
Chapter VII: Derivatives of Combinations

We show that various combinations of differentiable functions (including
compositions) are differentiable; we derive formulas for the derivatives of the
combinations in terms of the derivatives of the functions separately. We ap-
ply our results to show that polynomials are differentiable and that rational
functions are differentiable where they are deÞned.

1. Sums, Differences, Products and Quotients

We show that sums, differences, products and quotients of two differentiable
functions are differentiable; in the process, we derive formulas for the derivatives
of the combined functions in terms of the derivatives of the functions separately.
We apply our results in the next section to show polynomials and rational
functions are differentiable.

Theorem 7.1: Let X ⊂ R1, and let f, g : X → R1 be functions. If f and g
are each differentiable at p, then f + g is differentiable at p and

(f + g)0(p) = f 0(p) + g0(p).

Proof: Using Theorem 4.1 for the third equality below, we have

limh→0
(f+g)(p+h)−(f+g)(p)

h = limh→0
f(p+h)−f(p)+g(p+h)−g(p)

h

= limh→0[
f(p+h)−f(p)

h + g(p+h)−g(p)
h ]

4.1
= limh→0

f(p+h)−f(p)
h + limh→0

g(p+h)−g(p)
h = f 0(p) + g0(p). ¥

Corollary 7.2: Let X ⊂ R1, and let f1, f2, ..., fn : X → R1 be Þnitely many
functions. If each of the functions f1, f2, ..., fn is differentiable at p, then the
sum function f1 + f2 + · · ·+ fn is differentiable at p and

(f1 + f2 + · · ·+ fn)0(p) = f 01(p) + f 02(p) + · · ·+ f 0n(p).
Proof: The corollary follows from Theorem 7.1 by a simple induction (much

like the proof of Theorem 4.5). ¥
Theorem 7.3: Let X ⊂ R1, let f, g : X → R1 be functions. If f and g are

each differentiable at p, then f − g is differentiable at p and
(f − g)0(p) = f 0(p)− g0(p).

Proof: The proof is similar to the proof of Theorem 7.1 using Theorem 4.2
(instead of Theorem 4.1). ¥
We know from the previous two theorems that derivatives �distribute over�

sums and differences. Furthermore, the proofs of the two theorems use noth-
ing more than the corresponding results about limits. Therefore, since limits
�distribute over� products (Theorem 4.9), it is natural to expect that deriva-
tives would do the same; in other words, we should expect that if f and g are
differentiable at p, then
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(f · g)0(p) = f 0(p)g0(p).
So, let�s try to verify the formula and see what happens:

(f · g)0(p) = limh→0
(f ·g)(p+h)−(f ·g)(p)

h = limh→0
f(p+h)g(p+h)−f(p)g(p)

h ;

this might not look promising, but remember the trick we used in proving the
limit theorem for products (Theorem 4.9)? We subtracted and added an expres-
sion that enabled us to isolate expressions that related directly to the assump-
tions in the theorem. Let�s try that here. Since we want to isolate the difference
quotients for f and g, let�s subtract and add f(p)g(p+ h) to the numerator of
the second difference quotient above. The limit then becomes

limh→0
f(p+h)g(p+h)−f(p)g(p+h)+f(p)g(p+h)−f(p)g(p)

h

= limh→0[g(p+ h)
f(p+h)−f(p)

h + f(p)g(p+h)−g(p)
h ]

This doesn�t look at all like f 0(p)g0(p)! In fact, since limh→0 g(p+ h) = g(p) by
Theorem 6.14 (and Theorem 3.12), we have uncovered a completely unexpected
formula:

(f · g)0(p) = g(p)f 0(p) + f(p)g0(p)
(for this step, we are using the sum and product theorems for limits (Theorems
4.1 and 4.9)).
Thus, even though our initial guess about a formula for the derivative of a

product was wrong, we have discovered the following theorem:

Theorem 7.4: Let X ⊂ R1, and let f, g : X → R1 be functions. If f and g
are each differentiable at p, then f · g is differentiable at p and

(f · g)0(p) = f(p)g0(p) + g(p)f 0(p).
Proof: The proof is in the discussion above. ¥
It is an understatement to say that the formula in Theorem 7.3 is not intu-

itive. But, at the very least, could we have known that our original �formula� �
(f ·g)0(p) = f 0(p)g0(p) � could not be true before we tried to prove it? Yes, if we
had tried to apply our �formula� in any one of several simple cases, such as to
the product x · x or even to the function x written as 1x (we already computed
the relevent derivatives in Examples 6.2 and 6.3).
Do we now discard our false formula so no one will know we made such a

silly mistake? No! We turn our mistake into a question: For what differentiable
functions f and g on R1 is it true that (f · g)0(x) = f 0(x)g0(x) for all x ∈ R1 ?
We return to this question later.
Next, we show that the quotient of two differentiable functions is differ-

entiable and, at the same time, we derive a formula for the derivative of the
quotient.
Note that a quotient f

g can be viewed as the product f · 1
g . Therefore,

to simplify the proof of our theorem about quotients, we Þrst prove a lemma
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concerning reciprocals. We did the same thing when we proved the theorem on
limits of quotients in section 4 of Chapter IV (Lemma 4.19 and Theorem 4.20).

Lemma 7.5: Let X ⊂ R1, and let g : X → R1 be a function. If g is
differentiable at p and g(p) 6= 0, then 1

g is differentiable at p and

( 1
g )
0(p) = −g0(p)

[g(p)]2 .

Proof: We begin by trying to get a feeling for what is going on:

( 1
g )
0(p) = limh→0

1
g(p+h)− 1

g(p)

h = limh→0
1
h
g(p)−g(p+h)
g(p+h)g(p) ;

hence, isolating the difference quotient for g from the rest, we have

(1) ( 1
g )
0(p) = limh→0[

g(p+h)−g(p)
h

−1
g(p+h)g(p) ].

Now, we see what to do: We evaluate the limits of the two quotients on the
right - hand side of (1) separately.
Since g is differentiable at p, we have that

(2) limh→0
g(p+h)−g(p)

h = g0(p).

Since g is continuous at p by Theorem 6.14, limh→0 g(p + h) = g(p) by
Theorem 4.29; thus, since g(p) 6= 0, limh→0

1
g(p+h) =

1
g(p) by Lemma 4.19.

