
neighborhood of 0 in [−1
4 , 1), but (−1

4 ,
1
2) is not an ² - neighborhood of 0 in

[−1
4 , 1); for X = {0, 1, 1

2 ,
1
3 , ...,

1
n , ...}, {0, 1

9 ,
1

10 ,
1

11 , ...,
1
n , ...} is a neighborhood

of 0 in X (the 1
9 - neighborhood of 0 in X), but {0, 1

9 ,
1

11 ,
1

13 , ...,
1

9+2n , ...} is not
a neighborhood of 0 in X.

Exercise 9.2: Let X ⊂ R1, and let p ∈ X. The intersection of Þnitely many
neighborhoods of p in X is a neighborhood of p in X.

Exercise 9.3: If I is an open interval and p ∈ I, then any neighborhood
U of p in I contains an open interval J such that p ∈ J ; hence, J is an open
neighborhood of p in I and both J and U are open neighborhoods of p in R1.

Exercise 9.4: Let X ⊂ R1, and let p ∈ X. When is {p} a neighborhood of
p in X ?

2. Local and Global Maxima and Minima

We localize the notions of maximum value and minimum value of a function
(deÞned in section 2 of Chapter V). In order to avoid ambiguity, from now on
we call the maximum value and the minimum value of a function the global
maximum value and the global minimum value of the function.

DeÞnition: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X.
� f has a local maximum at p provided that there is a neighborhood U of p
in X such that f(p) ≥ f(x) for all x ∈ U .

� f has a local minimum at p provided that there is a neighborhood U of p
in X such that f(p) ≤ f(x) for all x ∈ U .

� f has a global (or absolute) maximum at p provided that f(p) ≥ f(x) for
all x ∈ X, in which case we call f(p) the global maximum value of f .

� f has a global (or absolute) minimum at p provided that f(p) ≤ f(x) for
all x ∈ X, in which case we call f(p) the global minimum value of f .

� Local maxima and local minima are called local extrema; global maxima
and global minima are called global (or absolute) extrema.

We give an example to illustrate the concepts we just introduced.

Example 9.5: DeÞne f on [0, 3] as follows:

f(x) =

 3x , if 0 ≤ x ≤ 1
−x+ 4 , if 1 ≤ x ≤ 2
2x− 2 , if 2 ≤ x ≤ 3.

Then f has local minima at x = 0 and 2, local maxima at x = 1 and 3, and
global extrema at x = 0 and 3.

Next, we give an example for which we have more questions than answers.
Our purpose is to motivate the value of the theorem we are about to prove; we
return to the example after we prove the theorem.
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Example 9.6: DeÞne f : [0, 4]→ R1 by f(x) = x(x− 2)(x− 4). Note that
f(x) = 0 when x = 0, 2 and 4; also, from the signs of the terms, we see that
f(x) > 0 when 0 < x < 2 and that f(x) < 0 when 2 < x < 4. It now follows
from the Maximum-Minimum Theorem (Theorem 5.13) that f has a global
maximum value at some point of [0, 2] and a global minimum value at some
point of [2, 4]. Also, f has a local minimum at x = 0 and a local maximum at
x = 4; obviously, f does not have global extrema at x = 0, 4. The questions are:
At what points are the global extrema attained? What are the values of the
global extrema? Are there any local extrema occurring at points in the open
interval (0, 4) that are not global extrema and, if so, at what points do they
occur? We answer the questions in Example 9.10.

The theorem below gives an important relation between local extrema and
derivatives. The relation is only true in the direction stated; for example, f(x) =
x3 (all x ∈ R1) has derivative zero at p = 0 and yet has no local extrema.

Theorem 9.7: Let I be an open interval, and let f : I → R1 be a function
that is differentiable at a point p ∈ I. If f has a local extremum at p, then
f 0(p) = 0.
Proof: Assume that f has a local maximum at p. Then there is a neighbor-

hood U of p in I such that f(p) ≥ f(x) for all x ∈ U . By Exercise 9.3, there
is an open interval (s, t) ⊂ U such that p ∈ (s, t). Note that (s, t) ⊂ I (since
U ⊂ I); hence, we have that

(1) f(p) ≥ f(x) for all x ∈ (s, t).
The proof now proceeds by analyzing the sign of f(x)−f(p)

x−p when s < x < p
and when p < x < t : By (1), f(x)− f(p) ≤ 0 for all x ∈ (s, t); hence,

(2) f(x)−f(p)
x−p ≥ 0 if s < x < p and f(x)−f(p)

x−p ≤ 0 if p < x < t.
Now, since f is differentiable at p, we know from Theorem 6.15 that

f 0−(p) = f 0(p) = f 0+(p).

Furthermore, by (2), f 0−(p) ≥ 0 and f 0+(p) ≤ 0. Therefore, f 0(p) = 0.
This proves the theorem when f has a local maximum at p. We leave the

case when f has a local minimum at p as an exercise (below). ¥
Exercise 9.8: Prove Theorem 9.7 for the case when f has a local minimum

at p.

Exercise 9.9: Give an example to show that the analogue of Theorem 9.7
for closed intervals is false.

Theorem 9.7 gives us a way to determine where a differentiable function on
an interval may have local or global extrema. Sometimes, we can even determine
the types of extrema the function has. We illustrate with two examples. The
Þrst example is a continuation of Example 9.6.

82



Example 9.10: DeÞne f : [0, 4] → R1 by f(x) = x(x − 2)(x − 4), the
function in Example 9.6. We apply Theorem 9.7 to answer the questions we
asked in Example 9.6.
To Þnd the derivative of f , it is convenient to write f in unfactored form (to

avoid using the product theorem for derivatives twice): f(x) = x3 − 6x2 + 8x
and thus, by Theorem 7.12,

f 0(x) = 3x2 − 12x+ 8.

