
(p− ²1, p+ ²1) ∩A = ∅ and (p− ²2, p+ ²2) ∩B = ∅.

Hence, letting ² = min{²1, ²2}, we see that ² > 0 and that
(p− ², p+ ²) ∩ (A ∪B) = ∅.

Therefore, by Theorem 2.5, p /∈ (A ∪B)∼. ¥
Exercise 2.12: Concerning a comment in the proof of Theorem 2.11, Þnd

the ßaw in the following direct argument for (A ∪B)∼ ⊂ A∼ ∪B∼ :
As in the proof of Theorem 2.11, we can assume that A 6= ∅ and B 6= ∅.

Now, let p ∈ (A ∪B)∼. Then, by Theorem 2.5, (p− ², p+ ²) ∩ (A ∪B) 6= ∅ for
each ² > 0. Hence,

[(p− ², p+ ²) ∩A] ∪ [(p− ², p+ ²) ∩B] 6= ∅ for each ² > 0.

Thus, (p− ², p+ ²) ∩ A 6= ∅ or (p− ², p+ ²) ∩B 6= ∅ for each ² > 0. Hence, by
Theorem 2.5, p ∈ A∼ or p ∈ B∼. Therefore, p ∈ A∼ ∪B∼.
Exercise 2.13: If A1, A2, ..., An are Þnitely many subsets of R1, then

(∪ni=1Ai)
∼ = ∪ni=1A

∼
i .

Exercise 2.14: Would the result in Exercise 2.13 remain true for inÞnitely
many subsets of R1 ? In other words, if {Ai : i ∈ I} is an inÞnite collection of
subsets of R1, then is it true that

(∪{Ai : i ∈ I})∼ = ∪{A∼i : i ∈ I}) ?

Theorem 2.15: For any A ⊂ R1, (A∼)∼ = A∼.
Proof: By Theorem 2.7, A ⊂ A∼. Therefore, by Exercise 2.10, A∼ ⊂ (A∼)∼.
To prove the reverse containment, Þrst note that (A∼)∼ ⊂ A∼ if A = ∅

(since ∅∼ = ∅); hence, we assume for the proof that A 6= ∅. Thus, A∼ 6= ∅ by
Theorem 2.7. Now, let p ∈ (A∼)∼. Let I be an open interval such that p ∈ I.
Then, since A∼ 6= ∅ and p ∈ (A∼)∼, I ∩ A∼ 6= ∅ by Theorem 2.3. Hence, there
exists a point q ∈ I ∩ A∼. Thus, since A 6= ∅, I ∩ A 6= ∅ by Theorem 2.3. We
have proved that I ∩A 6= ∅ for any open interval I such that p ∈ I. Therefore,
again by Theorem 2.3, p ∈ A∼. ¥
Exercise 2.16: If A1, A2, ..., An are Þnitely many subsets of R1, then

(∩ni=1Ai)
∼ ⊂ ∩ni=1A

∼
i .

Exercise 2.17: Give an example of two subsets A and B of R1 such that
(A ∩B)∼ 6= A∼ ∩B∼.
Exercise 2.18: Would the result in Exercise 2.16 remain true for inÞnitely

many subsets of R1 ?
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3. The DeÞnition of Continuity

You have surely had some experience with the idea of a continuous function;
based on your experience, you know the intuitive meaning of continuity � a
continuous function is a function that does not jump. Did you ever stop and try
to Þgure out what it really means to say that a function does not jump? Let us
examine this idea.
In general, a question asked in a negative way is harder to deal with than

the corresponding question posed in the positive way. So, we ask What does it
mean for a function to jump? If a function jumps, it seems reasonable that it
must jump at some point in its domain. Thus, we ask What does it mean for a
function to jump at a point p in the domain of the function? Certainly, everyone
has an instinctive feeling � some mental picture � for what this means. Let us
consider an example that everyone will agree is stereotypical of the (intuitive)
idea of a function jumping at p :

Example 2.19: DeÞne f : R1 → R1 by

f(x) =

½
0 , if x ≤ 0
1 , if x > 0.

The function f jumps at p = 0. Surely you agree. But what is the underlying
reason you agree? The reason is that if you look at positive numbers that are
as close as you like to 0, but not equal to 0, their values under f are one unit
away from f(0).

Let us look at another example, one that is more complicated than the
previous one.

Example 2.20: DeÞne f : R1 → R1 by

f(x) =

½
0 , if x is rational
1 , if x is irrational.

The function seems to jump at every point p. Why? If p is irrational, then you
know from Theorem 1.26 that there rationals as close to p as you like, and the
value of f at each rational is one unit away from f(p). If p is rational, then (by
the natural analogue of Theorem 1.26 for irrationals) there irrationals as close
to p as you like, and the value of f at each irrational is one unit away from f(p).

The two examples shed light on what it means for a function to jump at p.
One need only observe the common thread in the two examples: The function
f in each example jumps at p because there is a set A such that p is arbitrarily
close to A but f(p) is not arbitrarily close to f(A). Notice that we say the
condition holds for some set A, not for every set. Indeed, there are some sets
A in the examples such that p is arbitrarily close to A and f(p) is arbitrarily
close to f(A). You can see this by taking A to be any set containing p in both
examples or, as is more illustrative, by taking A = (−∞, 0) in Example 2.19
and by taking A to be the set of all rationals except p when p is rational in
Example 2.20.
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Our discussion suggests the following deÞnition:

DeÞnition. Let X ⊂ R1, let f : X → R1, and let p ∈ X. We say that
f jumps at p provided that there is a subset, A, of X such that p ∼ A but
f(p) 6∼ f(A).
Exercise 2.21: DeÞne f : R1 → R1 by

f(x) =

(
1
x , if x 6= 0
0 , if x = 0.

Then f jumps at 0.

Exercise 2.22: DeÞne f : R1 → R1 by

f(x) =

(
sin( 1

x) , if x 6= 0
0 , if x = 0.

Then f jumps at 0.