Therefore, by the limit theorem on products (Theorem 4.9), we have

(3) limh→0
−1

g(p+h)g(p) =
−1

[g(p)]2 .

By (1), (2) and (3), we can apply the limit theorem on products again to
obtain that

(1
g )
0(p) = g0(p) −1

[g(p)]2 =
−g0(p)
[g(p)]2 .

Have we proved the lemma? Yes, except for a technical detail: Even though
g(p) 6= 0, there may be values h for which g(p + h) = 0, in which case the
expression 1

g(p+h) , which we used throughout the proof, does not make sense.
However, this is easy to take care of: As already observed above (3),

limh→0 g(p+ h) = g(p) 6= 0;

thus, there is a δ > 0 such that

|g(p+ h)| > |g(p)|
2 when p+ h ∈ X and |h| < δ;

hence, g(p + h) 6= 0 for such h. Therefore, by stipulating at the beginning of
the proof that all values h in the proof are restricted to those for which |h| < δ,
we take care of the matter. ¥
Theorem 7.6: Let X ⊂ R1, and let f, g : X → R1 be functions. If f and g

are each differentiable at p and g(p) 6= 0, then f
g is differentiable at p and
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(fg )
0(p) = g(p)f 0(p)−f(p)g0(p)

[g(p)]2 .

Proof: Since f
g = f · 1

g ,

(fg )
0(p) = (f · 1

g )
0(p) 7.4= f(p)( 1

g )
0(p) + 1

g(p)f
0(p)

7.5
= f(p)−g

0(p)
[g(p)]2 +

1
g(p)f

0(p) = −f(p)g0(p)+g(p)f0(p)
[g(p)]2 . ¥

Exercise 7.7: Assume that (f + g)(x) = x3 + 5x − 3, where f and g are
differentiable functions and f 0(4) = 2. Find g0(4).

Exercise 7.8: Assume that (f · g)(x) = 3x
x2+8 , where f and g are differen-

tiable functions such that f(2) = 4 and f 0(2) = 5. Find g0(2).

Exercise 7.9: Assume that fg (x) = x
2+2x, where f and g are differentiable

functions such that f(2) = 2 and f 0(2) = 3. Find g0(2).

Exercise 7.10: Let f and g be differentiable functions with g(x) 6= 0 for all
x. Assume that the equation of the tangent line to the graph of f at (2, f(2))
is 3x− y− 5 = 0 and that the equation of the tangent line to the graph of fg at
(2, fg (2)) is 2x+ y + 4 = 0. Find the equation of the tangent line to the graph
of g at (2, g(2)).

2. Differentiating Polynomials and Rational Functions

In Chapter IV we showed that polynomials and rational functions are con-
tinuous. We now prove these types of functions are differentiable.
Our results will follow immediately from theorems in the preceding section

once we prove a lemma.

Lemma 7.11: The function f(x) = xn is differentiable for each n = 1, 2, ... .
In fact, for each n = 1, 2, ...,

(xn)0 = nxn−1.

Proof: We prove the lemma by induction (Theorem 1.20).
We already know that f(x) = x is differentiable and that x0 = 1 = 1x0

(Example 6.2); in other words, the lemma is true when n = 1.
Assume inductively that the lemma is true for a given natural number k.
We show using our inductive assumption that (xk+1)0 = (k + 1)xk.
Note that xk+1 = xxk and that, by our inductive assumption, (xk)0 = kxk−1.

Thus, since x0 = 1, we can apply Theorem 7.3 on products to obtain

(xk+1)0 = (xxk)0 = x(xk)0 + (xk)x0 = x(kxk−1) + xk

= kxk + xk = (k + 1)xk.

The lemma now follows from the Induction Principle (Theorem 1.20). ¥
Theorem 7.12: Every polynomial is differentiable. Furthermore, if

f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnxn,
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then

f 0(x) = c1 + 2c2x+ 3c3x2 + · · ·+ ncnxn−1.

Proof: By Theorem 7.4 on products and Lemma 7.11, (cxm)0 = cmxm−1

for any constant c and any m = 1, 2, ... . Therefore, the theorem follows from
Corollary 7.2. ¥
Theorem 7.13: Every rational function is differentiable on its domain.
Proof: Every point of the domain of a rational function is a limit point of its

domain (you are asked to prove this in Exercise 7.14). Therefore, our theorem
follows from Theorem 7.12 and Theorem 7.6. ¥
We close with a word of caution about computing derivatives. We know from

Lemma 7.11 that (x4)0 = 4x3. However, this does not say that ((2x)4)0 = 4(2x)3;
in fact, since (2x)4 = 16x4, we see from Lemma 7.11 and Theorem 7.4 on
products that ((2x)4)0 = (16x4)0 = 64x3. In other words, in general, if f is
differentiable, Lemma 7.11 does not tell us how to differentiate (f(x))n or even
whether (f(x))n is differentiable. We will learn about this in the next section.

Exercise 7.14: Prove the statement every point of the domain of a rational
function is a limit point of its domain, which we used in the proof of Theorem
7.13. (No fair using that polynomials have only Þnitely many roots).

Exercise 7.15: (xn)0 = nxn−1 for each n = −1,−2, ... .
Exercise 7.16: Find f 0(2) for each of the following functions f :

f(x) = −4x5 + 2
x3 − 7; f(x) = 3x2−2x+1

(2x−1)2 ; f(x) = x
(4x−6)3 .

Exercise 7.17: Let f(x) = x
(1+ 1

x )2 . Find the equation of the tangent line

to the graph of f at (1, f(1)).

Exercise 7.18: Find a function whose derivative is 3x5 − 2x2 + 1.

Exercise 7.19: Find a function whose derivative is 1
x3 − (4x2 + 1)3.

Exercise 7.20: Is there a polynomial of degree 3 that has horizontal tangent
lines to its graph at three different points?

Exercise 7.21: Recall our discussion of the bogus formula (f · g)0(x) =
f 0(x)g0(x) following Theorem 7.4. When do polynomials f and g satisfy the
formula?