Hence, f 0(x) = 0 when x = 2± 2
3

√
3. Moreover, we knew in Example 9.6 that

f has its global maximum value at some point of (0, 2) and its global minimum
value at some point of (2, 4). Therefore, by Theorem 9.7, we can now conclude
that f must have its global maximum at x = 2 − 2

3

√
3, its global minimum

at x = 2 + 2
3

√
3, and the global extrema do not occur at any other point; the

global maximum value is f(2 − 2
3

√
3) = 16

9

√
3 and the global minimum value

is f(2 − 2
3

√
3) = −16

9

√
3. Finally, by Theorem 9.7, f has no local extrema at

points in the open interval (0, 4) that are not global extrema. Thus, taking into
account the end points, the local extrema occur at x = 0, 2 ± 2

3

√
3, 4 and the

global extrema occur at x = 2± 2
3

√
3.

Example 9.11: DeÞne f : [−2, 3]→ R1 by f(x) = x3 − 3x2 + 2. Then, by
Theorem 7.12,

f 0(x) = 3x2 − 6x.

Hence, f 0(x) = 0 when x = 0 or 2. Thus, by Theorem 9.7, the only possible
points at which f could have local extrema are 0, 2 and the end points −2 and 3
(end point extrema are not taken care of by Theorem 9.7). Now, we see whether
extrema occur at these points and, if so, what types of extrema they are. We
list the values of f at the four points −2, 0, 2 and 3 :

f(−2) = −18, f(0) = 2, f(2) = −2, f(3) = 2.

Therefore, f(−2) = −18 is the global minimum of f and f(0) = f(3) = 2 is
the global maximum of f . What about f(2) = −2 ? This appears be a local
minimum for f since the function f seems to go down to −2 on [0, 2] and then up
to 2 on [2, 3]; but, can we be sure that f has a local minimum at 2 ? Yes � we can
be sure by using Theorem 9.7 together with the Maximum-Minimum Theorem
(Theorem 5.13). We argue as follows: By the Maximum-Minimum Theorem,
f has a minimum value m on [0, 3]; since f(2) = −2, m does not occur at the
end points of [0, 3]; thus, by Theorem 9.7 applied to the open interval (0, 3), m
occurs when x ∈ (0, 3) and f 0(x) = 0; therefore, x = 2 is the only possibility
and, hence, f(2) =m. This proves that f(2) = −2 is a local minimum for f .

The argument in Example 9.11 to show f has a local minimum at x = 2 is
somewhat tedious. Later, we will have a simple test at our disposal which will
enable us to avoid such arguments (Theorem 10.19).
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We clarify one point so as not to be misled by the examples above: A
differentiable function on a closed interval need not have local extrema at end
points of the interval even if the derivative of the function is zero at an end
point. You are asked to Þnd an example:

Exercise 9.12: Give an example of a differentiable function f on [0, 1] such
that f 0(0) = 0 and, yet, 0 is not a local extremum of f . A picture of the function
(rather than a formula) is sufficient, even preferred!

Exercise 9.13: Let f(x) = x3 + x2 − 6x. Find all points where f has local
maxima and local minima; determine what kind of extremum occurs at each
such point. Are there any global extrema?

3. Critical Points

In this section we bring into sharper focus the main ideas in the theorem
and examples in the preceding section. We conclude with general comments.
We have seen that three types of points play the crucial role in Þnding and

classifying extrema of a function on an interval: Points at which the derivative
of the function is zero, end points of the interval (if there are any), and points
at which the function is not differentiable (Example 9.5). We give a name to
the types of these points that involve derivatives:

DeÞnition: Let I be an interval, and let f : I → R1 be a function. A point
p ∈ I that is not an end point of I is called a critical point of f provided that
f 0(p) = 0 or f is not differentiable at p.

We can now summarize what we have shown in the examples and the theorem
in section 2 in a concise way:

Corollary 9.14: Let I be an interval, and let f : I → R1 be a function.
Then the local and global extrema (if they exist) must be attained at critical
points of f or at an end point of I.

Proof: Assume that f has a local extremum at a point p ∈ I. Assume
further that f is differentiable at p and that p is not an end point of I (remem-
ber: functions can be differentiable at end points according to our deÞnition
of derivative). Then, by Theorem 9.7 (applied to I without its end points),
f 0(p) = 0; therefore, p is a critical point of f . ¥
We comment in general about the ideas and, especially, the direction initi-

ated in this chapter.
We have shifted our emphasis from Þnding global extrema to Þnding local

extrema. At the same time, we have stressed the importance of Þnding global
extrema. Why don�t we just narrow down on Þnding global extrema and leave
the problem of Þnding local extrema for later or omit it completely? The answer
is simple: Finding local extrema is narrowing down on Þnding global extrema,
as we have illustrated in examples, and it is easier to Þnd local extrema Þrst
than it is to Þnd global extrema directly (by virtue of Theorem 9.7).
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Using local extrema to Þnd global extrema is a special case of a general
mathematical procedure � approximation. You have seen approximation at
work when rounding off decimals, Þnding areas (if you had some contact with
integral calculus or the work of the ancient Greeks), and in the section on linear
approximation (section 3 of Chapter VI); in fact, the very deÞnitions of limits
and derivatives are based on approximation. We are now approximating global
extrema by Þnding local extrema; as we have seen, this leads to Þnding the
global extrema. �Necessity is the mother of invention,� and, in this case, local
extrema were born out of the desire to Þnd global extrema.
We note that local extrema are important in connection with many aspects

of mathematics and science. To mention only a few, local extrema are used in
the physical sciences, in optimization, in dynamical systems, in economics, and
in analyzing statistical data. That being said, we must add that local extrema
are themselves interesting and that is enough reason to study them.

Exercise 9.15: DeÞne f : [−1, 1] → R1 by f(x) = x
4
5 + 3. Find all points

where f has local maxima and local minima; determine what kind of extremum
occurs at each such point.