We do not claim that our deÞnition for a function to jump at a point is
�correct� � that can only be ascertained by checking numerous examples to
see if the deÞnition Þts our intuition, and by seeing if the deÞnition leads to
appropriate theoretical developments. At this point, we accept the deÞnition
and use it to deÞne continuity which, after all, is why we wanted the deÞnition
in the Þrst place.

DeÞnition. Let X ⊂ R1, let f : X → R1, and let p ∈ X. We say that
f is continuous at p provided that f does not jump at p. In other words, f is
continuous at p provided that whenever A ⊂ X and p ∼ A, then f(p) ∼ f(A).
We say that f is continuous on X (or just continuous when the domain X

is clear) provided that f does not jump at any point of X.

A simple kind of function that we know from past experience is continuous
is a function whose graph is a straight line. We show this kind of function
is continuous in the sense of the deÞnition above. Thus, the example lends
credibility to our deÞnition of continuity.

Example 2.23: Fix m, b ∈ R1, and let f : R1 → R1 be given by

f(x) = mx+ b, all x ∈ R1.

The function f is continuous.
To prove this, let p ∈ R1 and let A ⊂ R1 such that p ∼ A.
If m = 0, then f(p) = b and f(A) = {b}; thus, since b ∼ {b} by Theorem 2.7,

we have that f(p) ∼ f(A). This proves that f is continuous at p when m = 0.
Next, assume that m > 0. We show that f(p) ∼ f(A) by using Theorem

2.3. For this purpose, let I = (a, c) be an open interval such that f(p) ∈ I. Let
J be the open interval deÞned by
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J = (a−bm , c−bm ).

We see that p ∈ J as follows: Since f(p) ∈ I, a < mp+b < c; thus, since m > 0,
a−b
m < p < c−b

m , so p ∈ J . Therefore, since p ∼ A, we have by Theorem 2.3 that
there is a point x ∈ J ∩A. Since x ∈ J , a−bm < x < c−b

m ; thus, since m > 0,

a < mx+ b < c;

hence, f(x) ∈ I. Also, since x ∈ A, f(x) ∈ f(A). Hence, f(x) ∈ I ∩ f(A). This
proves that any open interval containing f(p) has a nonempty intersection with
f(A). Thus, by Theorem 2.3, f(p) ∼ f(A). Therefore, we have proved that f
is continuous at p when m > 0.
Finally, assume that m < 0. Then the proof that f is continuous at p is

similar to the proof whenm > 0: Let I be as before, redeÞne J to be the interval
( c−bm , a−bm ), and make the obvious changes necessitated by the assumption that
m < 0.

We prove in the next chapter that our deÞnition of continuity is correct
in the sense that it is equivalent to the deÞnition of continuity that you have
(probably) seen in your study of calculus. So, why did we deÞne continuity as
we did? The answer is purely philosophical: We adhere to the principle that
a deÞnition should convey as much as possible the fundamental idea behind the
notion being deÞned.

Exercise 2.24: DeÞne f : R1 → R1 by letting f(x) = x2. Then f is
continuous.

Exercise 2.25: DeÞne f : R1 − {0} → R1 by letting f(x) = 1
x . Then f is

continuous.

Exercise 2.26: DeÞne f : [0, 1]→ R1 by

f(x) =

½
x , if x = 1

n for some n ∈ N
0 , otherwise.

At what points p is f continuous ?

Exercise 2.27: Any function f : N → R1 is continuous.

4. Limit Points and Isolated Points

Limit points and isolated points of sets will be important in our discussion
of limits in the next chapter.
DeÞnition. Let X ⊂ R1. A point p ∈ R1 is called a limit point of X

provided that p ∼ X − {p} 2. A point of X that is not a limit point of X is
called an isolated point of X.
We let X` denote the set of all limit points of X.

2X − {p} denotes all the points of X except p (if p /∈ X, obviously X − {p} = X). More
generally, for any two sets A and B, A − B = {x ∈ A : x /∈ B}; the set A − B is called the
complement of B in A.
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Exercise 2.28: What are the limit points of {15} ? What are the limit
points of the interval (0, 1) ? What are the limit points of Q ? What are the
limit points of X = { 1

n : n ∈ N} ?
Exercise 2.29: For any A ⊂ R1, A∼ = A ∪A`.
Exercise 2.30: If A,B ⊂ R1 such that A ⊂ B, then A` ⊂ B`.
Exercise 2.31: For any A,B ⊂ R1, (A ∪B)` = A` ∪B`.
Exercise 2.32: For any A ⊂ R1, (A`)` ⊂ A`. Must (A`)` = A` ?
Exercise 2.33: Let A ⊂ R1, and let p ∈ R1. Then p is a limit point of A

if and only if for each ² > 0, the open interval (p− ², p + ²) contains inÞnitely
many points of A.

Exercise 2.34: Let X ⊂ R1 and let A ⊂ X. If p is an isolated point of X,
then p ∼ A if and only if p ∈ A.
We conclude with a simple theorem that shows that functions are always

continuous at any isolated point of their domain. In other words, continuity is
only in question at points of the domain that are limit points of the domain.

Theorem 2.35: Let X ⊂ R1, let f : X → R1 be a function, and let p be an
isolated point of X. Then f is continuous at p.

Proof: We prove that f is continuous at p by showing that f satisÞes the
deÞnition of continuity at p (which is below Exercise 2.22).
Let A ⊂ X such that p ∼ A. Then, by Exercise 2.34, p ∈ A. Hence,

f(p) ∈ f(A). Thus, by Theorem 2.7, f(p) ∼ f(A). Therefore, we have proved
that f is continuous at p. ¥
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Chapter III: The Notion of Limit

We deÞne and discuss the notion of limit of a function, commonly denoted
in calculus by limx→p f(x). In section 2, we reformulate the notion of limit
completely in terms of arbitrary closeness. In section 3, we use the result in
section 2 to show that our deÞnition of continuity in the preceding chapter is
equivalent to the deÞnition of continuity as presented in calculus. In section
4, we present our rationale for introducing continuity before limits (which is
contrary to common practice). In the Þnal section, we discuss one - sided limits.

