
5. Intermediate Value Property for Derivatives

When we sketched graphs of speciÞc functions, we determined the sign of a
derivative or a second derivative on an interval (complementary to the critical
points) using the following procedure: We checked the sign at one point in the
interval and then appealed to the Intermediate Value Theorem (Theorem 5.2)
to conclude that the sign was the same throughout the interval. This works Þne
as long as the derivatives are continuous. Can a derivative fail to be continuous?
If so, is there a systematic way to check signs for such a derivative in order to
apply various tests easily? (I am referring to the tests in Theorem 10.19 and
Corollary 10.31.)
The answer to the Þrst question is yes, a derivative can fail to be continuous.

The answer to the second question is that the answer to the Þrst question is
irrelevant: We can determine the sign of a derivative on an interval the way as
we always did � by checking the sign at only one point of the interval � whether
the derivative is continuous or not! In other words, derivatives do not change
sign on an interval on which they are deÞned without having value zero at some
point of the interval.
We give an example that veriÞes our answer to the Þrst question, and we

give a theorem that explains our answer to the second question.

Example 10.48: We give an example of a differentiable function f : R1 →
R1 such that its derivative is not continuous. DeÞne f by

f(x) =

½
x2 sin( 1

x) , if x 6= 0
0 , if x = 0.

Using various results in Chapter VII and Theorem 8.20, we see that f is
differentiable at every point x 6= 0 and that

f 0(x) = x2[cos( 1
x)](

−1
x2 ) + 2x sin(

1
x) = 2x sin(

1
x)− cos( 1

x), x 6= 0.
furthermore, we see that f is differentiable at x = 0 as follows: For x 6= 0,

0 ≤
¯̄̄
f(x)−f(0)

x−0

¯̄̄
=
¯̄
x sin( 1

x)
¯̄ ≤ |x|;

thus, since limx→0 |x| = 0, the Squeeze Theorem (Theorem 4.34) applies to give
us that

limx→0

¯̄̄
f(x)−f(0)

x−0

¯̄̄
= 0.

This proves that f 0(0) = 0 (recall Exercise 6.10).
Finally, we show that f 0 is not continuous at 0 by showing that limx→0 f

0(x)
does not exist. Recall that

f 0(x) = x2[cos( 1
x)](

−1
x2 ) + 2x sin(

1
x) = 2x sin(

1
x)− cos( 1

x), x 6= 0.
Note that
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0 ≤ ¯̄2x sin( 1
x)
¯̄ ≤ |2x|, x 6= 0;

thus, since limx→0 |2x| = 0, we have by the Squeeze Theorem (Theorem 4.34)
that

limx→0 2x sin(
1
x) = 0.

Hence, if limx→0 f
0(x) existed, then we would have

limx→0 cos(
1
x)

4.2
= limx→0 2x sin(

1
x)− limx→0 f

0(x),

which is impossible (since, as is clear, limx→0 cos(
1
x) does not exist).

Next, we show why, even though derivatives may not be continuous, we can
determine the sign of a derivative on an interval complementary to the critical
points by checking the sign at only one point of the interval. The reason is
simple enough � derivatives, continuous or not, satisfy the conclusion to the
Intermediate Value Theorem (Theorem 5.2). We prove this in Theorem 10.50.
First, we introduce relevant terminology and discuss the notion we deÞne. (The
terminology carries the name of the French mathematician G. Darboux (1842 -
1917) who proved the theorem we will prove.)

DeÞnition: Let I be an interval, and let f : I → R1 be a function. We say
that f is a Darboux function provided that for any two points p, q ∈ I and any
point y between f(p) and f(q), there is a point x between p and q such that
f(x) = y (i.e., for any subinterval J of I, f(J) is an interval).

There are fairly simple functions that are Darboux but not continuous: For
example, let

f(x) =

½
sin( 1

x) , if x 6= 0
0 , if x = 0.

Actually, the derivative f 0 of the function in Example 10.48 is another ex-
ample of a discontinuous Darboux function. This fact about the function in
Example 10.48 illustrates the content of the theorem we will prove: Any deriva-
tive on an interval is a Darboux function.
We use the following lemma in the proof of our theorem.

Lemma 10.49: Let f be a continuous function on an interval I , and let C
denote the set of all slopes of chords joining any two points on the graph of f ;
that is,

C = { f(s)−f(r)
s−r : s, r ∈ I and s 6= r}.

Then C is an interval.

Proof: Fix p ∈ C, say

p = f(a)−f(b)
a−b , a < b.
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We show that there is an interval in C joining p to any other point of C. To
this end, let z ∈ C, say

z = f(u)−f(v)
u−v , u < v.

Note that since a− b < 0 and u− v < 0, [1− t](a− b) + t(u− v) 6= 0 for all
t ∈ [0, 1]; in anticipation of what comes next, we write this as follows:

[1− t]a+ tu− [1− t]b− tv 6= 0 for all t ∈ [0, 1].

Hence, the following formula deÞnes a function σ : [0, 1]→ C such that σ(0) = p
and σ(1) = z as follows:

σ(t) = f([1−t]a+tu)−f([1−t]b+tv)
[1−t]a+tu−[1−t]b−tv , all t ∈ [0, 1].

