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ABSTRACT

The largest possible linear subspaces contained in the classes of

Darboux-like functions on R

by Gbrel Mohammad Albkwre

Consider an arbitrary F ⊂ RR, where the family RR of all functions from R to R is considered
as a linear space over R. Does F ∪ {0} contain a non-trivial lineal subspace? If so, how big the
vector space can be? These questions are at the core of lineability theory. In particular, we say
that a family F ⊂ RR is lineable (in RR) provided there exists an infinite dimensional linear space
contained in F ∪ {0}. There has been a lot of attention devoted to lineability problem of subsets of
linear space of functions. For instance, the families of continuous nowhere differentiable functions
and of differentiable nowhere monotone functions are lineable. It has also been known for a while
that the class D ⊂ RR of Darboux functions (i.e., functions that satisfy the intermediate value
property) is lineable. In fact, D is 2c-lineable, that is, D∪{0} contains a subspace of dimension 2c,
where 2c is the cardinality of RR. The goal of this work is to study the lineabilitiy of the subclasses
of D that are in the algebra generated by D and seven of its subclasses (known as Darboux-like
functions): extendable (Ext), almost continuous (AC), connectivity (Conn), peripherally continuous
(PC), having perfect road (PR), having Cantor Intermediate Value Property (CIVP), and having
Strong Cantor Intermediate Value Property (SCIVP).

This dissertation is arranged as follows. Chapter 1 focuses on presenting notations, definitions,
and summary of all results contained in this work. In chapter 2, we give a general method to
have c-lineable for all Darboux-like maps and even their restriction to Baire 2 class functions. In
chapter 3, we will build some tools that allow us to show 2c-lineability (i.e., maximal lineability) for
all Darboux-like subclasses of (PC \D) ∪ (AC \Ext) in the algebra. In chapter 4, we are going to
construct algebraically independent sets that shall be used to achieve the maximal lineability for all
Darboux-like subclasses of D \Conn . In the last part, in chapter 5, we will make some remarks on
lineability and offer new possibilities for open problems.
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Chapter 1

Introduction and preliminary

results

1.1 Lineability: definition and background

1.1.1 Introduction

Over the last two decades, a lot of mathematicians have been interested in finding the largest

possible vector spaces that are contained in various families of real functions, see e.g. survey [13],

monograph [7], and the literature cited there. (More recent work in this direction include [6,18,33].)

Specifically, given a (finite or infinite) cardinal number κ, a subset M of a vector space W is said to

be κ-lineable (in W ) provided there exists a linear space V ⊂M ∪ {0} of dimension κ. This notion

was first studied in 1966 by Vladimir Gurarĭı [43], even though he did not use the term lineability.

If a vector space W is also topological, then we say that M ⊂ W is κ-spaceable there exists a

linear space V ⊂M ∪ {0} of dimension κ such that V closed in W . The problem of lineability and

spaceability has a very long history and we will briefly mention to some of the old famous results

for various classes of functions. One of these was due to Levine and Milman [50]. They showed the

subset of C[0, 1] of all continuous functions on [0, 1] of bounded variation is not spaceable, where

C[0, 1] denotes to the Banach space of continuous functions [0, 1]→ R endowed with the supremum

norm. Later on, Vladimir Gurarĭı [43] showed the set of real valued continuous nowhere differentiable

functions on [0, 1] is ω-lineable. Moreover, while it is clear that the set of everywhere differentiable

functions on [0,1] is lineable, Gurarĭı showed that it is not ω-spaceable. In 2006, Juan B. Seoane in
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his Ph.D. Dissertation [62], written under the supervision of R.M. Aron and Vladimir Gurarĭı showed

that the set of differentiable functions on R which are nowhere monotone is lineable in C(R). Also,

in the same work, he proved that the set of everywhere surjective on R has the maximal lineability.

Our work here is a contribution to ongoing research concerning lineability problem. More specif-

ically, we will examine maximal lineabilities of the classes of functions related to Darboux-like maps.

1.2 Notation

Our terminology is standard and follows [19]. In particular, the symbols N, Q, and R stand for the

sets of positive integers, rational numbers, and real numbers, respectively. A symbol B denotes the

standard countable basis {(p, q) : p < q & p, q ∈ Q} of R.

The cardinality of a set X is denoted by the symbol |X|. In particular, |N| is denoted by ω and

|R| is denoted by c. For a cardinal number κ the symbol κ+ stands for the cardinal successor of κ.

B1 and B2 stand for the families of Baire class 1 functions (i.e., pointwise limits of continuous

functions) and Baire class 2 functions (i.e., pointwise limits of B1 functions), respectively. We say

that a set B ⊂ R is a Bernstein set if both B and R \B intersect every nonempty perfect set. For a

cardinal number κ, a set A ⊂ R is called κ-dense if |A ∩ I| ≥ κ for every non-trivial interval I.

We consider only real-valued functions defined on subsets of R. No distinction is made between

a function and its graph. For a nonempty set X let RX be the class of all maps from X into the

real line R. We consider RX as a linear space over R. For an f ∈ RX its support is defined as

supp(f) := {x ∈ X : f(x) 6= 0}.

Notice that we do not take the closure of the set above, even when X is a topological space. We

write f � A for the restriction of f ∈ RX to the set A ⊂ X. The image of a set A under the function

f is denoted by f [A]. For B ⊂ R, χB denotes to the characteristic function of B. Also, for F ⊂ RR

we use the symbol ¬F to denote the complement of F with respect to RR, that is, ¬F := RR \ F .

1.3 Definitions of Darboux like-functions

We begin this section by given a full definitions of eight classes of Darboux-like functions. For a

metric space X, the main classes of Darboux-like functions from X to R are defined as follows.

(These notions will be used in this project mainly when X is an interval in R.)
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DX of all Darboux functions f ∈ RX , that is, such that f [C] is connected (i.e., an interval) for every

connected C ⊂ R. (Equivalently, f ∈ D provided it has the intermediate value property). This

class was first discovered by Jean Gaston Darboux (1842– 1917) who, in his 1875 paper [35],

showed that all derivatives, including those that are discontinuous, satisfy the intermediate

value theorem.

PCX of all peripherally continuous functions f ∈ RX , that is, such that for every x ∈ X, open

interval J ⊂ R containing f(x), and ε > 0, there exists an open neighborhood U of x of

diameter < ε such that f [bd(U)] ⊂ J , where bd(U) is the boundary (or periphery) of U .

Notice that for X = R this is equivalent to the statement that for every x ∈ R there exist

two sequences sn ↗ x and tn ↘ x with lim
n→∞

f(sn) = f(x) = lim
n→∞

f(tn). This class was

introduced in a 1907 paper [65] of John Wesley Young (1879–1932). The name comes from

the papers [44,45,64]. Note that any function in RR with a graph dense in R2 is PCR .

PRX of all functions f ∈ RX with perfect road, that is, such that for every x ∈ X there exists a

perfect P ⊂ X containing x such that x as a bilateral limit point of P (i.e., with x being a

limit point of (−∞, x)∩P and of (x,∞)∩P ) when x is an interior point of X and that f � P

is continuous at x. This class was introduced in a 1936 paper [52] of Isaie Maximoff, where he

proved that D∩B1 = PR∩B1.

ConnX of all connectivity functions f ∈ RX , that is, such that the graph of f restricted to any

connected C ⊂ X is a connected subset of X × R. Note that f ∈ ConnR iff f is connected.

This notion can be traced to a 1956 problem [55] stated by John Forbes Nash (1928–2015).

We also refer to [45,62].

ACX of all almost continuous functions f ∈ RX (in the sense of Stallings), that is, such that every

open subset of X × R containing the graph of f contains also the graph of a continuous

function from X to R. This class was first seriously studied in a 1959 paper [62] of John

Robert Stallings (1935–2008); however, it appeared already in a 1957 paper [45] by Olan H.

Hamilton (1899–1976). See also 1991 survey [56] by T. Natkaniec.

ExtX of all extendable functions f ∈ RX , that is, such that there exists a connectivity function

g : X × [0, 1] → R with f(x) = g(x, 0) for all x ∈ X. The notion of extendable functions

(without the name) first appeared in a 1959 paper [62] of J. Stallings, where he asks a question

whether every connectivity function defined on [0, 1] is extendable.
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CIVPX of all functions f ∈ RX with Cantor Intermediate Value Property, that is, such that for all

distinct p, q ∈ X with f(p) 6= f(q) and for every perfect set K between f(p) and f(q), there

exists a perfect set P between p and q such that f [P ] ⊂ K. This class was first introduced in

a 1982 paper [41] of Richard G. Gibson and Fred William Roush.

SCIVPX of all functions f ∈ RX with Strong Cantor Intermediate Value Property, that is, such that for

all p, q ∈ X with p 6= q and f(p) 6= f(q) and for every perfect set K between f(p) and f(q),

there exists a perfect set P between p and q such that f [P ] ⊂ K and f � P is continuous. This

notion was introduced in a 1992 paper [59] of Harvey Rosen, R. Gibson, and F. Roush to help

distinguish extendable and connectivity functions on R.

We will drop the subscript X in this notation when X = R or X is clear from the context. Through-

out this thesis, we will denote the collection of Darboux-like families by the symbol D, that is, we

put D := {Ext,AC,Conn,D,SCIVP,CIVP,PR,PC}. The diagram in Fig. 1.1 shows the relations

between the classes in D, when X = R or X is an interval. The arrows denote strict inclusions.

AC // Conn // D

""
Ext

$$

::

PC

SCIVP // CIVP // PR

<<

Figure 1.1: All inclusions, indicated by arrows, among the Darboux-like classes D. The only inclu-
sions among the intersections of these classes are those that follow trivially from this schema. (See
[24,40].)

The inclusions Conn ⊂ D ⊂ PC, PR ⊂ PC, and SCIVP ⊂ CIVP are obvious from the previous

definitions. On the other hand, the remaining inclusions are less obvious. Among them the inclusions

Ext ⊂ AC ⊂ Conn were proved by Stallings [62], while CIVP ⊂ PR was stated without proof in [42]

(although its proof can be found in [40, theorem 3.8]). The inclusion Ext ⊂ SCIVP comes from [59].

The inclusions indicated in Fig. 1.1 are the only inclusions among these classes even when we add

to the considerations the intersections of the classes from the top and bottom rows of Fig. 1.1. This is

well described in the expository papers [20,24,40]. Specifically, AC \CIVP 6= ∅ and CIVP \AC 6= ∅

was shown in a 1982 paper [41]. The fact that Conn \AC 6= ∅ is the trickiest to prove and is related

to late 1960’s papers: [58] of John Henderson Roberts, [34] of James L. Cornette, [48] of F. Burton

Jones and Edward S. Thomas Jr., and [16] of J. Brown. The result D \Conn 6= ∅ can be traced to

1965 paper [17] of Andrew M. Bruckner and Jack Gary Ceder (see also [16]), while examples for
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PC \D 6= ∅, PR \CIVP 6= ∅, and PC \PR 6= ∅ to a 2000 paper [24] of K. C. Ciesielski and Jan

Jastrzȩbski.