1. The DeÞnition of Limit

You encountered limits in calculus. We state the deÞnition for limx→p f(x)
as it is presented in calculus but in a slightly more general way � we replace the
assumption in the calculus deÞnition that f is deÞned at all points x 6= p in an
open interval about p with the less restrictive assumption that p is a limit point
of the domain of f . (See the comments at the end of section 5.)

DeÞnition. Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1 such
that p is a limit point of X. We say that L is the limit of f as x approaches p,
written limx→p f(x) = L, provided that for any given number ² > 0, there is a
number δ > 0 such that for all x ∈ X − {p} such that |x− p| < δ, we have

|f(x)− L| < ².
The deÞnition is complicated. Let us interpret the deÞnition informally as a

game: You give me any error ² > 0, meaning that you will allow the values of f
to deviate from L but only by less than ²; I win the game if for any such allowed
error, I can Þnd a δ - neighborhood of p such that the values of the function f
on the neighborhood with p removed are within the prescribed error ² from L.
It is important in the deÞnition of limit that we did not require p to be a point

of X. Indeed, many important limits are considered when p is not a point of X.
For example, the derivative of a function f at a point p is limh→0

f(p+h)−f(p)
h ;

the expression f(p+h)−f(p)
h deÞnes a function of h for which 0 is not in its domain.

We also note that the requirement that p be a limit point of X is important
in the deÞnition. For if p is not a limit point of X, then any number whatsoever
is a limit of f as x approaches p, even when p ∈ X; this is seen by taking
δ = dist(p,X − {p}) (try this for any function f : N → R1 and any choice of
L). What we are suggesting here is that the requirement that p be a limit point
of X makes the limit unique (if the limit exists); we now prove that this is the
case.

Theorem 3.1: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X. If limx→p f(x) = L1 and limx→p f(x) = L2,
then L1 = L2.
Proof: Suppose by way of contradiction that L1 6= L2. Let ² =

|L1−L2|
2 ,

and note that ² > 0. Since limx→p f(x) = Li for each i = 1 and 2, there exist
δ1, δ2 > 0 satisfying the following for each i = 1 and 2 :
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(*) For all x ∈ X − {p} such that |x− p| < δi, |f(x)− Li| < ².
Now, let δ = min{δ1, δ2}, and note that δ > 0. Thus, since p ∼ X − {p}, we

have by Theorem 2.5 that

(p− δ, p+ δ) ∩ (X − {p}) 6= ∅.
Hence, there is a point x0 ∈ (p − δ, p + δ) ∩ (X − {p}). Thus, since δ ≤ δi for
each i = 1 and 2, we see from (*) that

|f(x0)− Li| < ² for each i.
Therefore,

|L1 − L2| = |L1 − f(x0) + f(x0)− L2| ≤ |L1 − f(x0)|+ |f(x0)− L2| < 2².

Thus, since ² = |L1−L2|
2 , |L1 − L2| < |L1 − L2|; however, this is impossible. ¥

It is convenient to have the following general agreement: When we consider
an algebraic expression as being a function, we assume, often without saying so,
that the domain of the function is the largest set of real numbers for which the
expression makes sense (unless we say otherwise).
In the example below, we illustrate the thought process for computing limits

of speciÞc functions. The thought process is important even though we establish
general theorems for evaluating limits in the next chapter.

Example 3.2: limx→7
1
x−4 =

1
3 . To prove this, let ² > 0. We want to Þnd

a δ > 0 such that for all x ∈ R1 − {4} (which is the understood domain of the
function f(x) = 1

x−4),

(*)
¯̄̄

1
x−4 − 1

3

¯̄̄
< ² when x 6= 7 and |x− 7| < δ.

We start our search for δ by writing
¯̄̄

1
x−4 − 1

3

¯̄̄
in a way that tells us how its

value depends on |x− 7| :
(1)

¯̄̄
1

x−4 − 1
3

¯̄̄
=
¯̄̄

3−(x−4)
3(x−4)

¯̄̄
=
¯̄̄
−x+7

3(x−4)

¯̄̄
= |x−7|

3|x−4| .

Next, we make an initial restriction on δ so that we can bound the size of
the last expression in (1) when |x− 7| < δ. This means we want δ small enough
so that if |x− 7| < δ, then x is bounded away from 4. This happens for any
Þxed δ < 3. So, we assume temporarily that δ ≤ 1 and, of course, that δ > 0.
(We will see when we make our Þnal choice for δ why we do not simply take
δ = 1 here).
Now, we examine what our assumption |x− 7| < δ ≤ 1 says about the size

of
¯̄̄

1
x−4 − 1

3

¯̄̄
. Since |x− 7| < δ ≤ 1, we see that x > 6 and, thus, 2 < |x− 4|.

Hence,

1
|x−4| <

1
2 .
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Thus, |x−7|
3|x−4| <

|x−7|
6 . Therefore, by (1), we have that

(2)
¯̄̄

1
x−4 − 1

3

¯̄̄
< |x−7|

6 when 0 < δ ≤ 1.
We now make our Þnal choice for δ and verify that our choice works. Note

that |x−7|
6 < ² if |x− 7| < 6², and let

δ = min{1, 6²}.

Then, for all x ∈ R1 − {4} such that x 6= 7 and |x− 7| < δ, we have¯̄̄
1

x−4 − 1
3

¯̄̄ (2)
< |x−7|

6 < 6²
6 = ².

This proves (*).

Exercise 3.3: Prove that limx→1
x
x−3 =

−1
2 .

Exercise 3.4: Prove that limx→2 4x+ 5 = 13.

Exercise 3.5: Prove that limx→4
x−4

x2−2x−8 =
1
6 .

Exercise 3.6: Prove that limx→p |x| = |p|.
Exercise 3.7: Prove that limx→p

√
x =

√
p for all p ≥ 0. (Note: f(x) = √x

is a function on [0,∞) by Theorem 1.25.)

Exercise 3.8: Prove that limx→−3
|x+3|
x+3 does not exist.