By the continuity of f and by various theorems about continuity in Chapter
IV (notably, 4.4, 4.21 and 4.28), we see that σ is continuous. Thus, by the
Intermediate Value Theorem (Theorem 5.2), σ([0, 1]) is an interval. Therefore,
since σ(0) = p and σ(1) = z, we have proved that p and any other point z of C
lie in an interval in C. It now follows easily that C is an interval. ¥
Theorem 10.50: If f is a differentiable function on an interval I, then f 0

is a Darboux function.

Proof: Let D be the set of all values of the Þrst derivative of f on I,

D = {f 0(x) : x ∈ I}.

We prove that D is an interval, which is simply another way of stating the
theorem we are proving.
Let C be as in Lemma 10.49. Since f is continuous by Theorem 6.14, C is

an interval by Lemma 10.49. Let E denote the set of end points of C (E may
be empty).
The Mean Value Theorem (Theorem 10.2) says that C ⊂ D. The deÞnition

of the derivative says that every value of the Þrst derivative of f is a limit of
slopes of chords; hence, D ⊂ C ∪E (since C ∪E = C∼, where C∼ is the set of
all points arbitrarily close to C, as deÞned in sections 1 and 2 of Chapter II).
We have proved that

C is an interval and C ⊂ D ⊂ C ∪E.

Therefore, it follows at once that D is an interval. ¥
In Exercise 10.16 you were asked if a certain function with a simple discon-

tinuity was a derivative of some function. You probably worked the exercise in
a fairly computational way. Theorem 10.50 yields the solution to Exercise 10.16
immediately and furnishes a completely different perspective on the exercise.
We brießy discuss the situation in general.
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Let f be a function deÞned on an open interval I. Then f is said to have
a simple discontinuity at a point p ∈ I, sometimes called a discontinuity of
the Þrst kind, provided that f is not continuous at p and limx→p− f(x) and
limx→p+ f(x) exist. The function f is said to have a discontinuity of the second
kind at p provided that f is not continuous at p and f does not have a simple
discontinuity at p.
There are exactly two ways a function can have a simple discontinuity at p :

Either limx→p− f(x) 6= limx→p+ f(x) or limx→p− f(x) = limx→p+ f(x) 6= f(p).
Corollary 10.51: If f is a differentiable function on an open interval I,

then f 0 has no simple discontinuities.
Proof: Left as the Þrst exercise below. ¥
Exercise 10.52: Prove Corollary 10.51. In fact, prove that the corollary ex-

tends to all Darboux functions; that is, any discontinuity of a Darboux function
on an open interval is a discontinuity of the second kind.

Exercise 10.53: A differentiable function on R1 can have derivative equal to
zero at a point and yet not have a local extremum at the point (e.g., f(x) = x3).
Similarly, a differentiable function on R1 can have a positive derivative at a point
without being strictly increasing in any neighborhood of the point (compare with
Theorem 10.17): Modify the function in Example 10.48 to give an example.
(Hint: Think geometrically: modify the graph of the function in Example

10.48.)

Exercise 10.54: DeÞne f : [ 9
10 ,

21
10 ]→ R1 by f(x) = x4 − 6x3 + 12x2. Find

D = {f 0(x) : x ∈ [ 9
10 ,

21
10 ]}, C = { f(s)−f(r)

s−r : s, r ∈ [ 9
10 ,

21
10 ] and s 6= r};

D and C are the sets in the proof of Theorem 10.50.

Exercise 10.55: Let f : R1 → R1 be a polynomial of odd degree. Theorem
10.50 implies that the set D of all values of the Þrst derivative of f is an interval.
What types of intervals can D be? What types of intervals can the set C in
Lemma 10.49 be?

Exercise 10.56: Repeat Exercise 10.55 for the case when f is a polynomial
of even degree.

Exercise 10.57: Prove that at most one of the functions f and g below can
be a derivative of a function:

f(x) =

 sin(
1

x
) , if x 6= 0

0 , if x = 0
g(x) =

 sin(
1

x
) , if x 6= 0

1 , if x = 0.
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Chapter XI: Area

The chapter is a bridge between previous chapters and the topic of sub-
sequent chapters (the integral). We simply present an informal, nonrigorous
discussion of an aspect of area for the purpose of motivating the integral. Our
discussion connects derivatives with area!
Consider the continuous function f whose graph we have drawn in Figure 1

below. We want to Þnd the area between the graph of f and the interval [a, b]
on x - axis.

Figure 1

There is an obvious question here: What do we mean by area (referring
to the area between the graph of f and the interval [a, b])? We will answer
the question in a precise way in Chapter XIV. Here we answer the question
somewhat intuitively, and then we describe how to compute the area.
We start by dividing the interval [a, b] into n intervals whose end points are

x0 = a < x1 < x2 < · · · < xn = b.

