increasing, hence one - to - one, on R1 and

f(R1) = R1.

Proof: All the numbers 0, 1, 2n, 3n, ..., kn, ... are values of f ; in addition, if n
is odd, n = 2m+1, all the numbers −k(−k)2m for k = 0, 1, 2, ... are values of f .
Also, f is continuous by Theorem 4.16. Hence, it follows from the Intermediate
Value Theorem (Theorem 5.2) and Lemma 1.21 that f([0,∞)) = [0,∞) and, if
n is odd, f(R1) = R1.
The fact that f is strictly increasing can be proved by induction; we leave

this to the reader (Exercise 8.14).
Finally, f is one - to - one since a strictly increasing function is obviously

one - to - one. ¥
Exercise 8.14: Finish the proof of Lemma 8.13 as indicated.
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Lemma 8.13 provides a completely different proof of Theorem 1.25 and ex-
tends Theorem 1.25 to negative real numbers when n is odd. Which proof of
Theorem 1.25 do you like better � the original proof or this proof?

DeÞnition: Let n be a natural number, and let f(x) = xn for all x ∈ R1.

� With Lemma 8.13 in mind, we deÞne the nth root function to be the inverse
of f |[0,∞) if n is even and to be the inverse of f if n is odd. Hence, the
nth root function has domain and range [0,∞) when n is even, and the
nth root function has domain and range R1 when n is odd.

� The value of the nth root function at x is denoted by x 1
n . Thus, we have

deÞned x
1
n for all x ≥ 0 when n is even and for all real numbers x when n

is odd; in other words, x
1
n is deÞned to be the unique number such that

(x
1
n )n = x = (xn)

1
n .

� For any integer m, xm
n is deÞned to be (x

1
n )m for all x such that x

1
n is

deÞned; in addition, x = 0 is excluded if m < 0. Thus, except for x = 0
if m < 0, the function h(x) = x

m
n is deÞned (only) on [0,∞) if n is even

and on all of R1 if n is odd.

The following theorem, which we use to prove our main theorem, is a con-
sequence of the Inverse Function Theorem.

Theorem 8.15: Let g denote the nth root function for some natural number
n. Then g is differentiable at every point x in its domain except x = 0 and

g0(x) = (x
1
n )0 = 1

nx
1
n−1.

Proof: Let f(x) = xn, where f is restricted to [0,∞) if n is even. Note that
g = f−1. We will apply the Inverse Function Theorem (Theorem 8.7) to g. To
know that we can do so, note the following: f is one - to - one (by Lemma 8.13),
f is continuous (by Theorem 4.16), and f 0(x) = nxn−1 (by Lemma 7.11), hence
f 0(x) 6= 0 if x 6= 0. Therefore, by the Inverse Function Theorem, if x 6= 0,

g0(x) = 1
f 0(g(x)) =

1

f 0(x
1
n )
= 1

n(x
1
n )n−1

= 1

nx1− 1
n
= 1

nx
1
n−1.

Finally, since f 0(0) = 0, we know that g is not differentiable at x = 0 by
Exercise 8.8. ¥
We now prove our main theorem using Theorem 8.15 and the Chain Rule.

Theorem 8.16: Let n be a natural number, and let m 6= 0 be an integer.
The function h(x) = x

m
n is differentiable at every point x in its domain except

x = 0 and

h0(x) = (x
m
n )0 = m

n x
m
n −1.
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Proof: By the deÞnition of x
m
n (above Theorem 8.15), h(x) = (x

1
n )m. Hence,

h = f ◦g, where g(x) = x 1
n and f(x) = xm. Thus, by the Chain Rule (Theorem

7.23), h0(x) = f 0(g(x))g0(x). Therefore, since g0(x) = 1
nx

1
n−1 (by Theorem 8.15)

and f 0(x) = mxm−1 (by Lemma 7.11 and Exercise 7.15), we have

h0(x) = f 0(x
1
n )g0(x) = m(x

1
n )m−1( 1

nx
1
n−1) = m

n x
m
n −1. ¥

It is natural to wonder if Theorem 8.16 holds for all powers of x rather
than just for rational powers (when considering an irrational power of x, we
assume that x > 0). However � we must Þrst wonder what xp means for a
given irrational number p : What do we mean by 2

√
2, 3π, etc.? Once we give

an appropriate deÞnition of xp for any given irrational number p (and x > 0),
we will see that (xp)0 = pxp−1 for any given real number p and all x > 0. The
deÞnition of xp for irrational powers p awaits further developments, namely,
the natural logarithm, which we deÞne in Chapter XVI using the integral. The
deÞnition for xp is above Exercise 16.20, and the result about the derivative of
xp is Theorem 16.31.

5. Differentiating Trigonometric Functions and Their Inverses

We Þrst show that the trigonometric functions are differentiable. The fact
that the inverse trigonometric functions are differentiable is then a consequence
of the Inverse Function Theorem. As we have done in the past, we obtain
formulas for all derivatives.
We assume that the reader is familiar with the deÞnitions of the trigono-

metric functions and basic trigonometric identities. The independent variable,
x, for a trigonometric function is a real number that is to be understood as
the angle whose radian measure is x. Thus, when we write sin(x), cos(x) and
so on, we assume x is radian measure; when we use degree measure, we will
speciÞcally write x◦ to mean x measured in degrees. We note the relationship
between radian measure and degree measure: 1◦ = π

180 radians.
We denote a trigonometric function raised to a power with a superscript di-

rectly after the function; for example sin2(x) denotes (sin(x))2. As is consistent
with our notation for inverse functions in general (section 1), we denote inverse
trigonometric functions with a superscript of −1 directly after the function;
for example, sin−1(x) denotes the inverse sine of x, not 1

sin(x) (which we de-

note by (sin(x))−1). The reader should not, for example, confuse sin−p(x) with
(sin−1(x))p when p 6= 1; sin−p(x) for p 6= 1 always means (sin(x))−p = 1

sinp(x) .
We use notation for the derivative of a trigonometric function and the deriva-

tive of its inverse that is consistent with our notation for derivatives in general:
sin0 or sin0(x) denotes the derivative of the sine function, (sin−1)0 or (sin−1)0(x)
denotes the derivative of the inverse sine function, and so forth.
We let S1 denote the unit circle in the plane R2 (i.e., S1 is all points (x, y)

in R2 such that
p
x2 + y2 = 1).

We note that the sine and cosine functions are continuous for use later:

Lemma 8.17: The sine function and the cosine function are continuous.
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Proof: We do not belabor the proof that the sine and cosine functions
are continuous. Their continuity is geometrically clear: Simply recognize that
(cos(x), sin(x)) is the point on the unit circle S1 corresponding to the angle
whose radian measure is x, and observe that small changes in x result in small
changes in the points (cos(x), sin(x)). ¥
To show that all trigonometric functions are differentiable, we focus on the

sine function. Once we prove the sine function is differentiable, the differentiabil-
ity of all trigonometric functions follows using elementary facts from trigonom-
etry.
Let us see what is involved in showing that the sine function is differentiable:

For a given x and for any h 6= 0,
sin(x+h)−sin(x)

h = sin(x) cos(h)+sin(h) cos(x)−sin(x)
h ;

since limh→0
sin(x)
h and limh→0

cos(x)
h do not exist, we have no hope of proving

that sin(x) is differentiable unless we put the expressions involving h together,
obtaining

sin(x+h)−sin(x)
h = sin(x) cos(h)−1

h + cos(x) sin(h)
h .

Thus, we need to Þnd two limits, limh→0
1−cos(h)

h and limh→0
sin(h)
h , if the limits

do, indeed, exist. The problem is not trivial, but can be solved with the aid of
some elementary geometry:

Lemma 8.18: limx→0
sin(x)
x = 1 and limx→0

1−cos(x)
x = 0.

Proof: We Þrst prove that

(1) limx→0+
sin(x)
x = 1.

Proof of (1): Assume that 0 < x < π
2 . Referring to Figure 8.18 below, we

see that

area(∆OAB) < area(sectorOAC) < area(∆ODC).

Figure 8.18
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We write the inequalities above Figure 8.18 in terms of x (note: since a semi-
circle has area π

2 and is a sector with angle π, sectorOAC with angle x has
proportional area x

π
π
2 , which is

x
2 ):

1
2 cos(x) sin(x) <

x
2 <

1
2 tan(x) =

sin(x)
2 cos(x) .

Since 0 < x < π
2 , sin(x) > 0; hence, the inequalities remain in the same direction

when we multiply through by 2
sin(x) , obtaining

cos(x) < x
sin(x) <

1
cos(x) .

Hence, taking reciprocals (thereby reversing inequalities), we have

1
cos(x) >

sin(x)
x > cos(x).

Moreover, by Lemma 8.17, Theorem 3.12, and Lemma 4.19,

limx→0+ cos(x) = 1 = limx→0+
1

cos(x)

Therefore, by the Squeeze Theorem (Theorem 4.34), limx→0+
sin(x)
x = 1. This

proves (1).

Next, we prove that

(2) limx→0−
sin(x)
x = 1.

Proof of (2): DeÞne g : [0, π2 )→ R1 by

g(x) =

½
sin(x)
x , if x > 0

1 , if x = 0.

By (1) and Theorem 3.15, g is continuous. DeÞne f : (−π
2 , 0]→ [0, π2 ) by f(x) =−x; obviously, f is continuous. Hence, by Theorem 4.28, g ◦ f is continuous.

Thus, by Theorem 3.12,

limx→0−(g ◦ f)(x) = (g ◦ f)(0) = g(0) = 1;
furthermore, since sin(−x) = − sin(x), we have that

(g ◦ f)(x) = g(−x) = sin(−x)
−x = − sin(x)

−x = sin(x)
x , −π

2 < x < 0.

Therefore,

limx→0−
sin(x)
x = limx→0−(g ◦ f)(x) = 1.

This proves (2).

By (1), (2), and Theorem 3.16, limx→0
sin(x)
x = 1. This proves that the Þrst

part of the lemma.
To prove the second part of the lemma, Þrst observe that when −π

2 < x <
π
2

(to assure that cos(x) 6= −1),
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1−cos(x)
x = 1−cos(x)

x
1+cos(x)
1+cos(x) =

sin2(x)
x[1+cos(x)] =

sin(x)
x

sin(x)
1+cos(x) .

Next, note that limx→0
sin(x)
x = 1 (by the Þrst part of the lemma) and that

limx→0
sin(x)

1+cos(x) = 0 (by Lemma 8.17, Corollary 4.21 and Theorem 3.12). There-
fore, by Theorem 4.9 on limits of products,

limx→0
1−cos(x)

x = (limx→0
sin(x)
x )(limx→0

sin(x)
1+cos(x)) = (1)(0) = 0. ¥

Exercise 8.19: Fix nonzero real numbers a and b. Find limx→0
sin(ax)
bx by

making use of Theorem 3.15. Show all work carefully.

It is now easy to prove our result for the sine function:

Theorem 8.20: sin0(x) = cos(x).
Proof: Fix x ∈ R1. Continuing from where we left off above Lemma 8.18,

sin0(x) = limh→0[sin(x)
cos(h)−1

h + cos(x) sin(h)
h ].

Therefore, by Lemma 8.18 and Theorem 4.1 on limits of sums,

sin0(x) = limh→0 sin(x)
cos(h)−1

h + limh→0 cos(x)
sin(h)
h = cos(x). ¥

Corollary 8.21: cos0(x) = − sin(x).
Proof: Since cos(x) = sin(π2 − x) for all x, we see from Theorem 8.20 and

the Chain Rule (Theorem 7.23) that

cos0(x) = [cos(π2 − x)][−1] = − cos(π2 − x).

Therefore, since cos(π2 − x) = sin(x), we have that cos0(x) = − sin(x). ¥
Exercise 8.22: Using that all trigonometric functions can be expressed in

terms of the sine and/or cosine functions, prove that the following formulas hold
(for x in the domain of each function): tan0(x) = sec2(x), cot0(x) = − csc2(x),
sec0(x) = sec(x) tan(x), and csc0(x) = − csc(x) cot(x).
Exercise 8.23: Would you expect the rate of change of a trigonometric

function with respect to radian measure to be greater, smaller, or the same as
the rate of change of the trigonometric function with respect to degree measure?
Explain your answer intuitively, and prove your answer is correct.

Exercise 8.24: Direct computations using the Chain Rule (Theorem 7.23)
and Theorem 8.20 give that

(sin2(x))0 = 2sin(x) cos(x).

Thus, (sin2(x))0 = sin(2x). Is this a coincidence, or can you explain why the
result is to be expected from, say, a geometric point of view?

We turn our attention to derivatives of the inverse trigonometric functions.
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The inverse sine function, sin−1, has domain [−1, 1] and range [−π
2 ,

π
2 ]. Dif-

ferentiating the inverse sine function is simply a matter of applying the Inverse
Function Theorem (Theorem 8.7) in conjunction with Theorem 8.20:

Theorem 8.25: (sin−1)0(x) = 1√
1−x2 .

Proof: Fix x ∈ [−1, 1]. Since sin0 = cos (Theorem 8.20), we see from the
Inverse Function Theorem (Theorem 8.7) that

(sin−1)0(x) = 1
sin0(sin−1(x))

= 1
cos(sin−1(x))

= 1√
1−x2 . ¥

Exercise 8.26: The inverse cosine function has domain [−1, 1] and range
[0,π]. Prove that (cos−1)0(x) = −1√

1−x2 .

Exercise 8.27: The inverse tangent has domain R1 and range (−π
2 ,

π
2 ).

Prove that (tan−1)0(x) = 1
1+x2 .

Exercise 8.28: The inverse cotangent has domain R1 and range (0,π).
Prove that (cot−1)0(x) = −1

1+x2 .

Exercise 8.29: The inverse secant has domain (−∞,−1)∪(1,∞) and range
[0, π2 ) ∪ (π2 ,π]. Prove that (sec−1)0(x) = 1

|x|√x2−1
.

Exercise 8.30: The inverse cosecant has domain (−∞,−1) ∪ (1,∞) and
range [−π

2 , 0) ∪ (0, π2 ]. Prove that (csc−1)0(x) = −1
|x|√x2−1

.
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Chapter IX: Maxima, Minima and Derivatives

As a student in plane geometry, you may have seen the following problem:
If p and q are points on the same side of a line `, Þnd a point r on ` such that
the sum of the distances pr and rq is a minimum. The problem is solved easily
by reßecting q across the line ` to the point q0, and then observing that r must
be the point on ` where the line from p to q0 meets `. What you may not have
observed is that the minimum path from p to ` to q is the path for which the
angles formed by pr and ` and by qr and ` are equal. Is this symmetry only a
coincidence?
Is it merely a coincidence that the largest area enclosed by all curves in the

plane of a given length is the area enclosed by the most symmetric of those
curves (the circle)? And is it a coincidence that of all the rectangles having a
given perimeter, the one with the largest area is the one that is most symmetric
(the square)?
Surely, beauty in nature is intimately connected with symmetry, and it would

appear that symmetry is connected with maxima and minima. Perhaps this is
why maximum and minimum problems have been a constant theme throughout
history. Leonhard Euler (1707 - 1783) articulated the importance of maxima and
minima by saying that all interesting phenomena in this world can be explained
in terms of maxima and minima.
We began our study of maxima and minima in Chapter V in the setting

of continuous functions; there we proved that every continuous function on
a closed and bounded interval has a maximum value and a minimum value
(Theorem 5.13). We now localize the notions of maxima and minima and relate
the local notions to derivatives. Our main result is Theorem 9.7, which lays the
foundation for further study of maxima and minima. Theorem 9.7 sets the stage
for the proof of the Mean Value Theorem (which we prove in the next chapter);
the Mean Value Theorem is the essential ingredient for proving theorems that
are used to classify local maxima and minima.

1. Neighborhoods

The following descriptive terminology will help us formulate statements con-
cisely.

DeÞnition: Let X ⊂ R1, and let p ∈ X. A neighborhood of p in X is the
intersection of X with any open interval in R1 containing p; in other words,
if (a, b) is an open interval in R1 such that p ∈ (a, b), then X ∩ (a, b) is a
neighborhood of p in X.
If ² > 0, then X ∩ (p− ², p+ ²) is called the ² - neighborhood of p in X; thus,

the ² - neighborhood of p in X is {x ∈ X : |p− x| < ²}.
Example 9.1: (−1, 1) is a neighborhood of 0 in [−1, 1] (the 1 - neighborhood

of 0 in [−1, 1]); [0, 1
2) is a neighborhood of 0 in [0, 1] (the

1
2 - neighborhood

of 0 in [0, 1)), but [0, 1
2) is not a neighborhood of 0 in [−1, 1]; (−1

4 ,
1
2) is a
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neighborhood of 0 in [−1
4 , 1), but (−1

4 ,
1
2) is not an ² - neighborhood of 0 in

[−1
4 , 1); for X = {0, 1, 1

2 ,
1
3 , ...,

1
n , ...}, {0, 1

9 ,
1

10 ,
1

11 , ...,
1
n , ...} is a neighborhood

of 0 in X (the 1
9 - neighborhood of 0 in X), but {0, 1

9 ,
1

11 ,
1

13 , ...,
1

9+2n , ...} is not
a neighborhood of 0 in X.

Exercise 9.2: Let X ⊂ R1, and let p ∈ X. The intersection of Þnitely many
neighborhoods of p in X is a neighborhood of p in X.

Exercise 9.3: If I is an open interval and p ∈ I, then any neighborhood
U of p in I contains an open interval J such that p ∈ J ; hence, J is an open
neighborhood of p in I and both J and U are open neighborhoods of p in R1.

Exercise 9.4: Let X ⊂ R1, and let p ∈ X. When is {p} a neighborhood of
p in X ?

2. Local and Global Maxima and Minima

We localize the notions of maximum value and minimum value of a function
(deÞned in section 2 of Chapter V). In order to avoid ambiguity, from now on
we call the maximum value and the minimum value of a function the global
maximum value and the global minimum value of the function.

DeÞnition: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X.
� f has a local maximum at p provided that there is a neighborhood U of p
in X such that f(p) ≥ f(x) for all x ∈ U .

� f has a local minimum at p provided that there is a neighborhood U of p
in X such that f(p) ≤ f(x) for all x ∈ U .

� f has a global (or absolute) maximum at p provided that f(p) ≥ f(x) for
all x ∈ X, in which case we call f(p) the global maximum value of f .

� f has a global (or absolute) minimum at p provided that f(p) ≤ f(x) for
all x ∈ X, in which case we call f(p) the global minimum value of f .

� Local maxima and local minima are called local extrema; global maxima
and global minima are called global (or absolute) extrema.

We give an example to illustrate the concepts we just introduced.

Example 9.5: DeÞne f on [0, 3] as follows:

f(x) =

 3x , if 0 ≤ x ≤ 1
−x+ 4 , if 1 ≤ x ≤ 2
2x− 2 , if 2 ≤ x ≤ 3.

Then f has local minima at x = 0 and 2, local maxima at x = 1 and 3, and
global extrema at x = 0 and 3.

Next, we give an example for which we have more questions than answers.
Our purpose is to motivate the value of the theorem we are about to prove; we
return to the example after we prove the theorem.
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Example 9.6: DeÞne f : [0, 4]→ R1 by f(x) = x(x− 2)(x− 4). Note that
f(x) = 0 when x = 0, 2 and 4; also, from the signs of the terms, we see that
f(x) > 0 when 0 < x < 2 and that f(x) < 0 when 2 < x < 4. It now follows
from the Maximum-Minimum Theorem (Theorem 5.13) that f has a global
maximum value at some point of [0, 2] and a global minimum value at some
point of [2, 4]. Also, f has a local minimum at x = 0 and a local maximum at
x = 4; obviously, f does not have global extrema at x = 0, 4. The questions are:
At what points are the global extrema attained? What are the values of the
global extrema? Are there any local extrema occurring at points in the open
interval (0, 4) that are not global extrema and, if so, at what points do they
occur? We answer the questions in Example 9.10.