Exercise 3.9: Assume that limx→p f(x) =
√
82−9, where p is a limit point

of the domain X of f . Prove that there is a δ > 0 such that f(x) > 0 for all
x ∈ X − {p} such that |x− p| < δ. If p ∈ X, must f(p) > 0 ?
Exercise 3.10: Give an example of functions f, g : R1 → R1 such that

limx→0 f(x) = 0, limx→0 g(x) = 0, and limx→0
f(x)
g(x) = 23.

2. Limits in Terms of Arbitrary Closeness

We reformulate the deÞnition of limit entirely in terms of the notion arbitrary
closeness. We use the reformulation in the next section.

Theorem 3.11: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X. Then limx→p f(x) = L if and only if whenever
A ⊂ X such that p ∼ A− {p}, then L ∼ f(A− {p}).
Proof: Assume that limx→p f(x) = L. Let A ⊂ X such that p ∼ A − {p}.

We show that L ∼ f(A − {p}) by using Theorem 2.5. Let ² > 0. Then, since
limx→p f(x) = L, there exists δ > 0 such that for all x ∈ X − {p} such that
|x− p| < δ, we have

|f(x)− L| < ².
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Since p ∼ A− {p}, there is a point x0 ∈ (p− δ, p+ δ) ∩ (A− {p}) by Theorem
2.5. Hence, |x0 − p| < δ and x0 ∈ X − {p}. Thus, |f(x0)− L| < ²; also, since
x0 ∈ A− {p}, f(x0) ∈ f(A− {p}). Hence,

f(x0) ∈ (L− ²,L+ ²) ∩ f(A− {p}).

We have shown that for any ² > 0, (L− ², L+ ²) ∩ f(A− {p}) 6= ∅. Therefore,
by Theorem 2.5, L ∼ f(A− {p}).
Conversely, assume that limx→p f(x) 6= L. Then there exists ² > 0 such

that for every δ > 0, there is a point xδ ∈ X − {p} such that |xδ − p| < δ and
|f(xδ)− L| ≥ ². In other words, the following set is nonempty for each δ > 0 :

Aδ = {x ∈ X − {p} : |x− p| < δ and |f(x)− L| ≥ ²}.

Now, let A = ∪δ>0Aδ. Since Aδ 6= ∅ for each δ > 0, we see that
(p− δ, p+ δ) ∩A 6= ∅ for each δ > 0.

Hence, by Theorem 2.5, p ∼ A. Thus, since p /∈ A, we have that
(1) p ∼ A− {p}.

Since |f(x)− L| ≥ ² for all x ∈ A,
(L− ², L+ ²) ∩ f(A) = ∅,

which gives (L−², L+ ²)∩f(A−{p}) = ∅. Thus, by Theorem 2.5, we have that
(2) L 6∼ f(A− {p}).

Finally, we see from (1) and (2) that the condition in the second part of our
theorem is false for the set A we have deÞned. ¥

3. The Limit Characterization of Continuity

We show that our deÞnition of continuity in the preceding chapter is equiva-
lent to the deÞnition of continuity as presented in calculus. In other words, the
standard deÞnition of continuity (in terms of limits) is, for us, a theorem. The
reason for this seemingly strange development is discussed in section 4.

Theorem 3.12: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X
such that p is a limit point of X. Then f is continuous at p if and only if
limx→p f(x) = f(p).
Proof: Assume that f is continuous at p. Then, for any A ⊂ X such that

p ∼ A − {p}, we see from our deÞnition of continuity that f(p) ∼ f(A− {p}).
Therefore, by Theorem 3.11, limx→p f(x) = f(p).
Conversely, assume that f is not continuous at p. Then, by our deÞnition of

continuity, there exists A ⊂ X such that p ∼ A but f(p) 6∼ f(A).
Since f(p) 6∼ f(A), f(p) /∈ f(A) (by Theorem 2.7); hence, p /∈ A, which

shows that A = A − {p}. Thus, since p ∼ A and f(p) 6∼ f(A), we have that
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p ∼ A−{p} and f(p) 6∼ f(A−{p}). Therefore, limx→p f(x) 6= f(p) by Theorem
3.11. ¥
The theorem we just proved characterizes continuity only at limit points of

X. The following corollary completes the characterization.

Corollary 3.13: Let X ⊂ R1, let f : X → R1 be a function, and let
p ∈ X. Then f is continuous at p if and only if p is an isolated point of X or
limx→p f(x) = f(p) when p is a limit point of X.
Proof: Assume that f is continuous at p and that p is not an isolated point

of X. Then p is a limit point of X and, hence, limx→p f(x) = f(p) by Theorem
3.12. This proves that continuity at p implies the second conditions in the
corollary.
Conversely, if p is an isolated point of X, then f is continuous at p by

Theorem 2.35. If p is a limit point of X and if limx→p f(x) = f(p), then f is
continuous at p by Theorem 3.12. ¥
Exercise 3.14: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ X.

Then f is continuous at p if and only if for any open interval I such that f(p) ∈ I,
there is an open interval J such that p ∈ J and f(J) ⊂ I.

4. Limits in Terms of Continuity

In all calculus books, limits are deÞned before continuity and continuity is
then deÞned in terms of limits. In our presentation, we have reversed the order
for introducing these ideas. The reason we have done this is our realization that
in trying to understand limits, you are really trying to understand continuity;
the theorem below explains this. It is my opinion that continuity is simpler and
easier to understand than limits. Thus, why not introduce continuity Þrst and
use it as a vehicle for building up intuition for the more subtle idea of limits.
In general terms, the following theorem says that limx→p f(x) exists if and

only if the function f can be deÞned or redeÞned at p so that the resulting
function is continuous at p.

Theorem 3.15: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X. Then limx→p f(x) = L if and only if the
function g : X ∪ {p}→ R1 given by

g(x) =

(
f(x) , if x ∈ X
L , if x = p

is continuous at p.