We think of each of the intervals [xi−1, xi] as being small, and we consider the
rectangles Ri of height f(xi) and width xi − xi−1, as in Figure 2 (we use f(xi)
as a matter of convenience; we could use f(ti) for any ti ∈ [xi−1, xi]).
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Figure 2

We know from elementary geometry that the area of each rectangle Ri is
f(xi)(xi − xi−1). Thus, the sum S = Σni=1f(xi)(xi − xi−1) represents the area
of the region covered by all the rectangles. Observe that if xi−1 and xi are very
close to one another for each i, then the sum S is very close to what we would
call the area between the graph of f and the interval [a, b]. Consider dividing
the interval [a, b] into more and more subintervals in such a way that the end
points xi−1 and xi of the intervals get closer and closer together: If we can
compute the �limit� of the sums S associated with the subdivisions, then we
will have computed what we would call the area between the graph of f and
the interval [a, b].6

Now, having indicated what we mean by the area between the graph of f
and the interval [a, b], we give a procedure for computing the area. The method
is so ingenious that it stands as a monument to human thought.
We make use of the area function A : [a, b] → R1, deÞned as follows: For

each x ∈ [a, b], A(x) is the area between the graph of f |[a, x] and the interval
[a, x]. (We will see in section 2 of Chapter XIV that A(x) is the integral of f
over the interval [a, x].)
If we knew a formula for A, computing the area between the graph of f

and the interval [a, b] would be easy � we would simply plug b into the formula.
Thus, we want to Þnd a formula for A, or at least enough information about A
to Þnd A(b).

6Note that the �limit� mentioned here is not a limit as we deÞned the term in Chapter III
since each sum S depends on many points xi. In other words, S is not a function of a single
real variable. We have used the term �limit� in an intuitive way � to conjure up a picture in
the reader�s mind. We give a rigorous deÞnition in section 2 of Chapter XIV.
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We �show� that the area function A is differentiable by �computing� its
derivative (the quotes mean we show and compute as best as we can without a
mathematically precise deÞnition of area). Then we discover what the derivative
of A has to do with Þnding the area we want.
Fix x ∈ [a, b]. In order to Þnd

A0(x) = limh→0
A(x+h)−A(x)

h ,

it is clear that we must write the numerator with a factor of h.
We Þrst examine the numerator A(x+ h)−A(x) for some given h > 0; we

assume h to be near enough to 0 so that x+ h < b (if x = b, we only consider
the case when h < 0, which we will consider later for any x).
We see from Figure 3 that A(x+h)−A(x) is the area between the graph of

f |[x, x+ h] and the interval [x, x+ h].

Figure 3

The continuous function f has a maximum value M and a minimum value
m on [x, x+h] (by Theorem 5.13). Consider the function ϕ : [m,M ]→ R1 that
assigns to a point t ∈ [m,M ] the area of the rectangle [x, x + h] × [0, t] (see
Figure 4); since the height of the rectangle is t and its width is h,

ϕ(t) = th for each t ∈ [m,M ].
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Figure 4

We know that the function ϕ is continuous (see Example 2.23); furthermore,
since A(x + h) − A(x) is the area between the graph of f |[x, x + h] and the
interval [x, x+ h], we know that

ϕ(m) ≤ A(x+ h)−A(x) ≤ ϕ(M).
Hence, there is a point th ∈ [m,M ] such that ϕ(th) = A(x+h)−A(x); in other
words,

thh = A(x+ h)−A(x).
Now, note that f is continuous on [x, x + h] (by Exercise 5.3); thus, since

th ∈ [m,M ] and since m and M are values of f on [x, x + h], there is a point
xh ∈ [x, x + h] such that f(xh) = th (by Theorem 5.2). Therefore, by the
previous displayed item, we have

(*) f(xh)h = A(x+ h)−A(x).
The equality in (*) also holds when h < 0 (and near enough to 0 so that

x+h > a): For then the area between the graph of f |[x+h, x] and the interval
[x+ h, x] is A(x)−A(x+ h), and the rectangle [x+ h, x]× [0, t] has width −h
for any t ∈ [m,M ]; hence, by the analogue of the argument above (in this case,
ϕ(t) = t(−h)), there is a point th ∈ [m,M ] such that

th(−h) = A(x)−A(x+ h),
and there is a point xh ∈ [x+ h, h] such that f(xh) = th, thus
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f(xh)(−h) = A(x)−A(x+ h),
which is the same as (*).
We are ready to compute the derivative of A at x : Using that (*) holds

whether h is positive or negative, we have that

A(x+h)−A(x)
h = f(xh)h

h = f(xh), where xh lies between x and x+ h.

Hence,

A0(x) = limh→0
A(x+h)−A(x)

h = limh→0 f(xh);

furthermore, since limh→0 xh = x by the Squeeze Theorem (Theorem 4.34) and
since f is continuous at x, we see that limh→0 f(xh) = f(x) (by Theorem 4.29
by considering the function h 7→ xh). Therefore,

A0(x) = f(x).

So, the derivative of the area function is f ; but what does that have to do
with computing the area between the graph of f and the interval [a, b]? Think
about it before reading further. Here is a hint: The area we want to compute
is A(b), and A(b) = A(b)−A(a).
We show the way to compute A(b). The method is theoretical, but after we

discuss the method we will illustrate that it works quite well in practice.
Let g be any function whose derivative on [a, b] is f . Then, since g0 = A0, g

and A differ by a constant (by Theorem 10.8), say A− g = C. Thus,

A(b)−A(a) =
³
g(b) +C

´
−
³
g(a) +C

´
= g(b)− g(a).

Therefore, since A(b) = A(b)−A(a), we can now conclude the following:

(#) To Þnd the area between the graph of f and the interval [a, b],

we need only Þnd a function g whose derivative on [a, b] is f ;

then the area between the graph of f and [a, b] is g(b)− g(a).

We give two examples to illustrate how easy it is to apply the procedure we
have found.