The theorem below gives an important relation between local extrema and
derivatives. The relation is only true in the direction stated; for example, f(x) =
x3 (all x ∈ R1) has derivative zero at p = 0 and yet has no local extrema.

Theorem 9.7: Let I be an open interval, and let f : I → R1 be a function
that is differentiable at a point p ∈ I. If f has a local extremum at p, then
f 0(p) = 0.
Proof: Assume that f has a local maximum at p. Then there is a neighbor-

hood U of p in I such that f(p) ≥ f(x) for all x ∈ U . By Exercise 9.3, there
is an open interval (s, t) ⊂ U such that p ∈ (s, t). Note that (s, t) ⊂ I (since
U ⊂ I); hence, we have that

(1) f(p) ≥ f(x) for all x ∈ (s, t).
The proof now proceeds by analyzing the sign of f(x)−f(p)

x−p when s < x < p
and when p < x < t : By (1), f(x)− f(p) ≤ 0 for all x ∈ (s, t); hence,

(2) f(x)−f(p)
x−p ≥ 0 if s < x < p and f(x)−f(p)

x−p ≤ 0 if p < x < t.
Now, since f is differentiable at p, we know from Theorem 6.15 that

f 0−(p) = f 0(p) = f 0+(p).

Furthermore, by (2), f 0−(p) ≥ 0 and f 0+(p) ≤ 0. Therefore, f 0(p) = 0.
This proves the theorem when f has a local maximum at p. We leave the

case when f has a local minimum at p as an exercise (below). ¥
Exercise 9.8: Prove Theorem 9.7 for the case when f has a local minimum

at p.

Exercise 9.9: Give an example to show that the analogue of Theorem 9.7
for closed intervals is false.

Theorem 9.7 gives us a way to determine where a differentiable function on
an interval may have local or global extrema. Sometimes, we can even determine
the types of extrema the function has. We illustrate with two examples. The
Þrst example is a continuation of Example 9.6.
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Example 9.10: DeÞne f : [0, 4] → R1 by f(x) = x(x − 2)(x − 4), the
function in Example 9.6. We apply Theorem 9.7 to answer the questions we
asked in Example 9.6.
To Þnd the derivative of f , it is convenient to write f in unfactored form (to

avoid using the product theorem for derivatives twice): f(x) = x3 − 6x2 + 8x
and thus, by Theorem 7.12,

f 0(x) = 3x2 − 12x+ 8.

Hence, f 0(x) = 0 when x = 2± 2
3

√
3. Moreover, we knew in Example 9.6 that

f has its global maximum value at some point of (0, 2) and its global minimum
value at some point of (2, 4). Therefore, by Theorem 9.7, we can now conclude
that f must have its global maximum at x = 2 − 2

3

√
3, its global minimum

at x = 2 + 2
3

√
3, and the global extrema do not occur at any other point; the

global maximum value is f(2 − 2
3

√
3) = 16

9

√
3 and the global minimum value

is f(2 − 2
3

√
3) = −16

9

√
3. Finally, by Theorem 9.7, f has no local extrema at

points in the open interval (0, 4) that are not global extrema. Thus, taking into
account the end points, the local extrema occur at x = 0, 2 ± 2

3

√
3, 4 and the

global extrema occur at x = 2± 2
3

√
3.

Example 9.11: DeÞne f : [−2, 3]→ R1 by f(x) = x3 − 3x2 + 2. Then, by
Theorem 7.12,

f 0(x) = 3x2 − 6x.

Hence, f 0(x) = 0 when x = 0 or 2. Thus, by Theorem 9.7, the only possible
points at which f could have local extrema are 0, 2 and the end points −2 and 3
(end point extrema are not taken care of by Theorem 9.7). Now, we see whether
extrema occur at these points and, if so, what types of extrema they are. We
list the values of f at the four points −2, 0, 2 and 3 :

f(−2) = −18, f(0) = 2, f(2) = −2, f(3) = 2.

Therefore, f(−2) = −18 is the global minimum of f and f(0) = f(3) = 2 is
the global maximum of f . What about f(2) = −2 ? This appears be a local
minimum for f since the function f seems to go down to −2 on [0, 2] and then up
to 2 on [2, 3]; but, can we be sure that f has a local minimum at 2 ? Yes � we can
be sure by using Theorem 9.7 together with the Maximum-Minimum Theorem
(Theorem 5.13). We argue as follows: By the Maximum-Minimum Theorem,
f has a minimum value m on [0, 3]; since f(2) = −2, m does not occur at the
end points of [0, 3]; thus, by Theorem 9.7 applied to the open interval (0, 3), m
occurs when x ∈ (0, 3) and f 0(x) = 0; therefore, x = 2 is the only possibility
and, hence, f(2) =m. This proves that f(2) = −2 is a local minimum for f .

The argument in Example 9.11 to show f has a local minimum at x = 2 is
somewhat tedious. Later, we will have a simple test at our disposal which will
enable us to avoid such arguments (Theorem 10.19).
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We clarify one point so as not to be misled by the examples above: A
differentiable function on a closed interval need not have local extrema at end
points of the interval even if the derivative of the function is zero at an end
point. You are asked to Þnd an example:

Exercise 9.12: Give an example of a differentiable function f on [0, 1] such
that f 0(0) = 0 and, yet, 0 is not a local extremum of f . A picture of the function
(rather than a formula) is sufficient, even preferred!

Exercise 9.13: Let f(x) = x3 + x2 − 6x. Find all points where f has local
maxima and local minima; determine what kind of extremum occurs at each
such point. Are there any global extrema?

3. Critical Points

In this section we bring into sharper focus the main ideas in the theorem
and examples in the preceding section. We conclude with general comments.
We have seen that three types of points play the crucial role in Þnding and

classifying extrema of a function on an interval: Points at which the derivative
of the function is zero, end points of the interval (if there are any), and points
at which the function is not differentiable (Example 9.5). We give a name to
the types of these points that involve derivatives:

DeÞnition: Let I be an interval, and let f : I → R1 be a function. A point
p ∈ I that is not an end point of I is called a critical point of f provided that
f 0(p) = 0 or f is not differentiable at p.

We can now summarize what we have shown in the examples and the theorem
in section 2 in a concise way:

Corollary 9.14: Let I be an interval, and let f : I → R1 be a function.
Then the local and global extrema (if they exist) must be attained at critical
points of f or at an end point of I.

Proof: Assume that f has a local extremum at a point p ∈ I. Assume
further that f is differentiable at p and that p is not an end point of I (remem-
ber: functions can be differentiable at end points according to our deÞnition
of derivative). Then, by Theorem 9.7 (applied to I without its end points),
f 0(p) = 0; therefore, p is a critical point of f . ¥
We comment in general about the ideas and, especially, the direction initi-

ated in this chapter.
We have shifted our emphasis from Þnding global extrema to Þnding local

extrema. At the same time, we have stressed the importance of Þnding global
extrema. Why don�t we just narrow down on Þnding global extrema and leave
the problem of Þnding local extrema for later or omit it completely? The answer
is simple: Finding local extrema is narrowing down on Þnding global extrema,
as we have illustrated in examples, and it is easier to Þnd local extrema Þrst
than it is to Þnd global extrema directly (by virtue of Theorem 9.7).
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Using local extrema to Þnd global extrema is a special case of a general
mathematical procedure � approximation. You have seen approximation at
work when rounding off decimals, Þnding areas (if you had some contact with
integral calculus or the work of the ancient Greeks), and in the section on linear
approximation (section 3 of Chapter VI); in fact, the very deÞnitions of limits
and derivatives are based on approximation. We are now approximating global
extrema by Þnding local extrema; as we have seen, this leads to Þnding the
global extrema. �Necessity is the mother of invention,� and, in this case, local
extrema were born out of the desire to Þnd global extrema.
We note that local extrema are important in connection with many aspects

of mathematics and science. To mention only a few, local extrema are used in
the physical sciences, in optimization, in dynamical systems, in economics, and
in analyzing statistical data. That being said, we must add that local extrema
are themselves interesting and that is enough reason to study them.

Exercise 9.15: DeÞne f : [−1, 1] → R1 by f(x) = x
4
5 + 3. Find all points

where f has local maxima and local minima; determine what kind of extremum
occurs at each such point.

Exercise 9.16: Let f be deÞned on R1 by f(x) = 5x
2
3 + x

5
3 + 1. Find

all points where f has local maxima and local minima; determine what kind of
extremum occurs at each such point.

Exercise 9.17: Prove the assertion in the introduction to the chapter that
of all the rectangles having a given perimeter, the one with the largest area is
the one that is most symmetric (the square).

Exercise 9.18: Find the point on the circle x2 + y2 = 1 that is closest to
(2, 0). (You know the answer, but use the methods in this chapter.)

Exercise 9.19: Assume that f : R1 → R1 is differentiable and that f 0(x) 6=
0 for all x. Then f is one - to - one.

Exercise 9.20: Give examples of polynomials of degree 3 that have no
critical point, only one critical point, and two critical points.

Exercise 9.21: A polynomial of degree n > 0 has at most n roots. (A root
of a function is a point at which the function has value 0.)

Exercise 9.22: Give an example of a nonconstant function f : R1 → R1

such that every real number is a critical point of f and such that f 0+(x) exists
for every x ∈ R1.
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Chapter X: The Mean Value Theorem and
Consequences

We prove the Mean Value Theorem in section 1. Then, section by section,
we derive different types of important results from the theorem. We emphasize
curve sketching in conjunction with the results in sections 3 and 4.

1. The Mean Value Theorem

If you travel 100 miles in 2 hours, it is obvious that at some point during
the trip your velocity must be 50 miles per hour (your average velocity). In
general terms, let f be a differentiable function that gives the distance f(t) an
object has traveled as a function of time t; then it is intuitively evident that the
average velocity of the object over a time interval [a, b]must be its instantaneous
velocity at some time t0 between a and b :

f 0(t0) =
f(b)−f(a)

b−a .

This is the substance of the Mean Value Theorem, but certainly not the proof!
Let us indicate the geometrical idea behind the proof.
In the Þgure below, the slope of the line segment L joining (a, f(a)) and

(b, f(b)) is the average velocity of the object. Imagine that we continuously
move L up (or down) parallel to itself. We eventually arrive at the last time the
moving line segments touch the graph of f ; at that moment, the line segment
is tangent to the graph of f at a point (t0, f(t0)), which says f 0(t0) =

f(b)−f(a)
b−a .

The discussion we just presented is not a proof; for example, how do we know
there is a last time the moving line segments touch the graph of f ? Nevertheless,
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the discussion is an intuitively plausible argument that provides insight into why
the Mean Value Theorem is true.
We proceed to the precise statement and proof of the Mean Value Theorem.

We Þrst prove a special case of the theorem from which the theorem follows.
The special case is due to Michel Rolle (1652 - 1719), who eventually became a
vocal opponent of calculus, calling it a �collection of ingenious fallacies.�

Lemma 10.1 (Rolle�s Theorem): Assume that f is continuous on [a, b],
differentiable on (a, b), and that f(a) = f(b) = 0. Then there is a point p ∈ (a, b)
such that f 0(p) = 0.
Proof: If f is a constant function, then f 0(x) = 0 for all x and, thus, the

lemma is true. Hence, we assume for the purpose of proof that f is not a
constant function. Then there is a point x0 ∈ (a, b) such that f(x0) 6= 0. Hence,
either f(x0) < 0 or f(x0) > 0.
Assume Þrst that f(x0) < 0. By the Maximum-Minimum Theorem (The-

orem 5.13), f attains its global minimum value at a point p. Since f(x0) < 0,
clearly f(p) < 0; hence, p ∈ (a, b). In particular, then, f is differentiable at p.
Therefore, by Theorem 9.7, f 0(p) = 0.
The case when f(x0) > 0 is handled similarly by taking p to be a point at

which f attains its global maximum value (or, perhaps you have a simpler proof
based on past experience?). ¥
Theorem 10.2 (Mean Value Theorem): Assume that f is continuous

on [a, b] and differentiable on (a, b). Then there is a point p ∈ (a, b) such that

f 0(p) = f(b)−f(a)
b−a .

Proof: In functional notation, the equation of the line going through the two
points (a, f(a)) and (b, f(b)) is

g(x) = f(b)−f(a)
b−a (x− a) + f(a).

DeÞne h : [a, b]→ R1 by letting h = f − g. (For geometric insight into what
we do next, locate the local extrema of h in the Þgure on the preceding page.)
We see that h satisÞes the assumptions of Lemma 10.1: h is continuous

on [a, b] by Corollary 4.4, h is differentiable on (a, b) by Theorem 7.3, and
h(a) = h(b) = 0 by the formulas for g and h. Hence, by Lemma 10.1, there is a
point p ∈ (a, b) such that h0(p) = 0. Therefore,

0 = h0(p) 7.3= f 0(p)− g0(p) 6.2= f 0(p)− f(b)−f(a)
b−a ,

which gives that f 0(p) = f(b)−f(a)
b−a . ¥

Exercise 10.3: DeÞne f : [−2, 2] → R1 by f(x) = x3 − 3x + 3. Find all
numbers p in [−2, 2] that satisfy the conclusion of the Mean Value Theorem.
Exercise 10.4: If f : R1 → R1 is differentiable and f 0(x) 6= 1 for all x ∈ R1,

then there is at most one point p ∈ R1 such that f(p) = p.
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Exercise 10.5: Let I be an open interval, and let p ∈ I. Assume that f
is continuous on I and differentiable on I − {p} and that limx→p f 0(x) exists.
Then f is differentiable at p.

Exercise 10.6: Assume that f and g are continuous on [a, b] and differen-
tiable on (a, b). Then there is a point p ∈ (a, b) such that

f 0(p)[g(b)− g(a)] = g0(p)[f(b)− f(a)].

2. Functions with Equal Derivatives

All constant functions (on an interval) have derivative zero. We prove that
there are no other functions with derivative zero. Perhaps you think this is
obvious. But then you may also think it is obvious that the only function whose
derivative is itself is the function f(x) = 0; however, this is false! Furthermore,
the prime example showing it is false is not just a curiosity � it is the exponen-
tial function f(x) = ex, which has numerous applications in probabilty theory,
economics and the physical sciences. See Corollary 16.24; in Exercise 16.25 we
determine all functions f such that f 0 = f .
Once we prove that constant functions are the only functions whose deriva-

tive is zero, it follows easily that any two functions on an interval that have the
same derivative must differ by a constant; stated more insightfully, the graphs
of the functions are vertical translations of one another. This result is so im-
portant that it is often referred to as the fundamental theorem of differential
calculus. When we study the integral, we will see that the fundamental theo-
rem of differential calculus is crucial to evaluating integrals � it is the important
ingredient in proving the second part of the Fundamental Theorem of Calculus
(Theorem 14.2).

Theorem 10.7: If f is continuous on [a, b] and f 0(x) = 0 for all x ∈ (a, b),
then f is a constant function.

Proof: Let x ∈ [a, b] such that x 6= a. Note that f is continuous on the
interval [a, x] (by Exercise 5.3). Hence, we can apply the Mean Value Theorem
(Theorem 10.2) to f on the interval [a, x], thereby obtaining a point p ∈ (a, x)
such that

f 0(p) = f(x)−f(a)
x−a .

Thus, since f 0(p) = 0 (by assumption in the theorem), we see that f(x) = f(a).
This proves that f(x) = f(a) for all x ∈ [a, b]. ¥
Theorem 10.8: If f and g are continuous on [a, b] and f 0(x) = g0(x) for all

x ∈ (a, b), then f and g differ by a constant; in other words, there is a constant
C such that f(x)− g(x) = C for all x ∈ [a, b].
Proof: DeÞne h : [a, b]→ R1 by letting h = f − g. Then h is continuous on

[a, b] (by Corollary 4.4) and

h0(x) 7.3= f 0(x)− g0(x) = 0, all x ∈ (a, b).
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Therefore, by Theorem 10.7, h is a constant function. ¥
We note that Theorem 10.7 and Theorem 10.8 are really the same theorem:

Theorem 10.7 follows immediately from Theorem 10.8 by taking g in Theorem
10.8 to be the constant function g(x) = 0.
We close by noting that Theorem 10.8 holds when the functions are deÞned

on any interval:

Theorem 10.9: Let I be any interval, and let E denote the set of end
points of I (E may be empty). If f, g : I → R1 are continuous on I and if
f 0(x) = g0(x) for all x ∈ I −E, then f and g differ by a constant.
Proof: Recall from the proof of Theorem 8.4 that any interval is the count-

able union of an �increasing sequence� of closed and bounded intervals. Using
this fact and Theorem 10.8, our theorem follows (we leave the details for the
Þrst exercise below). ¥
Exercise 10.10: Do the details for the proof of Theorem 10.9.

Exercise 10.11: Let f(x) = x5− 3x2+2. Find all functions whose deriva-
tives are f .

Exercise 10.12: Let f(x) = (2x+4)8. Find all functions whose derivatives
are f .

Exercise 10.13: Let f(x) = x
√
x2 + 7. Find all functions whose derivatives

are f .

Exercise 10.14: Let f(x) = 1
x2 . Find all functions whose derivatives are

f . (Be careful � there may be more than you think!)

Exercise 10.15: Let f(x) = |x− 1|. Find all functions whose derivatives
are f .

Exercise 10.16: Let f be the function given by

f(x) =

½
x+ 2 , if x < 0
x , if x ≥ 0.

Is there a function g : R1 → R1 such that g0 = f ?

3. Derivative Test for Local Extrema

Recall how hard we had to work in Example 9.11 to determine whether the
function f had a local maximum or a local minimum at x = 2. We now provide
a simple general test that will enable us to classify local extrema easily.
The test for classifying local extrema is based on the sign of the derivative.

The following theorem shows what the sign of the derivative of a function says
about the function. After we prove the theorem and discuss it, we give the test
for classifying local extrema (Theorem 10.19).
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Theorem 10.17: Assume that f is continuous on [a, b] and differentiable
on (a, b).

(1) If f 0(x) > 0 for all x ∈ (a, b), then f is strictly increasing on [a, b].
(2) If f 0(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b].
Proof: Let x1, x2 ∈ [a, b] such that x1 < x2. By the Mean Value Theorem

(Theorem 10.2), there is a point p ∈ (x1, x2) such that

f 0(p) = f(x2)−f(x1)
x2−x1

.

Thus, under the assumption in part (1), f(x2) > f(x1) and, under the assump-
tion in part (2), f(x2) < f(x1). ¥
Exercise 10.18: Give examples to show that the converses of parts (1) and

(2) are false. However, prove the following partial converses to parts (1) and (2):
If f is increasing (decreasing) on [a, b], then f 0(x) ≥ 0 (f 0(x) ≤ 0, respectively)
for all x ∈ [a, b].
Theorem 10.17 is intuitively obvious: If all the tangent lines to the graph

of a differentiable function have positive slopes, hence are strictly increasing,
then surely the function is strictly increasing. However persuasive this argu-
ment may seem, it is still not a proof; it is no more a proof than saying, as a
�proof� for Theorem 10.7, that if every tangent line to the graph of f is hori-
zontal, then surely the function f is constant. The proof we gave for Theorem
10.17 is certainly short, deceptively short because the proof rests on so many
previous results: The proof of Theorem 10.17 used the Mean Value Theorem,
whose proof used Rolle�s Theorem, whose proof depended essentially on the
Maximum-Minimum Theorem; the proof of the Maximum-Minimum Theorem
was by no means trivial and depended indispensably on the Completeness Ax-
iom. Thus, in the Þnal analysis, the underlying reason Theorem 10.17 is true
is the Completeness Axiom. We conclude that Theorem 10.17 is not as obvious
as it would seem to be or as trivial as its brief proof would suggest.
It is worthwhile to consider Theorem 10.17 and Theorem 10.7 together: The

theorems show that the sign of a derivative on an interval has a lot to say about
the nature of a function.
One Þnal comment about Theorem 10.17: A differentiable function on an

open interval can have a positive derivative at a particular point but not be
strictly increasing in any neighborhood of the point. See Exercise 10.53.
We are ready to prove the derivative test for classifying local extrema.