The inclusions indicated in Fig. 1.1 suggest a natural split of D into two subclasses: U :=

{Ext,AC,Conn,D,PC} and L := {Ext,SCIVP,CIVP,PR,PC}, each consisting of the families that

are mutually comparable by inclusion. In particular, the algebra A(U) of subsets of PC generated

by the classes in U has 5 atoms:

{PC \D,D \Conn,Conn \AC,AC \Ext,Ext}.

Similarly, A(L) generated by the classes in L has also 5 atoms:

{PC \PR,PR \CIVP,CIVP \ SCIVP,SCIVP \Ext,Ext}.

This means that the algebra A(D) has theoretically 25 atoms, the intersections L ∩ U , where L ∈

A(L) and U ∈ A(U). However, if Ext ∈ {U,L}, then L ∩ U = ∅ unless L = U = Ext. Thus,

A(D) = A(U ∪ L) has actually 17 atoms: Ext and the 16 atoms presented in Table 1.1.

⋂
PC \PR PR \CIVP CIVP \ SCIVP SCIVP \Ext

PC \D
PC∩

¬(PR∪D)

PR∩

¬(CIVP∪D)

CIVP∩

¬(SCIVP∪D)
SCIVP \D

D∩

¬Conn

D∩

¬(PR∪Conn)

D∩PR∩

¬(CIVP∪Conn)

D∩CIVP∩

¬(SCIVP∪Conn)

D∩SCIVP∩

¬Conn

Conn∩

¬AC

Conn∩

¬(PR∪AC)

Conn∩PR∩

¬(CIVP∪AC)

Conn∩CIVP∩

¬(SCIVP∪AC)

Conn∩SCIVP

∩¬AC

AC∩

¬Ext
AC \PR

AC∩PR∩

¬CIVP

AC∩CIVP∩

¬SCIVP

AC∩SCIVP∩

¬Ext

Table 1.1: All atoms of A(D) with exception of Ext.

In addition, we are going to consider various families of surjective functions. Given a function

f : R→ R, we say (see e.g. [22]) that:

� f is everywhere surjective, f ∈ ES, provided f [G] is equal to R for every non-empty open set

G ⊂ R;

� f is strongly everywhere surjective, f ∈ SES, provided f−1(y) ∩G has cardinality c for every
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non-empty open set G ⊂ R;

� f is perfectly everywhere surjective, f ∈ PES, provided f [P ] is equal to R for every non-empty

perfect set P ⊂ R.

� f is Jones, f ∈ J, provided f ∩K 6= ∅ for every closed set K ⊂ R2 with uncountable projection

on the x-axis.

The diagram in Fig 1.2 shows the relations between the above classes

J // PES // SES // ES // D

Figure 1.2: The arrows indicate strict inclusions.

We will end this section by a brief over review of what are previously known on lineability of

Darboux like-maps and surjective functions.

The following results can been found, for instance, in [7].

Proposition 1.3.1. The following classes are 2c-lineable.

1. All maps in Figures 1.1 and 1.2.

2. PES \ J, SES \PES, D \ES, AC \Ext, and PC \D .

1.4 Summary of our novel results

The following Table 1.2 summaries the results presented in this dissertation.

⋂ PC \PR PR \CIVP CIVP \ SCIVP SCIVP \Ext

2c 2c 2c 2c

PC \D 2c 2c 2c 2c

2c, Thm 3.2.2 Thm 3.2.2 Thm 3.2.7 Thm 3.2.12 Thm 3.2.15

D \Conn 2c 2c 2c 2c

2c, Thm 4.3.3 Thm 4.3.3 Thm 4.4.3 Thm 4.4.5 Thm 4.3.3

Conn \AC c c c c

c, Cor 2.3.3 Cor 2.3.3 Cor 2.3.3 Cor 2.3.3 Cor 2.3.3

AC \Ext 2c 2c 2c 2c

2c, Thm 3.2.5 Thm 3.2.5 Thm 3.2.8 Thm 3.2.13 Thm 3.2.17

Table 1.2: The values of lineabilities for all the classes in Table 1.1 and references to these results.
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Chapter 2

c-lineability: A general method and

its application to Darboux-like

maps

2.1 Introduction

This chapter contains the materials that come from our paper [3]. We describe a simple class of

c-dimensional linear subspaces of RR and show that many natural classes of real functions contain

subspaces of this form, proving their c-lineability. The examples include all non-empty classes in

the algebra of all Darboux-like functions, see Table 1.1, and of their restrictions to the Baire class 2

maps.

For a non-empty family F ⊆ RX of non-zero functions with pairwise disjoint supports consider

the following vector subspace of RX :

LF =

∑
f∈F

s(f) · f : s ∈ RF
 .

The maps
∑
f∈F s(f) · f are well defined, since the functions in F have disjoint supports. The

following proposition is obvious, unless 2|F| = c.

Proposition 2.1.1. If F ⊆ RX is an infinite family with pairwise disjoint supports, then LF has

dimension 2|F|.

7



Proof. Let κ = |F| and B be a basis for LF . If 2κ > c, then the conclusion is obvious, since otherwise

|B| < 2κ and 2κ = | LF | = |R| · |B| = c · |B| < 2κ, a contradiction. So, assume that 2κ = c. To finish

the proof it is enough to find c-many linearly independent functions in LF .

Let {fk : k < ω} be a family of distinct non-zero functions in F and A be a family of c-many

infinite pairwise almost disjoint subsets of ω. (See e.g. [51, proposition 5.26].) For every A ∈ A

let FA =
∑
k∈A fk ∈ LF and notice that {FA : A ∈ A} ⊂ LF is linearly independent. To see this,

choose c1, . . . , cn ∈ R, distinct A1, . . . , An ∈ A, and notice that

c1FA1
+ c2FA2

+ · · ·+ cnFAn 6= 0,

unless c1 = c2 = · · · = cn = 0. Indeed, if ci 6= 0, then there is a k ∈ Ai\
⋃
j 6=iAj and an x ∈ supp(fk)

for which (c1FA1
+ c2FA2

+ · · ·+ cnFAn)(x) = cifk(x) 6= 0. Thus, indeed the equation 2κ = c implies

that LF has dimension 2κ.

2.2 c-lineability of the families of Baire 2 Darboux-like maps

Let PX = {ExtX ,ACX ,ConnX ,DX ,PCX} be the collection of the five main classes of Darboux-like

functions. The topological nature of these classes and their format easily justifies the following

properties.

Remark 2.2.1. Let P ∈ P and X and Y be metric spaces.

(i) If g ∈ PY and f is a homeomorphism from X to Y , then g ◦ f ∈ PX ;

(ii) If g ∈ PY and h : R→ R is a homeomorphism, then h ◦ g ∈ PY ;

(iii) If g ∈ PY , P 6= AC, and B ⊂ Y , then g � B ∈ PB .

The format of the definition of the class AC does not allow to immediately conclude for it the

above property (iii). In fact, in such generality the statement is false, see [56, example 2.1]. However,

the following result for this family can be found in [56, corollary 2.2].

Proposition 2.2.2. Let f ∈ RR. Then

f ∈ AC if, and only if, f � [k, k + 1] ∈ AC[k,k+1] for every k ∈ Z.

The sufficiency condition in Proposition 2.2.2 will be also needed for the other three classes:

8



Lemma 2.2.3. If f ∈ RR, P ∈ {AC,Conn,D,PC}, and f � [k, k + 1] ∈ P[k,k+1] for every k ∈ Z,

then f ∈ P .

Proof. For P = AC this is implied by Proposition 2.2.2.

For P = PC the result is obvious from the definition of the class PC.

To see this for P = Conn choose a connected C ⊂ R, that is, an interval, and notice that

the non-empty consecutive sets in the family {f � ([k, k + 1] ∩ C) : k ∈ Z} are connected (since

f � [k, k + 1] ∈ Conn[k,k+1] and [k, k + 1] ∩ C is connected) and have non-empty intersections. So,

by a well know result (see e.g. [53, theorem 23.3]) their union f � C is connected, as needed, that

is, indeed f ∈ Conn.

The argument for P = D is similar, where for a connected C ⊂ R we just notice that f [C], the

union of the family {f [[k, k + 1] ∩ C] : k ∈ Z}, is connected.

We know, see Figure 1.1, that the classes discussed above are related as follows

Ext ( AC ( Conn ( D ( PC . (2.1)

It is also known that within the family B1 all these classes coincide, see e.g. [24]. In contrast, within

the family B2 all inclusions presented in (2.1) remain strict. See e.g. [24]. This means that neither

of the classes

B2 ∩ (PC \D), B2 ∩ (D \Conn), B2 ∩ (Conn \AC), and B2 ∩ (AC \Ext), (2.2)

is empty. The goal of this section is to show that each of these classes is c-lineable, which is the best

result in this direction, since their cardinalities are bounded by |B2| = c. To prove this lineability

result, we recall the following fact. (Compare also citations in [24].)

Example 2.2.4. Each of the classes listed in (2.2) contains a Baire class 2 map f : [0, 1]→ R such

that f(0) = f(1) = 0.

Proof. For the class B2 ∩ (AC \Ext) see [24, theorem 3.1].

For the class B2 ∩ (Conn \AC) see [47].

For the class B2 ∩ (D \Conn) see [15, example 2]. For the class B2 ∩ (PC \D) take a function

F : [−1, 1] → R from [24, example 3.5] which is in B2 \ D. It is PC, since it belongs to the class

SCIVP ⊂ PC. Thus, if ` maps linearly [0, 1] onto [−1, 1], then, by Remark 2.2.1, the function f

defined by f(x) = F ◦ `(x)− 1 is as needed.

9



For a non-zero f : [0, 1]→ R with f(0) = f(1) = 0 let

Ff := {fk : k ∈ Z},

where f0 ∈ RR is an extension of f such that f0 ≡ 0 on the complement of [0, 1] and, generally,

fk ∈ RR is defined as fk(x) := f0(x− k). Notice that Ff is an infinite countable family of functions

that have disjoint supports, since supp(fk) ⊂ (k, k+ 1) for every k ∈ Z. So, LFf is well defined and

has dimension 2|Ff | = c.

Theorem 2.2.5. Let f : [0, 1] → R be such that f(0) = f(1) = 0. If P,Q ∈ P are such that

f ∈ P \Q, then LFf justifies c-lineability of P \Q.

Proof. By Proposition 2.1.1, the space LFf is well defined and has dimension c. Also, (2.1) and

P \Q 6= ∅ imply that P ∈ {AC,Conn,D,PC} and Q ∈ {Ext,AC,Conn,D}.