Example 11.1: We Þnd the area between the graph of f(x) = x2 and
the interval [1, 3]. The function g(x) = x3

3 has derivative f (by Lemma 7.11);
therefore, by (#), the area between the graph of f and the interval [1, 3] is

g(3)− g(1) = 9− 1
3 =

26
3 .

Example 11.2: We Þnd the area between the graph of f(x) = x
2
5 + 3x3

and the interval [1, 3]. The function g(x) = 5
7x

7
5 + 3

4x
4 has derivative f (by

Theorem 7.1 and Theorem 8.16); hence, by (#), the area between the graph of
f and the interval [1, 3] is
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g(3)− g(1) = 5
73

7
5 + 243

4 − 41
28 .

How do we know that the procedure in (#) really does give the area? The
most reasonable way to check this is to see if the procedure gives various areas
that are known from geometry. We offer the following exercise as a start:

Exercise 11.3: Show that the procedure in (#) gives the formulas from
geometry for the areas of rectangles, triangles and circles.
(Hint: In the case of a circle of radius r about the origin, consider the

function g(x) = x
2

√
r2 − x2 + r2

2 sin
−1(x2 ).)

When more complicated Þgures (than those in Exercise 11.3) whose areas
are known from geometry are analyzed using the procedure in (#), the answer
is always the same: Applying (#) results in arriving at the known areas. In the
end, therefore, we will be jusiÞed in deÞning area in terms of the integral and
using the procedure in (#) to Þnd the area � see section 2 of Chapter XIV.
We conclude with a few exercises.

Exercise 11.4: Find the area between the graph of f(x) = sin(x) and the
interval [0,π].

Exercise 11.5: Find the area between the graph of f(x) = 1√
1−x2 and the

interval [0, 1
2 ].

Exercise 11.6: Find formulas for the area functions for Examples 11.1 and
11.2.

Exercise 11.7: Using the intuitive observation that the area of two nonover-
lapping regions is the sum of the areas of the two regions, Þnd the area above the
interval [0, 1] between the graphs of the two functions f1(x) = x

4 and f2(x) = x
5.
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Chapter XII: The Integral

In the Þrst part of preceding chapter, we intuitively discussed a way of deÞn-
ing area in order to provide a tangible picture to keep in mind when studying
the integral. In this chapter, we begin a rigorous treatment of the integral. This
is the Þrst of four chapters concerned directly with the theory of the integral.
(There are many types of integrals; we will only study one type � the Riemann
integral � which we simply refer to as the integral.)
After presenting preliminary notions and results, we deÞne the integral in

section 3. In section 4, we prove an existence theorem that gives a necessary
and sufficient condition for a function to be integrable (Theorem 12.15); we also
prove a theorem that provides a way (albeit limited) to evaluate the integral
(Theorem 12.17). In section 5, we use the existence theorem in section 4 to
prove that all continuous functions are integrable.

1. Partitions

In this section (and the next) we present a rigorous and systematic treatment
of some of the ideas that we introduced informally in the preceding chapter.
Thus, we consider the preceding chapter as motivation for what follows.

DeÞnition. A partition of [a, b] when a < b is a Þnite subset P of [a, b] that
can be indexed so that P = {x0, x1, ..., xn}, where

x0 = a < x1 < x2 < · · · < xn = b, some n ≥ 1.
It is also to be understood that the interval [a, a] has a (unique) partition,
namely, {a}.
For example, {0, 1} and {0, 1

3 ,
1
2 , 1} are partitions of [0, 1]. Obviously, every

interval [a, b] has a partition.
Whenever P is a partition and we write P = {x0, x1, ..., xn}, we assume

(without explicitly saying so) that the points xi satisfy the condition in the def-
inition above. We prove all results that involve partitions, directly or indirectly
(as in the case of integrals), assuming that a < b. It will be evident that the
results hold when a = b.

DeÞnition. Let P1 and P2 be partitions of [a, b]. We say that P2 is a
reÞnement of P1, written P2 ¹ P1, provided that P2 ⊃ P1.

We can think of a reÞnement of a partition P as being obtained from P by
adding points to P (although, of course, a partition is a reÞnement of itself).
Obviously, every partition of [a, b] is a reÞnement of {a, b}.
Exercise 12.1: Give an example of two partitions of [a, b] such that neither

one is a reÞnement of the other.

A relation ¿ between elements of a set S is a partial order on S provided
that the relation is reßexive (s¿ s for all s ∈ S), antisymmetric (if s1 ¿ s2 and
s2 ¿ s1, then s1 = s2), and transitive (if s1 ¿ s2 and s2 ¿ s3, then s1 ¿ s3).
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For example, ≤ is a partial order on R1 by axioms O1 and O2 in section 1
of Chapter I.
Note the following simple fact:

Exercise 12.2: The relation ¹ of reÞnement on the collection P of all
partitions of a given interval [a, b] is a partial order.

DeÞnition. Let P1 and P2 be reÞnements of [a, b]. A common reÞnement
of P1 and P2 is a partition P of [a, b] such that P ¹ P1 and P ¹ P2.

Exercise 12.3: For any two partitions P1 and P2 of [a, b], there is a smallest
common reÞnement of P1 and P2; that is, there is a common reÞnement, P , of
P1 and P2 such that every common reÞnement of P1 and P2 contains P .