Theorem 10.19 (First Derivative Test for Local Extrema): Let I
be an open interval, and let p ∈ I. Assume that f is continuous on I and
differentiable at each point of I except possibly at p. Let [s, t] ⊂ I such that
p ∈ (s, t).
(1) If f 0(x) > 0 for all x ∈ (s, p) and f 0(x) < 0 for all x ∈ (p, t), then f has

a local maximum at p.

(2) If f 0(x) < 0 for all x ∈ (s, p) and f 0(x) > 0 for all x ∈ (p, t), then f has
a local minimum at p.
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(3) If f 0(x) > 0 for all x ∈ (s, p)∪(p, t), or if f 0(x) < 0 for all x ∈ (s, p)∪(p, t),
then f does not have a local extremum at p.

Proof: Assume the conditions in part (1). Then, by Theorem 10.17, f is
strictly increasing on (s, p] and f is strictly decreasing on [p, t). Hence, f(x) <
f(p) when s < x < p and f(p) > f(x) when p < x < t. Thus, f(p) ≥ f(x) for
all x ∈ (s, t). Therefore, f has a local maximum at p. This proves part (1).
The proof of part (2) is similar.
We prove part (3) for the case when f 0(x) > 0 for all x ∈ (s, p) ∪ (p, t). In

this case, we have by Theorem 10.17 that f is strictly increasing on (s, p] and
on [p, t). It follows easily that f is strictly increasing on (s, t). Thus,

f(y) < f(p) < f(z) whenever s < y < p < z < t.

Therefore, we see that f does not have a local extremum at p (we leave the
details to the reader).
The proof of part (3) for the case when f 0(x) < 0 for all x ∈ (s, p) ∪ (p, t) is

similar. ¥
The converse of part (1) of Theorem 10.19 is false (Exercise 10.26).
We illustrate how well the First Derivative Test for Local Extrema works:

Example 10.20: Let f(x) = 2x5 − 5x4 − 10x3 for all x ∈ R1. We Þnd all
points at which f has local and global extrema and determine which extrema
are local (or global) minima and which are local (or global) maxima. We also
determine the maximal intervals on which f is strictly increasing or strictly
decreasing. Finally, we sketch the graph of f using the information we have
obtained (however, the sketch is incomplete, as we will see).
By the formula for differentiating polynomials (Theorem 7.12),

f 0(x) = 10x4 − 20x3 − 30x2.

To Þnd where f 0(x) = 0 (in order to apply Theorem 9.7), we factor f 0(x) :

f 0(x) = 10x2(x2 − 2x− 3) = 10x2(x− 3)(x+ 1).

Hence, by Theorem 9.7, the only possible points at which f has local extrema
are x = −1, 0, 3.
The critical step for using Theorem 10.19 is to Þnd the sign of f 0 on small

intervals about the points x = −1, 0, 3. How small do we need the intervals to
be? The answer comes from noting that f 0 is continuous: Hence, we can apply
the Intermediate Value Theorem (Theorem 5.2) to f 0 to know that f 0 can not
have opposite signs at two points without being 0 somewhere between the two
points; thus, we only need to check the signs of f 0 at one point of each of the
open intervals determined by the points x = −1, 0, 3. We can do this readily by
inspecting the factored form of f 0; we obtain the table below:

interval → (−∞,−1) (−1, 0) (0, 3) (3,∞)
signf 0(x)→ + − − +
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From the table and from Theorem 10.19, f has a local maximum at x = −1,
a local minimum at x = 3, and no local extremum at x = 0. Furthermore,
from the table and Theorem 10.17, the maximal intervals on which f is strictly
increasing are (−∞,−1] and [3,∞), and the maximal interval on which f is
strictly decreasing is [−1, 3].
Next, we see that f has no global extrema: f has no global maximum since

its only local maximum is f(−1) = 3 and f(4) = 128; f has no global minimum
since its only local minimum is f(3) = −189 and f(−3) = −621. Actually, we
can see that f has no global extrema without these types of numerical compu-
tations: Simply note that

f(x) = x5(2− 5
x − 10

x2 ) for x 6= 0,
which easily shows that f is neither bounded above nor bounded below.
Finally, using the information available, we obtain a picture of the graph of

f (Figure 10.20 below). However, something is wrong: f 0(0) = 0, so the x - axis
should be tangent to the graph of f at the origin. In correcting this ßaw, we
must change the shape of the graph at some point to the left of the origin; we
must also change the shape of the graph at some point to the right of the origin
in order to avoid having a cusp at (3, f(3)). At the present time, it is not at all
obvious where these changes should be made; moreover, for all we know, there
may be many such changes, perhaps even at points x < −1 or at points x > 3.
If this makes you wonder whether you really know how to graph y = x2, then
that is good!
We return to the problem of what is wrong with the graph of f in the next

section. There we develop general ideas that solve the problem and that can
be applied to other graphs. We arrive at a correct graph of the function f in
Example 10.34.

Figure 10.20
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Exercise 10.21: DeÞne f : [0, 6] → R1 by f(x) = 4x3 − 36x2 + 77x. Find
all points at which f has local and global extrema, determine which extrema are
local (or global) minima and which are local (or global) maxima, and determine
the maximal intervals on which f is strictly increasing or strictly decreasing.
Sketch the graph of f and discuss possible ßaws in your graph as per the discus-
sion of the graph we gave for Example 10.19. (We brießy discussed the function
f after the proof of the Maximum-Minimum Theorem (Theorem 5.13)).

Exercise 10.22: DeÞne f : [−2, 2] → R1 by f(x) = x4 − 2x2 + 1. Repeat
Exercise 10.21 for this function.

Exercise 10.23: DeÞne f : [0, 2] → R1 by f(x) = x
x2+1 . Repeat Exercise

10.21 for this function.

Exercise 10.24: In Figure 10.24 below, we have drawn a picture of the
graph of the derivative of a function f . Determine all points at which f has
local and global extrema, determine which extrema are local (or global) minima
and which are local (or global) maxima, and determine the maximal intervals
on which f is strictly increasing or strictly decreasing. Sketch the graph of f
assuming that f(0) = 0.

Figure 10.24

Exercise 10.25: Let f, g : R1 → R1 be differentiable functions such that
f 0(x) < g0(x) for all x ∈ R1. Then there is at most one point p such that
f(p) = g(p).

Exercise 10.26: Draw a picture of the graph of a differentiable function
on an open interval such that the function has a unique global maximum at a
point p for which part (1) Theorem 10.19 does not apply.
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4. Concavity

This section follows up on the discussion above Figure 10.20: We introduce
concepts that describe the ßaws in the preliminary graph in Figure 10.20 and
that we can use to reÞne our graphing techniques in general. SpeciÞcally, we
deÞne the notions of concavity and inßection point, and we obtain results that
connect the notions to derivatives. At the end of the section, we sketch the
graph for Example 10.20 (this time correctly!).
Let I be an interval, let a, b ∈ I such that a 6= b, and let f : I → R1 be

a function. The chord joining (a, f(a)) and (b, f(b)) is the line segment in the
plane with end points (a, f(a)) and (b, f(b)).

DeÞnition: Let I be an interval, and let f : I → R1 be a function.

� We say that f is concave up on I provided that for any two different points
a, b ∈ I, the chord joining (a, f(a)) and (b, f(b)) lies above the graph of f
on (a, b); in other words,

f(x) < f(b)−f(a)
b−a (x− a) + f(a) when a < x < b.

� We say that f is concave down on I provided that for any two different
points a, b ∈ I, the chord joining (a, f(a)) and (b, f(b)) lies below the
graph of f on (a, b); in other words,

f(x) > f(b)−f(a)
b−a (x− a) + f(a) when a < x < b.

For example, f(x) = x3 is concave up on [0,∞) and concave down on
(−∞, 0]. On the other hand, a linear function f(x) = mx+ b is not concave up
or down on any interval.
In Theorem 10.29, we characterize the two types of concavity for a differen-

tiable function on an interval in terms of the derivative of the function.

Lemma 10.27: Let I be an interval, let f : I → R1 be a function, and let
x1, x2, x3 ∈ I such that x1 < x2 < x3. For each i 6= j, let Ci,j denote the the
chord joining (xi, f(xi)) and (xj , f(xj)).

(1) If f is concave up on I, then

slope of C1,2 < slope of C1,3 < slope of C2,3.

(2) If f is concave down on I, then

slope of C1,2 > slope of C1,3 > slope of C2,3.

Proof: We prove part (1); we leave the proof of part (2) to the reader
(Exercise 10.28).
Assume that f is concave up on I. Let y2 denote the second coordinate of the

point on C1,3 with Þrst coordinate x2. Since f is concave up on I, f(x2) < y2;
hence, f(x2)− f(x1) < y2 − f(x1). Thus,
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f(x2)−f(x1)
x2−x1

< y2−f(x1)
x2−x1

.

Therefore, since the slope of C1,2 =
f(x2)−f(x1)

x2−x1
and the slope of C1,3 =

y2−f(x1)
x2−x1

,
we have proved that the slope of C1,2 < slope of C1,3.
The proof of the second inequality in part (1) is similar to what we have done:

We rewrite f(x2) < y2 as −y2 < −f(x2); then f(x3)−y2 < f(x3)−f(x2). Thus,

f(x3)−y2

x3−x2
< f(x3)−f(x2)

x3−x2
.

Therefore, since the slope of C1,3 =
f(x3)−y2

x3−x2
and the slope of C2,3 =

f(x3)−f(x2)
x3−x2

,
we have proved that the slope of C1,3 < slope of C2,3.
This completes the proof of part (1) of the lemma. ¥
Exercise 10.28: Formulate and prove a simple theorem that can be applied

to prove part (2) of Lemma 10.27 directly from part (1).

Theorem 10.29: Assume that f is differentiable on an open interval I.
(1) f is concave up on I if and only if f 0 is strictly increasing on I.
(2) f is concave down on I if and only if f 0 is strictly decreasing on I.
Proof: We prove part (1), leaving the proof of part (2) to the reader (Exercise

10.30).
Assume that f is concave up on I. Fix points a, b ∈ I such that a < b. We

show that f 0(a) < f 0(b).
Fix points c and d such that a < c < d < b. Then, using part (1) of Lemma

10.27 twice, we see that

(i) f(c)−f(a)
c−a < f(d)−f(a)

d−a < f(c)−f(d)
c−d < f(c)−f(b)

c−b < f(d)−f(b)
d−b .

Then, using (1) of Lemma 10.27 for the Þrst and third inequalities below,

f(x)−f(a)
x−a < f(c)−f(a)

c−a
(i)
< f(d)−f(b)

d−b < f(y)−f(b)
y−b , if a < x < c and d < y < b.

Thus, since f 0(a) = limx→a
f(x)−f(a)

x−a and f 0(b) = limy→b
f(y)−f(b)

y−b (by Exercise
6.10), we have that f 0(a) < f 0(b). This proves that f 0 is strictly increasing on
I.
Conversely, assume that f 0 is strictly increasing on I . Fix points s, t ∈ I

such that s < t. Fix a point x such that s < x < t. Note that f is continuous
on [s, t] by Theorem 6.14 (and Exercise 5.3). Therefore, we can apply the Mean
Value Theorem (Theorem 10.2) to obtain points p ∈ (s, x) and q ∈ (x, t) such
that

f 0(p) = f(x)−f(s)
x−s , f 0(q) = f(t)−f(x)

t−x .

Thus, since f 0 is strictly increasing on (s, t) and p < q, we have that

(ii) f(x)−f(s)
x−s < f(t)−f(x)

t−x .

We now show that f(x) < f(t)−f(s)
t−s (x − s) + f(s), which proves that f is

concave up. By (ii),
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[f(x)− f(s)](t− x) < [f(t)− f(x)](x− s);

hence,

f(x)(t− s) < f(t)(x− s) + f(s)(t− x);

thus,

(iii) f(x) < f(t)x−st−s + f(s)
t−x
t−s .

Finally, subtracting and adding f(s)x−st−s to the right - hand side of (iii), we have

f(x) < f(t)−f(s)
t−s (x− s) + f(s)x−st−s + f(s)

t−x
t−s

= f(t)−f(s)
t−s (x− s) + f(s) t−st−s =

f(t)−f(s)
t−s (x− s) + f(s). ¥

Exercise 10.30: Show that part (2) of Theorem 10.29 follows easily from
part (1) using the theorem you discovered in Exercise 10.28.

In order to easily apply Theorem 10.29 to determine concavity, we need a
simple test to determine whether a derivative f 0 is strictly increasing or strictly
decreasing. Theorem 10.17 provides such a test when f 0 is differentiable; the
corollary below states the test precisely.
We denote the derivative of f 0 by f 00; f 00 is called the second derivative of

f . A function f that has a second derivative is said to be twice differentiable.

Corollary 10.31: Assume that f is twice differentiable on an open interval
I.

(1) If f 00(x) > 0 for all x ∈ I, then f is concave up on I.
(2) If f 00(x) < 0 for all x ∈ I, then f is concave down on I.
Proof: The corollary follows directly from Theorems 10.17 and 10.29. ¥
Wemake two observations about Corollary 10.31. First, Corollary 10.31 does

not apply to all differentiable functions since a function can be differentiable
and yet not be twice differentiable. Second, the converses of parts (1) and (2)
of Corollary 10.31 are false; for example, f(x) = x4 shows the converse of part
(1) is false.

Exercise 10.32: Verify the statements in the preceding paragraph (include
an example to show that the converse of part (2) of Corollary 10.31 is false).

We will be concerned with points at which the concavity of a function
changes. For example, we say that the function f(x) = x3 changes concav-
ity at x = 0 because f is concave down on (−∞, 0) and concave up on (0,∞).
We give the following precise, general deÞnition for change in concavity:

DeÞnition. Let f be a function deÞned on an open interval I, and let p ∈ I.
We say that f changes concavity at the point p provided that for some interval
(s, t) ⊂ I, f |(s, p) is concave one way (up or down) and f |(p, t) is concave the
other way (down or up, respectively).
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When a function f changes concavity at a point p, we say that f has an
inßection point at p, in which case we call (p, f(p)) an inßection point of f .5

The following theorem, in conjunction with Corollary 10.31, can enable us
to determine the inßection points of a twice differentiable function; we will
illustrate this in Example 10.34. We note that the theorem is analogous to
Theorem 9.7 for local extrema.

Theorem 10.33: Assume that f is twice differentiable on an open interval
I. If f has an inßection point at p, then f 00(p) = 0.
Proof: Assume that f has an inßection point at p. Then there is an interval

[s, t] ⊂ I such that f |(s, p) is concave one way and f |(p, t) is concave the other
way. Assume that f |(s, p) is concave up and f |(p, t) is concave down. Then, by
Theorem 10.29, we have that

(*) f 0 is strictly increasing on (s, p) and f 0 is strictly decreasing on (p, t).

Since f 0 is differentiable and [s, t] ⊂ I, f 0 is continuous on [s, t] by Theorem
6.14 (and Exercise 5.3). Hence, by the Maximum-Minimum Theorem (Theorem
5.13), the restricted function f 0|[s, t] has attains its maximum value at some
point q of [s, t]. We see from (*) that q = p. Thus, f 0 has a local maximum at
p. Therefore, by Theorem 9.7, f 00(p) = 0.
The proof when f |(s, p) is concave down and f |(p, t) is concave up is similar

and is omitted. ¥
Let�s see how all this works. We return to Example 10.20:

Example 10.34: Let f(x) = 2x5 − 5x4 − 10x3 for all x ∈ R1. In Example
10.20 we showed that f has a local maximum at x = −1, a local minimum at
x = 3, and no global extrema. We noted some problems with the graph of f as
depicted in Figure 10.20. We are now prepared to address the problems.
We use Theorem 10.33 to Þnd all the possible inßection points of f :

f 00(x) = 40x3 − 60x2 − 60x = 20x(2x2 − 3x− 3);

thus, the points x at which f 00(x) = 0 are x = 0, 3
4 ±

√
33
4 ; hence, by Theorem

10.33, the only possible points at which f could have inßection points are x =
0, 3

4 ±
√

33
4 . Next, we use Corollary 10.31 to see which of the points 0, 3

4 ±
√

33
4

is a point at which f has an inßection point.
Note that f 00 is continuous; thus, to apply Corollary 10.31, we only need

to check the signs of f 00 at one point of each of the open intervals determined
by the points x = 0, 3

4 ±
√

33
4 (we are using the Intermediate Value Theorem

(Theorem 5.2)). Without using speciÞc values for x, but merely inspecting the
expression f 00(x) = 20x(2x2−3x−3) for any x very negative, for any x < 0 and
very near 0, for any x > 0 and very near 0, and for any x very large (positive),
we arrive at the following table:

5Notice in the deÞnition of inßection point that an inßection point of f is a point (p, f(p))
on the graph of f , not the point p; the distinction emphasizes the fact that the graph of f is
where the geometry inherent in the notion of inßection point is visible.
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interval → (−∞, 3
4 −

√
33
4 ) (3

4 −
√

33
4 , 0) (0, 3

4 +
√

33
4 ( 3

4 +
√

33
4 ,∞)

signf 00(x)→ − + − +

Hence, by Corollary 10.31, f changes concavity at each of the points x = 0, 3
4 ±√

33
4 . Therefore, f has an inßection point at each of these points and at no other
point (by Theorem 10.33).
We also know from the table and Corollary 10.31 that f is concave up on

(3
4 −

√
33
4 , 0) ∪ (3

4 +
√

33
4 ,∞) and that f is concave down on (−∞, 3

4 −
√

33
4 ) ∪

(0, 3
4 +

√
33
4 ).

Taking into account inßection points and concavity, we correct the graph of
f that we drew in Figure 10.20:

Figure 10.34

We conclude with an interesting theorem about polynomials. What really
makes the theorem interesting is that the theorem is not true for differentiable
functions in general, as you will be asked to show in Exercise 10.45. The proof
of the theorem uses several previous results and must be done carefully (you
will gain appreciation for the proof if you keep your solution to Exercise 10.26
in mind as you read the proof).

Theorem 10.35: A nonconstant polynomial has an inßection point at some
point between any two points at which the polynomial has local extrema.
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Proof: Assume the f is a polynomial with local extrema at p and q with
p < q. Note that f has degree ≥ 3 (since nonconstant polynomials of degree
≤ 2 do not have two local extrema).
By Theorem 9.7, f 0(p) = 0 and f 0(q) = 0. Note that f 0 is a polynomial of

degree ≥ 2 (by Theorem 7.12); hence, by Exercise 9.21, we can assume p and q
were chosen so that f 0(x) 6= 0 for all x ∈ (p, q). Therefore, by the Intermediate
Value Theorem (Theorem 5.2), f 0(x) > 0 for all x ∈ (p, q) or f 0(x) < 0 for all
x ∈ (p, q). We assume for the proof that f 0(x) > 0 for all x ∈ (p, q) (the proof
for the other case is similar).
By the Maximum-Minimum Theorem (Theorem 5.13), f 0 attains a maxi-

mum value on [p, q] at a point r. Since f 0(p) = 0 = f 0(q) and f 0(x) > 0 for all
x ∈ (p, q), it is clear that r ∈ (p, q). Hence, by Theorem 9.7, f 00(r) = 0.
Now, since f 00 is a polynomial of degree ≥ 1 (by Theorem 7.12), we see from

Exercise 9.21 that there is a subinterval [s, t] of (p, q) such that r ∈ (s, t) and
f 00(x) 6= 0 for all x ∈ (s, r) ∪ (r, t).