3. The Chain Rule

We have proved that the composition of two continuous functions is contin-
uous (Theorem 4.28). We now prove that the composition of two differentiable
functions is differentiable and derive a formula for the derivative of the compo-
sition. The formula is called the Chain Rule (Theorem 7.23). The Chain Rule is
useful in computing derivatives and has far - reaching theoretical consequences.
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We will see applications of the Chain Rule in the next chapter (e.g., proof of
Theorem 8.16) and in other chapters as well.
Assume that f and g are differentiable functions. Let us try to Þnd out

what the derivative of the composition g ◦ f should be. First, using the form in
Exercise 6.10 for appearance sake only,

(g ◦ f)0(p) = limx→p g(f(x))−g(f(p))
x−p (if the limit exists).

Next, as we have done on numerous occasions, we manipulate algebraically to
obtain expressions that relate to our assumptions. Since we are assuming that
f is differentiable, we want the difference quotient f(x)−f(p)

x−p to appear as part
of what we take the limit of to get (g ◦ f)0(p). We force this to happen by
multiplying and dividing the expression g(f(x))−g(f(p))

x−p by f(x)− f(p), thereby
obtaining

(g ◦ f)0(p) = limx→p g(f(x))−g(f(p))
f(x)−f(p)

f(x)−f(p)
x−p .

Like the proverbial ostrich, we bury our head in the sand in order to believe
that we have not divided by 0. Since limx→p[f(x)−f(p)] = 0 by Theorems 6.14
and 3.12, limx→p

g(f(x))−g(f(p))
f(x)−f(p) looks a lot like g0(f(p)). If the limit is g0(f(p),

then we can apply our theorem on limits of products (Theorem 4.9) to arrive at

(g ◦ f)0(p) = limx→p g(f(x))−g(f(p))
f(x)−f(p) limx→p

f(x)−f(p)
x−p = g0(f(p))f 0(p).

We have found a possible formula for (g ◦ f)0(p); we have not veriÞed the
formula (or even proved that g◦f is differentiable) since we may have divided by
0 in our computations. The following lemma overcomes this obstacle: the lemma
will allow us to avoid limits of quotients with f(x)− f(p) in the denominator,
thereby verifying that the formula is indeed correct (Theorem 7.23).

Lemma 7.22: Let X,Y,Z ⊂ R1, and let f : X → Y and g : Y → Z
be functions. Assume that f is continuous at p and that g is differentiable at
f(p) = q. DeÞne G : Y → R1 by

G(y) =

(
g(y)−g(q)
y−q , if y 6= q

g0(q) , if y = q.

Then limx→pG(f(x)) = g
0(q) and

G(f(x)) f(x)−f(p)
x−p = g(f(x))−g(f(p))

x−p , all x ∈ X − {p}.
Proof: Since g is differentiable at q, we see from Exercise 6.10 that

limy→q
g(y)−g(q)
y−q = g0(q) = G(q);

hence, G is continuous at q by Theorem 3.12. Thus, since f is continuous at p
and f(p) = q, G◦f is continuous at p by Theorem 4.28. Therefore, by Theorem
3.12,
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limx→p(G ◦ f)(x) = (G ◦ f)(p) = G(f(p)) = G(q) = g0(q).
This proves the Þrst part of the lemma.
To verify the equation in the second part of the lemma, let x ∈ X − {p}.

Assume Þrst that f(x) 6= q. Then, by the deÞnition of G,
G(f(x)) = g(f(x))−g(q)

f(x)−q ;

thus, since q = f(p),

G(f(x))f(x)−f(p)
x−p = g(f(x))−g(f(p))

f(x)−f(p)
f(x)−f(p)

x−p = g(f(x))−g(f(p))
x−p .

This veriÞes the equation in the second part of the lemma when f(x) 6= q.
Finally, when f(x) = q, we have f(x) = f(p), so both sides of the equation are
equal to 0. ¥
Theorem 7.23 (Chain Rule): Let X,Y,Z ⊂ R1, and let f : X → Y and

g : Y → Z be functions. Assume that f is differentiable at p and that g is
differentiable at f(p) = q. Then g ◦ f is differentiable at p and

(g ◦ f)0(p) = g0(f(p))f 0(p).
Proof: All the work is done (we can apply Lemma 7.22 below since f is

continuous at p by Theorem 6.14):

(g ◦ f)0(p) 6.10= limx→p
g(f(x))−g(f(p))

x−p
7.22
= limx→pG(f(x))

f(x)−f(p)
x−p ;

also, limx→pG(f(x)) = g0(q) (by Lemma 7.22) and limx→p
f(x)−f(p)

x−p = f 0(p)
(by Exercise 6.10). Therefore, we can apply Theorem 4.9 on limits of products
to obtain

(g ◦ f)0(p) = g0(q)f 0(p) = g0(f(p))f 0(p). ¥

We conclude by illustrating how to use the Chain Rule in Þnding derivatives.

Example 7.24: Let f(x) = (4x+ 5)12. Note that f = h ◦ g, where
g(x) = 4x+ 5, h(y) = y12.

Hence, by the Chain Rule,

f 0(x) = h0(g(x))g0(x) = 12(g(x))11(4) = 48(4x+ 5)11.

Exercise 7.25: Find f 0(3) for each of the following functions f :

f(x) = 1
(1−x)5 ; f(x) =

√
x6 + 3x2 + 1; f(x) = [x+ (x− x3)6]7.

Exercise 7.26: Assume that (g ◦ f)(x) = x
x+1 , where f and g are differen-

tiable functions such that f(1) = 4 and g0(4) = 5. Find f 0(1).

Exercise 7.27: Assume that (g ◦ f)(x) = x4 + 3x, where f and g are
differentiable functions such that f(2) = 3 and f 0(2) = 5. Find g0(3).
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Chapter VIII: The Inverse Function Theorem

The Inverse Function Theorem is concerned with one - to - one differentiable
functions deÞned on an interval. The theorem tells us when the inverse of such
a function is differentiable and provides a formula for the derivative.
After necessary preliminary results, we prove the Inverse Function Theorem

in section 3. We apply the theorem in section 4 to show that rational powers of
x are differentiable (where deÞned and for x 6= 0). We study the trigonometric
functions in section 5: We show that the trigonometric functions are differ-
entiable, and then we apply the Inverse Function Theorem to show that the
inverse trigonometric functions are differentiable. We obtain formulas for the
derivatives of rational powers, trigonometric functions and inverse trigonometric
functions.