2. Upper and Lower Sums

We continue with our presentation of the background necessary for deÞning
the integral and understanding the deÞnition.
We adopt the following notation: Let f : [a, b]→ R1 be a bounded function,

and let P = {x0, x1, ..., xn} be a partition of [a, b]. For each i = 1, 2, ..., n,
∆xi = xi − xi−1, Mi(f) = lub f([xi−1, xi]), mi(f) = glb f([xi−1, xi]).

DeÞnition. Let f : [a, b] → R1 be a bounded function, and let P =
{x0, x1, ..., xn} be a partition of [a, b].
� The upper sum of f with respect to P , denoted by UP (f), is deÞned by

UP (f) = Σni=1Mi(f)∆xi.

� The lower sum of f with respect to P , denoted by LP (f), is deÞned by

LP (f) = Σni=1mi(f)∆xi.

Exercise 12.4: DeÞne f : [−4, 4] → R1 by f(x) = x3 − 12x. Evaluate
UP (f) and LP (f) for the partition P = {−4, 1, 4}.
Exercise 12.5: DeÞne f : [0, 4] → R1 by f(x) = x3 − 9x2 + 26x − 24.

Evaluate UP (f) and LP (f) for the partition P = {0, 1, 3, 4}.
Lemma 12.6: Let f : [a, b]→ R1 be a bounded function. For any partition

P = {x0, x1, ..., xn} of [a, b], LP (f) ≤ UP (f).
Proof: For each i, mi(f) ≤ Mi(f) and ∆xi > 0, hence mi(f)∆xi ≤

Mi(f)∆xi. Therefore, the lemma follows immediately by summing over i. ¥
Lemma 12.7: Let f : [a, b] → R1 be a bounded function. Let P be a

partition of [a, b], and let q be a point of [a, b] such that q /∈ P . Let Q = P ∪{q}
(considered as a partition of [a, b]). Then

UQ(f) ≤ UP (f) and LQ(f) ≥ LP (f).
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Proof: Assume that P = {x0, x1, ..., xn}. Let k be such that xk < q < xk+1.
Then, letting

α =
³
lub f([xk, q])

´
(q − xk) +

³
lub f([q, xk+1])

´
(xk+1 − q),

we have that UQ(f) = Σi 6=k+1Mi(f)∆xi+α. Also, since lub(A) ≤ lub(B) when
A ⊂ B,

α =
³
lub f([xk, q])

´
(q − xk) +

³
lub f([q, xk+1])

´
(xk+1 − q)

≤
³
lub f([xk, xk+1])

´
(q − xk) +

³
lub f([xk, xk+1])

´
(xk+1 − q)

=
³
lub f([xk, xk+1])

´
(xk+1 − xk).

Therefore,

UQ(f) = Σi6=k+1Mi(f)∆xi + α ≤ Σni=1Mi(f)∆xi = UP (f).

Similarly, LQ(f) ≥ LP (f). ¥
Lemma 12.8: Let f : [a, b] → R1 be a bounded function, and let P1 and

P2 be partitions of [a, b] such that P2 ¹ P1. Then

UP2
(f) ≤ UP1

(f) and LP2
(f) ≥ LP1

(f).

Proof: Let y1, y2, ..., ym be the points in P2 − P1 (we assume that P1 6= P2

since, otherwise, the lemma is obvious). We successively deÞne partitions Qj ,
j = 1, ...,m, of [a, b] as follows:

Q1 = P1, Q2 = Q1 ∪ {y1}, Q3 = Q2 ∪ {y2}, ... , Qm = P2.

Since Qj+1 has exactly one more point than Qj for each j, each successive
inequality below follows at once from Lemma 12.7:

UP2(f) = UQm(f) ≤ UQm−1(f) ≤ · · · ≤ UQ2(f) ≤ UQ1(f) = UP1(f)

and

LP2(f) = LQm(f) ≥ LQm−1(f) ≥ · · · ≥ LQ2(f) ≥ LQ1(f) = LP1(f). ¥

Lemma 12.9: Let f : [a, b] → R1 be a bounded function, and let P1 and
P2 be partitions of [a, b]. Then

LP1(f) ≤ UP2(f).

Proof: Let P be a common reÞnement of P1 and P2 (see Exercise 12.3).
Then

LP1(f)
12.8≤ LP (f)

12.6≤ UP (f)
12.8≤ UP2(f). ¥
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The numbers lubP∈PLP (f) and glbP∈PUP (f) in the next lemma are the
basis for our deÞnition of the integral in the next section.

Lemma 12.10: Let f : [a, b]→ R1 be a bounded function, and let P denote
the collection of all partitions of [a, b]. Then lubP∈PLP (f) and glbP∈PUP (f)
exist and

lubP∈PLP (f) ≤ glbP∈PUP (f).
Proof: There is a partition P1 of [a, b]. By Lemma 12.9, LP1

(f) is a lower
bound for the set of all upper sums of f with respect to all partitions of
[a, b]. Hence, by the Greatest Lower Bound Axiom (section 8 of Chapter I),
glbP∈PUP (f) exists, and

(*) LP1
(f) ≤ glbP∈PUP (f).