Thus, since f 00 is continuous (because f 00 is a polynomial), we have by the
Intermediate Value Theorem that f 00 does not change sign on (s, r) and f 00 does
not change sign on (r, t). Therefore, since f 0 has a local maximum at r, we see
from part (3) of Theorem 10.19 that the sign of f 00 on (s, r) is opposite to the
sign of f 00 on (r, t). Therefore, by Corollary 10.31, f changes concavity at r; in
other words, f has an inßection point at r. ¥
In some exercises, we will ask you to Þnd maximal intervals on which a

function is concave up or down. The following theorem should be kept in mind
when Þnding such maximal intervals:

Theorem 10.36: If f is continuous on [a, b] and concave up (down) on
(a, b), then f is concave up (down, respectively) on [a, b].

Proof: Left as the Þrst exercise below. ¥
Exercise 10.37: Prove Theorem 10.36.

Exercise 10.38: DeÞne f : [0, 6]→ R1 by f(x) = 4x3−36x2+77x. Continue
the analysis of f begun in Exercise 10.21 by Þnding all points at which f has an
inßection point and determining the maximal intervals on which f is concave
up or down. Sketch the graph of f eliminating ßaws that may have occurred in
your sketch for Exercise 10.21

Exercise 10.39: DeÞne f : [−2, 2] → R1 by f(x) = x4 − 2x2 + 1. This is
the function in Exercise 10.22. Repeat Exercise 10.38 for this function.

Exercise 10.40: DeÞne f : [0, 2]→ R1 by f(x) = x
x2+1 . This is the function

in Exercise 10.23. Repeat Exercise 10.38 for this function.

Exercise 10.41: Sketch the graph of f(x) = 8x5−5x4−20x3+1 identifying
all local extrema, inßection points, and concavity.

Exercise 10.42: Repeat Exercise 10.41 for f(x) = x
2
3 (6− x) 1

3 .
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Exercise 10.43: Repeat Exercise 10.41 for f(x) = |x| (x+ 1).
Exercise 10.44: In Figure 10.44 below, we have drawn a picture of the

graph of the second derivative of a function f . Assuming that f(0) = 0 and
that f 0(0) = 0, sketch the graph of f indicating the points at which all local
extrema occur, the points at which f has inßection points, and the maximal
intervals on which f is concave up or down.

Figure 10.44

Exercise 10.45: Theorem 10.35 is not necessarily true for differentiable
functions that are not polynomials. Show this by giving an example of a differ-
entiable function on R1 that has local extrema at different points but that has
no inßection point.

Exercise 10.46: Any polynomial f of degree 3 has exactly one inßection
point. Furthermore, if f crosses the x - axis at three distinct points a, b, c (i.e.,
has three distinct roots), then the inßection point of f occurs at the average
x = a+b+c

3 of the roots.

Exercise 10.47: Let I be an open interval, and let f : I → R1 be differen-
tiable on I. Then f is concave up (down) on I if and only if for each x ∈ I, the
graph of f lies above (below, respectively) the tangent line to the graph of f at
(x, f(x)) except for the point (x, f(x)) itself.
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5. Intermediate Value Property for Derivatives

When we sketched graphs of speciÞc functions, we determined the sign of a
derivative or a second derivative on an interval (complementary to the critical
points) using the following procedure: We checked the sign at one point in the
interval and then appealed to the Intermediate Value Theorem (Theorem 5.2)
to conclude that the sign was the same throughout the interval. This works Þne
as long as the derivatives are continuous. Can a derivative fail to be continuous?
If so, is there a systematic way to check signs for such a derivative in order to
apply various tests easily? (I am referring to the tests in Theorem 10.19 and
Corollary 10.31.)
The answer to the Þrst question is yes, a derivative can fail to be continuous.

The answer to the second question is that the answer to the Þrst question is
irrelevant: We can determine the sign of a derivative on an interval the way as
we always did � by checking the sign at only one point of the interval � whether
the derivative is continuous or not! In other words, derivatives do not change
sign on an interval on which they are deÞned without having value zero at some
point of the interval.
We give an example that veriÞes our answer to the Þrst question, and we

give a theorem that explains our answer to the second question.

Example 10.48: We give an example of a differentiable function f : R1 →
R1 such that its derivative is not continuous. DeÞne f by

f(x) =

½
x2 sin( 1

x) , if x 6= 0
0 , if x = 0.

Using various results in Chapter VII and Theorem 8.20, we see that f is
differentiable at every point x 6= 0 and that

f 0(x) = x2[cos( 1
x)](

−1
x2 ) + 2x sin(

1
x) = 2x sin(

1
x)− cos( 1

x), x 6= 0.
furthermore, we see that f is differentiable at x = 0 as follows: For x 6= 0,

0 ≤
¯̄̄
f(x)−f(0)

x−0

¯̄̄
=
¯̄
x sin( 1

x)
¯̄ ≤ |x|;

thus, since limx→0 |x| = 0, the Squeeze Theorem (Theorem 4.34) applies to give
us that

limx→0

¯̄̄
f(x)−f(0)

x−0

¯̄̄
= 0.

This proves that f 0(0) = 0 (recall Exercise 6.10).
Finally, we show that f 0 is not continuous at 0 by showing that limx→0 f

0(x)
does not exist. Recall that

f 0(x) = x2[cos( 1
x)](

−1
x2 ) + 2x sin(

1
x) = 2x sin(

1
x)− cos( 1

x), x 6= 0.
Note that
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0 ≤ ¯̄2x sin( 1
x)
¯̄ ≤ |2x|, x 6= 0;

thus, since limx→0 |2x| = 0, we have by the Squeeze Theorem (Theorem 4.34)
that

limx→0 2x sin(
1
x) = 0.

Hence, if limx→0 f
0(x) existed, then we would have

limx→0 cos(
1
x)

4.2
= limx→0 2x sin(

1
x)− limx→0 f

0(x),

which is impossible (since, as is clear, limx→0 cos(
1
x) does not exist).

Next, we show why, even though derivatives may not be continuous, we can
determine the sign of a derivative on an interval complementary to the critical
points by checking the sign at only one point of the interval. The reason is
simple enough � derivatives, continuous or not, satisfy the conclusion to the
Intermediate Value Theorem (Theorem 5.2). We prove this in Theorem 10.50.
First, we introduce relevant terminology and discuss the notion we deÞne. (The
terminology carries the name of the French mathematician G. Darboux (1842 -
1917) who proved the theorem we will prove.)

DeÞnition: Let I be an interval, and let f : I → R1 be a function. We say
that f is a Darboux function provided that for any two points p, q ∈ I and any
point y between f(p) and f(q), there is a point x between p and q such that
f(x) = y (i.e., for any subinterval J of I, f(J) is an interval).

There are fairly simple functions that are Darboux but not continuous: For
example, let

f(x) =

½
sin( 1

x) , if x 6= 0
0 , if x = 0.

Actually, the derivative f 0 of the function in Example 10.48 is another ex-
ample of a discontinuous Darboux function. This fact about the function in
Example 10.48 illustrates the content of the theorem we will prove: Any deriva-
tive on an interval is a Darboux function.
We use the following lemma in the proof of our theorem.

Lemma 10.49: Let f be a continuous function on an interval I , and let C
denote the set of all slopes of chords joining any two points on the graph of f ;
that is,

C = { f(s)−f(r)
s−r : s, r ∈ I and s 6= r}.

Then C is an interval.

Proof: Fix p ∈ C, say

p = f(a)−f(b)
a−b , a < b.
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We show that there is an interval in C joining p to any other point of C. To
this end, let z ∈ C, say

z = f(u)−f(v)
u−v , u < v.

Note that since a− b < 0 and u− v < 0, [1− t](a− b) + t(u− v) 6= 0 for all
t ∈ [0, 1]; in anticipation of what comes next, we write this as follows:

[1− t]a+ tu− [1− t]b− tv 6= 0 for all t ∈ [0, 1].

Hence, the following formula deÞnes a function σ : [0, 1]→ C such that σ(0) = p
and σ(1) = z as follows:

σ(t) = f([1−t]a+tu)−f([1−t]b+tv)
[1−t]a+tu−[1−t]b−tv , all t ∈ [0, 1].

By the continuity of f and by various theorems about continuity in Chapter
IV (notably, 4.4, 4.21 and 4.28), we see that σ is continuous. Thus, by the
Intermediate Value Theorem (Theorem 5.2), σ([0, 1]) is an interval. Therefore,
since σ(0) = p and σ(1) = z, we have proved that p and any other point z of C
lie in an interval in C. It now follows easily that C is an interval. ¥
Theorem 10.50: If f is a differentiable function on an interval I, then f 0

is a Darboux function.

Proof: Let D be the set of all values of the Þrst derivative of f on I,

D = {f 0(x) : x ∈ I}.

We prove that D is an interval, which is simply another way of stating the
theorem we are proving.
Let C be as in Lemma 10.49. Since f is continuous by Theorem 6.14, C is

an interval by Lemma 10.49. Let E denote the set of end points of C (E may
be empty).
The Mean Value Theorem (Theorem 10.2) says that C ⊂ D. The deÞnition

of the derivative says that every value of the Þrst derivative of f is a limit of
slopes of chords; hence, D ⊂ C ∪E (since C ∪E = C∼, where C∼ is the set of
all points arbitrarily close to C, as deÞned in sections 1 and 2 of Chapter II).
We have proved that

C is an interval and C ⊂ D ⊂ C ∪E.

Therefore, it follows at once that D is an interval. ¥
In Exercise 10.16 you were asked if a certain function with a simple discon-

tinuity was a derivative of some function. You probably worked the exercise in
a fairly computational way. Theorem 10.50 yields the solution to Exercise 10.16
immediately and furnishes a completely different perspective on the exercise.
We brießy discuss the situation in general.
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Let f be a function deÞned on an open interval I. Then f is said to have
a simple discontinuity at a point p ∈ I, sometimes called a discontinuity of
the Þrst kind, provided that f is not continuous at p and limx→p− f(x) and
limx→p+ f(x) exist. The function f is said to have a discontinuity of the second
kind at p provided that f is not continuous at p and f does not have a simple
discontinuity at p.
There are exactly two ways a function can have a simple discontinuity at p :

Either limx→p− f(x) 6= limx→p+ f(x) or limx→p− f(x) = limx→p+ f(x) 6= f(p).
Corollary 10.51: If f is a differentiable function on an open interval I,

then f 0 has no simple discontinuities.
Proof: Left as the Þrst exercise below. ¥
Exercise 10.52: Prove Corollary 10.51. In fact, prove that the corollary ex-

tends to all Darboux functions; that is, any discontinuity of a Darboux function
on an open interval is a discontinuity of the second kind.

Exercise 10.53: A differentiable function on R1 can have derivative equal to
zero at a point and yet not have a local extremum at the point (e.g., f(x) = x3).
Similarly, a differentiable function on R1 can have a positive derivative at a point
without being strictly increasing in any neighborhood of the point (compare with
Theorem 10.17): Modify the function in Example 10.48 to give an example.
(Hint: Think geometrically: modify the graph of the function in Example

10.48.)

Exercise 10.54: DeÞne f : [ 9
10 ,

21
10 ]→ R1 by f(x) = x4 − 6x3 + 12x2. Find

D = {f 0(x) : x ∈ [ 9
10 ,

21
10 ]}, C = { f(s)−f(r)

s−r : s, r ∈ [ 9
10 ,

21
10 ] and s 6= r};

D and C are the sets in the proof of Theorem 10.50.

Exercise 10.55: Let f : R1 → R1 be a polynomial of odd degree. Theorem
10.50 implies that the set D of all values of the Þrst derivative of f is an interval.
What types of intervals can D be? What types of intervals can the set C in
Lemma 10.49 be?

Exercise 10.56: Repeat Exercise 10.55 for the case when f is a polynomial
of even degree.

Exercise 10.57: Prove that at most one of the functions f and g below can
be a derivative of a function:

f(x) =

 sin(
1

x
) , if x 6= 0

0 , if x = 0
g(x) =

 sin(
1

x
) , if x 6= 0

1 , if x = 0.
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Chapter XI: Area

The chapter is a bridge between previous chapters and the topic of sub-
sequent chapters (the integral). We simply present an informal, nonrigorous
discussion of an aspect of area for the purpose of motivating the integral. Our
discussion connects derivatives with area!
Consider the continuous function f whose graph we have drawn in Figure 1

below. We want to Þnd the area between the graph of f and the interval [a, b]
on x - axis.

Figure 1

There is an obvious question here: What do we mean by area (referring
to the area between the graph of f and the interval [a, b])? We will answer
the question in a precise way in Chapter XIV. Here we answer the question
somewhat intuitively, and then we describe how to compute the area.
We start by dividing the interval [a, b] into n intervals whose end points are

x0 = a < x1 < x2 < · · · < xn = b.

We think of each of the intervals [xi−1, xi] as being small, and we consider the
rectangles Ri of height f(xi) and width xi − xi−1, as in Figure 2 (we use f(xi)
as a matter of convenience; we could use f(ti) for any ti ∈ [xi−1, xi]).
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Figure 2

We know from elementary geometry that the area of each rectangle Ri is
f(xi)(xi − xi−1). Thus, the sum S = Σni=1f(xi)(xi − xi−1) represents the area
of the region covered by all the rectangles. Observe that if xi−1 and xi are very
close to one another for each i, then the sum S is very close to what we would
call the area between the graph of f and the interval [a, b]. Consider dividing
the interval [a, b] into more and more subintervals in such a way that the end
points xi−1 and xi of the intervals get closer and closer together: If we can
compute the �limit� of the sums S associated with the subdivisions, then we
will have computed what we would call the area between the graph of f and
the interval [a, b].6

Now, having indicated what we mean by the area between the graph of f
and the interval [a, b], we give a procedure for computing the area. The method
is so ingenious that it stands as a monument to human thought.
We make use of the area function A : [a, b] → R1, deÞned as follows: For

each x ∈ [a, b], A(x) is the area between the graph of f |[a, x] and the interval
[a, x]. (We will see in section 2 of Chapter XIV that A(x) is the integral of f
over the interval [a, x].)
If we knew a formula for A, computing the area between the graph of f

and the interval [a, b] would be easy � we would simply plug b into the formula.
Thus, we want to Þnd a formula for A, or at least enough information about A
to Þnd A(b).

6Note that the �limit� mentioned here is not a limit as we deÞned the term in Chapter III
since each sum S depends on many points xi. In other words, S is not a function of a single
real variable. We have used the term �limit� in an intuitive way � to conjure up a picture in
the reader�s mind. We give a rigorous deÞnition in section 2 of Chapter XIV.
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We �show� that the area function A is differentiable by �computing� its
derivative (the quotes mean we show and compute as best as we can without a
mathematically precise deÞnition of area). Then we discover what the derivative
of A has to do with Þnding the area we want.
Fix x ∈ [a, b]. In order to Þnd

A0(x) = limh→0
A(x+h)−A(x)

h ,

it is clear that we must write the numerator with a factor of h.
We Þrst examine the numerator A(x+ h)−A(x) for some given h > 0; we

assume h to be near enough to 0 so that x+ h < b (if x = b, we only consider
the case when h < 0, which we will consider later for any x).
We see from Figure 3 that A(x+h)−A(x) is the area between the graph of

f |[x, x+ h] and the interval [x, x+ h].

Figure 3

The continuous function f has a maximum value M and a minimum value
m on [x, x+h] (by Theorem 5.13). Consider the function ϕ : [m,M ]→ R1 that
assigns to a point t ∈ [m,M ] the area of the rectangle [x, x + h] × [0, t] (see
Figure 4); since the height of the rectangle is t and its width is h,

ϕ(t) = th for each t ∈ [m,M ].
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Figure 4

We know that the function ϕ is continuous (see Example 2.23); furthermore,
since A(x + h) − A(x) is the area between the graph of f |[x, x + h] and the
interval [x, x+ h], we know that

ϕ(m) ≤ A(x+ h)−A(x) ≤ ϕ(M).
Hence, there is a point th ∈ [m,M ] such that ϕ(th) = A(x+h)−A(x); in other
words,

thh = A(x+ h)−A(x).
Now, note that f is continuous on [x, x + h] (by Exercise 5.3); thus, since

th ∈ [m,M ] and since m and M are values of f on [x, x + h], there is a point
xh ∈ [x, x + h] such that f(xh) = th (by Theorem 5.2). Therefore, by the
previous displayed item, we have

(*) f(xh)h = A(x+ h)−A(x).
The equality in (*) also holds when h < 0 (and near enough to 0 so that

x+h > a): For then the area between the graph of f |[x+h, x] and the interval
[x+ h, x] is A(x)−A(x+ h), and the rectangle [x+ h, x]× [0, t] has width −h
for any t ∈ [m,M ]; hence, by the analogue of the argument above (in this case,
ϕ(t) = t(−h)), there is a point th ∈ [m,M ] such that

th(−h) = A(x)−A(x+ h),
and there is a point xh ∈ [x+ h, h] such that f(xh) = th, thus
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f(xh)(−h) = A(x)−A(x+ h),
which is the same as (*).
We are ready to compute the derivative of A at x : Using that (*) holds

whether h is positive or negative, we have that

A(x+h)−A(x)
h = f(xh)h

h = f(xh), where xh lies between x and x+ h.

Hence,

A0(x) = limh→0
A(x+h)−A(x)

h = limh→0 f(xh);

furthermore, since limh→0 xh = x by the Squeeze Theorem (Theorem 4.34) and
since f is continuous at x, we see that limh→0 f(xh) = f(x) (by Theorem 4.29
by considering the function h 7→ xh). Therefore,

A0(x) = f(x).

So, the derivative of the area function is f ; but what does that have to do
with computing the area between the graph of f and the interval [a, b]? Think
about it before reading further. Here is a hint: The area we want to compute
is A(b), and A(b) = A(b)−A(a).
We show the way to compute A(b). The method is theoretical, but after we

discuss the method we will illustrate that it works quite well in practice.
Let g be any function whose derivative on [a, b] is f . Then, since g0 = A0, g

and A differ by a constant (by Theorem 10.8), say A− g = C. Thus,

A(b)−A(a) =
³
g(b) +C

´
−
³
g(a) +C

´
= g(b)− g(a).

Therefore, since A(b) = A(b)−A(a), we can now conclude the following:

(#) To Þnd the area between the graph of f and the interval [a, b],

we need only Þnd a function g whose derivative on [a, b] is f ;

then the area between the graph of f and [a, b] is g(b)− g(a).

We give two examples to illustrate how easy it is to apply the procedure we
have found.

Example 11.1: We Þnd the area between the graph of f(x) = x2 and
the interval [1, 3]. The function g(x) = x3

3 has derivative f (by Lemma 7.11);
therefore, by (#), the area between the graph of f and the interval [1, 3] is

g(3)− g(1) = 9− 1
3 =

26
3 .

Example 11.2: We Þnd the area between the graph of f(x) = x
2
5 + 3x3

and the interval [1, 3]. The function g(x) = 5
7x

7
5 + 3

4x
4 has derivative f (by

Theorem 7.1 and Theorem 8.16); hence, by (#), the area between the graph of
f and the interval [1, 3] is

109



g(3)− g(1) = 5
73

7
5 + 243

4 − 41
28 .

How do we know that the procedure in (#) really does give the area? The
most reasonable way to check this is to see if the procedure gives various areas
that are known from geometry. We offer the following exercise as a start:

Exercise 11.3: Show that the procedure in (#) gives the formulas from
geometry for the areas of rectangles, triangles and circles.
(Hint: In the case of a circle of radius r about the origin, consider the

function g(x) = x
2

√
r2 − x2 + r2

2 sin
−1(x2 ).)