Next, take a non-zero g ∈ LFf . We need to show that g ∈ P \ Q. Indeed, g =
∑
k∈Z ckfk for

some constants ck not all zero. Moreover, g � [k, k + 1] = ckf ◦ tk, where tk : [k, k + 1] → [0, 1] is a

translation given by tk(x) = x − k. In particular, by Remark 2.2.1(i)&(ii), g � [k, k + 1] ∈ P[k,k+1]

for every k ∈ Z. Thus, by Lemma 2.2.3, indeed g ∈ P .

Next, fix a k ∈ Z such that ck 6= 0 and notice that, by Lemma 2.2.3 and the fact that f0 �

[j, j + 1] ∈ Q for every non-zero j ∈ Z, we have f0 /∈ Q. So, by Remark 2.2.1(i)&(ii), also ckfk /∈ Q.

In particular, the contrapositive version of Remark 2.2.1(iii) implies that g � [k, k + 1] = ckfk �

[k, k + 1] /∈ Q[k,k+1]. Thus, by Proposition 2.2.2 and contrapositive of Remark 2.2.1(iii), g /∈ Q,

finishing the proof.

Now, we are ready for the main result of this section.

Corollary 2.2.6. Each of the classes listed in (2.2) is c-lineable.

Proof. Choose P,Q ∈ P so that B2 ∩ (P \Q) is one of the classes listed in (2.2). By Example 2.2.4,

there exists an f : [0, 1] → R in B2 ∩ (P \ Q) such that f(0) = f(1) = 0. By Theorem 2.2.5, the

family LFf justifies c-lineability of P \Q. To finish the proof, it is enough to notice that if f ∈ B2,

then any map g =
∑
k∈Z ckfk from LFf is also Baire class 2.

10



2.3 c-lineability of Darboux-like subclasses of Conn \AC

We know, see Figure 1.1, that

Ext ( SCIVP ( CIVP ( PR ( PC . (2.3)

Also, it is well known (see e.g. [24, theorem 1.2]) and easy to see that

every Borel (so B2) map f ∈ RR is SCIVP. (2.4)

This, together with Example 2.2.4 and Corollary 2.2.6, implies immediately that

Corollary 2.3.1. Each of the following classes (of column 4 of Table 1.1) is c-lineable:

SCIVP \D, SCIVP∩D \Conn, SCIVP∩Conn \AC, SCIVP∩AC \Ext. (2.5)

The goal of this section is to prove c-lineability of the first three classes from the third row in

Table 1.1, that is, the classes

Conn \(PR∪AC), Conn∩PR \(CIVP∪AC), Conn∩CIVP \(SCIVP∪AC), (2.6)

for which nothing was known so far in this direction. Notice that each class in (2.6) is the intersection

of the class Conn \AC with one of the following classes:

PC \PR, PR \CIVP, and CIVP \ SCIVP. (2.7)

We will use the following variant of Theorem 2.2.5, with a very similar proof.

Theorem 2.3.2. Let f : [0, 1]→ R be such that f(0) = f(1) = 0. If P and Q are among the classes

in {SCIVP,CIVP,PR,PC} and such that f ∈ P \Q, then LFf justifies c-lineability of P \Q.

Proof. First, notice that the analogues of Remark 2.2.1(i)–(iii) and Lemma 2.2.3 hold also for the

classes PC, PR, CIVP, and SCIVP. By Proposition 2.1.1, the space LFf is well defined and has di-

mension c. Also, (2.3) and P \Q 6= ∅ imply that P ∈ {CIVP,PR,PC} and Q ∈ {SCIVP,CIVP,PR}.

Take a non-zero g ∈ LFf , we need to show that g ∈ P \ Q. Indeed, g =
∑
k∈Z ckfk for

some constants ck not all zero. Moreover, g � [k, k + 1] = ckf ◦ tk, where tk : [k, k + 1] → [0, 1] is a

translation given by tk(x) = x−k. In particular, by above mentioned analog of Remark 2.2.1(i)&(ii),
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g � [k, k + 1] ∈ P[k,k+1] for every k ∈ Z. Thus, by an analogue of Lemma 2.2.3, indeed g ∈ P . Also,

if k ∈ Z is such that ck 6= 0, then, by an analogue of Remark 2.2.1(ii), g � [k, k + 1] /∈ Q[k,k+1]. So,

by the analogues of Proposition 2.2.2 and of the contrapositive of Remark 2.2.1(iii), g /∈ Q, finishing

the proof.

Now, we are ready for the main result of this section.

Corollary 2.3.3. Each of the classes listed in (2.6) is c-lineable.

Proof. First notice that we have an analogue of Example 2.2.4 for the classes in (2.6):

(a) each of the classes in (2.6) contains an f : [0, 1]→ R such that f(0) = f(1) = 0.

To see this, first recall the results presented in the paper [28] that

(b) each of the classes in (2.6) contains an F : R→ R that belongs also to ES.

Indeed, the additivity coefficient A associated with each class F ⊂ RR (see e.g. [28, definition 1.1])

has the property that A(F) ≥ 2 if, and only if, F 6= ∅ (see e.g. [28, proposition 1.2(i)]) while we

have the following results:

[28, theorem 6.3] A(ES∩Conn \(PR∪AC)) ≥ ω1,

[28, theorem 7.2] A(ES∩Conn∩PR \(CIVP∪AC)) ≥ ω1,

[28, theorem 8.2] A(ES∩Conn∩CIVP \(SCIVP∪AC)) ≥ ω1.

This clearly implies (b). To see (a) let F ∈ ES belong to one of the classes in (2.6), choose a < b so

that F (a) = F (b) = 0, and notice that f := F ◦ `[a,b] is as needed for (a), where `[a,b] maps linearly

[0, 1] onto [a, b].

To finish the proof, take an f as in (a) and notice that LFf justifies c-lineability of an appropriate

family from (2.6). Indeed, every non-zero map g ∈ LFf is in Conn \AC by Theorem 2.2.5, while by

Theorem 2.3.2 it belongs also to an appropriate class listed in (2.7). But this means that indeed g

is in an appropriate class from (2.6).

We should also remark here, that technique used in the proof of Corollary 2.3.3 can be also used

to prove that all other classes from Table 1.1 are c-lineable. All one needs for such proof is to notice

that each class in the table contains a function as in (a) in the proof of Corollary 2.3.3. However,

the c-lineability of other classes follows from the stronger lineability results as we will see in next

two chapters. So, there is no reason for completing such argument here.
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Chapter 3

On lineability of rows 1 and 4 in

Table 1.1

3.1 Introduction

This chapter is based on our paper [1] and its goal is to show that all Darboux-like subclasses of

(PC \D)∪(AC \Ext) in the algebra generated by D are 2c-lineable, that is, have maximal lineability.

The following definition will constitute the main tool used in this chapter and next chapter.

Definition 3.1.1. For a family F ⊂ RR of functions with pairwise disjoint supports we define the

canonical linear space WF over R, a subspace of RR, as

WF :=
⋃
n∈N

{∑
i<n

aiϕi : ai ∈ R & ϕi ∈ VF for every i < n

}
,

where VF =
{∑

f∈F h(f)f : h ∈ {0, 1}F
}

. That is, WF is spanned by VF .

For the remainder of this thesis, WF refers to the canonical linear space over R where F is a

family of functions from R to R that has pairwise disjoint supports.

Notice that each element in VF is well defined, since maps in F have pairwise disjoint supports.

Also, if |F| = c, then |VF | = 2c. So, the following remark is obvious.

Remark 3.1.2. If |F| = c, then WF has dimension 2c.

For F ⊂ RR, notice that WF ⊂ LF . In this chapter, we will repeatedly use the following simple

fact that we will leave without a proof.
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Remark 3.1.3. If F ⊂ RR is a family of functions with pairwise disjoint supports and g ∈ WF is

non-zero, then there is an f ∈ F and a non-zero c ∈ R such that g � supp(f) = c f � supp(f).

3.2 Results

3.2.1 Lineability of PC \(D∪PR)

In this chapter, {Brξ : r ∈ R & ξ < c} is a fixed partition of R into Bernstein sets. For a dense subset

D of R and ξ < c define

(α) αDξ :=
∑
d∈D d

χ
Bdξ
.

Clearly the supports of maps in the family F(αD) := {αDξ : ξ < c} are pairwise disjoint. Moreover,

we have the following simple fact that we will leave without a proof.

Fact 3.2.1. If D ⊂ R is dense, f ∈ F(αD), c ∈ R \ {0}, and g ∈ RR is such that g � supp(f) =

c f � supp(f), then g � P is dense in P × R for every perfect P ⊂ R. In particular, g has a dense

graph and belongs to PC \PR.

Theorem 3.2.2. There exists a family F ⊂ RR of c-many functions with nonempty pairwise disjoint

supports such that g ∈ PC \(D∪PR) for every non-zero g ∈ WF . In particular, PC \(D∪PR) is

2c-lineable.

Proof. The family F := F(αQ) is as needed. Indeed, if g ∈WF is non-zero, then, by Remark 3.1.3,

there is an f ∈ F(αQ) and c ∈ R \ {0} with g � supp(f) = c f � supp(f). Thus, by Fact 3.2.1, g has

a dense graph and belongs to PC \PR.

Also, if g =
∑
i<n aiϕi, with ai ∈ R and ϕi ∈ VF , then g[R] is contained in a1ϕ1[R] + a2ϕ2[R] +

· · · + anϕn[R] ⊂ a1Q + a2Q + · · · + anQ, a countable set. So g[R] ( R which, together with the

density of the graph of g, implies that g ∈ ¬D. Of course, by Remark 3.1.2, WF has dimension

2c.

3.2.2 Lineability of AC \PR

A set B ⊂ R2 is a blocking set provided it is closed, meets the graph of every continuous function,

and is disjoint with some (arbitrary) function h ∈ RR. In this chapter, the family of all blocking

sets will be denoted by B. It is well known and easy to see that an f ∈ RR is in AC if, and only

if, f ∩ K 6= ∅ for every K ∈ B. Recall that the x-axis projection of every blocking set contains a

non-trivial interval, see e.g. [56]. (Compare also [28, lemma 5.1] and related history.)
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As above, let {Brξ : r ∈ R & ξ < c} be a partition of R into Bernstein sets.

Fact 3.2.3. For any meager set M ⊂ R and ξ < c there exists a map βMξ ∈ RR with supp(βMξ ) ⊂⋃
r∈RB

r
ξ \M such that

(β1)
(
βMξ � (B0

ξ \M)
)
∩K 6= ∅ for every K ∈ B; and

(β2) βMξ [supp(βMξ ) ∩ P ] is unbounded for every perfect P contained in R \M .