Exercise 9.16: Let f be deÞned on R1 by f(x) = 5x
2
3 + x

5
3 + 1. Find

all points where f has local maxima and local minima; determine what kind of
extremum occurs at each such point.

Exercise 9.17: Prove the assertion in the introduction to the chapter that
of all the rectangles having a given perimeter, the one with the largest area is
the one that is most symmetric (the square).

Exercise 9.18: Find the point on the circle x2 + y2 = 1 that is closest to
(2, 0). (You know the answer, but use the methods in this chapter.)

Exercise 9.19: Assume that f : R1 → R1 is differentiable and that f 0(x) 6=
0 for all x. Then f is one - to - one.

Exercise 9.20: Give examples of polynomials of degree 3 that have no
critical point, only one critical point, and two critical points.

Exercise 9.21: A polynomial of degree n > 0 has at most n roots. (A root
of a function is a point at which the function has value 0.)

Exercise 9.22: Give an example of a nonconstant function f : R1 → R1

such that every real number is a critical point of f and such that f 0+(x) exists
for every x ∈ R1.
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Chapter X: The Mean Value Theorem and
Consequences

We prove the Mean Value Theorem in section 1. Then, section by section,
we derive different types of important results from the theorem. We emphasize
curve sketching in conjunction with the results in sections 3 and 4.

1. The Mean Value Theorem

If you travel 100 miles in 2 hours, it is obvious that at some point during
the trip your velocity must be 50 miles per hour (your average velocity). In
general terms, let f be a differentiable function that gives the distance f(t) an
object has traveled as a function of time t; then it is intuitively evident that the
average velocity of the object over a time interval [a, b]must be its instantaneous
velocity at some time t0 between a and b :

f 0(t0) =
f(b)−f(a)

b−a .

This is the substance of the Mean Value Theorem, but certainly not the proof!
Let us indicate the geometrical idea behind the proof.
In the Þgure below, the slope of the line segment L joining (a, f(a)) and

(b, f(b)) is the average velocity of the object. Imagine that we continuously
move L up (or down) parallel to itself. We eventually arrive at the last time the
moving line segments touch the graph of f ; at that moment, the line segment
is tangent to the graph of f at a point (t0, f(t0)), which says f 0(t0) =

f(b)−f(a)
b−a .

The discussion we just presented is not a proof; for example, how do we know
there is a last time the moving line segments touch the graph of f ? Nevertheless,
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the discussion is an intuitively plausible argument that provides insight into why
the Mean Value Theorem is true.
We proceed to the precise statement and proof of the Mean Value Theorem.

We Þrst prove a special case of the theorem from which the theorem follows.
The special case is due to Michel Rolle (1652 - 1719), who eventually became a
vocal opponent of calculus, calling it a �collection of ingenious fallacies.�

Lemma 10.1 (Rolle�s Theorem): Assume that f is continuous on [a, b],
differentiable on (a, b), and that f(a) = f(b) = 0. Then there is a point p ∈ (a, b)
such that f 0(p) = 0.
Proof: If f is a constant function, then f 0(x) = 0 for all x and, thus, the

lemma is true. Hence, we assume for the purpose of proof that f is not a
constant function. Then there is a point x0 ∈ (a, b) such that f(x0) 6= 0. Hence,
either f(x0) < 0 or f(x0) > 0.
Assume Þrst that f(x0) < 0. By the Maximum-Minimum Theorem (The-

orem 5.13), f attains its global minimum value at a point p. Since f(x0) < 0,
clearly f(p) < 0; hence, p ∈ (a, b). In particular, then, f is differentiable at p.
Therefore, by Theorem 9.7, f 0(p) = 0.
The case when f(x0) > 0 is handled similarly by taking p to be a point at

which f attains its global maximum value (or, perhaps you have a simpler proof
based on past experience?). ¥
Theorem 10.2 (Mean Value Theorem): Assume that f is continuous

on [a, b] and differentiable on (a, b). Then there is a point p ∈ (a, b) such that

f 0(p) = f(b)−f(a)
b−a .

Proof: In functional notation, the equation of the line going through the two
points (a, f(a)) and (b, f(b)) is

g(x) = f(b)−f(a)
b−a (x− a) + f(a).

DeÞne h : [a, b]→ R1 by letting h = f − g. (For geometric insight into what
we do next, locate the local extrema of h in the Þgure on the preceding page.)
We see that h satisÞes the assumptions of Lemma 10.1: h is continuous

on [a, b] by Corollary 4.4, h is differentiable on (a, b) by Theorem 7.3, and
h(a) = h(b) = 0 by the formulas for g and h. Hence, by Lemma 10.1, there is a
point p ∈ (a, b) such that h0(p) = 0. Therefore,

0 = h0(p) 7.3= f 0(p)− g0(p) 6.2= f 0(p)− f(b)−f(a)
b−a ,

which gives that f 0(p) = f(b)−f(a)
b−a . ¥

Exercise 10.3: DeÞne f : [−2, 2] → R1 by f(x) = x3 − 3x + 3. Find all
numbers p in [−2, 2] that satisfy the conclusion of the Mean Value Theorem.
Exercise 10.4: If f : R1 → R1 is differentiable and f 0(x) 6= 1 for all x ∈ R1,

then there is at most one point p ∈ R1 such that f(p) = p.
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Exercise 10.5: Let I be an open interval, and let p ∈ I. Assume that f
is continuous on I and differentiable on I − {p} and that limx→p f 0(x) exists.
Then f is differentiable at p.

Exercise 10.6: Assume that f and g are continuous on [a, b] and differen-
tiable on (a, b). Then there is a point p ∈ (a, b) such that

f 0(p)[g(b)− g(a)] = g0(p)[f(b)− f(a)].