1. One - to - one Functions and Inverses

We recall some notions and notation from precalculus.
Let X and Y be sets. A function f : X → Y is said to be one - to - one

provided that whenever x1, x2 ∈ X and x1 6= x2, then f(x1) 6= f(x2).
Assume that f : X → Y is one - to - one. Then we can deÞne a function

g : f(X)→ X as follows: For each y ∈ f(X), g(y) is the unique point in X that
maps to y under f . In other words, f(g(y)) = y for all y ∈ f(X); in addition,
g(f(x)) = x for all x ∈ X. The function g is called the inverse of f , which we
denote from now on by f−1.
Do not confuse the notation f−1 with 1

f ; f
−1 is the (unique) function such

that f ◦f−1 is the identity function on f(X) and f−1 ◦f is the identity function
on X.
Let X ⊂ R1, and let f : X → R1 be one - to - one. Then the graph of f−1

is obtained by reßecting the graph of f about the line y = x in the plane. The
reason is quite simple: The reßection about y = x changes a point (x, f(x)) to
the point (f(x), x), and f−1(f(x)) = x.
The simple relation between the graphs of f and f−1 just mentioned can

provide geometric intuition for the Inverse Function Theorem and for some re-
sults preceding it. In particular, examining the graphs of f and f−1 in the same
picture can serve to motivate the results and provide insight. I leave it to the
reader to draw pictures of continuous one - to - one functions on intervals, to-
gether with their inverses, and differentiable one - to - one functions on intervals,
together with their inverses, before reading further � try to predict (from the
pictures) a geometric characterization of one - to - one continuous functions on
intervals, and try to determine what the formula should be for the derivative of
f−1 in terms of the derivative of f .

2. Continuity of the Inverse Function

We prove that the inverse of a one - to - one continuous function on an interval
is continuous. We will use this result in the next section to prove that the
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inverse of a differentiable function (on an interval) is differentiable. The pattern
should be familiar from the preceding chapter: There we used the continuity of
compositions (in the proof of Lemma 7.22) in proving the Chain Rule.
Our result about continuity of the inverse function is Theorem 8.6. We prove

the result by Þrst characterizing one - to - one continuous functions deÞned on
intervals in a geometric way. The terminology for the characterization is as
follows:

DeÞnition: Let X ⊂ R1 and let f : X → R1 be a function. We say that f
is increasing on X provided that whenever x1, x2 ∈ X such that x1 < x2, then
f(x1) ≤ f(x2); f is strictly increasing on X provided that whenever x1, x2 ∈ X
such that x1 < x2, then f(x1) < f(x2).
Similarly, f is decreasing on X ( or strictly decreasing on X) provided that

whenever x1, x2 ∈ X such that x1 < x2, then f(x1) ≥ f(x2) (or f(x1) > f(x2),
respectively).
If Y ⊂ X, we say f is increasing (strictly increasing, etc.) on Y to mean

f |Y is increasing (strictly increasing, etc.) on Y .

Exercise 8.1: Let X ⊂ R1 and let f : X → R1 be a function. If f is
strictly increasing on X, then f−1 is strictly increasing on f(X); if f is strictly
decreasing on X, then f−1 is strictly decreasing on f(X).

It is obvious that if a function f is either strictly increasing or strictly de-
creasing, then f is one - to - one. Our characterization theorem says that the
converse is also true when f is continuous on an interval (Theorem 8.4). We
Þrst prove a lemma; we use the lemma in the proof of the characterization the-
orem and in the proof of the subsequent theorem about the continuity of the
inverse function. The proof of the lemma uses the Intermediate Value Theorem
and the Maximum -Minimum Theorem.

Lemma 8.2: Let f : [a, b]→ R1 be a one - to - one continuous function.

(1) If f(a) < f(b), then f is strictly increasing on [a, b], f([a, b]) = [f(a), f(b)],
and f−1 is strictly increasing on [f(a), f(b)].

(2) If f(a) > f(b), then f is strictly decreasing on [a, b], f([a, b]) = [f(b), f(a)],
and f−1 is strictly decreasing on [f(b), f(a)].

Proof: We prove part (1); part (2) follows easily from part (1) (Exercise 8.3).
Assume that f(a) < f(b). Then, by the last part of Theorem 5.13,

f([a, b]) = [c, d] for some c < d.

We show that f(a) = c and f(b) = d. Since f([a, b]) = [c, d], there exist
s, t ∈ [a, b] such that f(s) = c and f(t) = d. Let J denote the closed interval
with end points s and t (i.e., J = [s, t] if s < t and J = [t, s] if t < s). Since
f(s) = c and f(t) = d and since f(J) ⊂ [c, d], we see by the Intermediate Value
Theorem (Theorem 5.2) that f(J) = [c, d]. Thus, since f(a), f(b) ∈ [c, d], there
exist p, q ∈ J such that f(p) = f(a) and f(q) = f(b). Now, since f is one - to -
one on [a, b], p = a and q = b. Hence, a, b ∈ J . Thus, J = [a, b]. Therefore,
s = a or b, and t = a or b; furthermore, if s = b, then t = a, and we have
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f(b) = f(s) = c < d = f(t) = f(a),

which contradicts our assumption that f(a) < f(b). Hence, s = a and, conse-
quently, t = b. Therefore, f(a) = c and f(b) = d.
We have proved the following:

(*) f([a, b]) = [f(a), f(b)].

We use (*) to prove that f is strictly increasing on [a, b]. Suppose that f is
not strictly increasing on [a, b]. Then, since f is one - to - one, there are points
x1 and x2 such that

a ≤ x1 < x2 ≤ b and f(x1) > f(x2).

Furthermore, x1 > a (otherwise, x1 = a and, hence, f(a) > f(x2), which
contradicts (*)); also, since f is one - to - one and a 6= x2, we see from (*) that
f(a) < f(x2). To summarize, we have that

a < x1 and f(a) < f(x2) < f(x1).

Thus, by the Intermediate Value Theorem (Theorem 5.2), there exists a point
c ∈ (a, x1) such that f(c) = f(x2). However, this contradicts that f is one - to -
one (since c < x1 < x2). Therefore, we have proved that f is strictly increasing
on [a, b].
Finally, we have shown that f is strictly increasing on [a, b] and that f([a, b]) =

[f(a), f(b)] (by (*)); therefore, by Exercise 8.1, f−1 is strictly increasing on
[f(a), f(b)].
This completes the proof of part (1) of the lemma; part (2) is left as Exercise

8.3. ¥
Exercise 8.3: Finish the proof of Lemma 8.2 by showing how part (2)

follows quickly from part (1).