Proof. Take a function φ from an E ⊂ B0
ξ \M into R such that φ∩K 6= ∅ for every K ∈ B. Such a

map can be constructed by an easy transfinite induction, see e.g. [56]. Let Φξ ∈ RR be an extension

of φ such that Φξ(x) = 0 for every x ∈ R \ E. Then βMξ := Φξ + αQ
ξ · χR\M , is as needed since Φξ

and αQ
ξ have disjoint supports, Φξ ensures (β1), and, by Fact 3.2.1, αQ

ξ · χR\M ensures (β2).

Clearly the supports of maps in the family F(βM ) := {βMξ : ξ < c} are pairwise disjoint. More-

over, we have the following simple fact that we will leave without a proof.

Fact 3.2.4. If M ⊂ R is meager, f ∈ F(βM ), c ∈ R \ {0}, and g ∈ RR is such that g � supp(f) =

c f � supp(f), then g has a dense graph, belongs to AC, and g[P ] is unbounded for every perfect P

contained in R \M .

Theorem 3.2.5. There exists a family F ⊂ RR of c-many functions with nonempty pairwise disjoint

supports such that g ∈ AC \PR for every non-zero g ∈WF . In particular, AC \PR is 2c-lineable.

Proof. The family F := F(β∅) is as needed. This follows from Fact 3.2.4 and Remarks 3.1.2

and 3.1.3. Specifically, a non-zero g ∈ WF is not in PR since, by Fact 3.2.4, g[P ] is unbounded for

every perfect P ⊂ R and so, g � P is discontinuous at every x ∈ P .

3.2.3 Lineability of PR \(D∪CIVP)

For the rest of this chapter, {P I ⊂ I : I ∈ B} is a family of pairwise disjoint nowhere dense perfect

sets. For every I ∈ B let {P Iξ : ξ < c} be an enumeration of some partition of P I into perfect sets.

For the use in the later part of this chapter it is convenient to put PI := {hI [{x} × 2ω] : x ∈ 2ω},

where hI is a homeomorphism from 2ω × 2ω onto P I . Notice that the sets

Mξ :=
⋃
I∈B

P Iξ ,

are pairwise disjoint and that

M :=
⋃
I∈B

P I =
⋃
ξ<c

Mξ, (3.1)
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is meager. For every ξ < c let

(γ) γξ :=
∑
I∈B γ

I
ξ , where γIξ : R → Q has support contained in P Iξ and (γIξ )−1(q) contains non-

empty perfect set for every q ∈ Q.

Clearly the supports of maps in the family F(γ) := {γξ : ξ < c} are pairwise disjoint. Moreover, we

have the following simple fact.

Fact 3.2.6. If f ∈ F(γ) and g ∈ RR is such that g � supp(f) = c f � supp(f) for some c ∈ R \ {0},

then g has a dense graph and belongs to PR.

Proof. Clearly (γ) implies that f � supp(f) is dense in R2, so g has a dense graph. To see that

g ∈ PR choose an x ∈ R and a sequence 〈qn : n < ω〉 of non-zero rational numbers such that

c · qn →n→∞ g(x).

Choose a sequence 〈(an, bn) ∈ B : n < ω〉 such that limn→∞ an = x and a0 < b0 < a2 < b2 <

· · · < x < · · · < a3 < b3 < a1 < b1. By (γ), for every n < ω there exists a perfect set Pn ⊂ (an, bn)

such that f [P2n ∪ P2n+1] = {qn}. Then P := {x} ∪
⋃
n<ωPn is a perfect set having x as a bilateral

limit point and g � P is continuous at x.

Theorem 3.2.7. There exists a family F ⊂ RR of c-many functions with nonempty pairwise disjoint

supports such that g ∈ PR \(D∪CIVP) for every non-zero g ∈ WF . In particular, PR \(D∪CIVP)

is 2c-lineable.

Proof. The family F := F(γ) is as needed. Indeed, if g ∈WF is non-zero, then, by Remark 3.1.3 and

Fact 3.2.6, g has a dense graph and belongs to PR. Also, similarly as in the proof of Theorem 3.2.2

we see that g[R] is countable. This and the density of its graph imply that g ∈ ¬D.

Finally, to see that g ∈ ¬CIVP, using density of the graph of g, choose p < q so that g(p) < g(q).

Since g[R] is countable, there is perfect K ⊂ (g(p), g(q))\g[R]. Then there is no nonempty P ⊂ (p, q)

with g[P ] ⊂ K, that is, indeed g ∈ ¬CIVP.

3.2.4 Lineability of AC∩PR \CIVP

Using the notation as formerly mentioned, for every ξ < c define

(δ) δξ := γξ + βMξ .

Notice that the supports of γξ and βMξ are disjoint, the first contained in M , the second in R\M . It

is also easy to see that the supports of maps in the family F(δ) := {δξ : ξ < c} are pairwise disjoint.
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Theorem 3.2.8. There exists a family F ⊂ RR of c-many functions with nonempty pairwise disjoint

supports such that g ∈ AC∩PR \CIVP for every non-zero g ∈WF . In particular, AC∩PR \CIVP

is 2c-lineable.

Proof. The family F := F(δ) is as needed. Indeed, if g ∈ WF is non-zero, then, by Remark 3.1.3,

there exist an f = δξ ∈ F(δ) and a number c ∈ R \ {0} with g � supp(δξ) = c δξ � supp(δξ). Since

supp(γξ) ⊂ supp(δξ), this implies that g � supp(γξ) = c δξ � supp(γξ) = c γξ � supp(γξ) so by

Fact 3.2.6, g has a dense graph and belongs to PR. Similarly supp(βMξ ) ⊂ supp(δξ), which implies

that g � supp(βMξ ) = c δξ � supp(βMξ ) = c βMξ � supp(βMξ ) so, by Fact 3.2.4, g ∈ AC.

Finally, to see that g ∈ ¬CIVP, notice that g[M ] = ĝ[R] for some ĝ ∈ WF(γ) so, as in the proof

of Theorem 3.2.7, g[M ] = ĝ[R] is countable. Since g has a dense graph, we can choose p < q so that

g(p) < g(q). Also, choose a nonempty bounded perfect K ⊂ R \ g[M ]. Take a nonempty perfect

P ⊂ (p, q). It is enough to prove that g[P ] 6⊂ K. So, by way of contradiction, assume that there

is a prefect P ⊂ R with g[P ] ⊂ K. Then, reducing P if necessary, we can assume that P is either

contained in or disjoint with M .

But P ⊂ R \ M is impossible, since in such case Fact 3.2.3 implies that the set g[P ]

⊃ g[supp(βMξ ) ∩ P ] = c βMξ [supp(βMξ ) ∩ P ] is unbounded, so it cannot be contained in bounded

K.

Similarly, P ⊂ M implies that g[P ] ⊂ g[M ], which is disjoint with K, contradicting g[P ] ⊂ K.

Thus g ∈ ¬CIVP as needed.

3.2.5 Lineability of CIVP \(D∪ SCIVP)

Here the families PI , used earlier to construct functions γξ, will need to be chosen more carefully

with the help of the following lemma.

Lemma 3.2.9. For every I ∈ B there is a subfamily PI0 of PI with |PI0 | = c such that if P0 :=⋃
I∈B PI0 , then for every perfect P ⊂ R,

� if |P ∩Q| ≤ ω for every Q ∈ P0, then |P \
⋃
P0| = c.

Proof. Let B be a Bernstein subset of 2ω, that is, such that B ∩ Q 6= ∅ 6= Q \ B for every perfect

Q ⊂ 2ω. Clearly |B| = c. For every I ∈ B let hI be a homeomorphism from 2ω × 2ω onto P I and let

PI0 := {hI [{b} × 2ω] : b ∈ B}.

To see that this choice ensures •, choose a perfect P ⊂ R so that |P \
⋃
P0| < c. We need to

find a b ∈ B and an I ∈ B so that |P ∩ hI [{b} × 2ω]| > ω.
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Since
∣∣P \⋃I∈B P I ∣∣ ≤ |P \⋃P0| < c there is an I ∈ B and a perfect Q ⊂ P ∩ P I . Let

π1 : 2ω × 2ω → 2ω be the projection onto the first coordinate. If the compact set Q0 := π1[h−1I (Q)]

is uncountable, then the set Q0 \B has cardinality c and so has the set hI [π
−1
1 (Q0 \B)] ⊂ P \

⋃
P0,

contradicting our assumption that |P \
⋃
P0| < c. So, we can assume that Q0 is countable. Then,

for some b ∈ Q0, the set hI [π
−1
1 (b)] = hI [{b} × 2ω] ⊂ Q ⊂ P has cardinality c. By the assumption

|P \
⋃
P0| < c we must have b ∈ B, since otherwise hI [π

−1
1 (b)] ⊂ P \

⋃
P0. So, hI [π

−1
1 (b)] ⊂

P ∩ hI [{b} × 2ω] is uncountable, as needed.

To ensure CIVP the range of our modified functions γξ needs to intersect every perfect set while

no generated function can be surjective. This will be achieved with the following lemma.

Lemma 3.2.10. There exists a linear space V ⊂ R over Q which intersects every non-empty perfect

set P ⊂ R and such that

� a1V + · · ·+ anV 6= R for every a1, . . . , an ∈ R.

Proof. Let T be a transcendental basis that is also a Bernstein set 1 Choose countable infinite subset

T0 of T and let V be a vector space over Q generated by T \ T0. Notice that it is as needed.

To see •, let F = Q(T \ T0) be a subfield of R generated by T \ T0. In particular T0 is linearly

independent over F , implying that the dimension of R over F is infinite. Therefore, if a1, a2, · · · , an ∈

R, then a1V + · · · + anV ⊂ a1F + · · · + anF ( R. Clearly V ⊃ T \ T0 intersects every non-empty

perfect set P ⊂ R.

Let P be the family of all perfect subsets of R and
{
P I,Cξ ⊂ P I : ξ < c & C ∈ P

}
be an enu-

meration of PI0 . For every ξ < c let

(κ) κξ :=
∑
〈I,C〉∈B×P κ

I,C
ξ , where κI,Cξ : R → V has support contained in P I,Cξ , κI,Cξ [P I,Cξ ] ⊂

C ∩ V , and κI,Cξ is discontinuous on any perfect subset of P I,Cξ .2

Clearly the supports of the maps in the family F(κ) := {κξ : ξ < c} are pairwise disjoint. Moreover,

we have the following simple fact.

Fact 3.2.11. If f ∈ F(κ) and g ∈ RR is such that g � supp(f) = c f � supp(f) for some c ∈ R\{0},

then g has a dense graph and belongs to CIVP.