When more complicated Þgures (than those in Exercise 11.3) whose areas
are known from geometry are analyzed using the procedure in (#), the answer
is always the same: Applying (#) results in arriving at the known areas. In the
end, therefore, we will be jusiÞed in deÞning area in terms of the integral and
using the procedure in (#) to Þnd the area � see section 2 of Chapter XIV.
We conclude with a few exercises.

Exercise 11.4: Find the area between the graph of f(x) = sin(x) and the
interval [0,π].

Exercise 11.5: Find the area between the graph of f(x) = 1√
1−x2 and the

interval [0, 1
2 ].

Exercise 11.6: Find formulas for the area functions for Examples 11.1 and
11.2.

Exercise 11.7: Using the intuitive observation that the area of two nonover-
lapping regions is the sum of the areas of the two regions, Þnd the area above the
interval [0, 1] between the graphs of the two functions f1(x) = x

4 and f2(x) = x
5.
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Chapter XII: The Integral

In the Þrst part of preceding chapter, we intuitively discussed a way of deÞn-
ing area in order to provide a tangible picture to keep in mind when studying
the integral. In this chapter, we begin a rigorous treatment of the integral. This
is the Þrst of four chapters concerned directly with the theory of the integral.
(There are many types of integrals; we will only study one type � the Riemann
integral � which we simply refer to as the integral.)
After presenting preliminary notions and results, we deÞne the integral in

section 3. In section 4, we prove an existence theorem that gives a necessary
and sufficient condition for a function to be integrable (Theorem 12.15); we also
prove a theorem that provides a way (albeit limited) to evaluate the integral
(Theorem 12.17). In section 5, we use the existence theorem in section 4 to
prove that all continuous functions are integrable.

1. Partitions

In this section (and the next) we present a rigorous and systematic treatment
of some of the ideas that we introduced informally in the preceding chapter.
Thus, we consider the preceding chapter as motivation for what follows.

DeÞnition. A partition of [a, b] when a < b is a Þnite subset P of [a, b] that
can be indexed so that P = {x0, x1, ..., xn}, where

x0 = a < x1 < x2 < · · · < xn = b, some n ≥ 1.
It is also to be understood that the interval [a, a] has a (unique) partition,
namely, {a}.
For example, {0, 1} and {0, 1

3 ,
1
2 , 1} are partitions of [0, 1]. Obviously, every

interval [a, b] has a partition.
Whenever P is a partition and we write P = {x0, x1, ..., xn}, we assume

(without explicitly saying so) that the points xi satisfy the condition in the def-
inition above. We prove all results that involve partitions, directly or indirectly
(as in the case of integrals), assuming that a < b. It will be evident that the
results hold when a = b.

DeÞnition. Let P1 and P2 be partitions of [a, b]. We say that P2 is a
reÞnement of P1, written P2 ¹ P1, provided that P2 ⊃ P1.

We can think of a reÞnement of a partition P as being obtained from P by
adding points to P (although, of course, a partition is a reÞnement of itself).
Obviously, every partition of [a, b] is a reÞnement of {a, b}.
Exercise 12.1: Give an example of two partitions of [a, b] such that neither

one is a reÞnement of the other.

A relation ¿ between elements of a set S is a partial order on S provided
that the relation is reßexive (s¿ s for all s ∈ S), antisymmetric (if s1 ¿ s2 and
s2 ¿ s1, then s1 = s2), and transitive (if s1 ¿ s2 and s2 ¿ s3, then s1 ¿ s3).
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For example, ≤ is a partial order on R1 by axioms O1 and O2 in section 1
of Chapter I.
Note the following simple fact:

Exercise 12.2: The relation ¹ of reÞnement on the collection P of all
partitions of a given interval [a, b] is a partial order.

DeÞnition. Let P1 and P2 be reÞnements of [a, b]. A common reÞnement
of P1 and P2 is a partition P of [a, b] such that P ¹ P1 and P ¹ P2.

Exercise 12.3: For any two partitions P1 and P2 of [a, b], there is a smallest
common reÞnement of P1 and P2; that is, there is a common reÞnement, P , of
P1 and P2 such that every common reÞnement of P1 and P2 contains P .

2. Upper and Lower Sums

We continue with our presentation of the background necessary for deÞning
the integral and understanding the deÞnition.
We adopt the following notation: Let f : [a, b]→ R1 be a bounded function,

and let P = {x0, x1, ..., xn} be a partition of [a, b]. For each i = 1, 2, ..., n,
∆xi = xi − xi−1, Mi(f) = lub f([xi−1, xi]), mi(f) = glb f([xi−1, xi]).

DeÞnition. Let f : [a, b] → R1 be a bounded function, and let P =
{x0, x1, ..., xn} be a partition of [a, b].
� The upper sum of f with respect to P , denoted by UP (f), is deÞned by

UP (f) = Σni=1Mi(f)∆xi.

� The lower sum of f with respect to P , denoted by LP (f), is deÞned by

LP (f) = Σni=1mi(f)∆xi.

Exercise 12.4: DeÞne f : [−4, 4] → R1 by f(x) = x3 − 12x. Evaluate
UP (f) and LP (f) for the partition P = {−4, 1, 4}.
Exercise 12.5: DeÞne f : [0, 4] → R1 by f(x) = x3 − 9x2 + 26x − 24.

Evaluate UP (f) and LP (f) for the partition P = {0, 1, 3, 4}.
Lemma 12.6: Let f : [a, b]→ R1 be a bounded function. For any partition

P = {x0, x1, ..., xn} of [a, b], LP (f) ≤ UP (f).
Proof: For each i, mi(f) ≤ Mi(f) and ∆xi > 0, hence mi(f)∆xi ≤

Mi(f)∆xi. Therefore, the lemma follows immediately by summing over i. ¥
Lemma 12.7: Let f : [a, b] → R1 be a bounded function. Let P be a

partition of [a, b], and let q be a point of [a, b] such that q /∈ P . Let Q = P ∪{q}
(considered as a partition of [a, b]). Then

UQ(f) ≤ UP (f) and LQ(f) ≥ LP (f).
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Proof: Assume that P = {x0, x1, ..., xn}. Let k be such that xk < q < xk+1.
Then, letting

α =
³
lub f([xk, q])

´
(q − xk) +

³
lub f([q, xk+1])

´
(xk+1 − q),

we have that UQ(f) = Σi 6=k+1Mi(f)∆xi+α. Also, since lub(A) ≤ lub(B) when
A ⊂ B,

α =
³
lub f([xk, q])

´
(q − xk) +

³
lub f([q, xk+1])

´
(xk+1 − q)

≤
³
lub f([xk, xk+1])

´
(q − xk) +

³
lub f([xk, xk+1])

´
(xk+1 − q)

=
³
lub f([xk, xk+1])

´
(xk+1 − xk).

Therefore,

UQ(f) = Σi6=k+1Mi(f)∆xi + α ≤ Σni=1Mi(f)∆xi = UP (f).

Similarly, LQ(f) ≥ LP (f). ¥
Lemma 12.8: Let f : [a, b] → R1 be a bounded function, and let P1 and

P2 be partitions of [a, b] such that P2 ¹ P1. Then

UP2
(f) ≤ UP1

(f) and LP2
(f) ≥ LP1

(f).

Proof: Let y1, y2, ..., ym be the points in P2 − P1 (we assume that P1 6= P2

since, otherwise, the lemma is obvious). We successively deÞne partitions Qj ,
j = 1, ...,m, of [a, b] as follows:

Q1 = P1, Q2 = Q1 ∪ {y1}, Q3 = Q2 ∪ {y2}, ... , Qm = P2.

Since Qj+1 has exactly one more point than Qj for each j, each successive
inequality below follows at once from Lemma 12.7:

UP2(f) = UQm(f) ≤ UQm−1(f) ≤ · · · ≤ UQ2(f) ≤ UQ1(f) = UP1(f)

and

LP2(f) = LQm(f) ≥ LQm−1(f) ≥ · · · ≥ LQ2(f) ≥ LQ1(f) = LP1(f). ¥

Lemma 12.9: Let f : [a, b] → R1 be a bounded function, and let P1 and
P2 be partitions of [a, b]. Then

LP1(f) ≤ UP2(f).

Proof: Let P be a common reÞnement of P1 and P2 (see Exercise 12.3).
Then

LP1(f)
12.8≤ LP (f)

12.6≤ UP (f)
12.8≤ UP2(f). ¥

113



The numbers lubP∈PLP (f) and glbP∈PUP (f) in the next lemma are the
basis for our deÞnition of the integral in the next section.

Lemma 12.10: Let f : [a, b]→ R1 be a bounded function, and let P denote
the collection of all partitions of [a, b]. Then lubP∈PLP (f) and glbP∈PUP (f)
exist and

lubP∈PLP (f) ≤ glbP∈PUP (f).
Proof: There is a partition P1 of [a, b]. By Lemma 12.9, LP1

(f) is a lower
bound for the set of all upper sums of f with respect to all partitions of
[a, b]. Hence, by the Greatest Lower Bound Axiom (section 8 of Chapter I),
glbP∈PUP (f) exists, and

(*) LP1
(f) ≤ glbP∈PUP (f).

Note that we have proved (*) for any partition P1 of [a, b]. Hence, glbP∈PUP (f)
is an upper bound for the set of all lower sums of f with respect to all partitions
of [a, b]. Therefore, by the Least Upper Bound Axiom (Completeness Axiom),
lubP∈PLP (f) exists, and it is clear that

lubP∈PLP (f) ≤ glbP∈PUP (f). ¥

Except for very simple functions, it is difficult to directly compute the num-
bers lubP∈PLP (f) and glbP∈PUP (f) in Lemma 12.10. For example, the reader
might try to compute the numbers in Lemma 12.10 for the case when f is
the function on [0, 1] deÞned by f(x) = x. In fact, computing the numbers
lubP∈PLP (f) and glbP∈PUP (f) is actually evaluating integrals or showing inte-
grals do not exist, as we will see from the deÞnition of the integral (in the next
section). Nevertheless, we can at this time compute the numbers in Lemma
12.10 for a few functions. We illustrate how to do this in the two examples be-
low. In the Þrst example, lubP∈PLP (f) = glbP∈PUP (f); in the second example,
lubP∈PLP (f) 6= glbP∈PUP (f).
Example 12.11: DeÞne f : [0, 2]→ R1 by

f(x) =

½
1 , if x 6= 1
2 , if x = 1.

Let P denote the collection of all partitions of [0, 2]. We show that
lubP∈PLP (f) = glbP∈PUP (f) = 2.

Let P = {x0, x1, ..., xn} be a partition of [0, 2]. Note that each of the intervals
[xi−1, xi] contains a point different from 1; hence, mi(f) = 1 for each i. Thus,

LP (f) = Σ
n
i=1∆xi = xn − x0 = 2− 0 = 2.

Therefore, lubP∈PLP (f) = 2.
We now show that glbP∈PUP (f) = 2. Let ² > 0 such that ² < 1. Consider

the following very simple partition Q of [0, 2] :
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Q = {0, 1− ², 1 + ², 2}.

We compute UQ(f) :

UQ(f) = 1([1− ²]− 0) + 2([1 + ²]− [1− ²]) + 1(2− [1 + ²]) = 2 + 2².

Thus, since ² can be as close to zero as we like, we have proved that

glbP∈PUP (f) ≤ 2.

Also, having proved above that lubP∈PLP (f) = 2, we know from Lemma 12.10
that 2 ≤ glbP∈PUP (f). Therefore,

glbP∈PUP (f) = 2 = lubP∈PLP (f).

Example 12.12: DeÞne f : [0, 1]→ R1 by

f(x) =

½
0 , if x is rational
1 , if x is irrational.

Let P denote the collection of all partitions of [0, 1]. We show that
lubP∈PLP (f) = 0 and glbP∈PUP (f) = 1.

Let P = {x0, x1, ..., xn} be a partition of [0, 1]. By Theorem 1.26 (and its
analogue for irrational numbers), there is a rational number and an irrational
number in each of the intervals [xi−1, xi]. Hence,

LP (f) = Σ
n
i=1(0)∆xi = 0

and

UP (f) = Σ
n
i=1(1)∆xi = (x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1)

= xn − x0 = 1− 0 = 1.
Therefore, lubP∈PLP (f) = 0 and glbP∈PUP (f) = 1.

The cancellation that gave Σni=1∆xi = xn−x0 in Example 12.12 is trivial but
has far - reaching generalizations in multi - dimensional calculus (for example, in
the proof of Green�s Theorem).

Exercise 12.13: Let f be a constant function on an interval [a, b], say
f(x) = c for all x ∈ [a, b]. Compute lubP∈PLP (f) and glbP∈PUP (f).
Exercise 12.14: DeÞne f : [0, 2]→ R1 by

f(x) =

½
1 , if 0 ≤ x < 1
3 , if 1 ≤ x ≤ 2.

Compute lubP∈PLP (f) and glbP∈PUP (f).
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3. DeÞnition of the Integral

We are ready to deÞne the integral.

DeÞnition. Let f : [a, b] → R1 be a bounded function, and let P denote
the collection of all partitions of [a, b]. Recall that we showed in Lemma 12.10
that the numbers glbP∈PUP (f) and lubP∈PLP (f) exist.

� The upper integral of f over [a, b] is glbP∈PUP (f), which we denote from
now on by

R b
a
f .

� The lower integral of f over [a, b] is lubP∈PLP (f), which we denote from
now on by

R b
a
f .

� We say that f is integrable over [a, b] provided that R b
a
f =

R b
a
f , in which

case we call the common value
R b
a
f =

R b
a
f the integral of f over [a, b] (or

the integral of f from a to b). We denote the integral of f over [a, b] byR b
a f or by

R b
a f(x)dx. The notation

R b
a f(x)dx is read integral of f over

[a, b] with respect to the variable x.7

In the expressions
R b
af ,

R b
a
f and

R b
a f , the numbers a and b are referred to

as the limits of integration (a being the lower limit of integration and b being
the upper limit of integration) The function f is called the integrand.

From what we showed in Example 12.11, we can now say that the function
f in the example is integrable and

R 2

0 f = 2. On the other hand, from what we
showed in Example 12.12, the function f in Example 12.12 is not integrable.
We prove results about integrals over [a, b] as though a < b without saying

so. The reader can easily check that the results are true when a = b (
R a
a
f = 0

since {a} is the only partition of the interval [a, a]).

4. Two Theorems about Integrability

We prove two theorems about integrability and show how the theorems can
be applied.
Our Þrst theorem is useful for proving that a function is integrable; we

illustrate this for a speciÞc function after we prove the theorem. We use the
theorem in the next section to prove that all continuous functions are integrable,
and we use the theorem in many other places as well.

7Regarding the notation
R b

a f(x)dx, the symbol dx has absolutely no mathematical content
other than to indicate the variable with respect to which the integration is being performed.
Thus, the symbol dx can be used to clarify situations when the expression being integrated
contains two or more letters as symbols; for example, simply writing

R b
a

t2x3 puts in doubt

whether we are integrating with respect to t or with respect to x, whereas writing
R b

a t2x3dx

and
R b

a
t2x3dt makes it clear what the variable of integration is in each case.

116



Theorem 12.15: Let f : [a, b] → R1 be a bounded function. Then f is
integrable over [a, b] if and only if for each ² > 0, there is a partition P of [a, b]
such that

UP (f)− LP (f) < ².
Proof: Assume that f is integrable over [a, b]. Let ² > 0. SinceR b

a
f =

R b
a
f = glbP∈PUP (f) and

R b
a
f =

R b
a
f = lubP∈PLP (f),

there are a partitions P1 and P2 of [a, b] such that

(1) UP1
(f) <

R b
a f +

²
2 and LP2

(f) >
R b
a f − ²

2 .

Let P be a common reÞnement of P1 and P2 (see Exercise 12.3). Then, by
Lemma 12.6 and Lemma 12.8 , we have

(2) LP2(f) ≤ LP (f) ≤ UP (f) ≤ UP1(f).

Now,

UP (f)− LP (f)
(2)
≤ UP1

(f)− LP2
(f)

(1)
<
R b
a f +

²
2 − (

R b
a f − ²

2) = ².

This proves that P is as required in the theorem.
Conversely, assume that for each ² > 0, there is a partition P² of [a, b] such

that

UP²(f)− LP²(f) < ².

Then, since
R b
a
f = glbP∈PUP (f) and

R b
a
f = lubP∈PLP (f),

0
12.10≤ R b

af −
R b
a
f ≤ UP²(f)− LP²(f) < ² for all ² > 0.

Hence,
R b
a
f −R b

a
f = 0 (it follows from the axioms in section 1 of Chapter I that

if 0 ≤ x < ² for all ² > 0, then x = 0). Therefore,
R b
af =

R b
a
f , which proves

that f is integrable. ¥
Lest it escape us without notice, we point out that Theorem 12.15 says that

we need only Þnd one appropriate partition for each ² > 0 in order to show
a function is integrable. This feature of Theorem 12.15 makes it signiÞcantly
easier to show a function is integrable than it would be to show the function is
integrable using the deÞnition of integrability directly. We illustrate this with
the following example:

Example 12.16: DeÞne f : [0, 2] → R1 by f(x) = x2. We show that f is
integrable over [0, 2] by applying Theorem 12.15.
Let ² > 0. Let n be a natural number such that 4

n < ² (the number n exists
by the Archimedean Property (Theorem 1.22)). Let P be the partition of [0, 2]
given by
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P = {x0 = 0, x1 =
1
n , ..., xi =

i
n , ..., x2n = 2}.

Note that f is strictly increasing (by Theorem 10.17 since f 0(x) = 2x > 0
for all x ∈ [0, 2]). Hence,

Mi(f) = x
2
i , mi(f) = x

2
i−1, each i = 1, 2, ..., 2n.

Thus, since ∆xi = 1
n for each i,

UP (f)− LP (f) = Σ2n
i=1x

2
i

1
n −Σ2n

i=1x
2
i−1

1
n =

1
n(Σ

2n
i=1x

2
i −Σ2n

i=1x
2
i−1)

= 1
n(x

2
2n − x2

0) =
1
n(4− 0) < ².

Therefore, by Theorem 12.15, f is integrable over [0, 2].

Note that we did not evaluate the integral in Example 12.16 � Theorem
12.15 is not set up to evaluate integrals. Our next theorem gives a condition
that can be used to evaluate integrals (in practice, however, the theorem has
very limited use for this purpose). After we prove the theorem, we apply the
theorem to evaluate the integral in the example above.
We note that the limits in the following theorem are limits of sequences,

which we discussed in section 8 of Chapter IV.

Theorem 12.17: Let f : [a, b] → R1 be a bounded function. Assume that
P1, P2, ..., Pn, ... are partitions of [a, b] such that

limn→∞UPn(f) = limn→∞LPn(f) = c.

Then f is integrable over [a, b] and
R b
a f = c.

Proof: By deÞnition,
R b
a
f = lubP∈PLP (f) and

R b
af = glbP∈PUP (f); hence,

LPn(f) ≤
R b
a
f
12.10≤ R b

a
f ≤ UPn(f), all n = 1, 2, ... .

Thus, by the Squeeze Theorem (Theorem 4.34), which holds for sequences by
Theorem 4.38, we have thatR b

a
f = c and

R b
af = c.

Therefore, f is integrable and
R b
a f = c. ¥

Example 12.18: We use Theorem 12.17 to evaluate the integral of the
function in Example 12.16; we show that

R 2

0
x2 = 8

3 .
We use following formula; the formula can be veriÞed by induction (we leave

the veriÞcation for the reader in Exercise 12.19):

(*) Σni=1i
2 = n(n+1)(2n+1)

6 for each n = 1, 2, ... .

For each n = 1, 2, ..., let Pn be the partition of [0, 2] given by
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Pn = {x0 = 0, x1 =
1
n , ..., xi =

i
n , ..., x2n = 2}.