We are now ready to prove the characterization theorem.

Theorem 8.4: Let I be an interval, and let f : I → R1 be a continuous
function. Then f is one - to - one if and only if f is either strictly increasing on
I or strictly decreasing on I.

Proof: If f is either strictly increasing on I or strictly decreasing on I, then
it is clear that f is one - to - one. Therefore, we need only prove the converse.
Any interval can be written as a countable union of closed and bounded

intervals [an, bn], n = 1, 2, ..., where [an, bn] ⊂ [an+1, bn+1] for all n. For ex-
ample, (a, b) = ∪∞n=1[a +

b−a
2n , b − b−a

2n ], [a, b) = ∪∞n=1[a, b − b−a
2n ], (a,∞) =∪∞n=1[a+

1
n , a+ n], and so on. Thus, whatever kind of interval the interval I in

our theorem is (excluding the trivial case when I = [a, a]), we have

I = ∪∞n=1[an, bn], [an, bn] ⊂ [an+1, bn+1] for all n, a1 < b1.
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Now, assume that f : I → R1 is one - to - one. Then either f(a1) < f(b1) or
f(b1) < f(a1).
Assume Þrst that f(a1) < f(b1). Then, by part (1) of Lemma 8.2, f is

strictly increasing on [a1, b1]. Assume inductively that f is strictly increasing
on [ak, bk] for some given k. Since f is one - to - one, either f(ak+1) < f(bk+1)
or f(bk+1) < f(ak+1). If f(bk+1) < f(ak+1), then we see from part (2) of
Lemma 8.2 that f is strictly decreasing on [ak+1, bk+1], hence on [ak, bk]; this
contradicts our inductive assumption that f is strictly increasing on [ak, bk].
Hence, f(ak+1) < f(bk+1). Therefore, by part (1) of Lemma 8.2, f is strictly
increasing on [ak+1, bk+1]. Hence, by the Induction Principle (Theorem 1.20),
we have proved that f is strictly increasing on [an, bn] for all n. Therefore, since
I = ∪∞n=1[an, bn], it follows easily that f is strictly increasing on I.
We leave the case when f(a1) > f(b1) as an exercise (Exercise 8.5). ¥
Exercise 8.5: Finish the proof of Theorem 8.4 (by taking care of the case

when f(a1) > f(b1)).

Finally, we prove our main theorem.

Theorem 8.6: Let I be an interval. If f : I → R1 is a one - to - one
continuous function, then f−1 is continuous on f(I).

Proof: By Theorem 8.4, f is either strictly increasing on I or strictly de-
creasing on I. We assume that

(1) f is strictly increasing on I.

By (1) and Exercise 8.1, we have that

(2) f−1 is strictly increasing on f(I).

Now, to prove that f−1 is continuous on f(I), let p ∈ f(I). We prove that
limy→p f−1(y) = f−1(p).
Let ² > 0. Let q = f−1(p).
By the Intermediate Value Theorem, f(I) is an interval. We take two cases:

Case 1: p is not an end point of f(I). Then it follows from (2) that q is not
an end point of I. Hence, we can assume that ² is small enough so that

[q − ², q + ²] ⊂ I.

Thus, since f is strictly increasing on [q − ², q + ²] (by (1)), we have
(3) f(q − ²) < f(q) = p < f(q + ²).
By (1), f is strictly increasing on [q−², q+²]; hence, by Lemma 8.2, we have

that

(4) f([q − ², q + ²]) = [f(q − ²), f(q + ²)].
Now, let

δ = min{p− f(q − ²), f(q + ²)− p}.
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By (3), δ > 0. Assume that |y − p| < δ. Then y ∈ (f(q − ²), f(q + ²)) since
f(q − ²) = p− [p− f(q − ²)] ≤ p− δ < y < p+ δ

≤ p+ [f(q + ²)− p] = f(q + ²).
Hence, by (4), f−1(y) ∈ (q−², q+²); in other words, ¯̄f−1(y)− q¯̄ < ². Therefore,
since q = f−1(p),

¯̄
f−1(y)− f−1(p)

¯̄
< ². Thus, we have proved that

limy→p f−1(y) = f−1(p).

Therefore, f−1 is continuous at p by Theorem 3.12.

Case 2: p is an end point of f(I). Then it follows from (2) that q is an end
point of I, and it is easy to modify the argument for Case 1 to prove that f−1

is continuous at p (replace [q − ², q + ²] with either [q, q + ²] or [q − ², q], and
make the obvious adjustments in the rest of the proof for Case 1). ¥

3. The Inverse Function Theorem

We prove the main theorem of the chapter. The assumption in the theorem
that f 0(p) 6= 0 is unconditionally necessary (see Exercise 8.8).
Theorem 8.7 (Inverse Function Theorem): Let I be an interval, let

f : I → R1 be a one - to - one continuous function, and let p ∈ I. If f is
differentiable at p and f 0(p) 6= 0, then f−1 is differentiable at f(p) = q and

(f−1)0(q) = 1
f 0(p) =

1
f 0(f−1(q)) .

Proof: We will use Lemma 7.22 with f in the lemma replaced by f−1 here
and g in the lemma replaced by f here (thus, the roles of p and q in the lemma
are switched here). The function F deÞned below is the function G in Lemma
7.22 with the replacements just mentioned:

F (x) =

(
f(x)−f(p)

x−p , if x 6= p
f 0(p) , if x = p.

The assumptions of Lemma 7.22 are satisÞed since f−1 is continuous at q (by
Theorem 8.6) and f is differentiable at f−1(q) = p (by assumption in our
theorem). Hence, by Lemma 7.22 (as adjusted here),

limy→q F (f
−1(y)) = f 0(p).

Thus, since f 0(p) 6= 0 (by assumption), limy→q 1
F (f−1(y)) =

1
f 0(p) by Lemma

4.19. Therefore, using the formula for F for the Þrst equality below,

1
f 0(p) = limy→q

1
f(f−1(y))−f(p)

f−1(y)−p
= limy→q

f−1(y)−p
f(f−1(y))−f(p)

= limy→q
f−1(y)−f−1(q)

y−q
6.10
= (f−1)0(q). ¥
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Exercise 8.8: The assumption that f 0(p) 6= 0 in Theorem 8.7 is absolutely
necessary: If I is an interval and f : I → R1 is a one - to - one differentiable
function such that f 0(p) = 0 for some point p, then f−1 is not differentiable
at f(p). Prove this result, and explain why the result is to be expected from a
picture of the graphs of f and f−1.