Proof. This easily follows from our definition (κ).
1If {Pξ : ξ < c} is a list of all perfect subsets of R and tξ ∈ Pξ \Q̄({tζ : ζ < ξ}) for every ξ < c, then T := {tξ : ξ < c}

is as needed: it cannot contain any perfect P ⊂ R, since then, for any p ∈ P , T would be disjoint from perfect p+ P ,
see e.g. [21]

2κI,Cξ � P I,Cξ is just a Sierpiński-Zygmund function from P I,Cξ into C∩V , that is, a maps whose restriction to any

set of cardinality c is discontinuous, see e.g. [32].
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Theorem 3.2.12. There exists a family F ⊂ RR of c-many functions with nonempty pairwise

disjoint supports such that g ∈ CIVP \(D∪SCIVP) for every non-zero g ∈ WF . In particular,

CIVP \(D∪SCIVP) is 2c-lineable.

Proof. The family F := F(κ) is as needed. Indeed, if g ∈ WF is non-zero, then, by Remark 3.1.3

and Fact 3.2.11, g has a dense graph and belongs to CIVP.

Also, if g =
∑
i<n aiϕi, with ai ∈ R and ϕi ∈ VF , then g[R] is contained in a1ϕ1[R] + a2ϕ2[R] +

· · · + anϕn[R] ⊂ a1V + a2V + · · · + anV which, by Lemma 3.2.10, is strictly contained in R. So

g[R] ( R which, together with the density of the graph of g, implies that g ∈ ¬D.

Finally, to see that g ∈ ¬SCIVP, using density of the graph of g, choose p < q with g(p) < g(q)

and a nonempty perfect K ⊂ (g(p), g(q)) \ {0}. It is enough to show that for every perfect set

P ⊂ (p, q) with g[P ] ⊂ K the restriction g � P is discontinuous. Indeed, g[P ] ⊂ K 63 0 implies that

P ⊂
⋃
ξ<c supp(κξ) ⊂

⋃
P0. So, by Lemma 3.2.9, there is a P I,Cξ ∈

⋃
P0 with |P ∩ P I,Cξ | > ω. In

particular, there exists a perfect set Q ⊂ P ∩ P I,Cξ . Notice that g � supp(κξ) = c κξ � supp(κξ) and

c 6= 0, since otherwise g[Q] = {0} 6⊂ K. Since κξ � Q = κI,Cξ � Q is discontinuous, as ensured in (κ),

g � Q is discontinuous.

3.2.6 Lineability of AC∩CIVP \ SCIVP

Using the notation as previously discussed, for every ξ < c define

(λ) λξ := κξ + βMξ .

Notice that the supports of κξ and βMξ are disjoint, the first contained in M , the second in R \M .

It is also easy to see that the supports of the maps in the family F(λ) := {λξ : ξ < c} are pairwise

disjoint.

Theorem 3.2.13. There exists a family F ⊂ RR of c-many functions with nonempty pairwise

disjoint supports such that g ∈ AC∩CIVP \ SCIVP for every non-zero g ∈ WF . In particular,

AC∩CIVP \ SCIVP is 2c-lineable.

Proof. The family F := F(λ) is as needed. Indeed, if g ∈ WF is non-zero, then, by Remark 3.1.3,

there is an f = λξ ∈ F(λ) and c ∈ R \ {0} with g � supp(λξ) = c λξ � supp(λξ). Since supp(κξ) ⊂

supp(λξ), this implies that g � supp(κξ) = c λξ � supp(κξ) = c κξ � supp(κξ) so by Fact 3.2.11,

g has a dense graph and belongs to CIVP. Similarly supp(βMξ ) ⊂ supp(λξ), which implies that

g � supp(βMξ ) = c λξ � supp(βMξ ) = c βMξ � supp(βMξ ) so, by Fact 3.2.4, g ∈ AC.
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Lastly, to see g ∈ ¬ SCIVP, using density of the graph of g, choose p < q with g(p) < g(q)

and a nonempty perfect K ⊂ (g(p), g(q)) \ {0}. It is enough to show that for every perfect set

P ⊂ (p, q) with g[P ] ⊂ K the restriction g � P is discontinuous. As in the proof of Theorem 3.2.8,

we can assume P ⊂ M. So, P ⊂
⋃
ξ<c supp(κξ)⊂

⋃
P0 as g[P ] ⊂ K 63 0. A similar argument as in

Theorem 3.2.12 shows g � P is discontinuous, as needed.

3.2.7 Lineability of SCIVP \D

To ensure SCIVP the definition of κI,Cξ needs to be slightly changed, whereas no generated function

can be surjective. For every ξ < c, let

(µ) µξ :=
∑
〈I,C〉∈B×P µ

I,C
ξ , where µI,Cξ : R→ C∩V is defined as µI,Cξ = aχP I,Cξ

for some a ∈ C∩V.

Notice that the support of µI,Cξ is contained in P I,Cξ . So, the supports of maps in the family

F(µ) := {µξ : ξ < c} are pairwise disjoint. Moreover, we have the following simple fact.

Fact 3.2.14. If f ∈ F(µ) and g ∈ RR is such that g � supp(f) = c f � supp(f) for some c ∈ R\{0},

then g has a dense graph and belongs to SCIVP.

Proof. It is straightforward from our definition (µ).

Theorem 3.2.15. There exists a family F ⊂ RR of c-many functions with nonempty pairwise

disjoint supports such that g ∈ SCIVP \D for every non-zero g ∈ WF . In particular, SCIVP \D is

2c-lineable.

Proof. The family F := F(µ) is as needed. Indeed, if g ∈ WF is non-zero, then, by Remark 3.1.3

and Fact 3.2.14, g has a dense graph and belongs to SCIVP. For g ∈ ¬D, the proof is an identical

to that presented in Theorem 3.2.12.

3.2.8 Lineability of AC∩ SCIVP \Ext

The hardest aspect of this argument will be ensuring that the functions in WF are not extendable.

For this, we recall the following useful result that was proved in [31].

Theorem 3.2.16. If f : R→ R is an extendable function with a dense graph, then for every a, b ∈ R,

a < b, and for each perfect set K between f(a) and f(b) there is a perfect set C between a and b

such that f [C] ⊂ K and the restriction f � C is continuous strictly increasing.

By using the notation as earlier stated, for every ξ < c
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(ν) νξ:=µξ + βMξ .

Notice that the supports of µξ and βMξ are disjoint, the first contained in M , the second in R\M . It

is also easy to see that the supports of maps in the family F(ν) := {νξ : ξ < c} are pairwise disjoint.

Theorem 3.2.17. There exists a family F ⊂ RR of c-many functions with nonempty pairwise

disjoint supports such that g ∈ AC∩SCIVP \Ext for every non-zero g ∈ WF . In particular,

AC∩SCIVP \Ext is 2c-lineable.

Proof. The family F := F(ν) is as needed. Indeed, if g ∈ WF is non-zero, then, by Remark 3.1.3,

there is an f = νξ ∈ F(ν) and c ∈ R \ {0} with g � supp(νξ) = c νξ � supp(νξ). Since supp(µξ) ⊂

supp(νξ), this implies that g � supp(µξ) = c νξ � supp(µξ) = c µξ � supp(µξ) so by Fact 3.2.14,

g has a dense graph and belongs to SCIVP. Similarly supp(βMξ ) ⊂ supp(νξ), which implies that

g � supp(βMξ ) = c νξ � supp(βMξ ) = c βMξ � supp(βMξ ) so, by Fact 3.2.4, g ∈ AC.

Finally, to see g ∈ ¬Ext, using density of the graph of g, choose p < q with g(p) < g(q)

and a nonempty perfect K ⊂ (g(p), g(q)) \ {0}. By Theorem 3.2.16, it is enough to show that

for no perfect set P ⊂ (p, q) with g[P ] ⊂ K the restriction g � P is strictly increasing. As in

the proof of Theorem 3.2.8, we can assume P ⊂ M. Since g[P ] ⊂ K 63 0, which implies P ⊂⋃
ξ<c supp(µξ)⊂

⋃
P0. So, by Lemma 3.2.9, there is a P I,Cξ ∈

⋃
P0 with |P ∩P I,Cξ | > ω. Notice that

P ∩ P I,Cξ ⊂ P I,Cξ ⊂ supp(µξ) ⊂ supp(νξ). So, µξ � P is not strictly increasing and the same is true

for νξ � P and g � P. Thus, g ∈ ¬Ext, as needed.
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Chapter 4

On lineability of row 2 in Table 1.1

4.1 Introduction

The content of this chapter comes from the three papers [2, 4, 5]. Our aim is to show 2c-lineability

of all non-empty classes of functions in the algebra A(D) of Darboux-like maps that are contained

in the family D \Conn . More precisely, the four classes in A(D) we are interested in can be written

as

D ∩ ¬Conn ∩ ¬PR D ∩ SCIVP ∩ ¬Conn

D ∩ PR ∩ ¬Conn ∩ ¬CIVP D ∩ CIVP ∩ ¬Conn ∩ ¬SCIVP.
(4.1)

The arguments for these classes stand apart from the proofs of 2c-lineability of other classes in the

algebra A(D): the proofs we present in this chapter are considerably more delicate and heavily rely

on the existence of algebraically independent subsets of R having different structures. The presented

results generalize recently published proof of 2c-lineability of the class D \Conn, see [21, theorem 2.1].

For G ⊂ R and a family F ⊂ RR we define

supp(F) :=
⋃
f∈F

supp(f) and F � G := {f · χG : f ∈ F}.

For an A ⊂ R the symbol Q(A) denotes the subfield of R generated by A, that is, Q(A) is the

intersection of all subfields of R that contain A. By Q̄(A) we denote the algebraic closure of Q(A)

in R, that is, Q̄(A) is the set of x ∈ R that are algebraic over Q(A). We say that an S ⊂ R is:

algebraically independent when it is algebraically independent over Q; it is a transcendental basis

provided it is a maximal algebraically independent subset of R. For every algebraically independent
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set S ⊂ R there exists a transcendental basis T with S ⊂ T , see e.g. [46]. If T is a transcendental

basis, then every x ∈ R is algebraic over Q(T ), that is, Q̄(T ) = R. For an A ⊂ R, a transcendence

degree of R over Q̄(A) is the cardinality of any transcendental basis of R over Q̄(A). Notice that if

S ⊂ R is algebraically independent such that Q̄(S) = Q̄(A) and T ⊃ S is a transcendental basis,

then the transcendence degree of R over Q̄(A) equals the cardinality of the set T \ S.

In what follows we will repeatedly use the following simple fact.

Remark 4.1.1. Let F ⊆ RR be a family of functions having pairwise disjoint supports. If g ∈WF ,

then there is a finite set Ag ⊂ R such that

� for every f ∈ F there exists an af ∈ Q(Ag) so that g = af · f on supp(f).

Proof. Let g =
∑
i<n aiϕi ∈ WF with ϕi =

∑
f∈F h

i(f)f ∈ V (F) for every i < n. Then, Ag :=

{ai : i < n} is as needed. Indeed, for every f ∈ F and x ∈ supp(f) we have

g(x) =
∑
i<n

aiϕi(x) =
∑
i<n

aih
i(f)f(x) = aff(x),

where af :=
∑
i<n aih

i(f) ∈ Q(Ag).