Proof: Note that g(x) = f(x) for all x ∈ X − {p}. Thus, we see eas-
ily from the deÞnition of limit (section 1) that limx→p f(x) = L if and only
if limx→p g(x) = L. Thus, since L = g(p), limx→p f(x) = L if and only if
limx→p g(x) = g(p). Therefore, by Theorem 3.12, limx→p f(x) = L if and only
if g is continuous at p. ¥
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5. One - sided Limits

A point in the real line can be �approached� from the left and from the
right. This simple observation leads us to a way to break limits down into two
cases � limits from the left and limits from the right. Considering the two cases
separately is sometimes helpful in computing limits or in showing limits do not
exist. This is especially true when a function is deÞned by a formula that changes
at a point (the change can happen explicitly or implicitly � compare Exercises
3.17 and 3.18). We prove a theorem that can be applied in such situations.
We note the deÞnition of the restriction of a function. Let X and Y be sets,

and let f : X → Y be a function. For any set X0 ⊂ X, the restriction of f
to X0, denoted by f |X0, is the function from X0 to Y deÞned in the following
simple way:

(f |X0)(x0) = f(x0), all x0 ∈ X.
We deÞne one - sided limits:

DeÞnition. Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a limit point of X ∩ (−∞, p]. We say L is the limit of f as
x approaches p from the left, or the left - hand limit of f as x approaches p,
written limx→p− f(x) = L, provided that

limx→p(f |X ∩ (−∞, p])(x) = L.
Similarly, assuming that p is a limit point of X ∩ (p,∞], we say L is the limit of
f as x approaches p from the right, or the right - hand limit of f as x approaches
p, written limx→p+ f(x) = L, provided that

limx→p(f |X ∩ [p,∞))(x) = L.
The following terminology is descriptive and will help make statements suc-

cinct: Let X ⊂ R1 and let p ∈ R1; we call p a two - sided limit point of X
provided that p is a limit point ofX∩(−∞, p] and p is a limit point ofX∩[p,∞).
Theorem 3.16: Let X ⊂ R1, let f : X → R1 be a function, and let p ∈ R1

such that p is a two - sided limit point of X. Then limx→p f(x) = L if and only
if

limx→p− f(x) = L = limx→p+ f(x).

Proof: Assume that limx→p f(x) = L. Let ² > 0. Then, by the deÞnition of
limit, there exists δ > 0 such that for all x ∈ X − {p} such that |x− p| < δ,

|f(x)− L| < ².
Therefore, it is clear that |f(x)− L| < ² for all x ∈ X ∩ (−∞, p), as well as for
all x ∈ X ∩ (p,∞), such that |x− p| < δ. This proves that

limx→p− f(x) = L = limx→p+ f(x).
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Conversely, assume that limx→p− f(x) = L = limx→p+ f(x). Let ² > 0.
Since limx→p− f(x) = L and since (by deÞnition)

limx→p− f(x) = limx→p(f |X ∩ (−∞, p])(x),

there exists δ1 > 0 such that for all x ∈ X ∩ (−∞, p) such that |x− p| < δ1,

|(f |X ∩ [p,∞])(x)− L| < ²;

similarly, since limx→p+ f(x) = L, there exists δ2 > 0 such that for all x ∈
X ∩ (p,∞) such that |x− p| < δ2,

|(f |X ∩ [p,∞])(x)− L| < ².

Therefore, letting δ = min{δ1, δ2}, we see that for all x ∈ X − {p} such that
|x− p| < δ,

|f(x)− L| < ².

This proves that limx→p f(x) = L (note: for us to conclude that limx→p f(x) =
L, the deÞnition of limit in section 1 requires us to know that p is a limit point
of X; this follows from Exercise 2.30 since p is a limit point of X ∩ (−∞, p]). ¥
We conclude with comments about limits and one - sided limits. When we

deÞned limx→p f(x) in section 1, we did not make the common assumption that
the point p lies in an open interval contained in the domain of f . Thus, for
example, we can properly write limx→p

√
x even when p = 0, whereas common

practice forces authors to write limx→0+

√
x. In general, when the domain of f

is an interval, we write limx→p f(x) whether p is an end point of the interval or
not, whereas other authors are forced to make the distinction. In this situation,
we consider the distinction between limits and one - sided limits a distraction �
a nuisance � rather than substantive. On the other hand, there are situations in
which it is important to consider one - sided limits. By deÞning limits as we did,
all our general theorems about limits in the next chapter automatically hold for
their one - sided analogues.

Exercise 3.17: Find limx→3 f(x) (if the limit exists) when

f(x) =

(
x+ 1 , if x ≤ 3
−4x+ 16 , if x > 3.

Exercise 3.18: Find limx→4
|x−4|
x−4 (if the limit exists).

Exercise 3.19: Find limx→0
x2

|x| (if the limit exists).

Exercise 3.20: Find limx→1
x−1

|x2+x−2| (if the limit exists).
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Chapter IV: Limit Theorems

We prove theorems about limits of sums, differences, products and quotients
of functions whose limits separately exist. We obtain general results about
continuity as corollaries; as consequences, we show that all polynomials are
continuous and that all rational functions are continuous (on their domains).
We then prove theorems about limits of compositions of functions, including the
Substitution Theorem. Next, we prove the simple but useful Squeeze Theorem.
Finally, we brießy discuss limits of sequences.
All our theorems concerning limits hold for one - sided limits (see the com-

ments at the end of the last section of Chapter III). We keep this in mind rather
than stating the one - sided versions of the theorems.

1. Limits for Sums and Differences

We prove theorems about limits and continuity of sums and differences of
two functions. We then extend the sum theorems to Þnitely many functions.

DeÞnition. Let X ⊂ R1, and let f, g : X → R1 be functions. The sum of
f and g is the function f + g : X → R1 deÞned by

(f + g)(x) = f(x) + g(x) for all x ∈ X.
Similarly, the difference of f and g is the function f − g : X → R1 deÞned by

(f − g)(x) = f(x)− g(x) for all x ∈ X.
We Þrst prove that the limit of the sum of two functions whose limits sepa-

rately exist is the sum of the limits of the two functions. Note that this shows,
in particular, that the limit of the sum exists (provided that the separate limits
exist).