Exercise 8.9: In the proof of Theorem 8.7, we proved that f−1 is differ-
entiable at q by deriving the formula for (f−1)0(q). If we had known before-
hand that f−1 is differentiable at q, then we could have derived the formula
for (f−1)0(q) using the Chain Rule (Theorem 7.23). Show how to derive the
formula for (f−1)0(q) using the Chain Rule under the assumption that f−1 is
differentiable at q (and the assumptions about f in Theorem 8.7).

Exercise 8.10: Find (f−1)0(1) when f(x) = x7 + x3 + x+ 1.

Exercise 8.11: Find (f−1)0(6) when f(x) =
√
x3 + 2x+ 3.

Exercise 8.12: Let f : R1 → R1 be a one - to - one differentiable function
such that f(3) = 4 and f 0(3) = 1

4 . Let h =
1
f−1 . Find h0(4).

4. Differentiating Rational Powers

We know that for all integers n, xn is differentiable and (xn)0 = nxn−1 (by
Lemma 7.11 and Exercise 7.15). We extend the result to expressions of the form
x
m
n , where m and n are integers (n 6= 0) and x 6= 0. The proof is an application

of the Inverse Function Theorem (Theorem 8.7) and the Chain Rule (Theorem
7.23).
We begin by examining the function f(x) = xn, where n is a natural number.

We need to distinguish between the case when n is even and the case when n is
odd; the reason will be apparent when we use the following lemma as a guide
for deÞning the nth root function.

Lemma 8.13: Let n be a natural number, and let f(x) = xn for all x ∈ R1.

(1) If n is even, then f is strictly increasing, hence one - to - one, on [0,∞)
and f([0,∞)) = [0,∞).
(2) If n is odd, then f is strictly increasing, hence one - to - one, on R1 and

f(R1) = R1.

Proof: All the numbers 0, 1, 2n, 3n, ..., kn, ... are values of f ; in addition, if n
is odd, n = 2m+1, all the numbers −k(−k)2m for k = 0, 1, 2, ... are values of f .
Also, f is continuous by Theorem 4.16. Hence, it follows from the Intermediate
Value Theorem (Theorem 5.2) and Lemma 1.21 that f([0,∞)) = [0,∞) and, if
n is odd, f(R1) = R1.
The fact that f is strictly increasing can be proved by induction; we leave

this to the reader (Exercise 8.14).
Finally, f is one - to - one since a strictly increasing function is obviously

one - to - one. ¥
Exercise 8.14: Finish the proof of Lemma 8.13 as indicated.
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Lemma 8.13 provides a completely different proof of Theorem 1.25 and ex-
tends Theorem 1.25 to negative real numbers when n is odd. Which proof of
Theorem 1.25 do you like better � the original proof or this proof?

DeÞnition: Let n be a natural number, and let f(x) = xn for all x ∈ R1.

� With Lemma 8.13 in mind, we deÞne the nth root function to be the inverse
of f |[0,∞) if n is even and to be the inverse of f if n is odd. Hence, the
nth root function has domain and range [0,∞) when n is even, and the
nth root function has domain and range R1 when n is odd.

� The value of the nth root function at x is denoted by x 1
n . Thus, we have

deÞned x
1
n for all x ≥ 0 when n is even and for all real numbers x when n

is odd; in other words, x
1
n is deÞned to be the unique number such that

(x
1
n )n = x = (xn)

1
n .

� For any integer m, xm
n is deÞned to be (x

1
n )m for all x such that x

1
n is

deÞned; in addition, x = 0 is excluded if m < 0. Thus, except for x = 0
if m < 0, the function h(x) = x

m
n is deÞned (only) on [0,∞) if n is even

and on all of R1 if n is odd.

The following theorem, which we use to prove our main theorem, is a con-
sequence of the Inverse Function Theorem.

Theorem 8.15: Let g denote the nth root function for some natural number
n. Then g is differentiable at every point x in its domain except x = 0 and

g0(x) = (x
1
n )0 = 1

nx
1
n−1.

Proof: Let f(x) = xn, where f is restricted to [0,∞) if n is even. Note that
g = f−1. We will apply the Inverse Function Theorem (Theorem 8.7) to g. To
know that we can do so, note the following: f is one - to - one (by Lemma 8.13),
f is continuous (by Theorem 4.16), and f 0(x) = nxn−1 (by Lemma 7.11), hence
f 0(x) 6= 0 if x 6= 0. Therefore, by the Inverse Function Theorem, if x 6= 0,

g0(x) = 1
f 0(g(x)) =

1

f 0(x
1
n )
= 1

n(x
1
n )n−1

= 1

nx1− 1
n
= 1

nx
1
n−1.

Finally, since f 0(0) = 0, we know that g is not differentiable at x = 0 by
Exercise 8.8. ¥
We now prove our main theorem using Theorem 8.15 and the Chain Rule.

Theorem 8.16: Let n be a natural number, and let m 6= 0 be an integer.
The function h(x) = x

m
n is differentiable at every point x in its domain except

x = 0 and

h0(x) = (x
m
n )0 = m

n x
m
n −1.
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Proof: By the deÞnition of x
m
n (above Theorem 8.15), h(x) = (x

1
n )m. Hence,

h = f ◦g, where g(x) = x 1
n and f(x) = xm. Thus, by the Chain Rule (Theorem

7.23), h0(x) = f 0(g(x))g0(x). Therefore, since g0(x) = 1
nx

1
n−1 (by Theorem 8.15)

and f 0(x) = mxm−1 (by Lemma 7.11 and Exercise 7.15), we have

h0(x) = f 0(x
1
n )g0(x) = m(x

1
n )m−1( 1

nx
1
n−1) = m

n x
m
n −1. ¥

It is natural to wonder if Theorem 8.16 holds for all powers of x rather
than just for rational powers (when considering an irrational power of x, we
assume that x > 0). However � we must Þrst wonder what xp means for a
given irrational number p : What do we mean by 2

√
2, 3π, etc.? Once we give

an appropriate deÞnition of xp for any given irrational number p (and x > 0),
we will see that (xp)0 = pxp−1 for any given real number p and all x > 0. The
deÞnition of xp for irrational powers p awaits further developments, namely,
the natural logarithm, which we deÞne in Chapter XVI using the integral. The
deÞnition for xp is above Exercise 16.20, and the result about the derivative of
xp is Theorem 16.31.