Note that we have proved (*) for any partition P1 of [a, b]. Hence, glbP∈PUP (f)
is an upper bound for the set of all lower sums of f with respect to all partitions
of [a, b]. Therefore, by the Least Upper Bound Axiom (Completeness Axiom),
lubP∈PLP (f) exists, and it is clear that

lubP∈PLP (f) ≤ glbP∈PUP (f). ¥

Except for very simple functions, it is difficult to directly compute the num-
bers lubP∈PLP (f) and glbP∈PUP (f) in Lemma 12.10. For example, the reader
might try to compute the numbers in Lemma 12.10 for the case when f is
the function on [0, 1] deÞned by f(x) = x. In fact, computing the numbers
lubP∈PLP (f) and glbP∈PUP (f) is actually evaluating integrals or showing inte-
grals do not exist, as we will see from the deÞnition of the integral (in the next
section). Nevertheless, we can at this time compute the numbers in Lemma
12.10 for a few functions. We illustrate how to do this in the two examples be-
low. In the Þrst example, lubP∈PLP (f) = glbP∈PUP (f); in the second example,
lubP∈PLP (f) 6= glbP∈PUP (f).
Example 12.11: DeÞne f : [0, 2]→ R1 by

f(x) =

½
1 , if x 6= 1
2 , if x = 1.

Let P denote the collection of all partitions of [0, 2]. We show that
lubP∈PLP (f) = glbP∈PUP (f) = 2.

Let P = {x0, x1, ..., xn} be a partition of [0, 2]. Note that each of the intervals
[xi−1, xi] contains a point different from 1; hence, mi(f) = 1 for each i. Thus,

LP (f) = Σ
n
i=1∆xi = xn − x0 = 2− 0 = 2.

Therefore, lubP∈PLP (f) = 2.
We now show that glbP∈PUP (f) = 2. Let ² > 0 such that ² < 1. Consider

the following very simple partition Q of [0, 2] :
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Q = {0, 1− ², 1 + ², 2}.

We compute UQ(f) :

UQ(f) = 1([1− ²]− 0) + 2([1 + ²]− [1− ²]) + 1(2− [1 + ²]) = 2 + 2².

Thus, since ² can be as close to zero as we like, we have proved that

glbP∈PUP (f) ≤ 2.

Also, having proved above that lubP∈PLP (f) = 2, we know from Lemma 12.10
that 2 ≤ glbP∈PUP (f). Therefore,

glbP∈PUP (f) = 2 = lubP∈PLP (f).

Example 12.12: DeÞne f : [0, 1]→ R1 by

f(x) =

½
0 , if x is rational
1 , if x is irrational.

Let P denote the collection of all partitions of [0, 1]. We show that
lubP∈PLP (f) = 0 and glbP∈PUP (f) = 1.

Let P = {x0, x1, ..., xn} be a partition of [0, 1]. By Theorem 1.26 (and its
analogue for irrational numbers), there is a rational number and an irrational
number in each of the intervals [xi−1, xi]. Hence,

LP (f) = Σ
n
i=1(0)∆xi = 0

and

UP (f) = Σ
n
i=1(1)∆xi = (x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1)

= xn − x0 = 1− 0 = 1.
Therefore, lubP∈PLP (f) = 0 and glbP∈PUP (f) = 1.

The cancellation that gave Σni=1∆xi = xn−x0 in Example 12.12 is trivial but
has far - reaching generalizations in multi - dimensional calculus (for example, in
the proof of Green�s Theorem).

Exercise 12.13: Let f be a constant function on an interval [a, b], say
f(x) = c for all x ∈ [a, b]. Compute lubP∈PLP (f) and glbP∈PUP (f).
Exercise 12.14: DeÞne f : [0, 2]→ R1 by

f(x) =

½
1 , if 0 ≤ x < 1
3 , if 1 ≤ x ≤ 2.

Compute lubP∈PLP (f) and glbP∈PUP (f).
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3. DeÞnition of the Integral

We are ready to deÞne the integral.

DeÞnition. Let f : [a, b] → R1 be a bounded function, and let P denote
the collection of all partitions of [a, b]. Recall that we showed in Lemma 12.10
that the numbers glbP∈PUP (f) and lubP∈PLP (f) exist.

� The upper integral of f over [a, b] is glbP∈PUP (f), which we denote from
now on by

R b
a
f .

� The lower integral of f over [a, b] is lubP∈PLP (f), which we denote from
now on by

R b
a
f .

� We say that f is integrable over [a, b] provided that R b
a
f =

R b
a
f , in which

case we call the common value
R b
a
f =

R b
a
f the integral of f over [a, b] (or

the integral of f from a to b). We denote the integral of f over [a, b] byR b
a f or by

R b
a f(x)dx. The notation

R b
a f(x)dx is read integral of f over

[a, b] with respect to the variable x.7

In the expressions
R b
af ,

R b
a
f and

R b
a f , the numbers a and b are referred to

as the limits of integration (a being the lower limit of integration and b being
the upper limit of integration) The function f is called the integrand.

From what we showed in Example 12.11, we can now say that the function
f in the example is integrable and

R 2

0 f = 2. On the other hand, from what we
showed in Example 12.12, the function f in Example 12.12 is not integrable.
We prove results about integrals over [a, b] as though a < b without saying

so. The reader can easily check that the results are true when a = b (
R a
a
f = 0

since {a} is the only partition of the interval [a, a]).

4. Two Theorems about Integrability

We prove two theorems about integrability and show how the theorems can
be applied.
Our Þrst theorem is useful for proving that a function is integrable; we

illustrate this for a speciÞc function after we prove the theorem. We use the
theorem in the next section to prove that all continuous functions are integrable,
and we use the theorem in many other places as well.