Theorem 4.1: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ R1

such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M ,

then limx→p(f + g)(x) = L+M .
Proof: Let ² > 0. We want to Þnd a δ > 0 such that for all x ∈ X − {p}

such that |x− p| < δ, |(f + g)(x)− (L+M)| < ².
The clue to how to Þnd δ comes from rewriting |(f + g)(x)− (L+M)| so

that expressions related to different assumptions in the theorem are grouped
together:

|(f + g)(x)− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |.

Thus, we want to Þnd a δ > 0 such that |f(x)− L| < ²
2 and |g(x)−M | < ²

2 for
all x ∈ X − {p} such that |x− p| < δ. It is fairly easy to Þnd such a δ; we now
prove the theorem using what we have just observed as a guide (a cheat sheet!).
Since limx→p f(x) = L, there is a δ1 > 0 such that for all x ∈ X − {p} such

that |x− p| < δ1,
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|f(x)− L| < ²
2 .

Since limx→p g(x) = M , there is a δ2 > 0 such that for all x ∈ X − {p} such
that |x− p| < δ2,

|g(x)−M | < ²
2 .

Let δ = min{δ1, δ2}. Then δ > 0 and for all x ∈ X − {p} such that |x− p| < δ,
|(f + g)(x)− (L+M)| ≤ |f(x)− L|+ |g(x)−M | < ²

2 +
²
2 = ². ¥

Our next theorem is the analogue of Theorem 4.1 for the difference of two
functions.

Theorem 4.2: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ R1

such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M ,

then limx→p(f − g)(x) = L−M .
Exercise 4.3: Prove Theorem 4.2.

Corollary 4.4: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ X.
If f and g are continuous at p, then f + g and f − g are continuous at p.
Proof: The corollary follows immediately from Theorem 4.1 and Theorem

4.2 using Corollary 3.13. ¥
We extend Theorem 4.1 to the sum of Þnitely many functions. The sum of

Þnitely many functions is deÞned inductively: Having already deÞned the sum
of two functions, assume inductively that we have deÞned the sum of n functions
(with the same domain) for some natural number n ≥ 2; then, for any n + 1
functions with the same domain, deÞne f1 + · · ·+ fn + fn+1 to be the function
(f1 + · · ·+ fn) + fn+1 (see Theorem 1.20).

Theorem 4.5: Let X ⊂ R1, let fi : X → R1 be a function for each
i = 1, 2, ..., n , and let p ∈ R1 such that p is a limit point of X. If

limx→p fi(x) = Li for each i = 1, 2, ..., n ,

then limx→p(f1 + f2 + · · ·+ fn)(x) = L1 + L2 + · · ·+ Ln.
Proof: We prove the theorem by induction on the number n of functions.

The Induction Principle is Theorem 1.20.
The theorem is obviously true when n = 1.
Assume inductively that for some natural number k, the theorem is true for

any k functions.
Let f1, f2, ..., fk+1 be any k + 1 functions satisfying the assumptions in the

theorem; that is, for each i = 1, 2, ..., k + 1, fi is a function from X to R1 such
that limx→p fi(x) = Li. Then, by our inductive assumption,
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limx→p(f1 + f2 + · · ·+ fk)(x) = L1 + L2 + · · ·+ Lk.

Thus, since limx→p fk+1(x) = Lk+1, Theorem 4.1 gives us that

limx→p((f1 + f2 + · · ·+ fk) + fk+1)(x) = (L1 + L2 + · · ·+ Lk) + Lk+1.

Therefore, by our deÞnition of Þnite sums of functions,

limx→p(f1 + f2 + · · ·+ fk + fk+1)(x) = L1 + L2 + · · ·+ Lk + Lk+1.

This proves the theorem is true for k + 1 functions under the assumption that
it is true for k functions.
The theorem now follows from the Induction Principle. ¥
Corollary 4.6: Let X ⊂ R1, and let p ∈ X. If each of Þnitely many

functions is continuous at p, then the sum function is continuous at p.

Proof: Apply Theorem 4.5 and Corollary 3.13. ¥
Exercise 4.7: Give an example of two functions f, g : R1 → R1 such that

for some point p ∈ R1, limx→p(f+g)(x) exists but limx→p f(x) and limx→p g(x)
do not exist.

Exercise 4.8: Are there two functions f, g : R1 → R1 such that for some
point p ∈ R1, limx→p(f + g)(x) and limx→p f(x) both exist but limx→p g(x)
does not exist ?

2. Limits for Products

We prove theorems about limits and continuity of products of Þnitely many
functions.

DeÞnition. Let X ⊂ R1, and let f, g : X → R1 be functions. The product
of f and g is the function f · g : X → R1 deÞned by

(f · g)(x) = f(x)g(x) for all x ∈ X.

We Þrst prove that the limit of the product of two functions whose limits
separately exist is the product of the limits of the two functions.

Theorem 4.9: Let X ⊂ R1, let f, g : X → R1 be functions, and let p ∈ R1

such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M ,

then limx→p(f · g)(x) = LM .
Proof: Let ² > 0. We want to Þnd a δ > 0 such that for all x ∈ X − {p}

such that |x− p| < δ, |(f · g)(x)− LM | < ².
As in the proof of Theorem 4.1, the clue for Þnding δ comes from rewriting

|(f · g)(x)− LM | so that expressions related to different assumptions in the
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theorem are grouped together. To group the proper expressions, we employ the
trick of subtracting and adding an expression, namely, Lg(x) :

|(f · g)(x)− LM | = |f(x)g(x)− Lg(x) + Lg(x)− LM |
≤ |g(x)(f(x)− L)|+ |L(g(x)−M)|
= |g(x)| |f(x)− L|+ |L| |g(x)−M |.

Thus, we want to Þnd a δ > 0 such that for all x ∈ X−{p} such that |x− p| < δ,
(*) |g(x)| |f(x)− L| < ²

2 and (**) |L| |g(x)−M | < ²
2 .