5. Differentiating Trigonometric Functions and Their Inverses

We Þrst show that the trigonometric functions are differentiable. The fact
that the inverse trigonometric functions are differentiable is then a consequence
of the Inverse Function Theorem. As we have done in the past, we obtain
formulas for all derivatives.
We assume that the reader is familiar with the deÞnitions of the trigono-

metric functions and basic trigonometric identities. The independent variable,
x, for a trigonometric function is a real number that is to be understood as
the angle whose radian measure is x. Thus, when we write sin(x), cos(x) and
so on, we assume x is radian measure; when we use degree measure, we will
speciÞcally write x◦ to mean x measured in degrees. We note the relationship
between radian measure and degree measure: 1◦ = π

180 radians.
We denote a trigonometric function raised to a power with a superscript di-

rectly after the function; for example sin2(x) denotes (sin(x))2. As is consistent
with our notation for inverse functions in general (section 1), we denote inverse
trigonometric functions with a superscript of −1 directly after the function;
for example, sin−1(x) denotes the inverse sine of x, not 1

sin(x) (which we de-

note by (sin(x))−1). The reader should not, for example, confuse sin−p(x) with
(sin−1(x))p when p 6= 1; sin−p(x) for p 6= 1 always means (sin(x))−p = 1

sinp(x) .
We use notation for the derivative of a trigonometric function and the deriva-

tive of its inverse that is consistent with our notation for derivatives in general:
sin0 or sin0(x) denotes the derivative of the sine function, (sin−1)0 or (sin−1)0(x)
denotes the derivative of the inverse sine function, and so forth.
We let S1 denote the unit circle in the plane R2 (i.e., S1 is all points (x, y)

in R2 such that
p
x2 + y2 = 1).

We note that the sine and cosine functions are continuous for use later:

Lemma 8.17: The sine function and the cosine function are continuous.
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Proof: We do not belabor the proof that the sine and cosine functions
are continuous. Their continuity is geometrically clear: Simply recognize that
(cos(x), sin(x)) is the point on the unit circle S1 corresponding to the angle
whose radian measure is x, and observe that small changes in x result in small
changes in the points (cos(x), sin(x)). ¥
To show that all trigonometric functions are differentiable, we focus on the

sine function. Once we prove the sine function is differentiable, the differentiabil-
ity of all trigonometric functions follows using elementary facts from trigonom-
etry.
Let us see what is involved in showing that the sine function is differentiable:

For a given x and for any h 6= 0,
sin(x+h)−sin(x)

h = sin(x) cos(h)+sin(h) cos(x)−sin(x)
h ;

since limh→0
sin(x)
h and limh→0

cos(x)
h do not exist, we have no hope of proving

that sin(x) is differentiable unless we put the expressions involving h together,
obtaining

sin(x+h)−sin(x)
h = sin(x) cos(h)−1

h + cos(x) sin(h)
h .

Thus, we need to Þnd two limits, limh→0
1−cos(h)

h and limh→0
sin(h)
h , if the limits

do, indeed, exist. The problem is not trivial, but can be solved with the aid of
some elementary geometry:

Lemma 8.18: limx→0
sin(x)
x = 1 and limx→0

1−cos(x)
x = 0.

Proof: We Þrst prove that

(1) limx→0+
sin(x)
x = 1.

Proof of (1): Assume that 0 < x < π
2 . Referring to Figure 8.18 below, we

see that

area(∆OAB) < area(sectorOAC) < area(∆ODC).

Figure 8.18
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We write the inequalities above Figure 8.18 in terms of x (note: since a semi-
circle has area π

2 and is a sector with angle π, sectorOAC with angle x has
proportional area x

π
π
2 , which is

x
2 ):

1
2 cos(x) sin(x) <

x
2 <

1
2 tan(x) =

sin(x)
2 cos(x) .

Since 0 < x < π
2 , sin(x) > 0; hence, the inequalities remain in the same direction

when we multiply through by 2
sin(x) , obtaining

cos(x) < x
sin(x) <

1
cos(x) .

Hence, taking reciprocals (thereby reversing inequalities), we have

1
cos(x) >

sin(x)
x > cos(x).

Moreover, by Lemma 8.17, Theorem 3.12, and Lemma 4.19,

limx→0+ cos(x) = 1 = limx→0+
1

cos(x)

Therefore, by the Squeeze Theorem (Theorem 4.34), limx→0+
sin(x)
x = 1. This

proves (1).

Next, we prove that

(2) limx→0−
sin(x)
x = 1.

Proof of (2): DeÞne g : [0, π2 )→ R1 by

g(x) =

½
sin(x)
x , if x > 0

1 , if x = 0.

By (1) and Theorem 3.15, g is continuous. DeÞne f : (−π
2 , 0]→ [0, π2 ) by f(x) =−x; obviously, f is continuous. Hence, by Theorem 4.28, g ◦ f is continuous.

Thus, by Theorem 3.12,

limx→0−(g ◦ f)(x) = (g ◦ f)(0) = g(0) = 1;
furthermore, since sin(−x) = − sin(x), we have that

(g ◦ f)(x) = g(−x) = sin(−x)
−x = − sin(x)

−x = sin(x)
x , −π

2 < x < 0.

Therefore,

limx→0−
sin(x)
x = limx→0−(g ◦ f)(x) = 1.

This proves (2).

By (1), (2), and Theorem 3.16, limx→0
sin(x)
x = 1. This proves that the Þrst

part of the lemma.
To prove the second part of the lemma, Þrst observe that when −π

2 < x <
π
2

(to assure that cos(x) 6= −1),
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1−cos(x)
x = 1−cos(x)

x
1+cos(x)
1+cos(x) =

sin2(x)
x[1+cos(x)] =

sin(x)
x

sin(x)
1+cos(x) .