7Regarding the notation
R b

a f(x)dx, the symbol dx has absolutely no mathematical content
other than to indicate the variable with respect to which the integration is being performed.
Thus, the symbol dx can be used to clarify situations when the expression being integrated
contains two or more letters as symbols; for example, simply writing

R b
a

t2x3 puts in doubt

whether we are integrating with respect to t or with respect to x, whereas writing
R b

a t2x3dx

and
R b

a
t2x3dt makes it clear what the variable of integration is in each case.
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Theorem 12.15: Let f : [a, b] → R1 be a bounded function. Then f is
integrable over [a, b] if and only if for each ² > 0, there is a partition P of [a, b]
such that

UP (f)− LP (f) < ².
Proof: Assume that f is integrable over [a, b]. Let ² > 0. SinceR b

a
f =

R b
a
f = glbP∈PUP (f) and

R b
a
f =

R b
a
f = lubP∈PLP (f),

there are a partitions P1 and P2 of [a, b] such that

(1) UP1
(f) <

R b
a f +

²
2 and LP2

(f) >
R b
a f − ²

2 .

Let P be a common reÞnement of P1 and P2 (see Exercise 12.3). Then, by
Lemma 12.6 and Lemma 12.8 , we have

(2) LP2(f) ≤ LP (f) ≤ UP (f) ≤ UP1(f).

Now,

UP (f)− LP (f)
(2)
≤ UP1

(f)− LP2
(f)

(1)
<
R b
a f +

²
2 − (

R b
a f − ²

2) = ².

This proves that P is as required in the theorem.
Conversely, assume that for each ² > 0, there is a partition P² of [a, b] such

that

UP²(f)− LP²(f) < ².

Then, since
R b
a
f = glbP∈PUP (f) and

R b
a
f = lubP∈PLP (f),

0
12.10≤ R b

af −
R b
a
f ≤ UP²(f)− LP²(f) < ² for all ² > 0.

Hence,
R b
a
f −R b

a
f = 0 (it follows from the axioms in section 1 of Chapter I that

if 0 ≤ x < ² for all ² > 0, then x = 0). Therefore,
R b
af =

R b
a
f , which proves

that f is integrable. ¥
Lest it escape us without notice, we point out that Theorem 12.15 says that

we need only Þnd one appropriate partition for each ² > 0 in order to show
a function is integrable. This feature of Theorem 12.15 makes it signiÞcantly
easier to show a function is integrable than it would be to show the function is
integrable using the deÞnition of integrability directly. We illustrate this with
the following example:

Example 12.16: DeÞne f : [0, 2] → R1 by f(x) = x2. We show that f is
integrable over [0, 2] by applying Theorem 12.15.
Let ² > 0. Let n be a natural number such that 4

n < ² (the number n exists
by the Archimedean Property (Theorem 1.22)). Let P be the partition of [0, 2]
given by
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P = {x0 = 0, x1 =
1
n , ..., xi =

i
n , ..., x2n = 2}.

Note that f is strictly increasing (by Theorem 10.17 since f 0(x) = 2x > 0
for all x ∈ [0, 2]). Hence,

Mi(f) = x
2
i , mi(f) = x

2
i−1, each i = 1, 2, ..., 2n.

Thus, since ∆xi = 1
n for each i,

UP (f)− LP (f) = Σ2n
i=1x

2
i

1
n −Σ2n

i=1x
2
i−1

1
n =

1
n(Σ

2n
i=1x

2
i −Σ2n

i=1x
2
i−1)

= 1
n(x

2
2n − x2

0) =
1
n(4− 0) < ².

Therefore, by Theorem 12.15, f is integrable over [0, 2].

Note that we did not evaluate the integral in Example 12.16 � Theorem
12.15 is not set up to evaluate integrals. Our next theorem gives a condition
that can be used to evaluate integrals (in practice, however, the theorem has
very limited use for this purpose). After we prove the theorem, we apply the
theorem to evaluate the integral in the example above.
We note that the limits in the following theorem are limits of sequences,

which we discussed in section 8 of Chapter IV.

Theorem 12.17: Let f : [a, b] → R1 be a bounded function. Assume that
P1, P2, ..., Pn, ... are partitions of [a, b] such that

limn→∞UPn(f) = limn→∞LPn(f) = c.

Then f is integrable over [a, b] and
R b
a f = c.

Proof: By deÞnition,
R b
a
f = lubP∈PLP (f) and

R b
af = glbP∈PUP (f); hence,

LPn(f) ≤
R b
a
f
12.10≤ R b

a
f ≤ UPn(f), all n = 1, 2, ... .

Thus, by the Squeeze Theorem (Theorem 4.34), which holds for sequences by
Theorem 4.38, we have thatR b

a
f = c and

R b
af = c.

Therefore, f is integrable and
R b
a f = c. ¥

Example 12.18: We use Theorem 12.17 to evaluate the integral of the
function in Example 12.16; we show that

R 2

0
x2 = 8

3 .
We use following formula; the formula can be veriÞed by induction (we leave

the veriÞcation for the reader in Exercise 12.19):

(*) Σni=1i
2 = n(n+1)(2n+1)

6 for each n = 1, 2, ... .