We show how to Þnd such a δ as follows.
We Þrst bound |g(x)| : Since limx→p g(x) = M , there is a δ1 > 0 such that

for all x ∈ X − {p} such that |x− p| < δ1, |g(x)−M | < 1; hence, by Exercise
1.29,

¯̄|g(x)|− |M |¯̄ < 1. Thus, we have that
(1) |g(x)| < 1 + |M | for all x ∈ X − {p} such that |x− p| < δ1.

Next, with (1) and (*) in mind, we note that since limx→p f(x) = L, there
is a δ2 > 0 such that

(2) |f(x)− L| < ²
2(1+|M|) for all x ∈ X − {p} such that |x− p| < δ2.

Then we see from (1) and (2) that min{δ1, δ2} is a δ that makes (*) hold for all
x ∈ X − {p} such that |x− p| < δ.
Next, we Þnd a δ3 > 0 that makes (**) hold for all x ∈ X − {p} such that

|x− p| < δ3. Our immediate inclination is to use that limx→p g(x) = M to
choose δ3 > 0 such that |g(x)−M | < ²

2|L| for the relevant points x, hence
(**) holds. However, this obviously does not work when L = 0; nevertheless, if
L = 0, then any δ3 > 0 makes (**) hold for the relevant points x. Thus, we can
take two cases in deÞning δ3 � the case when L 6= 0 and the case when L = 0 �
or we can use the trick of considering the positive number ²

2(1+|L|) . We choose
the latter: Since limx→p g(x) =M , there is a δ3 > 0 such that

(3) |g(x)−M | < ²
2(1+|L|) for all x ∈ X − {p} such that |x− p| < δ3.

Finally, let δ = min{δ1, δ2, δ3}. Then δ > 0 and for all x ∈ X − {p} such
that |x− p| < δ, we see using (1), (2) and (3) that

|(f · g)(x)− LM | ≤ |g(x)| |f(x)− L|+ |L| |g(x)−M |
< (1 + |M |) ²

2(1+|M|) + |L| ²
2(1+|L|) <

²
2 +

²
2 = ². ¥

Corollary 4.10: LetX ⊂ R1, let f, g : X → R1 be functions, and let p ∈ X.
If f and g are continuous at p, then f · g is continuous at p.
Proof: Simply apply Theorem 4.9 and Corollary 3.13. ¥
We extend Theorem 4.9 to the product of Þnitely many functions. The

product of Þnitely many functions is deÞned inductively in the same way that
we deÞned the sum of Þnitely many functions in the preceding section.

Theorem 4.11: Let X ⊂ R1, let fi : X → R1 be a function for each
i = 1, 2, ..., n , and let p ∈ R1 such that p is a limit point of X. If

36



limx→p fi(x) = Li for each i = 1, 2, ..., n ,

then limx→p(f1 · f2· · · · ·fn)(x) = L1L2 · · ·Ln.
Exercise 4.12: Prove Theorem 4.11.

Corollary 4.13: Let X ⊂ R1, and let p ∈ X. If each of Þnitely many
functions is continuous at p, then the product function is continuous at p.

Proof: Apply Theorem 4.11 and Corollary 3.13. ¥
Exercise 4.14: Give an example of two functions f, g : R1 → R1 such that

for some point p ∈ R1, limx→p(f · g)(x) exists but limx→p f(x) and limx→p g(x)
do not exist.

Exercise 4.15: Are there two functions f, g : R1 → R1 such that for some
point p ∈ R1, limx→p(f · g)(x) and limx→p f(x) both exist but limx→p g(x) does
not exist ?

3. Continuity of Polynomials

We are now in a position to easily prove the important fact that all polyno-
mials are continuous.

DeÞnition. A polynomial is a function f that can be written in the form

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnxn, all x ∈ R1,

where c0, c1, ..., cn are constants.
The constants c0, c1, ..., cn are called the coefficients of the polynomial f ; ci

is called the ith coefficient of f . If cn 6= 0, we say that f is a polynomial of
degree n.

Note that we say f is a polynomial if it can be written in the form indicated.
Thus, for example, the function f deÞned by f(x) = 3(x − 4)(x6 + 5x2)3 is a
polynomial.
We use the following functions in the proof that polynomials are continuous:

A constant function is a function all of whose values are the same (i.e., a poly-
nomial of degree 0); the identity function is the function f given by f(x) = x
for all x ∈ R1.

Theorem 4.16: All polynomials are continuous on R1.

Proof: Any constant function and the identity function are continuous, as
we showed in Example 2.23. Thus, for any Þxed real number c and for any
Þxed natural number k, the function f(x) = cxk (all x ∈ R1) is continuous by
Corollary 4.13. Our theorem now follows from Corollary 4.6. ¥
Theorems really make life easy: Can you imagine proving with epsilons and

deltas, without theorems about limits, that the function f given by f(x) =
6x89 + 168

31 x
25 −√17x13 + 49 is continuous?
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Exercise 4.17: At which real numbers p is the function f given by f(x) =
8x3−64
2(x−2) continuous ?

Exercise 4.18: Is the function f given by f(x) = x2−x
x a polynomial ?

4. Limits for Quotients

We prove theorems about limits and continuity of quotients of two functions.

DeÞnition. Let X ⊂ R1, and let f, g : X → R1 be functions such that
g(x) 6= 0 for any x ∈ X. The quotient of f and g is the function f

g : X → R1

deÞned by

f
g (x) =

f(x)
g(x) for all x ∈ X.

We prove that the limit of the quotient of two functions whose limits sepa-
rately exist is the quotient of the limits of the two functions provided, of course,
that the limit of the function in the denominator is not zero. When the limit
of the denominator is zero, the limit of the quotient may or may not exist:
limx→0

1
x does not exist and limx→0

x
x = 1.

We prove a lemma about reciprocals; then our theorem about limits of quo-
tients follows easily using the theorem about limits of products (Theorem 4.9).

Lemma 4.19: Let X ⊂ R1, let g : X → R1 be a function such that g(x) 6= 0
for any x ∈ X, and let p ∈ R1 such that p is a limit point of X. If

limx→p g(x) =M 6= 0,

then limx→p 1
g (x) =

1
M .

Proof: Let ² > 0. We want to Þnd a δ > 0 such that for all x ∈ X − {p}
such that |x− p| < δ,

¯̄̄
1
g (x)− 1

M

¯̄̄
< ².