Next, note that limx→0
sin(x)
x = 1 (by the Þrst part of the lemma) and that

limx→0
sin(x)

1+cos(x) = 0 (by Lemma 8.17, Corollary 4.21 and Theorem 3.12). There-
fore, by Theorem 4.9 on limits of products,

limx→0
1−cos(x)

x = (limx→0
sin(x)
x )(limx→0

sin(x)
1+cos(x)) = (1)(0) = 0. ¥

Exercise 8.19: Fix nonzero real numbers a and b. Find limx→0
sin(ax)
bx by

making use of Theorem 3.15. Show all work carefully.

It is now easy to prove our result for the sine function:

Theorem 8.20: sin0(x) = cos(x).
Proof: Fix x ∈ R1. Continuing from where we left off above Lemma 8.18,

sin0(x) = limh→0[sin(x)
cos(h)−1

h + cos(x) sin(h)
h ].

Therefore, by Lemma 8.18 and Theorem 4.1 on limits of sums,

sin0(x) = limh→0 sin(x)
cos(h)−1

h + limh→0 cos(x)
sin(h)
h = cos(x). ¥

Corollary 8.21: cos0(x) = − sin(x).
Proof: Since cos(x) = sin(π2 − x) for all x, we see from Theorem 8.20 and

the Chain Rule (Theorem 7.23) that

cos0(x) = [cos(π2 − x)][−1] = − cos(π2 − x).

Therefore, since cos(π2 − x) = sin(x), we have that cos0(x) = − sin(x). ¥
Exercise 8.22: Using that all trigonometric functions can be expressed in

terms of the sine and/or cosine functions, prove that the following formulas hold
(for x in the domain of each function): tan0(x) = sec2(x), cot0(x) = − csc2(x),
sec0(x) = sec(x) tan(x), and csc0(x) = − csc(x) cot(x).
Exercise 8.23: Would you expect the rate of change of a trigonometric

function with respect to radian measure to be greater, smaller, or the same as
the rate of change of the trigonometric function with respect to degree measure?
Explain your answer intuitively, and prove your answer is correct.

Exercise 8.24: Direct computations using the Chain Rule (Theorem 7.23)
and Theorem 8.20 give that

(sin2(x))0 = 2sin(x) cos(x).

Thus, (sin2(x))0 = sin(2x). Is this a coincidence, or can you explain why the
result is to be expected from, say, a geometric point of view?

We turn our attention to derivatives of the inverse trigonometric functions.
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The inverse sine function, sin−1, has domain [−1, 1] and range [−π
2 ,

π
2 ]. Dif-

ferentiating the inverse sine function is simply a matter of applying the Inverse
Function Theorem (Theorem 8.7) in conjunction with Theorem 8.20:

Theorem 8.25: (sin−1)0(x) = 1√
1−x2 .

Proof: Fix x ∈ [−1, 1]. Since sin0 = cos (Theorem 8.20), we see from the
Inverse Function Theorem (Theorem 8.7) that

(sin−1)0(x) = 1
sin0(sin−1(x))

= 1
cos(sin−1(x))

= 1√
1−x2 . ¥

Exercise 8.26: The inverse cosine function has domain [−1, 1] and range
[0,π]. Prove that (cos−1)0(x) = −1√

1−x2 .

Exercise 8.27: The inverse tangent has domain R1 and range (−π
2 ,

π
2 ).

Prove that (tan−1)0(x) = 1
1+x2 .

Exercise 8.28: The inverse cotangent has domain R1 and range (0,π).
Prove that (cot−1)0(x) = −1

1+x2 .

Exercise 8.29: The inverse secant has domain (−∞,−1)∪(1,∞) and range
[0, π2 ) ∪ (π2 ,π]. Prove that (sec−1)0(x) = 1

|x|√x2−1
.

Exercise 8.30: The inverse cosecant has domain (−∞,−1) ∪ (1,∞) and
range [−π

2 , 0) ∪ (0, π2 ]. Prove that (csc−1)0(x) = −1
|x|√x2−1

.
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Chapter IX: Maxima, Minima and Derivatives

As a student in plane geometry, you may have seen the following problem:
If p and q are points on the same side of a line `, Þnd a point r on ` such that
the sum of the distances pr and rq is a minimum. The problem is solved easily
by reßecting q across the line ` to the point q0, and then observing that r must
be the point on ` where the line from p to q0 meets `. What you may not have
observed is that the minimum path from p to ` to q is the path for which the
angles formed by pr and ` and by qr and ` are equal. Is this symmetry only a
coincidence?
Is it merely a coincidence that the largest area enclosed by all curves in the

plane of a given length is the area enclosed by the most symmetric of those
curves (the circle)? And is it a coincidence that of all the rectangles having a
given perimeter, the one with the largest area is the one that is most symmetric
(the square)?
Surely, beauty in nature is intimately connected with symmetry, and it would

appear that symmetry is connected with maxima and minima. Perhaps this is
why maximum and minimum problems have been a constant theme throughout
history. Leonhard Euler (1707 - 1783) articulated the importance of maxima and
minima by saying that all interesting phenomena in this world can be explained
in terms of maxima and minima.
We began our study of maxima and minima in Chapter V in the setting

of continuous functions; there we proved that every continuous function on
a closed and bounded interval has a maximum value and a minimum value
(Theorem 5.13). We now localize the notions of maxima and minima and relate
the local notions to derivatives. Our main result is Theorem 9.7, which lays the
foundation for further study of maxima and minima. Theorem 9.7 sets the stage
for the proof of the Mean Value Theorem (which we prove in the next chapter);
the Mean Value Theorem is the essential ingredient for proving theorems that
are used to classify local maxima and minima.

1. Neighborhoods

The following descriptive terminology will help us formulate statements con-
cisely.

DeÞnition: Let X ⊂ R1, and let p ∈ X. A neighborhood of p in X is the
intersection of X with any open interval in R1 containing p; in other words,
if (a, b) is an open interval in R1 such that p ∈ (a, b), then X ∩ (a, b) is a
neighborhood of p in X.
If ² > 0, then X ∩ (p− ², p+ ²) is called the ² - neighborhood of p in X; thus,

the ² - neighborhood of p in X is {x ∈ X : |p− x| < ²}.
Example 9.1: (−1, 1) is a neighborhood of 0 in [−1, 1] (the 1 - neighborhood

of 0 in [−1, 1]); [0, 1
2) is a neighborhood of 0 in [0, 1] (the

1
2 - neighborhood

of 0 in [0, 1)), but [0, 1
2) is not a neighborhood of 0 in [−1, 1]; (−1

4 ,
1
2) is a
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