2. Functions with Equal Derivatives

All constant functions (on an interval) have derivative zero. We prove that
there are no other functions with derivative zero. Perhaps you think this is
obvious. But then you may also think it is obvious that the only function whose
derivative is itself is the function f(x) = 0; however, this is false! Furthermore,
the prime example showing it is false is not just a curiosity � it is the exponen-
tial function f(x) = ex, which has numerous applications in probabilty theory,
economics and the physical sciences. See Corollary 16.24; in Exercise 16.25 we
determine all functions f such that f 0 = f .
Once we prove that constant functions are the only functions whose deriva-

tive is zero, it follows easily that any two functions on an interval that have the
same derivative must differ by a constant; stated more insightfully, the graphs
of the functions are vertical translations of one another. This result is so im-
portant that it is often referred to as the fundamental theorem of differential
calculus. When we study the integral, we will see that the fundamental theo-
rem of differential calculus is crucial to evaluating integrals � it is the important
ingredient in proving the second part of the Fundamental Theorem of Calculus
(Theorem 14.2).

Theorem 10.7: If f is continuous on [a, b] and f 0(x) = 0 for all x ∈ (a, b),
then f is a constant function.

Proof: Let x ∈ [a, b] such that x 6= a. Note that f is continuous on the
interval [a, x] (by Exercise 5.3). Hence, we can apply the Mean Value Theorem
(Theorem 10.2) to f on the interval [a, x], thereby obtaining a point p ∈ (a, x)
such that

f 0(p) = f(x)−f(a)
x−a .

Thus, since f 0(p) = 0 (by assumption in the theorem), we see that f(x) = f(a).
This proves that f(x) = f(a) for all x ∈ [a, b]. ¥
Theorem 10.8: If f and g are continuous on [a, b] and f 0(x) = g0(x) for all

x ∈ (a, b), then f and g differ by a constant; in other words, there is a constant
C such that f(x)− g(x) = C for all x ∈ [a, b].
Proof: DeÞne h : [a, b]→ R1 by letting h = f − g. Then h is continuous on

[a, b] (by Corollary 4.4) and

h0(x) 7.3= f 0(x)− g0(x) = 0, all x ∈ (a, b).
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Therefore, by Theorem 10.7, h is a constant function. ¥
We note that Theorem 10.7 and Theorem 10.8 are really the same theorem:

Theorem 10.7 follows immediately from Theorem 10.8 by taking g in Theorem
10.8 to be the constant function g(x) = 0.
We close by noting that Theorem 10.8 holds when the functions are deÞned

on any interval:

Theorem 10.9: Let I be any interval, and let E denote the set of end
points of I (E may be empty). If f, g : I → R1 are continuous on I and if
f 0(x) = g0(x) for all x ∈ I −E, then f and g differ by a constant.
Proof: Recall from the proof of Theorem 8.4 that any interval is the count-

able union of an �increasing sequence� of closed and bounded intervals. Using
this fact and Theorem 10.8, our theorem follows (we leave the details for the
Þrst exercise below). ¥
Exercise 10.10: Do the details for the proof of Theorem 10.9.

Exercise 10.11: Let f(x) = x5− 3x2+2. Find all functions whose deriva-
tives are f .

Exercise 10.12: Let f(x) = (2x+4)8. Find all functions whose derivatives
are f .

Exercise 10.13: Let f(x) = x
√
x2 + 7. Find all functions whose derivatives

are f .

Exercise 10.14: Let f(x) = 1
x2 . Find all functions whose derivatives are

f . (Be careful � there may be more than you think!)

Exercise 10.15: Let f(x) = |x− 1|. Find all functions whose derivatives
are f .

Exercise 10.16: Let f be the function given by

f(x) =

½
x+ 2 , if x < 0
x , if x ≥ 0.

Is there a function g : R1 → R1 such that g0 = f ?

3. Derivative Test for Local Extrema

Recall how hard we had to work in Example 9.11 to determine whether the
function f had a local maximum or a local minimum at x = 2. We now provide
a simple general test that will enable us to classify local extrema easily.
The test for classifying local extrema is based on the sign of the derivative.

The following theorem shows what the sign of the derivative of a function says
about the function. After we prove the theorem and discuss it, we give the test
for classifying local extrema (Theorem 10.19).
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Theorem 10.17: Assume that f is continuous on [a, b] and differentiable
on (a, b).

(1) If f 0(x) > 0 for all x ∈ (a, b), then f is strictly increasing on [a, b].
(2) If f 0(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b].
Proof: Let x1, x2 ∈ [a, b] such that x1 < x2. By the Mean Value Theorem

(Theorem 10.2), there is a point p ∈ (x1, x2) such that

f 0(p) = f(x2)−f(x1)
x2−x1

.

Thus, under the assumption in part (1), f(x2) > f(x1) and, under the assump-
tion in part (2), f(x2) < f(x1). ¥
Exercise 10.18: Give examples to show that the converses of parts (1) and

(2) are false. However, prove the following partial converses to parts (1) and (2):
If f is increasing (decreasing) on [a, b], then f 0(x) ≥ 0 (f 0(x) ≤ 0, respectively)
for all x ∈ [a, b].
Theorem 10.17 is intuitively obvious: If all the tangent lines to the graph

of a differentiable function have positive slopes, hence are strictly increasing,
then surely the function is strictly increasing. However persuasive this argu-
ment may seem, it is still not a proof; it is no more a proof than saying, as a
�proof� for Theorem 10.7, that if every tangent line to the graph of f is hori-
zontal, then surely the function f is constant. The proof we gave for Theorem
10.17 is certainly short, deceptively short because the proof rests on so many
previous results: The proof of Theorem 10.17 used the Mean Value Theorem,
whose proof used Rolle�s Theorem, whose proof depended essentially on the
Maximum-Minimum Theorem; the proof of the Maximum-Minimum Theorem
was by no means trivial and depended indispensably on the Completeness Ax-
iom. Thus, in the Þnal analysis, the underlying reason Theorem 10.17 is true
is the Completeness Axiom. We conclude that Theorem 10.17 is not as obvious
as it would seem to be or as trivial as its brief proof would suggest.
It is worthwhile to consider Theorem 10.17 and Theorem 10.7 together: The

theorems show that the sign of a derivative on an interval has a lot to say about
the nature of a function.
One Þnal comment about Theorem 10.17: A differentiable function on an

open interval can have a positive derivative at a particular point but not be
strictly increasing in any neighborhood of the point. See Exercise 10.53.
We are ready to prove the derivative test for classifying local extrema.