All non-zero functions in RR we will consider in this chapter will have dense graphs. In particular,

the following simple remark will be useful for us.

Remark 4.1.2. If f ∈ RR has a dense graph in R2, then f ∈ D if, and only if, f ∈ ES.

4.2 Families H with WH

4.2.1 Families H for which WH ensures lineability of classes in D

Proposition 4.2.1. Let F ,H ⊂ RR be families of functions with pairwise disjoint supports such

that all maps in F have graphs dense in R2. Assume that B ⊂ R is such that supp(F) ⊂ B and

that F � B = H � B.

(i) The graph of every non-zero g ∈WH is dense in R2;

(ii) If F ⊂ CIVP, then WH ⊂ CIVP;

(iii) If F ⊂ SCIVP, then WH ⊂ SCIVP;

(iv) If F ⊂ D and B \ supp(F) is dense in R; then WH ⊂ ES∪{0};
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(v) If F ⊂ PES and B \ supp(F) intersects every perfect subset of R, then WH ⊂ PES∪{0}.

Proof. Choose a non-zero g ∈ WH. By Remark 4.1.1, there exists an h ∈ H and non-zero c ∈ R

such that g = c · h on supp(h). By our assumption, there exists an f ∈ F such that f � B = h � B.

In particular, g = c · f on supp(f).

To see (i) notice that f � supp(f), as well as its multiplication by c, has graph dense in R2.

To see (ii) notice that the assumption that f ∈ CIVP implies that c · f ∈ CIVP and in the

definition of the class CIVP we can restrict our attention to perfect sets K ⊂ R \ {0} in which case

the condition c · f [P ] ⊂ K is achieved only for P ⊂ supp(f), so that g[P ] = c · f [P ] ⊂ K, as needed.

The argument for (iii) is essentially the same as for (ii).

To see (iv) first notice that, by Remark 4.1.2, F ⊂ ES. In particular, for every r ∈ R \ {0} we

have g−1(r) ⊃ (c · f)−1(r) and this last set is dense, since c · f ∈ ES. Finally, g−1(0) is dense, since

it contains B \ supp(F). The argument for (v) is identical the same as for (iv).

Notice, in particular, that all non-zero functions in the considered spaces WF (which will have

dense graphs) will be in ES .

4.2.2 Families H for which WH ensures lineability of ¬Conn

Let id? ∈ RR be defined as id?(x) = x for x 6= 0 and id?(0) = 1. Notice that this ensures that the

function 1/ id? is well defined at all points, including x = 0. The following lemma is considered one

of the essential tools to prove the main results in the this chapter.

Lemma 4.2.2. Let H ⊂ RR be a family of functions with pairwise disjoint supports and graphs

dense in R2. If (g/ id?)[R] 6= R for every g ∈WH, then WH ⊂ ¬Conn∪{0}.

Proof. Let g ∈WH\{0}. Then, by Proposition 4.2.1(i), g has a dense graph. To see that g ∈ ¬Conn

choose an a ∈ R \ (g/ id?)[R]. This means that (g/ id?)(x) 6= a for every x ∈ R. In particular,

g(x) 6= a id?(x) = ax for every x 6= 0. Since g has a dense graph, there exist q > p > 0 such that

g(p) > ap and g(q) < aq. But this implies that the three-segment set ({p}×(−∞, ap])∪{(x, ax) : x ∈

[p, q]} ∪ ({q} × [aq,∞)) separates the graph of g. So, indeed g ∈ ¬Conn.

In Lemma 4.2.2 we assume that no function in (1/ id?) ·WH is surjective. But how to ensure this

together with the needed property that WH ⊂ ES∪{0}? To see this first notice that (1/ id?) ·WH =

WG where G = (1/ id?) · H. To ensure that no function in WG is surjective for such G, we will use

the following simple lemma.
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Lemma 4.2.3. Let S0 ⊂ R be such that R has infinite transcendence degree over Q̄(S0). If

G ⊂ Q(S0)R is a family of functions with pairwise disjoint supports, then no function in WG is

surjective.

Proof. Let S be a transcendental base of Q̄(S0) (over Q) and T be a transcendental base with S ⊂ T .

Fix a g ∈ WG and choose a finite Sg ⊂ T such that Ag ⊂ Q(Sg), where Ag as in the Remark 4.1.1.

Then, the range of g is contained in Q̄(Sg ∪ S), while Q̄(Sg ∪ S) 6= Q̄(T ) = R by our assumption

that R has infinite transcendence degree over Q̄(S0) = Q̄(S). So, indeed g is not surjective.

4.2.3 Families H with WH ensuring lineability of ES∩¬Conn

2c-lineability of ES is established via well known and perhaps the easiest construction presented in

this thesis. Specifically, for a family ∆ := {Dr
ξ : r ∈ R & ξ < c} of pairwise disjoint dense subsets of

R define the functions

(ϕ) ϕξ :=
∑
r∈R r · χDrξ

and let F(ϕ) := {ϕξ : ξ < c}. Clearly functions in F(ϕ) are ES and have pairwise disjoint supports.

So, WF(ϕ) is well defined. To ensure that WF(ϕ) is contained in ¬Conn∪{0} we will consider the

sets Dr
ξ of the form id?(r) · Srξ for some dense sets Srξ ⊂ R.

Proposition 4.2.4. Let S = {Srξ ⊂ R : r ∈ R & ξ < c} be a family of dense sets and put S :=
⋃
S.

For r ∈ R and ξ < c let Dr
ξ := id?(r) · Srξ . Then every function ϕξ is ES and ϕξ/ id? has range

contained in Q(S).

In particular, if R has infinite transcendence degree over Q̄(S), the sets in

∆ := {id?(r) · Srξ : r ∈ R & ξ < c}, (4.2)

are pairwise disjoint, and F(ϕ) := {ϕξ : ξ < c}, then the WF(ϕ) is well defined and WF(ϕ) justifies

2c-lineability of ES \Conn.

Proof. Clearly ϕξ ∈ ES, since each set Dr
ξ is dense. To see (ϕξ/ id?)[R] ⊂ Q(S) notice that

(ϕξ/ id?)[R] = {0} ∪
⋃

r∈R\{0}

r · χDrξ
id?

[R] = {0} ∪
⋃

r∈R\{0}

{
r

id?(x)
: x ∈ Dr

ξ

}

= {0} ∪
⋃

r∈R\{0}

{
r

id?(id?(r)x)
: x ∈ Srξ

}
= {0} ∪

⋃
r∈R\{0}

{
1

x
: x ∈ Srξ

}
.
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So, the first part is proved. To see the second part, notice that the family WF(ϕ) is well defined and

that, by Remark 3.1.2, it has dimension 2c. The fact that WF(ϕ) ⊂ ES∪{0} is justified by Propo-

sition 4.2.1(iv), used with B = R and H = F(ϕ), while WF(ϕ) ⊂ ¬Conn∪{0} from Lemmas 4.2.3

and 4.2.2.

To successfully use Proposition 4.2.4 to show 2c-lineability of ES \Conn we still need to find the

families S satisfying its assumptions. This is a relatively easy task, if we ignore the requirement

that the sets in the family ∆ from (4.2) need to be pairwise disjoint. In fact, such a family with

considerably stronger properties (including c-density of each set Srξ ) is constructed in Lemma 4.4.1.

The refining of such family to one ensuring also pairwise disjointness of the sets in ∆ can then be

found using the following result.

Lemma 4.2.5. Let S be a family of pairwise disjoint sets such that
⋃
S is algebraically independent

and for every S ∈ S let rS ∈ R\{0}. Then for every S ∈ S there exists a set NS ⊂
⋃
S of cardinality

less than c such that the sets in ∆ := {rS · (S \ NS) : S ∈ S} are pairwise disjoint. Moreover, if

rS ∈ Q, then NS = ∅.

Proof. The proof of this lemma is implicitly included in the proof of [21, theorem 2.1]. (See (a)

and (b) in that proof.) Specifically, if T = {tξ : ξ < c} is a transcendental basis extending
⋃
S and

ηS < c is the smallest such that rS ∈ Q̄({tξ : ξ < ηS}), then the sets NS := Q̄({tξ : ξ < ηS}) ∩
⋃
S

are as needed. For more details see [21].

4.3 2c-lineability of ES∩¬Conn∩ SCIVP and ES∩¬Conn∩¬PR

We start with examining the two classes from the top row of (4.1).

4.3.1 The class ES∩¬Conn∩¬PR

The 2c-lineability of this class is an easy corollary of the main result from [21].

Theorem 4.3.1. There exists a family F ⊂ RR of c-many maps with pairwise disjoint supports such

that WF ⊂ (PES∩¬Conn) ∪ {0}. In particular, ES∩¬Conn∩¬PR is 2c-lineable.

Proof. The existence of an F satisfying the first part of the theorem was proved in [21, theorem 2.1].

(See also Subsection 4.3.3.) To finish the proof, it is enough to show that PES ⊂ ¬PR. Indeed, if

f ∈ PES, then f [P ] = R for every prefect set P ⊂ R. On the other hand, for any perfect P0 ⊂ R

the continuity of f � P0 at any x ∈ P0 implies that f [P ] is bounded for some perfect P ⊂ P0. So,

f /∈ PR.
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4.3.2 The class ES∩¬Conn∩ SCIVP

In a 2021 paper [5] we proved that ES∩SCIVP \Conn is c+-lineable assuming that c is regular1.

The following theorem improves this result in two ways. It removes the assumption that c is regular

and replaces the cardinal c+ with the best possible value of 2c. In the proof of theorem we will use

the following well known fact.

Lemma 4.3.2. There exists a family M0 = {P I ⊂ I : I ∈ B} of pairwise disjoint perfect sets such

that
⋃
M0 is algebraically independent and the transcendence degree of R over Q̄(

⋃
M0) is c.

Proof. Let K ⊂ R be an algebraically independent compact perfect set, see [63] or [54]. Choose

a family {KI ⊂ K : I ∈ B} of pairwise disjoint perfect sets such that the set K \
⋃
I∈BK

I has

cardinality c. For every I ∈ B choose non-zero pI , qI ∈ Q such that the set P I := pI + qIK
I is

contained in I. Then M0 := {P I ⊂ I : I ∈ B} is as needed.

Next, letM0 = {P I ⊂ I : I ∈ B} be as above. For every I ∈ B let {P I,rξ ⊂ P I : ξ < c & r ∈ R} be

a family of pairwise disjoint perfect sets and put S :=
⋃
I∈B{P

I,r
ξ ⊂ P I : ξ < c & r ∈ R}. Applying

Lemma 4.2.5 to S and numbers rS = id?(r) for S = P I,rξ we can reduce each P I,rξ , if necessary, to

a perfect set such that the sets in the family {id?(r) · P I,rξ : r ∈ R & ξ < c & I ∈ B} are pairwise

disjoint. For every ξ < c and r ∈ R put Srξ :=
⋃
I∈B P

I,r
ξ and Dr

ξ := id?(r) · Srξ .