Then, since Mi(f) = x
2
i and mi(f) = x

2
i−1 for each i (as in Example 12.16),

UPn(f) = Σ
2n
i=1x

2
i

1
n and LPn(f) = Σ

2n
i=1x

2
i−1

1
n for each n.

Hence, for each n,

UPn(f) =
1
nΣ

2n
i=1(

i
n)

2 = 1
n3Σ2n

i=1i
2 (*)
= 1

n3
2n(2n+1)(4n+1)

6

= (2n+1)(4n+1)
3n2 = 8

3 +
2
n +

1
3n2

and

LPn(f) = Σ
2n
i=1(

i−1
n )

2 1
n =

1
n3Σ

2n
i=1(i− 1)2 = 1

n3Σ
2n−1
i=1 i2

(*)
= 1

n3

(2n−1)(2n)(4n−1)
6 = (2n−1)(4n−1)

3n2 = 8
3 − 2

n +
1

3n2 .

Thus, limn→∞UPn(f) =
8
3 and limn→∞LPn(f) =

8
3 . Therefore, by Theorem

12.17,
R 2

0 x
2 = 8

3 .

Exercise 12.19: Verify that Σni=1i
2 = n(n+1)(2n+1)

6 for each n = 1, 2, ... by
using induction (Theorem 1.20). (We used the formula in Example 12.18.)

In Examples 12.16 and 12.18, we used partitions that divide the interval of
integration into intervals of equal length. These types of partitions are useful
because we can factor ∆xi out of summations when computing upper and lower
sums. We call a partition of an interval [a, b] that divides [a, b] into intervals of
equal length ∆xi a regular partition.

Exercise 12.20: Evaluate
R b
a x for any a ≤ b.

(Hint: First prove that Σni=1i =
n(n+1)

2 for each n = 1, 2, ... .)

Exercise 12.21: Determine if f is integrable, where f : [0, 1] → R1 is
deÞned as follows (Q denotes the set of all rational numbers; for integers m and
n, mn in lowest terms means m and n have no common divisor other than ±1):

f(x) =


0 , if x is irrational

1 , if x = 0
1
n , if x ∈ Q− {0} and x = m

n in lowest terms.

Exercise 12.22: Assume that f(x) ≤ g(x) ≤ h(x) for all x ∈ [a, b] and that
f and h are integrable over [a, b]. If

R b
a
f =

R b
a
h, then g is integrable and

R b
a
g

is equal to
R b
a f =

R b
a h.

Exercise 12.23: If f is increasing on [a, b] or decreasing on [a, b], then f is
integrable over [a, b].

Exercise 12.24: In connection with Exercise 12.23, is every one - to - one
bounded function on an interval [a, b] integrable over [a, b] ?

119



Exercise 12.25: If f : [a, b] → R1 is a nonnegative function that is inte-
grable over [a, b], then

R b
a f ≥ 0.

Exercise 12.26: Let f : [a, b] → R1 be a nonnegative function that is
integrable over [a, b]. Then

R b
a
f = 0 if and only if glbf(I) = 0 for each open

interval I in [a, b].

Exercise 12.27: Let f : [a, b] → R1 be a function that is integrable over
[a, b], and let g : [a, b]→ R1 be a function that agrees with f except at Þnitely
many points. Is g integrable over [a, b] ?

5. Continuous Functions Are Integrable

We prove that any continuous function deÞned on a closed and bounded
interval is integrable. This is an existence theorem � it does not show how to
evaluate the integral. We will be able to evaluate integrals of many simple con-
tinuous functions using the Fundamental Theorem of Calculus, which we prove
in Chapter XIV. However, evaluating integrals of most continuous functions is
difficult, usually impossible; ad hoc methods can sometimes be employed, but
most often one has to settle for approximate evaluations by numerical methods.
The following notion is of general importance and is the key idea that we

use to prove our theorem:

DeÞnition: Let X ⊂ R1, and let f : X → R1 be a function. We say that f
is uniformly continuous on X provided that for any ² > 0, there is a δ > 0 such
that if x1, x2 ∈ X and |x1 − x2| < δ, then |f(x1)− f(x2)| < ².
Exercise 12.28: Let X ⊂ R1. If f : X → R1 is uniformly continuous, then

f is continuous.

Exercise 12.29: The converse of the result in Exercise 12.28 is false: The
function f : R1 → R1 given by f(x) = x2 is continuous but not uniformly
continuous.

Exercise 12.30: Any linear function f (i.e., f(x) = mx + b) is uniformly
continuous on R1. More generally, if f is differentiable on an interval I and the
derivative f 0 is bounded on I, then f is uniformly continuous on I.

The following theorem is not concerned with integrals, but it is the basis of
our proof that continuous functions are integrable. The theorem is so important
in all of mathematics that even though it plays the role of a lemma here, we can
not bring ourselves to call the theorem a lemma. The theorem shows that the
converse of the result in Exercise 12.28 is true when X is a closed and bounded
interval.

Theorem 12.31: If f : [a, b] → R1 is continuous, then f is uniformly
continuous.

Proof: Suppose by way of contradiction that f is not uniformly continuous.
Then, for some ² > 0, there are points xn, yn ∈ [a, b] for each n ∈ N such that
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(1) |xn − yn| < 1
n for each n ∈ N

and

(2) |f(xn)− f(yn)| ≥ ² for each n ∈ N.

Let

X = {xn : n ∈ N}.

We prove that X is an inÞnite set. Suppose that the set X is Þnite. Then
there is a point q ∈ X such that q = xn for inÞnitely many n. Hence, we can
assume that

(3) q = xni , where ni < ni+1 for each i ∈ N.

Then, by (3) and (1), we have

(4) |q − yni | < 1
ni
for each i ∈ N

and, by (3) and (2), we have

(5) |f(q)− f(yni)| ≥ ² for each i ∈ N.

Let

Y = {yni : i ∈ N}.

Recall from (3) that ni < ni+1 for each i ∈ N; hence, by (4) and the second part
of Exercise 1.23, the sequence {yni}∞i=1 converges to q. Thus, q ∼ Y (deÞnition
in section 1 of Chapter II). However, by (5), f(q) 6∼ f(Y ). Hence, f is not
continuous at q by the deÞnition of continuity (section 3 of Chapter II). This
contradicts the assumption in our theorem. Therefore, we have proved that X
is an inÞnite set.
Now, since X is a bounded inÞnite set, X has a limit point p in R1 (by

Exercise 5.16); furthermore, since X ⊂ [a, b] and p ∼ X, it follows easily that
p ∈ [a, b] (if p /∈ [a, b], then p 6∼ [a, b] by Theorem 2.5; hence, p 6∼ X by Exercise
2.10, a contradiction).
Since p ∈ [a, b], f is continuous at p. Hence, by Theorem 3.12, there is a

δ > 0 such that

(6) |f(x)− f(p)| < ²
2 whenever x ∈ [a, b] and |x− p| < δ.

Since p is a limit point of X, we have by Exercise 2.33 that

|xn − p| < δ
2 for inÞnitely many n.

Hence, by the Archimedean Property (Theorem 1.22), there is a natural number
k such that 1

k <
δ
2 and |xk − p| < δ

2 . Thus,

|yk − p| ≤ |yk − xk|+ |xk − p|
(1)
< 1

k +
δ
2 < δ.
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Since |xk − p| < δ
2 < δ and |yk − p| < δ,

|f(xk)− f(yk)| ≤ |f(xk)− f(p)|+ |f(p)− f(yk)|
(6)
< ²

2 +
²
2 = ².

This contradicts (2). ¥
We note the following terminology, which calls attention to an important

idea in connection with integrals.

DeÞnition: The norm of a partition P = {x0, x1, ..., xn} of [a, b], which we
denote by kPk, is deÞned by

kPk = max{∆xi : i = 1, 2, ..., n}.

Exercise 12.32: For any η > 0, there is a partition P of [a, b] such that
kPk < η.
We now prove our theorem.

Theorem 12.33: If f : [a, b] → R1 is a continuous function, then f is
integrable over [a, b].

Proof: We will apply Theorem 12.15. Let ² > 0. By Theorem 12.31, f is
uniformly continuous. Hence, there is a δ > 0 such that

(1) |f(y)− f(z)| < ²
b−a whenever y, z ∈ [a, b] and |y − z| < δ.

Let P = {x0, x1, ..., xn} be a partition of [a, b] such that kPk < δ (P exists
by Exercise 12.32). For each i = 1, 2, ..., n, f |[xi−1, xi] is continuous (by Exercise
5.3); hence, by the Maximum-Minimum Theorem (Theorem 5.13), f |[xi−1, xi]
attains its maximum value at a point yi ∈ [xi−1, xi] and its minimum value at
a point zi ∈ [xi−1, xi]; in other words, we have that

(2) Mi(f) = f(yi) and mi(f) = f(zi) for each i = 1, 2, ..., n.

Now, we show that P satisÞes the condtion in Theorem 12.15:

UP (f)− LP (f) = Σni=1Mi(f)∆xi −Σni=1mi(f)∆xi

= Σni=1[Mi(f)−mi(f)]∆xi
(2)
= Σni=1[f(yi)− f(zi)]∆xi

(1)
< Σni=1

²
b−a∆xi =

²
b−aΣ

n
i=1∆xi =

²
b−aΣ

n
i=1(xi − xi−1)

= ²
b−a(xn − x0) =

²
b−a(b− a) = ².

Therefore, since ² > 0 was arbitrary, we have by Theorem 12.15 that f is
integrable over [a, b]. ¥
Exercise 12.34: If f : [a, b]→ R1 is a bounded function that is continuous

at all but Þnitely many points, then f is integrable over [a, b].
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Chapter XIII: The Algebra of the Integral

We show that sums, differences, products, quotients (with a condition), and
absolute values of integrable functions are integrable. Finally, we examine in-
tegrals over subintervals (which we discuss again in the Þrst section of Chapter
XVI).
We remark that most results in this chapter follow immediately from a char-

acterization of integrability in Chapter XV. In addition, the best general theo-
rem about quotients follows easily from the characterization in Chapter XV (we
were unable to Þnd a proof using the methods we use in the present chapter;
compare Theorem 13.36 with the result in Exercise 15.34). Nevertheless, this
chapter is important for two reasons: First, it is always a good idea to under-
stand why theorems are true from the most basic point of view; second, several
results we prove here are necessary for proving the Fundamental Theorem of
Calculus, which we want to prove as soon as possible, and some of those results
are not consequences of the characterization in Chapter XV (e.g., the inequality
in Theorem 13.17 and Theorem 13.40).

1. Integrability of Sums

We prove that the sum of two integrable functions is integrable and that the
integral of the sum is the sum of the integrals (Theorem 13.3).

Lemma 13.1: Let f and g be bounded functions deÞned on a nonempty
set X. Then
(1) lubx∈X(f(x) + g(x)) ≤ lubx∈Xf(x) + lubx∈Xg(x)

and
(2) glbx∈X(f(x) + g(x)) ≥ glbx∈Xf(x) + glbx∈Xg(x).
Proof: For any y ∈ X,

f(y) + g(y) ≤ lubx∈Xf(x) + lubx∈Xg(x);
hence, lubx∈Xf(x) + lubx∈Xg(x) is an upper bound for {f(x) + g(x) : x ∈ X}.
Therefore, by the Completeness Axiom, lubx∈X(f(x)+g(x)) exists and, clearly,

lubx∈X(f(x) + g(x)) ≤ lubx∈Xf(x) + lubx∈Xg(x),
which proves (1). The proof of (2) is similar. ¥
The inequalities in Lemma 13.1 are in general strict, as can be seen, for

example, by taking f(x) = x and g(x) = −1
2x+

1
2 for all x ∈ [0, 1].

Lemma 13.2: Let f, g : [a, b] → R1 be bounded functions, and let P be a
partition of [a, b]. Then
(1) UP (f + g) ≤ UP (f) + UP (g)

and
(2) LP (f + g) ≥ LP (f) + LP (g).
Proof: Assume that P = {x0, x1, ..., xn}. By Lemma 13.1,
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(*) Mi(f + g) ≤Mi(f) +Mi(g) and mi(f + g) ≥ mi(f) +mi(g), all i.

Therefore,

UP (f + g) = Σ
n
i=1Mi(f + g)∆xi

(*)
≤ Σni=1[Mi(f) +Mi(g)]∆xi

= Σni=1Mi(f)∆xi +Σ
n
i=1Mi(g)∆xi = UP (f) + UP (g)

and, similarly, LP (f + g) ≥ LP (f) + LP (g). ¥
We now prove our theorem.

Theorem 13.3: If f and g are integrable over [a, b], then f +g is integrable
over [a, b] and R b

a
(f + g) =

R b
a
f +

R b
a
g.

Proof: Let ² > 0. Then, by the deÞnition of the integrals of f and g (section
3 of Chapter XII), there are partitions P1 and P2 of [a, b] such that

UP1(f) <
R b
a f +

²
2 and UP2(g) <

R b
a g +

²
2 .

Let P be a common reÞnement of P1 and P2 (see Exercise 12.3). Then, by
Lemma 12.8, UP (f) ≤ UP1(f) and UP (g) ≤ UP2(g). Hence,

UP (f) <
R b
a
f + ²

2 and UP (g) <
R b
a
g + ²

2 .

Thus, since
R b
a(f + g) ≤ UP (f + g)

13.2≤ UP (f) + UP (g), we have proved that

(1)
R b
a(f + g) <

³R b
a f +

R b
a g
´
+ ².

Similarly, there are partitions Q1 and Q2 of [a, b] such that

LQ1
(f) >

R b
a
f − ²

2 and LQ2
(g) >

R b
a
g − ²

2 ,

and, for a common reÞnement, Q, of Q1 and Q2, Lemma 12.8 shows that
LQ(f) ≥ LQ1(f) and LQ(g) ≥ LQ2(g); hence,

LQ(f) >
R b
a
f − ²

2 and LQ(g) >
R b
a
g − ²

2 .

Thus, since
R b
a
(f + g) ≥ LQ(f + g)

13.2≥ LQ(f) + LQ(g), we have proved that

(2)
R b
a
(f + g) >

³R b
a f +

R b
a g
´
− ².

We now have that³R b
a
f +

R b
a
g
´
− ² (2)< R b

a
(f + g)

12.10≤ R b
a
(f + g)

(1)
<
³R b

a
f +

R b
a
g
´
+ ².

Therefore, since ² was an arbitrary positive number, we see that
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R b
a
(f + g) =

R b
a
(f + g) =

R b
a
f +

R b
a
g.

Thus, f + g is integrable (by the Þrst equality) and
R b
a
(f + g) =

R b
a
f +

R b
a
g. ¥

Corollary 13.4: If each of Þnitely many functions f1, f2, ..., fn is integrable
over [a, b], then their sum is integrable over [a, b] andR b

a
(f1 + f2 + ...+ fn) =

R b
a
f1 +

R b
a
f2 + · · ·+

R b
a
fn.

Proof: Left as an exercise. ¥
Exercise 13.5: Prove Corollary 13.4.

In analogy with Theorem 13.3, the difference of two integrable functions is
integrable and the integral of the difference is the difference of the integrals. We
prove this result in the next section (Corollary 13.12).

Exercise 13.6: DeÞne f : [0, 2]→ R1 by

f(x) =

 2 , if 0 ≤ x < 1
5 , if x = 1
4 , if 1 < x ≤ 2.

Using Example 12.11 and Exercise 12.14, evaluate
R 2

0
f .

2. Integrability of Scalar Products

A scalar product of a function f : X → R1 is the function λf : X → R1

obtained by multiplying each value of f by a Þxed real number λ; that is,

(λf)(x) = λf(x) for all x ∈ X.

The term scalar product is from vector spaces, where it refers to the product
of a vector by a Þeld element. The terminology is, therefore, appropriate here
since the set of all real - valued functions deÞned on a nonempty set X forms
a vector space under pointwise addition of functions (the vectors) and scalar
product as deÞned above.
We prove that a scalar product λf of an integrable function f on [a, b] is

integrable and that the expected formula holds:R b
a
λf = λ

R b
a
f .

Combining this result with the result about sums in the preceding section (The-
orem 13.3), we have that the set V of all integrable functions deÞned on [a, b]
is a vector space and that

R b
a
is a linear transformation from V to the vector

space R1; in other words,R b
a
(λ1f + λ2g) = λ1

R b
a
f + λ2

R b
a
g, all f, g ∈ V and λ1,λ2 ∈ R1.
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In connection with
R b
a being a linear transformation, note that Exercise 12.26

characterizes all the nonnegative integrable functions in the null space of
R b
a
.

We remark that our theorem about the integrability of scalar products is a
special case of the theorem about products that we will prove in section 4.
For any subset X of R1 and any real number λ, we let λX denote the set

deÞned by

λX = {λx : x ∈ X}.

Lemma 13.7: Let X be a nonempty bounded subset of R1.

(1) If λ ≥ 0, then lubλX = λlubX and glbλX = λglbX.

(2) If λ < 0, then lubλX = λglbX and glbλX = λlubX.

Proof: We prove part (1). Since (1) is trivial when λ = 0, we assume that
λ > 0.
Since x ≤ lubX for all x ∈ X and since λ > 0, it is clear that λx ≤ λlubX for

all x ∈ X. Hence, λlubX is an upper bound for λX; thus, by the Completeness
Axiom, lubλX exists and, obviously,

(a) lubλX ≤ λlubX.
Since λx ≤ lubλX for all x ∈ X and since λ > 0, we have that x ≤ 1

λ lubλX
for all x ∈ X. Hence, lubX ≤ 1

λ lubλX; thus, since λ > 0, we have

(b) λlubX ≤ lubλX.
By (a) and (b), lubλX = λlubX. Similarly, by replacing lub with glb and

reversing inequalities in the argument above, we obtain that glbλX = λglbX.
This proves part (1).
We leave the proof of part (2) as an exercise. ¥
Exercise 13.8: Prove part (2) of Lemma 13.7.

Lemma 13.9: Let f : [a, b] → R1 be a bounded function, and let P be a
partition of [a, b].

(1) For any λ ≥ 0, UP (λf) = λUP (f) and LP (λf) = λLP (f).
(2) For any λ < 0, UP (λf) = λLP (f) and LP (λf) = λUP (f).

Proof: Assume that P = {x0, x1, ..., xn}.
We prove part (1). Let λ ≥ 0. Then, by the Þrst part of Lemma 13.7,

(*) Mi(λf) = λMi(f) and mi(λf) = λmi(f), all i.

Therefore,

UP (λf) = Σni=1Mi(λf)∆xi
(*)
= Σni=1λMi(f)∆xi = λUP (f)

and

LP (λf) = Σni=1mi(λf)∆xi
(*)
= Σni=1λmi(f)∆xi = λLP (f).
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This proves part (1).
We leave the proof of part (2) as an exercise. ¥
Exercise 13.10: Prove part (2) of Lemma 13.9.

Theorem 13.11: Let λ ∈ R1. If f is integrable over [a, b], then λf is
integrable over [a, b] and R b

a λf = λ
R b
a f .

Proof: Let P denote the collection of all partitions of [a, b]. By the deÞnitions
of the upper and lower integrals (section 3 of Chapter XII),

(1)
R b
a
λf = glbP∈PUP (λf), λ

R b
a
f = λglbP∈PUP (f)

and

(2)
R b
a
λf = lubP∈PLP (λf), λ

R b
a
f = λlubP∈PLP (f)

We use the Þrst part of Lemma 13.9 and then the Þrst part of Lemma 13.7
in each of the following:

(3) glbP∈PUP (λf) = glbP∈PλUP (f) = λglbP∈PUP (f), if λ ≥ 0;
(4) lubP∈PLP (λf) = lubP∈PλLP (f) = λlubP∈PLP (f), if λ ≥ 0.
We use the second part of Lemma 13.9 and then the second part of Lemma

13.7 in each of the following:

(5) glbP∈PUP (λf) = glbP∈PλLP (f) = λlubP∈PLP (f), if λ < 0;

(6) lubP∈PLP (λf) = lubP∈PλUP (f) = λglbP∈PUP (f), if λ < 0.