Theorem 10.19 (First Derivative Test for Local Extrema): Let I
be an open interval, and let p ∈ I. Assume that f is continuous on I and
differentiable at each point of I except possibly at p. Let [s, t] ⊂ I such that
p ∈ (s, t).
(1) If f 0(x) > 0 for all x ∈ (s, p) and f 0(x) < 0 for all x ∈ (p, t), then f has

a local maximum at p.

(2) If f 0(x) < 0 for all x ∈ (s, p) and f 0(x) > 0 for all x ∈ (p, t), then f has
a local minimum at p.
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(3) If f 0(x) > 0 for all x ∈ (s, p)∪(p, t), or if f 0(x) < 0 for all x ∈ (s, p)∪(p, t),
then f does not have a local extremum at p.

Proof: Assume the conditions in part (1). Then, by Theorem 10.17, f is
strictly increasing on (s, p] and f is strictly decreasing on [p, t). Hence, f(x) <
f(p) when s < x < p and f(p) > f(x) when p < x < t. Thus, f(p) ≥ f(x) for
all x ∈ (s, t). Therefore, f has a local maximum at p. This proves part (1).
The proof of part (2) is similar.
We prove part (3) for the case when f 0(x) > 0 for all x ∈ (s, p) ∪ (p, t). In

this case, we have by Theorem 10.17 that f is strictly increasing on (s, p] and
on [p, t). It follows easily that f is strictly increasing on (s, t). Thus,

f(y) < f(p) < f(z) whenever s < y < p < z < t.

Therefore, we see that f does not have a local extremum at p (we leave the
details to the reader).
The proof of part (3) for the case when f 0(x) < 0 for all x ∈ (s, p) ∪ (p, t) is

similar. ¥
The converse of part (1) of Theorem 10.19 is false (Exercise 10.26).
We illustrate how well the First Derivative Test for Local Extrema works:

Example 10.20: Let f(x) = 2x5 − 5x4 − 10x3 for all x ∈ R1. We Þnd all
points at which f has local and global extrema and determine which extrema
are local (or global) minima and which are local (or global) maxima. We also
determine the maximal intervals on which f is strictly increasing or strictly
decreasing. Finally, we sketch the graph of f using the information we have
obtained (however, the sketch is incomplete, as we will see).
By the formula for differentiating polynomials (Theorem 7.12),

f 0(x) = 10x4 − 20x3 − 30x2.

To Þnd where f 0(x) = 0 (in order to apply Theorem 9.7), we factor f 0(x) :

f 0(x) = 10x2(x2 − 2x− 3) = 10x2(x− 3)(x+ 1).

Hence, by Theorem 9.7, the only possible points at which f has local extrema
are x = −1, 0, 3.
The critical step for using Theorem 10.19 is to Þnd the sign of f 0 on small

intervals about the points x = −1, 0, 3. How small do we need the intervals to
be? The answer comes from noting that f 0 is continuous: Hence, we can apply
the Intermediate Value Theorem (Theorem 5.2) to f 0 to know that f 0 can not
have opposite signs at two points without being 0 somewhere between the two
points; thus, we only need to check the signs of f 0 at one point of each of the
open intervals determined by the points x = −1, 0, 3. We can do this readily by
inspecting the factored form of f 0; we obtain the table below:

interval → (−∞,−1) (−1, 0) (0, 3) (3,∞)
signf 0(x)→ + − − +
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From the table and from Theorem 10.19, f has a local maximum at x = −1,
a local minimum at x = 3, and no local extremum at x = 0. Furthermore,
from the table and Theorem 10.17, the maximal intervals on which f is strictly
increasing are (−∞,−1] and [3,∞), and the maximal interval on which f is
strictly decreasing is [−1, 3].
Next, we see that f has no global extrema: f has no global maximum since

its only local maximum is f(−1) = 3 and f(4) = 128; f has no global minimum
since its only local minimum is f(3) = −189 and f(−3) = −621. Actually, we
can see that f has no global extrema without these types of numerical compu-
tations: Simply note that

f(x) = x5(2− 5
x − 10

x2 ) for x 6= 0,
which easily shows that f is neither bounded above nor bounded below.
Finally, using the information available, we obtain a picture of the graph of

f (Figure 10.20 below). However, something is wrong: f 0(0) = 0, so the x - axis
should be tangent to the graph of f at the origin. In correcting this ßaw, we
must change the shape of the graph at some point to the left of the origin; we
must also change the shape of the graph at some point to the right of the origin
in order to avoid having a cusp at (3, f(3)). At the present time, it is not at all
obvious where these changes should be made; moreover, for all we know, there
may be many such changes, perhaps even at points x < −1 or at points x > 3.
If this makes you wonder whether you really know how to graph y = x2, then
that is good!
We return to the problem of what is wrong with the graph of f in the next

section. There we develop general ideas that solve the problem and that can
be applied to other graphs. We arrive at a correct graph of the function f in
Example 10.34.

Figure 10.20
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Exercise 10.21: DeÞne f : [0, 6] → R1 by f(x) = 4x3 − 36x2 + 77x. Find
all points at which f has local and global extrema, determine which extrema are
local (or global) minima and which are local (or global) maxima, and determine
the maximal intervals on which f is strictly increasing or strictly decreasing.
Sketch the graph of f and discuss possible ßaws in your graph as per the discus-
sion of the graph we gave for Example 10.19. (We brießy discussed the function
f after the proof of the Maximum-Minimum Theorem (Theorem 5.13)).