As we did in proofs of previous theorems of this type, let us Þrst examine
what is involved in Þnding δ. We rewrite

¯̄̄
1
g (x)− 1

M

¯̄̄
so that the expression that

we know can be made small, namely |g(x)−M |, is by itself (and hope that we
can take care of the rest):¯̄̄

1
g (x)− 1

M

¯̄̄
=
¯̄̄

1
g(x) − 1

M

¯̄̄
=
¯̄̄
M−g(x)
Mg(x)

¯̄̄
= 1

|M|
1

|g(x)| |g(x)−M |.

Hence, we want to Þnd a δ > 0 such that for all x ∈ X−{p} such that |x− p| < δ,
1
|M|

1
|g(x)| |g(x)−M | < ².

We now proceed with the proof, using what we have written as a guide.
Since limx→p g(x) =M , we see easily using Exercise 1.29 that

limx→p |g(x)| = |M |.
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Thus, since M 6= 0, there is a δ1 > 0 such that

(1) |g(x)| > |M|
2 for all x ∈ X − {p} such that |x− p| < δ1.

Since M 6= 0, M
2²

2 > 0 (use of the quantity M2²
2 comes from (1) and the

observations we referred to as a guide). Thus, since limx→p g(x) = M , there is
a δ2 > 0 such that

(2) |g(x)−M | < M2²
2 for all x ∈ X − {p} such that |x− p| < δ2.

Now, let δ = min{δ1, δ2}. Then δ > 0 and for all x ∈ X − {p} such that
|x− p| < δ, we see from (1) and (2) that¯̄̄

1
g (x)− 1

M

¯̄̄
= 1

|M|
1

|g(x)| |g(x)−M | < 1
|M|

2
|M|

M2²
2 = ². ¥

Theorem 4.20: Let X ⊂ R1, let f, g : X → R1 be functions such that
g(x) 6= 0 for any x ∈ X, and let p ∈ R1 such that p is a limit point of X. If

limx→p f(x) = L and limx→p g(x) =M 6= 0,

then limx→p fg (x) =
L
M .

Proof: Observe that f
g = f · 1

g ; then use Lemma 4.19 to apply Theorem 4.9
to the product f · 1

g . ¥

Corollary 4.21: Let X ⊂ R1, let f, g : X → R1 be functions such that
g(x) 6= 0 for any x ∈ X, and let p ∈ X. If f and g are continuous at p, then f

g
is continuous at p.

Proof: Use Theorem 4.20 and Corollary 3.13. ¥
Exercise 4.22: Give an example of two functions f, g : R1 → R1, g(x) 6=

0 for all x ∈ R1, such that for some point p ∈ R1, limx→p fg (x) exists but
limx→p f(x) and limx→p g(x) do not exist.

Exercise 4.23: Are there two functions f, g : R1 → R1, g(x) 6= 0 for all
x ∈ R1, such that for some point p ∈ R1, limx→p fg (x) and limx→p f(x) both
exist but limx→p g(x) does not exist ?

Exercise 4.24: Are there two functions f, g : R1 → R1, g(x) 6= 0 for all
x ∈ R1, such that for some point p ∈ R1, limx→p fg (x) and limx→p g(x) both
exist but limx→p f(x) does not exist ?

5. Continuity of Rational Functions

DeÞnition. A rational function is a function that can be written as a
quotient of two polynomials.

The following theorem is trivial to prove in view of what we have already
done.

Theorem 4.25: Every rational function is continuous on its domain.
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Proof: By Theorem 4.16, polynomials are continuous on R1. Therefore, our
theorem follows from Corollary 4.21. ¥
Exercise 4.26: Is the function f given by f(x) = 1

( 1
x )
(all x 6= 0) a rational

function ?

6. Compositions of Functions and Limits

We prove a theorem about the continuity of compositions of functions and
a generalization concerning limits of compositions.

DeÞnition. Let X, Y , and Z be sets, and let f : X → Y and g : Y → Z be
functions. The composition f followed by g is the function from X to Z denoted
by g ◦ f and deÞned by letting

(g ◦ f)(x) = g(f(x)), all x ∈ X.
We often use the phrase the composition of f and g when the context makes it
clear (or unimportant) which function is Þrst.3

Perhaps you have never drawn the graph of a composition of two speciÞc
functions. If not, try the following exercise:

Exercise 4.27: Let f, g : [0, 1]→ [0, 1] be deÞned by

f(x) =

½
x+ 1

2 , if 0 ≤ x ≤ 1
2−2x+ 2 , if 1

2 ≤ x ≤ 1
, g(x) =

½ −x+ 1
2 , if 0 ≤ x ≤ 1

2
2x− 1 , if 1

2 ≤ x ≤ 1.
Draw the graphs of f ◦ f , g ◦ f and f ◦ g.
Our Þrst theorem concerns the continuity of the composition of two func-

tions. The theorem is simple to prove using only the deÞnition of continuity
(above Example 2.23).

Theorem 4.28: Let X,Y,Z ⊂ R1, and let f : X → Y and g : Y → Z
be functions. If f is continuous at p and g is continuous at f(p), then g ◦ f is
continuous at p.

Proof: Let A ⊂ X such that p ∼ A. Then, by the deÞnition of continuity,
f(p) ∼ f(A). Thus, since g is continuous at f(p), g(f(p)) ∼ g(f(A)). Hence,
we have proved that for any A ⊂ X such that p ∼ A,

(g ◦ f)(p) ∼ (g ◦ f)(A).
Therefore, g ◦ f is continuous at p. ¥
Our next theorem is called the Substitution Theorem because it says that un-

der certain conditions, limx→p(g◦f)(x) can be found by substituting limx→p f(x)
3 In the deÞnition of composition, the order of the functions is important: f ◦ g is not

deÞned on all of Y when g(Y ) 6⊂ X; furthermore, even if X = Y = Z, g ◦ f is almost always
different from f ◦ g.
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