For each n = 1, 2, ..., let Pn be the partition of [0, 2] given by
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Pn = {x0 = 0, x1 =
1
n , ..., xi =

i
n , ..., x2n = 2}.

Then, since Mi(f) = x
2
i and mi(f) = x

2
i−1 for each i (as in Example 12.16),

UPn(f) = Σ
2n
i=1x

2
i

1
n and LPn(f) = Σ

2n
i=1x

2
i−1

1
n for each n.

Hence, for each n,

UPn(f) =
1
nΣ

2n
i=1(

i
n)

2 = 1
n3Σ2n

i=1i
2 (*)
= 1

n3
2n(2n+1)(4n+1)

6

= (2n+1)(4n+1)
3n2 = 8

3 +
2
n +

1
3n2

and

LPn(f) = Σ
2n
i=1(

i−1
n )

2 1
n =

1
n3Σ

2n
i=1(i− 1)2 = 1

n3Σ
2n−1
i=1 i2

(*)
= 1

n3

(2n−1)(2n)(4n−1)
6 = (2n−1)(4n−1)

3n2 = 8
3 − 2

n +
1

3n2 .

Thus, limn→∞UPn(f) =
8
3 and limn→∞LPn(f) =

8
3 . Therefore, by Theorem

12.17,
R 2

0 x
2 = 8

3 .

Exercise 12.19: Verify that Σni=1i
2 = n(n+1)(2n+1)

6 for each n = 1, 2, ... by
using induction (Theorem 1.20). (We used the formula in Example 12.18.)

In Examples 12.16 and 12.18, we used partitions that divide the interval of
integration into intervals of equal length. These types of partitions are useful
because we can factor ∆xi out of summations when computing upper and lower
sums. We call a partition of an interval [a, b] that divides [a, b] into intervals of
equal length ∆xi a regular partition.

Exercise 12.20: Evaluate
R b
a x for any a ≤ b.

(Hint: First prove that Σni=1i =
n(n+1)

2 for each n = 1, 2, ... .)

Exercise 12.21: Determine if f is integrable, where f : [0, 1] → R1 is
deÞned as follows (Q denotes the set of all rational numbers; for integers m and
n, mn in lowest terms means m and n have no common divisor other than ±1):

f(x) =


0 , if x is irrational

1 , if x = 0
1
n , if x ∈ Q− {0} and x = m

n in lowest terms.

Exercise 12.22: Assume that f(x) ≤ g(x) ≤ h(x) for all x ∈ [a, b] and that
f and h are integrable over [a, b]. If

R b
a
f =

R b
a
h, then g is integrable and

R b
a
g

is equal to
R b
a f =

R b
a h.

Exercise 12.23: If f is increasing on [a, b] or decreasing on [a, b], then f is
integrable over [a, b].

Exercise 12.24: In connection with Exercise 12.23, is every one - to - one
bounded function on an interval [a, b] integrable over [a, b] ?
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Exercise 12.25: If f : [a, b] → R1 is a nonnegative function that is inte-
grable over [a, b], then

R b
a f ≥ 0.

Exercise 12.26: Let f : [a, b] → R1 be a nonnegative function that is
integrable over [a, b]. Then

R b
a
f = 0 if and only if glbf(I) = 0 for each open

interval I in [a, b].

Exercise 12.27: Let f : [a, b] → R1 be a function that is integrable over
[a, b], and let g : [a, b]→ R1 be a function that agrees with f except at Þnitely
many points. Is g integrable over [a, b] ?

5. Continuous Functions Are Integrable

We prove that any continuous function deÞned on a closed and bounded
interval is integrable. This is an existence theorem � it does not show how to
evaluate the integral. We will be able to evaluate integrals of many simple con-
tinuous functions using the Fundamental Theorem of Calculus, which we prove
in Chapter XIV. However, evaluating integrals of most continuous functions is
difficult, usually impossible; ad hoc methods can sometimes be employed, but
most often one has to settle for approximate evaluations by numerical methods.
The following notion is of general importance and is the key idea that we

use to prove our theorem:

DeÞnition: Let X ⊂ R1, and let f : X → R1 be a function. We say that f
is uniformly continuous on X provided that for any ² > 0, there is a δ > 0 such
that if x1, x2 ∈ X and |x1 − x2| < δ, then |f(x1)− f(x2)| < ².
Exercise 12.28: Let X ⊂ R1. If f : X → R1 is uniformly continuous, then

f is continuous.

Exercise 12.29: The converse of the result in Exercise 12.28 is false: The
function f : R1 → R1 given by f(x) = x2 is continuous but not uniformly
continuous.

Exercise 12.30: Any linear function f (i.e., f(x) = mx + b) is uniformly
continuous on R1. More generally, if f is differentiable on an interval I and the
derivative f 0 is bounded on I, then f is uniformly continuous on I.

The following theorem is not concerned with integrals, but it is the basis of
our proof that continuous functions are integrable. The theorem is so important
in all of mathematics that even though it plays the role of a lemma here, we can
not bring ourselves to call the theorem a lemma. The theorem shows that the
converse of the result in Exercise 12.28 is true when X is a closed and bounded
interval.

Theorem 12.31: If f : [a, b] → R1 is continuous, then f is uniformly
continuous.

Proof: Suppose by way of contradiction that f is not uniformly continuous.
Then, for some ² > 0, there are points xn, yn ∈ [a, b] for each n ∈ N such that
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