Exercise 10.22: DeÞne f : [−2, 2] → R1 by f(x) = x4 − 2x2 + 1. Repeat
Exercise 10.21 for this function.

Exercise 10.23: DeÞne f : [0, 2] → R1 by f(x) = x
x2+1 . Repeat Exercise

10.21 for this function.

Exercise 10.24: In Figure 10.24 below, we have drawn a picture of the
graph of the derivative of a function f . Determine all points at which f has
local and global extrema, determine which extrema are local (or global) minima
and which are local (or global) maxima, and determine the maximal intervals
on which f is strictly increasing or strictly decreasing. Sketch the graph of f
assuming that f(0) = 0.

Figure 10.24

Exercise 10.25: Let f, g : R1 → R1 be differentiable functions such that
f 0(x) < g0(x) for all x ∈ R1. Then there is at most one point p such that
f(p) = g(p).

Exercise 10.26: Draw a picture of the graph of a differentiable function
on an open interval such that the function has a unique global maximum at a
point p for which part (1) Theorem 10.19 does not apply.
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4. Concavity

This section follows up on the discussion above Figure 10.20: We introduce
concepts that describe the ßaws in the preliminary graph in Figure 10.20 and
that we can use to reÞne our graphing techniques in general. SpeciÞcally, we
deÞne the notions of concavity and inßection point, and we obtain results that
connect the notions to derivatives. At the end of the section, we sketch the
graph for Example 10.20 (this time correctly!).
Let I be an interval, let a, b ∈ I such that a 6= b, and let f : I → R1 be

a function. The chord joining (a, f(a)) and (b, f(b)) is the line segment in the
plane with end points (a, f(a)) and (b, f(b)).

DeÞnition: Let I be an interval, and let f : I → R1 be a function.

� We say that f is concave up on I provided that for any two different points
a, b ∈ I, the chord joining (a, f(a)) and (b, f(b)) lies above the graph of f
on (a, b); in other words,

f(x) < f(b)−f(a)
b−a (x− a) + f(a) when a < x < b.

� We say that f is concave down on I provided that for any two different
points a, b ∈ I, the chord joining (a, f(a)) and (b, f(b)) lies below the
graph of f on (a, b); in other words,

f(x) > f(b)−f(a)
b−a (x− a) + f(a) when a < x < b.

For example, f(x) = x3 is concave up on [0,∞) and concave down on
(−∞, 0]. On the other hand, a linear function f(x) = mx+ b is not concave up
or down on any interval.
In Theorem 10.29, we characterize the two types of concavity for a differen-

tiable function on an interval in terms of the derivative of the function.

Lemma 10.27: Let I be an interval, let f : I → R1 be a function, and let
x1, x2, x3 ∈ I such that x1 < x2 < x3. For each i 6= j, let Ci,j denote the the
chord joining (xi, f(xi)) and (xj , f(xj)).

(1) If f is concave up on I, then

slope of C1,2 < slope of C1,3 < slope of C2,3.

(2) If f is concave down on I, then

slope of C1,2 > slope of C1,3 > slope of C2,3.

Proof: We prove part (1); we leave the proof of part (2) to the reader
(Exercise 10.28).
Assume that f is concave up on I. Let y2 denote the second coordinate of the

point on C1,3 with Þrst coordinate x2. Since f is concave up on I, f(x2) < y2;
hence, f(x2)− f(x1) < y2 − f(x1). Thus,
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f(x2)−f(x1)
x2−x1

< y2−f(x1)
x2−x1

.

Therefore, since the slope of C1,2 =
f(x2)−f(x1)

x2−x1
and the slope of C1,3 =

y2−f(x1)
x2−x1

,
we have proved that the slope of C1,2 < slope of C1,3.
The proof of the second inequality in part (1) is similar to what we have done:

We rewrite f(x2) < y2 as −y2 < −f(x2); then f(x3)−y2 < f(x3)−f(x2). Thus,

f(x3)−y2

x3−x2
< f(x3)−f(x2)

x3−x2
.

Therefore, since the slope of C1,3 =
f(x3)−y2

x3−x2
and the slope of C2,3 =

f(x3)−f(x2)
x3−x2

,
we have proved that the slope of C1,3 < slope of C2,3.
This completes the proof of part (1) of the lemma. ¥
Exercise 10.28: Formulate and prove a simple theorem that can be applied

to prove part (2) of Lemma 10.27 directly from part (1).

Theorem 10.29: Assume that f is differentiable on an open interval I.
(1) f is concave up on I if and only if f 0 is strictly increasing on I.
(2) f is concave down on I if and only if f 0 is strictly decreasing on I.
Proof: We prove part (1), leaving the proof of part (2) to the reader (Exercise

10.30).
Assume that f is concave up on I. Fix points a, b ∈ I such that a < b. We

show that f 0(a) < f 0(b).
Fix points c and d such that a < c < d < b. Then, using part (1) of Lemma

10.27 twice, we see that

(i) f(c)−f(a)
c−a < f(d)−f(a)

d−a < f(c)−f(d)
c−d < f(c)−f(b)

c−b < f(d)−f(b)
d−b .

Then, using (1) of Lemma 10.27 for the Þrst and third inequalities below,

f(x)−f(a)
x−a < f(c)−f(a)

c−a
(i)
< f(d)−f(b)

d−b < f(y)−f(b)
y−b , if a < x < c and d < y < b.

Thus, since f 0(a) = limx→a
f(x)−f(a)

x−a and f 0(b) = limy→b
f(y)−f(b)

y−b (by Exercise
6.10), we have that f 0(a) < f 0(b). This proves that f 0 is strictly increasing on
I.
Conversely, assume that f 0 is strictly increasing on I . Fix points s, t ∈ I

such that s < t. Fix a point x such that s < x < t. Note that f is continuous
on [s, t] by Theorem 6.14 (and Exercise 5.3). Therefore, we can apply the Mean
Value Theorem (Theorem 10.2) to obtain points p ∈ (s, x) and q ∈ (x, t) such
that

f 0(p) = f(x)−f(s)
x−s , f 0(q) = f(t)−f(x)

t−x .