Let F(ϕ) := {ϕξ : ξ < c}, where the functions ϕξ are defined as in (ϕ), that is, ϕξ :=
∑
r∈R r ·χDrξ

for the sets Dr
ξ as above.

Theorem 4.3.3. If F(ϕ) is defined as above, then WF(ϕ) justifies 2c-lineability of

ES∩¬Conn∩SCIVP.

Proof. WF(ϕ) has dimension 2c by Remark 3.1.2. Also, each ϕξ ∈ F(ϕ) is in SCIVP. Indeed, every

set Srξ contains a perfect subset of every I ∈ B (namely P I,rξ ), so the same is true for each set

Dr
ξ = id?(r) · Srξ . In particular, for every I ∈ B and perfect K ⊂ R there exists a perfect P ⊂ I

such that ϕξ � P is constant (so continuous) with value r ∈ K, proving that indeed ϕξ ∈ SCIVP.

Therefore, F(ϕ) ⊂ SCIVP, so by Proposition 4.2.1(iii) used with B := R and H = F(ϕ), WF(ϕ)

justifies 2c-lineability of SCIVP.

Finally, notice that S = {Srξ ⊂ R : r ∈ R & ξ < c} and ∆ := {id?(r) · Srξ : r ∈ R & ξ < c} satisfy

the assumptions of Proposition 4.2.4. Hence WF(ϕ) justifies 2c-lineability of ES \Conn.

1Recall that c is regular when the union of less than c-many sets, each of which has cardinality less than c, has
cardinality less than c.
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The consistency of the 2c-lineability of ES∩¬Conn∩SCIVP can be also deduced from the the-

orem proved in [5] that this class is c+-lineable if c is a regular cardinal. Thus, Theorem 4.3.3 can

be viewed as a generalization of the result from [5].

4.3.3 Proof of 2c-lineability of PES∩¬Conn

It is worth to notice that the developed machinery, which we used to prove the previous theorem,

gives also a direct proof of [21, Theorem 2.1].

To see this, let T be an algebraically independent set intersecting every perfect set (i.e., T is

a Bernstein set). Let {Srξ ⊂ T : ξ < c & r ∈ R} be a family of pairwise disjoint Bernstein sets.

Applying Lemma 4.2.5 we can ensure that the sets in the family ∆ := {id?(r) · Srξ : r ∈ R & ξ < c}

are pairwise disjoint. Let F(ϕ) := {ϕξ : ξ < c}, where functions ϕξ are defined as in (ϕ), that

is, ϕξ :=
∑
r∈R r · χDrξ for the sets Dr

ξ as above. Then the family WF(ϕ) justifies 2c-lineability of

PES∩¬Conn.

Indeed the argument used in the proof of Theorem 4.3.3 immediately implies that WF(ϕ) justifies

2c-lineability of ¬Conn. Also, the fact that all sets Srξ and Dr
ξ = id?(r) · Srξ are Bernstein, ensures

that F(ϕ) ⊂ PES. So, by Proposition 4.2.1(v) used with B = R and H = F , WF(ϕ) ⊂ PES∪{0},

as needed.

4.4 Lineability of ES∩¬Conn∩PR∩¬CIVP and ES∩¬Conn∩

CIVP∩¬ SCIVP

The following lemma will be used to establish 2c-lineability of both of these classes.

Lemma 4.4.1. Let M0 = {P I ⊂ I : I ∈ B} be a family of pairwise disjoint perfect sets as in

Lemma 4.3.2, that is, such that
⋃
M0 is algebraically independent and the transcendence degree of

R over Q̄(
⋃
M0) is c. Then there exist a family S0 = {Sr ⊂ R \

⋃
M0 : r ∈ R} of pairwise disjoint

c-dense sets and a set Z ⊂ R \Q(
⋃
S0) such that

(i)
⋃

(M0 ∪ S0) is algebraically independent;

(ii)
⋃
{id?(r) · Sr : r ∈ R} contains no perfect set;

(iii) Z intersects every perfect set and Z ∪
⋃
S0 is algebraically independent.

Proof. Let 〈〈rξ, Jξ〉 : ξ < c〉 be an enumeration of R×B with c-many repetitions and {Pξ : ξ < c} be an
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enumeration of all perfect subsets of R. By induction on ξ < c choose a sequence 〈〈xξ, yξ, zξ〉 : ξ < c〉

so that

(Aξ) xξ ∈ Jξ \ Q̄(
⋃
M0 ∪ {xζ : ζ < ξ} ∪ {yζ/ id?(rξ) : ζ < ξ} ∪ {zζ : ζ < ξ});

(Cξ) yξ ∈ Pξ \ {id?(rζ) · xζ : ζ ≤ ξ};

(Zξ) zξ ∈ Pξ \ Q̄({xζ : ζ ≤ ξ} ∪ {zζ : ζ < ξ}).

Such xξ can be chosen, as otherwise the transcendence degree of R over Q̄(
⋃
M0) would be less

than c.

For each r ∈ R define Sr := {xξ : rξ = r} and let Z = {zξ : ξ < c}. We claim that these

definitions ensure that S0 = {Sr : r ∈ R} and Z are as needed.

Indeed, clearly the sets in S0 are pairwise disjoint and c-dense, since the sequence 〈xξ : ξ < c〉 is

one-to-one and each pair 〈r, J〉 ∈ R×B appears in the sequence 〈〈rξ, Jξ〉 : ξ < c〉 c-many times. Also⋃
S0 = {xξ : ξ < c} is contained in R \ Q̄(

⋃
M0). So, (Aξ) ensures (i).

To show (ii), for a perfect set P ⊂ R choose a ξ < c such that Pξ = P and notice that yξ ∈ Pξ = P

does not belong to
⋃
{id?(r) ·Sr : r ∈ R} = {id?(rζ) ·xζ : ζ < c}: yξ /∈ {id?(rζ) ·xζ : ζ ≤ ξ} is ensured

by (Cξ), while yξ /∈ {id?(rζ) · xζ : ξ < ζ} by the conditions (Aζ) with ζ > ξ.

Finally, the first part of (iii)—the fact that Z intersects every perfect set—is ensured by (Zξ),

while its second part—an algebraic independence of the set Z∪
⋃
S0 = {zξ : ξ < c}∪{xξ : ξ < c}—by

the choice as in (Aξ) and (Zξ).

In what follows M0 = {P I ⊂ I : I ∈ B}, S0 = {Sr ⊂ R \
⋃
M0 : r ∈ R}, and Z are always as in

Lemma 4.4.1. Removing from each set Sr one number, if necessary, we can assume that

(A) the transcendence degree of R over both Q̄(
⋃

(M0 ∪ S0)) and Q̄(Z ∪
⋃
S0) is c.

Notice that

(B) M :=
⋃
M0 is a meager Fσ-set and that

⋃
S0 is contained in M c := R \M .

For every r ∈ R let {Srξ ⊂ Sr : ξ < c} be a family of pairwise disjoint c-dense sets. Since
⋃

(M0∪S0) is

algebraically independent, we can apply Lemma 4.2.5 to the family S := {Srξ : r ∈ R & ξ < c}∪{M}

and numbers rS = id?(r) for S = Srξ and rM = 1 to slightly reduce sets Srξ , if necessary, to ensure

that the sets in the family ∆ := {id?(r) · Srξ : r ∈ R & ξ < c} ∪ {M} are pairwise disjoint. In

summary,

(C) the sets in {Srξ ⊂
⋃
S0 : r ∈ R & ξ < c} are c-dense, pairwise disjoint, and the sets in

∆ := {id?(r) · Srξ : r ∈ R & ξ < c} ∪ {M} are pairwise disjoint.
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(D) let F(ϕ) := {ϕξ : ξ < c}, where functions ϕξ :=
∑
r∈R r ·χDrξ are as in (ϕ) with Dr

ξ := id?(r)·Srξ

for the sets Srξ as in (C).

The following fact will be used in the proofs of our two remaining theorems.

Proposition 4.4.2. If F(ϕ) is as in (D) and functions in H ⊂ RR having pairwise disjoint support

are such that H �M c = F(ϕ) �M c, then WH ⊂ ES∪{0}.

Proof. Our definition of F(ϕ) ensures that F(ϕ) ⊂ D. Also, supp(F(ϕ)) ⊂M c and M c\supp(F(ϕ))

is dense in R, since it contains dense sets S0
ξ . So, Proposition 4.2.1(iv) with B = M c implies that

WH ⊂ ES∪{0}.

4.4.1 2c-lineability of ES∩¬Conn∩PR∩¬CIVP

For every I ∈ B choose a family {P I,qξ ⊂ P I : ξ < c & q ∈ Q} of pairwise disjoint perfect sets and

for every ξ < c define

γξ :=
∑

〈I,q〉∈B×Q

q χP I,qξ
and hξ = ϕξ + γξ, (4.3)

where maps ϕξ are from the family F(ϕ) := {ϕξ : ξ < c} from Proposition 4.4.2. Clearly the

supports of maps in the family H := {hξ : ξ < c} are pairwise disjoint as functions in F(ϕ) have

disjoint supports contained in M c, while the maps in {γξ : ξ < c} have disjoint supports contained

in M .

Theorem 4.4.3. If H := {hξ : ξ < c} for the functions hξ from (4.3), then WH justifies 2c-lineability

of ES∩¬Conn∩PR∩¬CIVP.

Proof. WH has dimension 2c by Remark 3.1.2. The inclusion WH ⊂ ES∪{0} is ensured by Propo-

sition 4.4.2, since H �M c = F(ϕ) �M c.

To see that WH ⊂ ¬Conn∪{0} notice that for every ξ < c

(γξ/ id?)[R] ⊂
{q
r

: q ∈ Q & r ∈
⋃
M0

}
⊂ Q(

⋃
M0),

and, by (D) and Proposition 4.2.4, (ϕξ/ id?)[R] ⊂ Q(
⋃
S0). Therefore, we have (hξ/ id?)[R] ⊂

(ϕξ/ id?)[R] ∪ (γξ/ id?)[R] ⊂ Q(
⋃

(M0 ∪ S0)). Thus, by (A) and Lemmas 4.2.3 and 4.2.2, indeed

WH ⊂ ¬Conn∪{0}.

Next notice that every non-zero g ∈WH is in PR. This argument is a variation of the Fact 3.2.6.