Now, assume that λ ≥ 0. Then, using that f is integrable over [a, b] for the
last equalities below,R b

aλf
(1)
= glbP∈PUP (λf)

(3)
= λglbP∈PUP (f)

(1)
= λ

R b
af = λ

R b
a f

and R b
a
λf

(2)
= lubP∈PLP (λf)

(4)
= λlubP∈PLP (f)

(2)
= λ

R b
a
f = λ

R b
a f ;

therefore,
R b
a
λf = λ

R b
a
f =

R b
a
λf , which proves the lemma when λ ≥ 0.

Finally, assume that λ < 0. Then, using that f is integrable over [a, b] for
the last equalities below,R b

a
λf

(1)
= glbP∈PUP (λf)

(5)
= λlubP∈PLP (f)

(2)
= λ

R b
a
f = λ

R b
a
f

and R b
a
λf

(2)
= lubP∈PLP (λf)

(6)
= λglbP∈PUP (f)

(1)
= λ

R b
af = λ

R b
a f ;

therefore,
R b
a
λf = λ

R b
a
f =

R b
a
λf , which proves the lemma when λ < 0. ¥
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We can now easily obtain the theorem for the difference of two integrable
functions that is analogous to the theorem for the sum of two integrable functions
in the preceding section (Theorem 13.3):

Corollary 13.12: If f and g are integrable over [a, b], then f−g is integrable
over [a, b] and R b

a (f − g) =
R b
a f −

R b
a g.

Proof: By Theorem 13.11, −g is integrable over [a, b] and R ba −g = − R ba g.
Therefore, since f − g = f + (−g), we have by Theorem 13.3 that f − g is
integrable over [a, b] andR b

a (f − g) =
R b
a (f + (−g))

13.3
=
R b
a f +

R b
a −g

13.11
=

R b
a f −

R b
a g. ¥

Exercise 13.13: Using Exercise 12.13, Example 12.18 and Exercise 12.20,
evaluate

R 2

0 (5x
2 − 3x+ 4).

3. Integrability of Absolute Values

The absolute value of a function f : X → R1 is the function |f | : X → R1

deÞned by

|f | (x) = |f(x)| for all x ∈ X.
We prove that the absolute value |f | of an integrable function f on [a, b] is

integrable and that ¯̄̄R b
a f
¯̄̄
≤ R ba |f |.

The inequality is what we would expect in view of the deÞnition of upper and
lower sums and the Triangle Inequality for absolute values (above Exercise 1.28);
however, our proof of the inequality is along different lines.

Lemma 13.14: Assume that f and g are integrable over [a, b] and that
f(x) ≤ g(x) for all x ∈ [a, b]. ThenR b

a
f ≤ R b

a
g.

Proof: Let h = g − f . Then, by Corollary 13.12, h is integrable andR b
a h =

R b
a g −

R b
a f .

Also, since h(x) ≥ 0 for all x ∈ [a, b], R b
a
h ≥ 0 (by Exercise 12.25). Therefore,R b

a g −
R b
a f ≥ 0,

which proves the lemma. ¥
Exercise 13.15: If f is integrable over [a, b] and α ≤ f(x) ≤ β for all

x ∈ [a, b], then
α(b− a) ≤ R b

a
f ≤ β(b− a).
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Lemma 13.16: Let X be a nonempty set, and let f : X → R1 be a bounded
function. Then

lubx∈X |f(x)|− glbx∈X |f(x)| ≤ lubx∈Xf(x)− glbx∈Xf(x).
Proof: Let p, q ∈ X. Then

|f(p)|− |f(q)| 1.29≤ |f(p)− f(q)| = max{f(p), f(q)}−min{f(p), f(q)}
≤ lubx∈Xf(x)− glbx∈Xf(x),

which says

|f(p)| ≤ lubx∈Xf(x)− glbx∈Xf(x) + |f(q)|.
Since this inequality holds for all points p ∈ X, we have that

lubx∈X |f(x)| ≤ lubx∈Xf(x)− glbx∈Xf(x) + |f(q)|.
Hence,

lubx∈X |f(x)|− lubx∈Xf(x) + glbx∈Xf(x) ≤ |f(q)|.
Since this inequality holds for all points q ∈ X, we now have that

lubx∈X |f(x)|− lubx∈Xf(x) + glbx∈Xf(x) ≤ glbx∈X |f(x)|,
which proves the lemma. ¥
We now prove our theorem.

Theorem 13.17: If f is integrable over [a, b], then |f | is integrable over
[a, b] and ¯̄̄R b

a f
¯̄̄
≤ R ba |f |.

Proof: Let ² > 0. Since f is integrable over [a, b], we know from Theorem
12.15 that there is a partition P = {x0, x1, ..., xn} of [a, b] such that

UP (f)− LP (f) < ².
Hence, using Lemma 13.16 on each of the intervals [xi−1, xi] for the inequality
is the third step below, we have

UP (|f |)− LP (|f |) = Σni=1[Mi(|f |)−mi(|f |)]∆xi
≤ Σni=1[Mi(f)−mi(f)]∆xi = UP (f)− LP (f) < ².

Therefore, since ² > 0 was arbitrary, we have by Theorem 12.15 that |f | is
integrable over [a, b].
Finally, we prove the inequality in the theorem. Having just proved that |f |

is integrable over [a, b], we know from Theorem 13.11 that − |f | is integrable
over [a, b]. Therefore,
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− R b
a
|f | 13.11= R b

a
− |f | 13.14≤ R b

a
f
13.14≤ R b

a
|f |,

which shows that
¯̄̄R b
a f
¯̄̄
≤ R ba |f |. ¥

Exercise 13.18: If |f | is integrable over [a, b], then is f integrable over
[a, b] ?

Exercise 13.19: If f and g are integrable over [a, b], then the maximum
function f

W
g and the minimum function f

V
g are integrable over [a, b]. (We

deÞned f
W
g and f

V
g in Exercise 4.33.)

(Hint: The same as the hint for Exercise 4.33.)

Exercise 13.20: We deÞned the notion of a distance function for a set in
Exercise 1.30. Let I([a, b]) denote the set of all functions that are integrable
over [a, b]. For any f, g ∈ I([a, b]), let

d(f, g) =
R b
a |f − g|.

Determine whether d is a metric for I([a, b]).
4. Integrability of Products

We prove that the product of two integrable functions is integrable. It is not
possible to give a formula for the integral of the product; in particular, the inte-
gral of the product of two integrable functions is not necessarily the product of
the integrals (e.g.,

R 2

0
x2 6= (R 2

0
x)(
R 2

0
x) by Example 12.18 and Exercise 12.20).

Our theorems about products (along with other results) can be used to show
that all polynomials are integrable over any closed and bounded interval [a, b],
a < b (Exercise 13.28).
We Þrst prove that the product of two integrable functions is integrable for

the case when the functions are nonnegative; we then apply Exercise 13.19 to
obtain the general result (Theorem 13.26).
Note the following exercise for use in Lemma 13.22.

Exercise 13.21: Using axioms in section 1 of Chapter I, prove that if
0 ≤ a ≤ b and 0 ≤ c ≤ d, then ac ≤ bd.
Lemma 13.22: Let f and g be bounded nonnegative functions deÞned on

a nonempty set X. Then

(1) [glbx∈Xf(x)][glbx∈Xg(x)] ≤ glbx∈X(f · g)(x)
and

(2) lubx∈X(f · g)(x) ≤ [lubx∈Xf(x)][lubx∈Xg(x)].
Proof: By Exercise 13.21, we have

[glbx∈Xf(x)][glbx∈Xg(x)] ≤ f(y)g(y), all y ∈ X.
Hence, [glbx∈Xf(x)][glbx∈Xg(x)] is a lower bound for {(f · g)(x) : x ∈ X}.
Therefore, glbx∈X(f · g)(x) exists by the Greatest Lower Bound Axiom (section
8 of Chapter I) and
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[glbx∈Xf(x)][glbx∈Xg(x)] ≤ glbx∈X(f · g)(x).

This proves (1). The proof of (2) is similar. ¥
Lemma 13.23: Let f, g : [a, b] → R1 be bounded nonnegative functions,

and let s be an upper bound for both f([a, b]) and g([a, b]). If P is a partition
of [a, b], then

UP (f · g)− LP (f · g) ≤ s[UP (f)− LP (f)] + s[UP (g)− LP (g)].

Proof: Let P = {x0, x1, ..., xn}. We see from Lemma 13.22 that

(*) mi(f)mi(g) ≤ mi(f · g) ≤Mi(f · g) ≤Mi(f)Mi(g), all i.

Hence,

UP (f · g)− LP (f · g) = Σni=1[Mi(f · g)−mi(f · g)]∆xi
(*)
≤ Σni=1[Mi(f)Mi(g)−mi(f)mi(g)]∆xi

= Σni=1[Mi(f)Mi(g)−mi(f)Mi(g) +mi(f)Mi(g)−mi(f)mi(g)]∆xi

= Σni=1Mi(g)[Mi(f)−mi(f)]∆xi +Σ
n
i=1mi(f)[Mi(g)−mi(g)]∆xi

≤ sΣni=1[Mi(f)−mi(f)]∆xi + sΣni=1[Mi(g)−mi(g)]∆xi

= s[UP (f)− LP (f)] + s[UP (g)− LP (g)]. ¥
Our next lemma is the product theorem for nonnegative functions.

Lemma 13.24: If f and g are nonnegative functions that are integrable
over [a, b], then f · g is integrable over [a, b].
Proof: Let ² > 0 (we will use Theorem 12.15). Since f and g are integrable

over [a, b], f and g are bounded; thus, we have an upper bound s > 0 for both
f([a, b]) and g([a, b]). Now, by Theorem 12.15, there are partitions P1 and P2

of [a, b] such that

(1) UP1(f)− LP1(f) <
²

2s and UP2(g)− LP2(g) <
²

2s .

Let P be a common reÞnement of P1 and P2 (see Exercise 12.3). Then, by
Lemma 12.6 and Lemma 12.8, we have

(2) LP1(f) ≤ LP (f) ≤ UP (f) ≤ UP1(f)

and

(3) LP2(g) ≤ LP (g) ≤ UP (g) ≤ UP2(g).

Now,

UP (f)− LP (f)
(2)
≤ UP1(f)− LP1(f)

(1)
< ²

2s

and, similarly,
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UP (g)− LP (g)
(3)
≤ UP2(g)− LP2(g)

(1)
< ²

2s .

Hence, by Lemma 13.23 (and since s > 0),

UP (f · g)− LP (f · g) < s ²2s + s ²2s = ².

Therefore, since ² > 0 was arbitrary, we have by Theorem 12.15 that f · g is
integrable over [a, b]. ¥
Exercise 13.25: If f and g are integrable over [a, b] and neither f nor g

changes sign on [a, b], then f · g is integrable over [a, b].
We are ready to prove the general theorem about products.

Theorem 13.26: If f and g are integrable over [a, b], then f ·g is integrable
over [a, b].

Proof: Let 0 denote the zero function on [a, b] (i.e., 0(x) = 0 for all x ∈ [a, b]).
Consider the maximum and minimum functions of f and 0 and of g and 0 (as
deÞned in Exercise 4.33): f

W
0, f

V
0, g

W
0, and g

V
0. By taking the four

cases involving the possible signs of f(x) and g(x) for a Þxed (but arbitrary)
point x, we see that

(1) f · g = (f W 0) · (gW 0) + (f W 0) · (gV 0)
+(f

V
0) · (gW 0) + (f V 0) · (gV 0).

Each of the functions f
W
0, f

V
0, g

W
0, and g

V
0 is integrable over [a, b]

by Exercise 13.19; furthermore, none of these functions changes sign on [a, b].
Hence, by Exercise 13.25, each of the four product functions on the right - hand
side of (1) is integrable on [a, b]. Therefore, by (1) and Corollary 13.4, f · g is
integrable on [a, b]. ¥
Corollary 13.27: If each of Þnitely many functions is integrable over [a, b],

then their product is integrable over [a, b].

Proof: The corollary follows from Theorem 13.26 by a straightforward in-
duction (Theorem 1.20). ¥
Exercise 13.28: Use results in this chapter to prove that polynomials are

integrable over any closed and bounded interval. (Note: The result also follows
from Theorem 12.33 since polynomials are continuous by Theorem 4.16.)

Exercise 13.29: If the product of two bounded functions is integrable over
[a, b], then must each of the functions be integrable over [a, b] ? In other words,
is the converse of Theorem 13.26 true?

Exercise 13.30: True or false: If f and g are integrable over [a, b], then¯̄̄R b
a f · g

¯̄̄
≤
¯̄̄R b
a f
¯̄̄ ¯̄̄R b

a g
¯̄̄
.
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5. Integrability of Quotients

Let f and g be integrable functions deÞned on an interval [a, b] such that
g is never zero. The quotient f

g is not necessarily integrable since
f
g may not

be bounded. However, fg is integrable when
f
g is bounded. We do not know

how to prove this theorem without using a characterization theorem in Chapter
XV. At this time, we prove that fg is integrable when g is bounded away from
zero (Theorem 13.36). You will be asked to prove the general theorem later (in
Exercise 15.34).
If X is a nonempty set and g : X → R1 is a function, then we say that g is

bounded away from zero provided that there is an α > 0 such that |g(x)| > α
for all x ∈ X.
We Þrst prove the theorem about integrability of quotients for the case of

reciprocals (Theorem 13.35); then the theorem about quotients follows easily
using our previous theorem about the integrability of products (Theorem 13.26).
This pattern is analogous to what we did to obtain theorems about limits of
quotients and derivatives of quotients in previous chapters.
We prove three lemmas. We use the Þrst two lemmas to prove the third

lemma, which we use to obtain the result about reciprocals.

Lemma 13.31: Let g be bounded function deÞned on a nonempty set X
such that glbx∈Xg(x) > 0. Then
(1) glbx∈X 1

g(x) =
1

lubx∈Xg(x)

and

(2) lubx∈X 1
g(x) =

1
glbx∈Xg(x) .

Proof: Since 0 < g(y) ≤ lubx∈Xg(x) for all y ∈ X, we have
1

lubx∈Xg(x) ≤ 1
g(y) for all y ∈ X.

Hence, 1
lubx∈Xg(x) is a lower bound for { 1

g(x) : x ∈ X}. Therefore, glbx∈X 1
g(x)

exists by the Greatest Lower Bound Axiom (section 8 of Chapter I) and

1
lubx∈Xg(x) ≤ glbx∈X 1

g(x) .

Therefore, 1
lubx∈Xg(x) = glbx∈X

1
g(x) since if

1
lubx∈Xg(x) < glbx∈X

1
g(x) , then there

exists z ∈ X such that 1
g(z) < glbx∈X

1
g(x) , a contradiction. This proves (1). The

proof of (2) is similar (and is left as an exercise). ¥
Exercise 13.32: Prove part (2) of Lemma 13.31.

Lemma 13.33: Let g be bounded function deÞned on a nonempty set X
such that lubx∈Xg(x) < 0. Then
(1) glbx∈X 1

g(x) =
1

lubx∈Xg(x)

and

(2) lubx∈X 1
g(x) =

1
glbx∈Xg(x) .
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Proof: Let h = −g. Then, since glbx∈Xh(x) 13.7= −lubx∈Xg(x) > 0, we can
apply 13.31 to h to obtain that

(a) glbx∈X 1
h(x) =

1
lubx∈Xh(x)

and

(b) lubx∈X 1
h(x) =

1
glbx∈Xh(x) .

Therefore,

glbx∈X 1
g(x)

13.7
= −lub 1

h(x)

(b)
= −1

glbx∈Xh(x)

13.7
= 1

lubx∈Xg(x)

and

lubx∈X 1
g(x)

13.7
= −glbx∈X 1

h(x)

(a)
= −1

lubx∈Xh(x)

13.7
= 1

glbx∈Xg(x) . ¥

Lemma 13.34: Let g be bounded function deÞned on a nonempty set X
such that g is bounded away from zero, say |g(x)| > α for all x ∈ X. Let

M = lubx∈X 1
g(x) , m = glbx∈X 1

g(x)

Then M −m < lubx∈Xg(x)−glbx∈Xg(x)
α2 .

Proof: Let

X+ = {x ∈ X : g(x) > 0}, X− = {x ∈ X : g(x) < 0}.
We prove the lemma by considering three cases.

Case 1: X = X+. Then

M −m 13.31
= 1

glbx∈Xg(x) − 1
lubx∈Xg(x)

= lubx∈Xg(x)−glbx∈Xg(x)
[glbx∈Xg(x)][lubx∈Xg(x)] <

lubx∈Xg(x)−glbx∈Xg(x)
α2 .

Case 2: X = X−. Then

M −m 13.33
= 1

glbx∈Xg(x) − 1
lubx∈Xg(x)

= lubx∈Xg(x)−glbx∈Xg(x)
[glbx∈Xg(x)][lubx∈Xg(x)] <

lubx∈Xg(x)−glbx∈Xg(x)
α2 .

Case 3: X+ 6= ∅ and X− 6= ∅. Then we can let
γ+ = glb g(X+), γ− = lub g(X−).

We see that

M −m 13.31
= 1

γ+ −m 13.33
= 1

γ+ − 1
γ− =

γ−−γ+

γ+γ− = γ+−γ−
|γ+γ−|

≤ lubx∈Xg(x)−glbx∈Xg(x)
|γ+γ−| < lubx∈Xg(x)−glbx∈Xg(x)

α2 . ¥

Theorem 13.35: If g is integrable over [a, b] and g is bounded away from
zero, then 1

g is integrable over [a, b].
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Proof: Since g is bounded away from zero, there exists α > 0 such that
|g(x)| > α for all x ∈ [a, b].
Let ² > 0. Since g is integrable over [a, b], we have by Theorem 12.15 that

there is a partition P = {x0, x1, ..., xn} of [a, b] such that
(1) UP (g)− LP (g) < α2².

Now,

UP (
1
g )− LP ( 1

g ) = Σ
n
i=1[Mi(

1
g )−mi(

1
g )]∆xi

13.34
< Σni=1

Mi(g)−mi(g)
α2 ∆xi =

1
α2Σni=1[Mi(g)−mi(g)]∆xi

= 1
α2 [UP (g)− LP (g)]

(1)
< ².

Therefore, since ² > 0 was arbitrary, we have by Theorem 12.15 that 1
g is

integrable over [a, b]. ¥
We are ready to prove our main result.

Theorem 13.36: If f and g are are integrable over [a, b] and g is bounded
away from zero, then f

g is integrable over [a, b].

Proof: By Theorem 13.35, 1
g is integrable over [a, b]. Therefore, since

f
g =

f · 1
g ,

f
g is integrable over [a, b] by Theorem 13.26. ¥

Exercise 13.37: Rational functions are integrable over any closed and
bounded interval contained in their domain. Prove this without using Theo-
rem 12.33.

Exercise 13.38: Give an example of integrable functions f, g : [0, 1]→ R1

such that fg is integrable over [0, 1] but g is not bounded away from zero.

6. Integrability Over Subintervals

We prove that if f is integrable over [a, b] and if [c, d] is a subinterval of [a, b],
then the restriction of f to [c, d] is integrable over [c, d].8 As a consequence, we
obtain the following sum formula (where c is a point of [a, b]):R b

a f =
R c
a f +

R b
c f .