Thus, since f 0 is strictly increasing on (s, t) and p < q, we have that

(ii) f(x)−f(s)
x−s < f(t)−f(x)

t−x .

We now show that f(x) < f(t)−f(s)
t−s (x − s) + f(s), which proves that f is

concave up. By (ii),
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[f(x)− f(s)](t− x) < [f(t)− f(x)](x− s);

hence,

f(x)(t− s) < f(t)(x− s) + f(s)(t− x);

thus,

(iii) f(x) < f(t)x−st−s + f(s)
t−x
t−s .

Finally, subtracting and adding f(s)x−st−s to the right - hand side of (iii), we have

f(x) < f(t)−f(s)
t−s (x− s) + f(s)x−st−s + f(s)

t−x
t−s

= f(t)−f(s)
t−s (x− s) + f(s) t−st−s =

f(t)−f(s)
t−s (x− s) + f(s). ¥

Exercise 10.30: Show that part (2) of Theorem 10.29 follows easily from
part (1) using the theorem you discovered in Exercise 10.28.

In order to easily apply Theorem 10.29 to determine concavity, we need a
simple test to determine whether a derivative f 0 is strictly increasing or strictly
decreasing. Theorem 10.17 provides such a test when f 0 is differentiable; the
corollary below states the test precisely.
We denote the derivative of f 0 by f 00; f 00 is called the second derivative of

f . A function f that has a second derivative is said to be twice differentiable.

Corollary 10.31: Assume that f is twice differentiable on an open interval
I.

(1) If f 00(x) > 0 for all x ∈ I, then f is concave up on I.
(2) If f 00(x) < 0 for all x ∈ I, then f is concave down on I.
Proof: The corollary follows directly from Theorems 10.17 and 10.29. ¥
Wemake two observations about Corollary 10.31. First, Corollary 10.31 does

not apply to all differentiable functions since a function can be differentiable
and yet not be twice differentiable. Second, the converses of parts (1) and (2)
of Corollary 10.31 are false; for example, f(x) = x4 shows the converse of part
(1) is false.

Exercise 10.32: Verify the statements in the preceding paragraph (include
an example to show that the converse of part (2) of Corollary 10.31 is false).

We will be concerned with points at which the concavity of a function
changes. For example, we say that the function f(x) = x3 changes concav-
ity at x = 0 because f is concave down on (−∞, 0) and concave up on (0,∞).
We give the following precise, general deÞnition for change in concavity:

DeÞnition. Let f be a function deÞned on an open interval I, and let p ∈ I.
We say that f changes concavity at the point p provided that for some interval
(s, t) ⊂ I, f |(s, p) is concave one way (up or down) and f |(p, t) is concave the
other way (down or up, respectively).
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When a function f changes concavity at a point p, we say that f has an
inßection point at p, in which case we call (p, f(p)) an inßection point of f .5

The following theorem, in conjunction with Corollary 10.31, can enable us
to determine the inßection points of a twice differentiable function; we will
illustrate this in Example 10.34. We note that the theorem is analogous to
Theorem 9.7 for local extrema.

Theorem 10.33: Assume that f is twice differentiable on an open interval
I. If f has an inßection point at p, then f 00(p) = 0.
Proof: Assume that f has an inßection point at p. Then there is an interval

[s, t] ⊂ I such that f |(s, p) is concave one way and f |(p, t) is concave the other
way. Assume that f |(s, p) is concave up and f |(p, t) is concave down. Then, by
Theorem 10.29, we have that

(*) f 0 is strictly increasing on (s, p) and f 0 is strictly decreasing on (p, t).

Since f 0 is differentiable and [s, t] ⊂ I, f 0 is continuous on [s, t] by Theorem
6.14 (and Exercise 5.3). Hence, by the Maximum-Minimum Theorem (Theorem
5.13), the restricted function f 0|[s, t] has attains its maximum value at some
point q of [s, t]. We see from (*) that q = p. Thus, f 0 has a local maximum at
p. Therefore, by Theorem 9.7, f 00(p) = 0.
The proof when f |(s, p) is concave down and f |(p, t) is concave up is similar

and is omitted. ¥
Let�s see how all this works. We return to Example 10.20:

Example 10.34: Let f(x) = 2x5 − 5x4 − 10x3 for all x ∈ R1. In Example
10.20 we showed that f has a local maximum at x = −1, a local minimum at
x = 3, and no global extrema. We noted some problems with the graph of f as
depicted in Figure 10.20. We are now prepared to address the problems.
We use Theorem 10.33 to Þnd all the possible inßection points of f :

f 00(x) = 40x3 − 60x2 − 60x = 20x(2x2 − 3x− 3);

thus, the points x at which f 00(x) = 0 are x = 0, 3
4 ±

√
33
4 ; hence, by Theorem

10.33, the only possible points at which f could have inßection points are x =
0, 3

4 ±
√

33
4 . Next, we use Corollary 10.31 to see which of the points 0, 3

4 ±
√

33
4

is a point at which f has an inßection point.
Note that f 00 is continuous; thus, to apply Corollary 10.31, we only need

to check the signs of f 00 at one point of each of the open intervals determined
by the points x = 0, 3

4 ±
√

33
4 (we are using the Intermediate Value Theorem

(Theorem 5.2)). Without using speciÞc values for x, but merely inspecting the
expression f 00(x) = 20x(2x2−3x−3) for any x very negative, for any x < 0 and
very near 0, for any x > 0 and very near 0, and for any x very large (positive),
we arrive at the following table:

5Notice in the deÞnition of inßection point that an inßection point of f is a point (p, f(p))
on the graph of f , not the point p; the distinction emphasizes the fact that the graph of f is
where the geometry inherent in the notion of inßection point is visible.
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interval → (−∞, 3
4 −

√
33
4 ) (3

4 −
√

33
4 , 0) (0, 3

4 +
√

33
4 ( 3

4 +
√

33
4 ,∞)

signf 00(x)→ − + − +

Hence, by Corollary 10.31, f changes concavity at each of the points x = 0, 3
4 ±√

33
4 . Therefore, f has an inßection point at each of these points and at no other
point (by Theorem 10.33).
We also know from the table and Corollary 10.31 that f is concave up on

(3
4 −

√
33
4 , 0) ∪ (3

4 +
√

33
4 ,∞) and that f is concave down on (−∞, 3

4 −
√

33
4 ) ∪

(0, 3
4 +

√
33
4 ).