Indeed, by Remark 4.1.1, there exists a ξ < c and non-zero c ∈ R such that g = c · hξ on supp(hξ).
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In particular, for every x ∈ R, choose a sequence 〈qn ∈ Q : n ∈ N〉 converging to g(x)/c and disjoint

intervals In = (an, bn) ∈ B so that a2n ↗n x and a2n+1 ↘n x. Then P := {x} ∪
⋃
n∈N P

In,qn
ξ is

perfect having x as a bilateral limit point and g � P is continuous at x, since

lim
p→x,p∈P

g(p) = lim
p→x,p∈P

c · hξ(p) = lim
n→∞

c · qn = g(x).

So, indeed g ∈ PR.

To finish the proof, it is enough to show that WH ⊂ ¬CIVP∪{0}. So, choose a non-zero g ∈WH.

By Remark 4.1.1, there exists a finite set Ag ⊂ R such that

g ⊂
⋃

a∈Q(Ag)

⋃
ξ<c

a · hξ. (4.4)

Choose a perfect K ⊂ R\Q(Ag). Since the graph of g is dense so it is enough to show that g[P ] 6⊂ K

for every perfect P ⊂ R. By way of contradiction, assume that g[P ] ⊂ K for some perfect P ⊂ R.

Since M is Borel, we can assume that either P ⊂M or P ⊂M c.

However, if P ⊂M , then hξ[P ] = γξ[P ] ⊂ Q. So, by (4.4) and the fact that our definition ensures

γξ[R] ⊂ Q, we have g[P ] ⊂
⋃
a∈Q(A)

⋃
ξ<c a · γξ[P ] ⊂ Q(Ag) ⊂ Kc, contradicting our assumption

that g[P ] ⊂ K.

This would mean that P ⊂ M c. But this is also impossible, since the fact that
⋃
{id?(r) ·

Sr : r ∈ R} contains no perfect set (ensured by part (ii) of Lemma 4.4.1) implies that there exists

an x ∈ P \ supp(H) so that 0 = g(x) ∈ g[P ], while 0 /∈ K, a contradiction.

4.4.2 2c-lineability of ES∩¬Conn∩CIVP∩¬ SCIVP

Although there is a considerable similarity of the argument in this case to the previous one, we need

to choose the family {P I,qξ ⊂ P I : ξ < c & q ∈ Q} with considerable more care. For this we will

use the following lemma which is a slight modification of Lemma 3.2.9. Let P be the family of all

non-empty perfect subsets of R.

Lemma 4.4.4. For every P I ∈ P there is a family PI of continuum many pairwise disjoint perfect

subsets of P I such that if P ∈ P is contained in
⋃
PI , then there is a P̂ ∈ PI such that P ∩ P̂ is

uncountable.

Proof. Choosing a subset, if necessary, we can assume that P I is homeomorphic to 2ω. Let B

be a Bernstein subset of 2ω and hI : 2ω × 2ω → P I be an embedding. Then the family PI :=
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{hI [{b} × 2ω] : b ∈ B} is as needed. Indeed, assume that P ⊂
⋃
PI is perfect and let Q0 := {x ∈

2ω : hI [{x}×2ω]∩P 6= ∅}, that is, Q0 is the projection of h−1I (P ∩P I) onto the first coordinate. The

compact set Q0 must be countable, since otherwise Q0 \B 6= ∅, that is, P 6⊂
⋃
PI , a contradiction.

Therefore there is a b ∈ B so that the intersection of P and P̂ = hI [{b}×2ω] ∈ PI is uncountable.

For every I ∈ B let PI be as in Lemma 4.4.4 and let {P I,Kξ ⊂ P I : ξ < c & K ∈ P} be its

enumeration. Let Z be as in (A). Recall that Z intersects every P ∈ P. For every ξ < c let

(κ) κξ :=
∑
〈I,K〉∈B×P κ

I,K
ξ , where κI,Kξ : R → Z has support contained in P I,Kξ , κI,Kξ [P I,Kξ ] ⊂

K ∩ Z, and κI,Kξ is discontinuous on any perfect Q ⊂ P I,Kξ 2.

Let

hξ = ϕξ + κξ, (4.5)

where maps ϕξ are from the family F(ϕ) := {ϕξ : ξ < c} from Proposition 4.4.2. Clearly the

supports of maps in the family H := {hξ : ξ < c} are pairwise disjoint as functions in F(ϕ) have

disjoint supports contained in M c, while the maps in {κξ : ξ < c} have disjoint supports contained

in M .

Theorem 4.4.5. If H := {hξ : ξ < c} for the functions hξ from (4.5), then WH justifies 2c-lineability

of ES∩¬Conn∩CIVP∩¬SCIVP.

Proof. Similarly as in the proof of Theorem 4.4.3 the space WH has dimension 2c by Remark 3.1.2

and WH ⊂ ES∪{0} is ensured by Proposition 4.4.2, since we have H �M c = F(ϕ) �M c.

To see that WH ⊂ ¬Conn∪{0} notice that for every ξ < c,

(κξ/ id?)[R] ⊂
{z
r

: z ∈ Z & r ∈
⋃
M0

}
⊂ Q(Z ∪

⋃
S0),

and, by (D) and Proposition 4.2.4, we have (ϕξ/ id?)[R] ⊂ Q(
⋃
S0). Therefore, (hξ/ id?)[R] ⊂

(ϕξ/ id?)[R] ∪ (κξ/ id?)[R] ⊂ Q(Z ∪
⋃
S0). Thus, by (A) and Lemmas 4.2.3 and 4.2.2, indeed

WH ⊂ ¬Conn∪{0}.

Next notice that every hξ is in CIVP. Indeed, for every I ∈ B and K ∈ P the perfect set P I,Kξ

is contained in I and hξ[P
I,K
ξ ] = κξ[P

I,K
ξ ] ⊂ K. Thus, H ⊂ CIVP so, by Proposition 4.2.1(ii) used

with B = M and F = {κξ : ξ < c}, WH ⊂ CIVP.

To finish the proof, it is enough to show that WH ⊂ ¬SCIVP∪{0}. So, choose a non-zero

g ∈WH and a perfect K ⊂ R \Q. Since the graph of g is dense it is enough to show that for every

2κI,Kξ � P I,Kξ can be chosen as a Sierpiński-Zygmund function from P I,Kξ into K∩Z.
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perfect P ⊂ R, if g[P ] ⊂ K, then g � P is discontinuous. By way of contradiction, assume that

there exists a perfect P ⊂ R such that g[P ] ⊂ K and g � P is continuous. Since M is Borel, we can

assume that either P ⊂M or P ⊂M c.

But P ⊂M c is impossible, since this and the fact that
⋃
{id?(r) ·Sr : r ∈ R} contains no perfect

set would imply that there exists an x ∈ P \ supp(H) with 0 = g(x) ∈ g[P ], while 0 /∈ K, a

contradiction.

However, the inclusion P ⊂ M together with g[P ] ⊂ K ⊂ R \ {0} imply that P ⊂ M ∩

supp({κξ : ξ < c}) ⊂
⋃
I∈B P

I . So, choosing perfect subset of P , if necessary, we can assume that

P ⊂ P I for some I ∈ B. But this means that P ⊂
⋃
PI . Since PI is as in Lemma 4.4.4, there

exists a P I,K
′

ξ ∈ PI such that P ∩ P I,K
′

ξ is uncountable. In particular, there exists a perfect set

Q ⊂ P ∩ P I,K
′

ξ . Then, by Remark 4.1.1, there exists an a ∈ R such that g � Q = a hξ � Q =

a κξ � Q. But this is impossible, since a = 0 implies g[Q] = {0} ⊂ Kc, while a 6= 0 implies that

g � Q = a κξ � Q is discontinuous by the choice of functions κξ, contradicting our assumption that

g � P is continuous.
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Chapter 5

Open problems and our related

results

5.1 Open problems

As we have previously seen, all the non-empty classes G in A(D) disjoint with (Conn \AC) are

2c-lineable. On the other hand, for the non-empty classes G ∈ A(D) with G ⊂ Conn \AC it is only

known that G is c-lineable while potentially each of these classes can be 2c-lineable. This naturally

leads to the following problem.

Problem 5.1.1. Is the class Conn \AC 2c-lineable? Is the same true for all non-empty classes

G ∈ A(D) contained in Conn \AC? What about c+-lineability of these classes?

The problem above is not the end of the story: one may go further and ask for stronger results.

More precisely, let

� F ∈ {D \ES,ES \ SES,SES \PES,PES \ J, J},

� G ∈ {PC \D,D \Conn,Conn \AC,AC \Ext},

� H ∈ {PC \PR,PR \CIVP,CIVP \SCIVP,SCIVP \Ext}

Problem 5.1.2. Are the non-empty classes of the form F ∩H, G ∩H, and F ∩ G ∩H 2c-lineable?

What about their c+-lineability?

Of course, an examination of the examples provided in Chapters 2-4 shows that several of these

classes are indeed 2c-lineable. However, the full the general study indicated in Problem 5.1.2 was
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never undertaken and indicates possible further extension of presented work.

5.2 Our related results not included in this work

We have also some works concerning the intersections of nonempty classes in A(D) with the class

of Sierpiński-Zygmund functions. Recall that for X ⊂ R, a map f : X → R is a Sierpiński-Zygmund

function (or just SZ-function) provided f � S is discontinuous for any S ⊂ X of cardinality c. The

first example of an SZ-function was constructed by Sierpiński and Zygmund in their 1923 paper [61].

Compare also the recent survey [32] on the SZ-maps. The functions in SZ are as far from being

continuous as possible: by a 1922 theorem of Blumberg [14] for every f : R → R there exists a

(countable) dense subset D of R with f � D being continuous. Thus, one might expect that no

SZ-map can be continuous in a generalized sense, e.g., to be Darboux. Surprisingly, it has been

proved, see [9], that this last statement is independent of the usual axioms ZFC of set theory.

Recall that cov(M) = c is the statement, consistent with ZFC, that R is not a union of less than

c-many meager sets, where M denotes the ideal of all meager subsets of R.

Now, we record some of our major results about the lineability of the intersection of Darboux-like

and SZ functions.

Theorem 5.2.1. Assume that c is a regular cardinal and cov(M) = c. Then the family SZ∩ES \Conn

is c+-lineable and so also SZ∩D \Conn .

Notice that, as mentioned above, it is consistent with ZFC that SZ∩ES ⊂ SZ∩D = ∅, in which

case SZ∩ES \Conn cannot be even 1-lineable. Therefore, some extra set theoretical assumption is

necessary in Theorem 5.2.1.

In addition, we proved the following strong result.

Theorem 5.2.2. Assume that c is a regular cardinal and cov(M) = c. Then the family SZ∩CIVP

∩ ES \Conn is c+-lineable and so also SZ∩CIVP∩D \Conn .
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[6] G. Araújo, L. Bernal-González, G. A. Muñoz-Fernández, J. A. Prado-Bassas, and J. B. Seoane-Sepúlveda, Line-
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