Theorem 13.39: If f is integrable over [a, b] and [c, d] is a subinterval of
[a, b], then the restricted function f |[c, d] is integrable over [c, d].
Proof: Let ² > 0. Since f is integrable over [a, b], Theorem 12.15 gives us a

partition P of [a, b] such that

(1) UP (f)− LP (f) < ².
Let Q = P ∪ {c, d}, a partition of [a, b]. Then, since Q is a reÞnement of P ,
8To avoid cumbersome notation, we write

R d
c

f instead of
R d

c
f |[c, d] for the integral of f

over [c.d].
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LP (f)
12.8≤ LQ(f)

12.6≤ UQ(f)
12.8≤ UP (f).

Hence, by (1), we have that

(2) UQ(f)− LQ(f) < ².
Let R = Q∩[c, d]. Since c, d ∈ Q and Q is a partition of [a, b], R is a partition

of [c, d]; furthermore, each term in the sum for UR(f |[c, d]) − LR(f |[c, d]) is a
term in the sum for UQ(f)−LQ(f), and all terms in the sums are positive (since
each term is of the form [Mi(f)−mi(f)]∆xi). Thus,

UR(f |[c, d])− LR(f |[c, d]) ≤ UQ(f)− LQ(f).
Hence, by (2),

UR(f |[c, d])− LR(f |[c, d]) < ².
Therefore, since ² > 0 was arbitrary, we have by Theorem 12.15 that f |[c, d] is
integrable over [c, d]. ¥
Theorem 13.40: If f is integrable over [a, b] and c is any point of [a, b],

then R b
a f =

R c
a f +

R b
c f .

Proof: Let ² > 0. By Theorem 13.39,
R c
a
f and

R b
c
f exist. Thus, since the

integral of a function is, by deÞnition, the common value of the upper and the
lower integrals of the function, there are partitions P1 of [a, c] and P2 of [c, b]
such that

(1) UP1
(f |[a, c]) < R c

a
f + ²

2 , LP1
(f |[a, c]) > R c

a
f − ²

2 ,

UP2(f |[c, b]) <
R b
c f +

²
2 , LP2(f |[c, b]) >

R b
c f − ²

2 .

Let P = P1 ∪ P2, a partition of [a, b]. Then¡R c
a
f − ²

2

¢
+
³R b

c
f − ²

2

´ (1)
< LP1(f |[a, c]) + LP2(f |[c, b]) = LP (f) ≤

R b
a
f

andR b
a f ≤ UP (f) = UP1(f |[a, c]) + UP2(f |[c, b])

(1)
<
¡R c
a f +

²
2

¢
+
³R b

c f +
²
2

´
.

The Þrst and last parts of the expressions give us thatR c
a f +

R b
c f − ² <

R b
a f <

R c
a f +

R b
c f + ².

Therefore, since ² > 0 was arbitrary, we have thatR b
a f =

R c
a f +

R b
c f . ¥

A useful result in the reverse direction to Theorem 13.39 is in Exercise 13.43.
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Exercise 13.41: Evaluate
R 2

−2 f when

f(x) =

½
x , if −2 ≤ x ≤ 0
x2 , if 0 ≤ x ≤ 2.

Be sure to explain why f is integrable over [−2, 2].
Exercise 13.42: Evaluate

R 2

−2
f when f(x) = |x+ 1|. Be sure to explain

why f is integrable over [−2, 2].
Exercise 13.43: If f is integrable over [a, c] and f is integrable over [c, b],

then f is integrable over [a, b] and
R b
a f =

R c
a f +

R b
c f .

Exercise 13.44: Evaluate
R 3

1
f when

f(x) =

½
x , if 1 ≤ x ≤ 2
x+ 1 , if 2 < x ≤ 3.

Be sure to explain why f is integrable over [1, 3].
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Chapter XIV: The Fundamental Theorem of
Calculus

We prove the Fundamental Theorem of Calculus. This beautiful theorem
shows a surprising connection between derivatives and integrals � in short, the
theorem uniÞes the subject of calculus. Thus, it is only appropriate that the
theorem stand alone, in a chapter all by itself. Nevertheless, we include an
application that illustrates a geometric aspect of the theorem; namely (in section
2), we discuss the use of the theorem in connection with computing area, which
puts our informal discussion in Chapter XI on a Þrm (rigorous) foundation.

1. The Fundamental Theorem

We prove the Fundamental Theorem of Calculus after we prove the following
technical lemma.

Lemma 14.1: Assume that f is integrable over [a, b], where a < b. Let
p ∈ [a, b], and let h 6= 0 be a real number such that p + h ∈ [a, b]. For each
x ∈ [a, b], let F (x) = R x

a
f (which exists by Theorem 13.39).

(1) If h > 0, then
¯̄̄
F (p+h)−F (p)

h − f(p)
¯̄̄
≤ 1

h

R p+h

p
|f − f(p)|.

(2) If h < 0, then
¯̄̄
F (p+h)−F (p)

h − f(p)
¯̄̄
≤ −1

h

R p
p+h

|f − f(p)|.
Proof: To prove (1), assume that h > 0. Then, since a ≤ p < p+ h,R p+h

a
f
13.40
=

R p
a
f +

R p+h

p
f .

Thus,

F (p+h)−F (p)
h = 1

h

µR p+h

a
f − R p

a
f

¶
= 1

h

R p+h

p
f ;

also, since
R p+h

p
f(p) = hf(p) (by Exercise 12.13),

f(p) = 1
h

R p+h

p f(p).

Hence, ¯̄̄
F (p+h)−F (p)

h − f(p)
¯̄̄
=
¯̄̄

1
h

R p+h

p f − 1
h

R p+h

p f(p)
¯̄̄

13.12
=

¯̄̄
1
h

R p+h

p
(f − f(p))

¯̄̄
= 1

h

¯̄̄R p+h

p
(f − f(p))

¯̄̄ 13.17≤ 1
h

R p+h

p
|f − f(p)|.

This proves (1).
To prove (2), assume that h < 0. Then, since a ≤ p+ h < p,R p

a f
13.40
=

R p+h

a f +
R p
p+h f .

138



Thus,

F (p+h)−F (p)
h = 1

h

µR p+h

a
f − R p

a
f

¶
= −1

h

R p
p+h

f ;

also, since
R p
p+h f(p) = −hf(p) (by Exercise 12.13),

f(p) = −1
h

R p
p+h

f(p).

Hence (note for equality in third row below that −1
h > 0),¯̄̄

F (p+h)−F (p)
h − f(p)

¯̄̄
=
¯̄̄
−1
h

R p
p+h f +

1
h

R p
p+h f(p)

¯̄̄
=
¯̄̄
−1
h

³R p
p+h f−

R p
p+h f(p)

´¯̄̄
13.12
=

¯̄̄
−1
h

R p
p+h(f − f(p))

¯̄̄
= −1

h

¯̄̄R p
p+h(f − f(p))

¯̄̄ 13.17≤ −1
h

R p
p+h |f − f(p)|.

This proves (2). ¥
Theorem 14.2 (The Fundamental Theorem of Calculus): Assume

that a < b and that f : [a, b]→ R1 is a continuous function.

(1) The function F given by F (x) =
R x
a
f for each x ∈ [a, b] is differentiable

on [a, b] and F 0 = f .
(2) If g is any differentiable function on [a, b] such that g0 = f , thenR b

a f = g(b)− g(a).
Proof: To prove part (1), Þrst note that the function F in (1) is, indeed,

deÞned for each x ∈ [a, b] by Theorem 12.33 (since f |[a, x] is continuous by
Exercise 5.3).
Now, Þx a point p ∈ [a, b]. We want to show that F 0(p) = f(p). We show

this using the deÞnition of the derivative (in section 1 of Chapter VI),

F 0(p) = limh→0
F (p+h)−F (p)

h (if the limit exists).

SpeciÞcally (recalling the deÞnition of limit in section 1 of Chapter III), we show
that for any ² > 0, there is a δ > 0 such that

(*)
¯̄̄
F (p+h)−F (p)

h − f(p)
¯̄̄
< ² when h 6= 0, p+ h ∈ [a, b], and |h| < δ.

Proof of (*): Let ² > 0. Then, since f is continuous at p, Theorem 3.12
gives us a δ > 0 such that

(i) |f(x)− f(p)| < ²
2 for all x ∈ [a, b] such that |x− p| < δ.

We prove that this choice of δ satisÞes (*).
Fix h 6= 0 such that p+ h ∈ [a, b] and |h| < δ.
Assume Þrst that h > 0. Then, by (i), |f(x)− f(p)| < ²

2 for all x ∈ [p, p+h];
hence,
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R p+h

p
|f − f(p)| 13.14≤ R p+h

p
²
2

12.13
= h ²2 .

Thus, ¯̄̄
F (p+h)−F (p)

h − f(p)
¯̄̄ 14.1≤ 1

h

R p+h

p |f − f(p)| ≤ 1
h(h

²
2) =

²
2 < ².

This proves (*) when h > 0.
Assume next that h < 0 (the proof is the same as when h > 0, as we will

see). Then, by (i), |f(x)− f(p)| < ²
2 for all x ∈ [p+ h, p]; hence,R p

p+h
|f − f(p)| 13.14≤ R p

p+h
²
2

12.13
= −h ²2 .

Thus,¯̄̄
F (p+h)−F (p)

h − f(p)
¯̄̄ 14.1 (part (2))

≤ −1
h

R p
p+h |f − f(p)| ≤ −1

h (−h ²2) = ²
2 < ².

This proves (*) when h < 0.
Therefore, we have proved that for any ² > 0, there is a δ > 0 such that (*)

holds.

Hence, F 0(p) = f(p). This completes the proof of part (1) of our theorem.

To prove part (2), let g be any differentiable function on [a, b] such that
g0 = f . Then, by part (1) of our theorem, g0 = F 0. Hence, by Theorem 10.8, g
and F differ by a constant, say

F (x)− g(x) = C for all x ∈ [a, b].

Let�s evaluate C : Since F (a) = g(a)+C and F (a) =
R a
a
f = 0 (by the deÞnition

of F ), we have that C = −g(a). Therefore,R b
a
f = F (b) = g(b) +C = g(b)− g(a).

This proves part (2) of our theorem. ¥
It is easy to apply the Fundamental Theorem of Calculus to evaluate integrals

of many continuous functions whose integrals we could not have evaluated up
until now. For example,R 3

1 x
4 = 35

5 − 15

5 =
242

5 ,
R 4

1

√
x = 2

34
3
2 − 2

31
3
2 = 14

3 ,R π
3

0
sin(x) = − cos(π3 ) + cos(0) = 1

2 ,

and so on. However, there are numerous continuous functions whose integrals
we still can not evaluate: For example,

R 2

1
x2+1√
x5+3x+2

or even one as simple asR 2

1
1
x . We will never be able to evaluate the Þrst integral; however, we will see in
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Chapter XVI that the second integral is ln(2) and, thus, that logarithm tables
can be used to approximate the value of the second integral.

Exercise 14.3: The assumption that f is continuous in part (1) of the
Fundamental Theorem of Calculus is necessary: Give an example to show that
part (1) of the theorem would be false if we had only assumed that f is integrable
over [a, b].
(Note: Part (2) of the Fundamental Theorem of Calculus generalizes to

functions f that are only assumed to be integrable over [a, b]. We will not prove
this.)

Exercise 14.4: Let f : [0, 6]→ R1 be the continuous function whose graph
is drawn in Figure 14.4 below. Let F be the function in part (1) of Theorem
14.2, F (x) =

R x
0 f for all x ∈ [0, 6]. At which points (on the x - axis) does F have

local or global extrema? What type of extremum occurs at each such point?
Sketch a rough graph of F (showing where F has inßection points).

Figure 14.4

Exercise 14.5: If f is a continuous on [a, b] and a < b, then there is a point
p ∈ (a, b) such that

f(p) =
R b
a
f

b−a .

This result is called the Mean Value Theorem for Integrals, and f(p) =
R b
a
f

b−a is
often referred to as the average value of f over [a, b]. (The next three exercises
are follow ups to this one.)

Exercise 14.6: Find the average value of f(x) = sin(2x) over [0, π2 ]. (Av-
erage value is as deÞned in Exercise 14.5.)
The mean daily temperature in Morgantown t months after May 1 (t ≤ 6)

is given by the formula f(t) = 63 + 30 sin(πt12). Determine the average value of
the temperature between June 1 and September 1.
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Exercise 14.7: Give an example to show that the result in Exercise 14.5
would fail if we had only assumed that f is integrable on [a, b].

Exercise 14.8: Assume that f is continuous on [a, b] and that a < b. For
any x ∈ [a, b] with x > a, the average value of f over [a, x] is

R x
a
f

x−a (Exercise
14.5); on the other hand, the average of the values f(a) and f(x) is f(a)+f(x)

2 .
Determine all the continuous functions f on [a, b] such that for all x ∈ [a, b]

with x > a, the average value of f over [a, x] is the average of the values f(a)
and f(x).

2. Area Again

Let f be a continuous nonnegative function on an interval [a, b]. In Chapter
XI, we intuitively discussed the idea of the area between the graph of f and the
interval [a, b], and we indicated how to compute the area. It is almost evident
that the Fundamental Theorem of Calculus gives us a rigorous deÞnition for
the area function A that we used in Chapter XI and is the theorem behind the
procedure we arrived at for computing area in Chapter XI. It is only almost
evident because our approach to area in Chapter XI was slightly different than
our approach to the integral in Chapter XII. We show in this section that the
two approaches are actually equivalent.
We temporarily disregard the approach to area in Chapter XI. In its place, we

deÞne the area between the graph of any integrable function f and the interval
[a, b] on which f is deÞned in terms of the integral. This general deÞnition does
not require f to be continuous or to be nonnegative (as was required in Chapter
XI).

DeÞnition: Let f be an integrable function on the interval [a, b]. We deÞne
the area between the graph of f and the interval [a, b] to be

R b
a |f |. (Recall that|f | is integrable over [a, b] by Theorem 13.17.)

In the deÞnition we assume f is integrable, not just that |f | is integrable even
though the area is the integral of |f |. By doing so, Theorem 13.3 assures us that
the existence of area is invariant under vertical translation; this is obviously a
property that any notion called area should have. In fact, this property would
fail if we had only assumed in the deÞnition that |f | is integrable: For example,
if f is deÞned on [0, 1] by

f(x) =

½
1 , if x is rational
−1 , if x is irrational

then
R 1

0
|f | = 1 but R 1

0
|f + 1| does not exist (just like in Example 12.12).

Next, we bring the deÞnition of area above in sync with the approach to
area in Chapter XI. We Þrst provide terminology for the types of sums we used
in Chapter XI.

DeÞnition: Let f : [a, b] → R1 be a function, and let P = {x0, x1, ..., xn}
be a partition of [a, b]. A Riemann sum for f with respect to P is a sum of the
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form Σni=1f(ti)∆xi for any choice of points ti ∈ [xi−1, xi] for each i. We denote
any such Riemann sum by RP (f) (without reference to the points ti).

We now deÞne the notion of limit for Riemann sums. The deÞnition gives
rigorous meaning to the intuitive idea for limits of sums that we worked with
in Chapter XI (see the footnote on the second page of Chapter XI). Recall that
the norm, kPk, of a partition P is deÞned above Exercise 12.32.
DeÞnition: Let f : [a, b]→ R1 be a function. We say that L is the limit of

the Riemann sums for f as the norms of the partitions of [a, b] go to 0, written

limkPk→0RP (f) = L,

provided that for each ² > 0, there is a δ > 0 such that if P = {x0, x1, ..., xn} is
any partition of [a, b] and kPk < δ, then |RP (f)− L| < ², meaning that

|Σni=1f(ti)∆xi − L| < ² for all choices of points ti ∈ [xi−1, xi].

Finally, the following theorem will show that our approach to area in Chapter
XI is the same as area deÞned in terms of the integral at the beginning of this
section (see comments following the proof):

Theorem 14.9: If f is a continuous function on [a, b], thenR b
a f = limkPk→0RP (f).

Proof: Let ² > 0. Then, since f is uniformly continuous (by Theorem 12.31),
there is a δ > 0 such that

|f(y)− f(z)| < ²
b−a whenever y, z ∈ [a, b] and |y − z| < δ.

Let P = {x0, x1, ..., xn} be any partition of [a, b] such that kPk < δ. Then,
since δ satisÞes the condition for δ in the proof of Theorem 12.33, the calculations
in the proof of Theorem 12.33 show that

(*) UP (f)− LP (f) < ².

Now, choose any points ti ∈ [xi−1, xi] for each i. Since mi(f) ≤ f(ti) ≤
Mi(f) for each i, it is clear from the deÞnitions of LP (f) and UP (f) (section 2
of Chapter XII) that

LP (f) ≤ Σni=1f(ti)∆xi ≤ UP (f);

also, by the deÞnition of the integral (section 3 of Chapter XII),

LP (f) ≤
R b
a f ≤ UP (f).

Thus, by (*),
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¯̄̄
Σni=1f(ti)∆xi −

R b
a
f
¯̄̄
< ².

Therefore, since the points ti are any points in the intervals [xi−1, xi],¯̄̄
RP (f)−

R b
a f
¯̄̄
< ². ¥

As in Chapter XI, let f be a continuous nonnegative function on an interval
[a, b]. By Theorem 14.9, we can now conclude that the area function A in
Chapter XI is the function in part (1) of the Fundamental Theorem of Calculus;
that is,

A(x) =
R x
a
f for each x ∈ [a, b].

We also see that the procedure for computing area in Chapter XI, which is sum-
marized in (#) above Example 11.1, is justiÞed by part (2) of the Fundamental
Theorem of Calculus.

Exercise 14.10: Let f(x) = x2 + x− 2. Find the area between the graph
of f and the interval [−2, 3].
Exercise 14.11: Let f(x) = 1

96+x3 . Find c > 0 such that the area between
the graph of f and the interval [c, 3c] is largest.

Exercise 14.12: Using only Theorem 14.9 and the Mean Value Theorem
(Theorem 10.2), give a short, elegant proof of part (2) of the Fundamental
Theorem of Calculus.

Exercise 14.13: If f : [a, b] → R1 is a function such that limkPk→0RP (f)
exists, then f is bounded on [a, b].

Exercise 14.14: If f : [a, b] → R1 is a function such that limkPk→0RP (f)
exists, then f is integrable over [a, b] andR b

a
f = limkPk→0RP (f).

(Hint: Let L = limkPk→0RP (f). Let ² > 0. Give reasons for each of the
following statements: There is a partition P = {x0, x1, ..., xn} of [a, b] such
that L − ²

2 < Σni=1f(ti)∆xi < L + ²
2 for all ti ∈ [xi−1, xi]. For each i, there

exist pi, qi ∈ [xi−1, xi] such that Mi(f) − ²
2(b−a) < f(pi) and f(qi) < mi(f) +

²
2(b−a) (note that Mi(f) and mi(f) exist by Exercise 14.13). Then UP (f)− ²

2 =

Σni=1[Mi(f)− ²
2(b−a) ]∆xi < L+

²
2 , hence UP (f) < L+²; similarly, LP (f) > L−².

Thus,
R b
a
f < L+ ² and L− ² < R b

a
f . The result now follows.)

The converse of the Þrst part of Exercise 14.14 is true: If f is integrable over
[a, b], then limkPk→0RP (f) exists. Thus, a function f is integrable over [a, b] if

and only if limkPk→0RP (f) exists, in which case
R b
a f = limkPk→0RP (f). This

equivalence justiÞes the somewhat common practice of deÞning the integral in
terms of Riemann sums.
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Riemann sums are useful for envisioning how to set up an integral to solve
a mathematical or physical problem. One illustration of this is in Chapter XI
� it was only natural to use Riemann sums to arrive at the notion of area. We
give another illustration in the following exercise:

Exercise 14.15: Let f be a continuous nonnegative function on [a, b]. Using
Riemann sums, Þnd a reasonable formula for the volume of the solid obtained
by revolving the graph of f about the x - axis.
Indicate that your formula is reasonable by showing that it gives the known

value ( 4
3πr

3) for the volume of the sphere of radius r centered at the origin in
3 - space.
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