Taking into account inßection points and concavity, we correct the graph of
f that we drew in Figure 10.20:

Figure 10.34

We conclude with an interesting theorem about polynomials. What really
makes the theorem interesting is that the theorem is not true for differentiable
functions in general, as you will be asked to show in Exercise 10.45. The proof
of the theorem uses several previous results and must be done carefully (you
will gain appreciation for the proof if you keep your solution to Exercise 10.26
in mind as you read the proof).

Theorem 10.35: A nonconstant polynomial has an inßection point at some
point between any two points at which the polynomial has local extrema.
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Proof: Assume the f is a polynomial with local extrema at p and q with
p < q. Note that f has degree ≥ 3 (since nonconstant polynomials of degree
≤ 2 do not have two local extrema).
By Theorem 9.7, f 0(p) = 0 and f 0(q) = 0. Note that f 0 is a polynomial of

degree ≥ 2 (by Theorem 7.12); hence, by Exercise 9.21, we can assume p and q
were chosen so that f 0(x) 6= 0 for all x ∈ (p, q). Therefore, by the Intermediate
Value Theorem (Theorem 5.2), f 0(x) > 0 for all x ∈ (p, q) or f 0(x) < 0 for all
x ∈ (p, q). We assume for the proof that f 0(x) > 0 for all x ∈ (p, q) (the proof
for the other case is similar).
By the Maximum-Minimum Theorem (Theorem 5.13), f 0 attains a maxi-

mum value on [p, q] at a point r. Since f 0(p) = 0 = f 0(q) and f 0(x) > 0 for all
x ∈ (p, q), it is clear that r ∈ (p, q). Hence, by Theorem 9.7, f 00(r) = 0.
Now, since f 00 is a polynomial of degree ≥ 1 (by Theorem 7.12), we see from

Exercise 9.21 that there is a subinterval [s, t] of (p, q) such that r ∈ (s, t) and
f 00(x) 6= 0 for all x ∈ (s, r) ∪ (r, t).

Thus, since f 00 is continuous (because f 00 is a polynomial), we have by the
Intermediate Value Theorem that f 00 does not change sign on (s, r) and f 00 does
not change sign on (r, t). Therefore, since f 0 has a local maximum at r, we see
from part (3) of Theorem 10.19 that the sign of f 00 on (s, r) is opposite to the
sign of f 00 on (r, t). Therefore, by Corollary 10.31, f changes concavity at r; in
other words, f has an inßection point at r. ¥
In some exercises, we will ask you to Þnd maximal intervals on which a

function is concave up or down. The following theorem should be kept in mind
when Þnding such maximal intervals:

Theorem 10.36: If f is continuous on [a, b] and concave up (down) on
(a, b), then f is concave up (down, respectively) on [a, b].

Proof: Left as the Þrst exercise below. ¥
Exercise 10.37: Prove Theorem 10.36.

Exercise 10.38: DeÞne f : [0, 6]→ R1 by f(x) = 4x3−36x2+77x. Continue
the analysis of f begun in Exercise 10.21 by Þnding all points at which f has an
inßection point and determining the maximal intervals on which f is concave
up or down. Sketch the graph of f eliminating ßaws that may have occurred in
your sketch for Exercise 10.21

Exercise 10.39: DeÞne f : [−2, 2] → R1 by f(x) = x4 − 2x2 + 1. This is
the function in Exercise 10.22. Repeat Exercise 10.38 for this function.

Exercise 10.40: DeÞne f : [0, 2]→ R1 by f(x) = x
x2+1 . This is the function

in Exercise 10.23. Repeat Exercise 10.38 for this function.

Exercise 10.41: Sketch the graph of f(x) = 8x5−5x4−20x3+1 identifying
all local extrema, inßection points, and concavity.

Exercise 10.42: Repeat Exercise 10.41 for f(x) = x
2
3 (6− x) 1

3 .
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Exercise 10.43: Repeat Exercise 10.41 for f(x) = |x| (x+ 1).
Exercise 10.44: In Figure 10.44 below, we have drawn a picture of the

graph of the second derivative of a function f . Assuming that f(0) = 0 and
that f 0(0) = 0, sketch the graph of f indicating the points at which all local
extrema occur, the points at which f has inßection points, and the maximal
intervals on which f is concave up or down.

Figure 10.44

Exercise 10.45: Theorem 10.35 is not necessarily true for differentiable
functions that are not polynomials. Show this by giving an example of a differ-
entiable function on R1 that has local extrema at different points but that has
no inßection point.

Exercise 10.46: Any polynomial f of degree 3 has exactly one inßection
point. Furthermore, if f crosses the x - axis at three distinct points a, b, c (i.e.,
has three distinct roots), then the inßection point of f occurs at the average
x = a+b+c

3 of the roots.

Exercise 10.47: Let I be an open interval, and let f : I → R1 be differen-
tiable on I. Then f is concave up (down) on I if and only if for each x ∈ I, the
graph of f lies above (below, respectively) the tangent line to the graph of f at
(x, f(x)) except for the point (x, f(x)) itself.
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