Consequences of the Covering Property Axiom CPA

Based on Covering Property Axiom CPA, by K. Ciesielski and J. Pawlikowski, to appear in Cambridge Tracts in Mathematics, Cambridge Univ. Press.

Under CPA we have $\mathfrak{c}=\omega_{2} ; 2^{\omega_{1}}$ can be arbitrarily large.

Real Functions

(F1) There exists a family \mathcal{G} of uniformly continuous functions from \mathbb{R} to $[0,1]$ such that $|\mathcal{G}|=\omega_{1}$ and for every $S \in[\mathbb{R}]^{\mathfrak{c}}$ there exists a $g \in \mathcal{G}$ with $g[S]=[0,1]$.
(F2) There exists a family \mathcal{F} of less than continuum many \mathcal{C}^{1} functions from \mathbb{R} to \mathbb{R} such that the plain \mathbb{R}^{2} is covered by functions from \mathcal{F} and their inverses (i.e., each $f \in \mathcal{F}$ is a used as a function on a horizontal axis and on a vertical axis.)
(F3) For every Borel function $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a family \mathcal{F} of less than continuum many " \mathcal{C} " " functions (i.e., differentiable functions with continuous derivatives, where derivative can be infinite) whose graphs cover the graph of f.
(F4) For an arbitrary function h from a subset S of a Polish space X onto a Polish space Y there exists a uniformly continuous function f from a subset of X into Y such that $|f \cap h|=\mathfrak{c}$. In particular,

- there is no Darboux Sierpiński-Zygmund function $f: \mathbb{R} \rightarrow \mathbb{R}$, that is, for every Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a subset Y of \mathbb{R} of cardinality \mathfrak{c} such that $f \upharpoonright Y$ is continuous;
- for any function h from a subset S of \mathbb{R} onto a perfect subset of \mathbb{R} there exists a function $f \in{ }^{\prime} \mathcal{C}_{\text {perf }}^{\infty}$ " such that $|f \cap h|=\mathfrak{c}$ and f can be extended to a function $\bar{f} \in{ }^{\prime} \mathcal{C}^{1}(\mathbb{R})$ " such that either $\bar{f} \in \mathcal{C}^{1}$ or \bar{f} is an autohomeomorphism of \mathbb{R} with $\bar{f}^{-1} \in \mathcal{C}^{1}$.
(F5) For every Darboux function $g: \mathbb{R} \rightarrow \mathbb{R}$ there exists a continuous nowhere constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f+g$ is Darboux.
(F6) There is a family \mathcal{H} of ω_{1} pairwise disjoint perfect subsets of \mathbb{R} such that $H=\bigcup \mathcal{H}$ is a Hamel basis, that is, a linear basis of \mathbb{R} over \mathbb{Q}. In particular,
- there is a non-measurable subset X of \mathbb{R} without the Baire property which is $\mathcal{N} \cap \mathcal{M}$-rigid, that is, such that $X \triangle(r+X) \in \mathcal{N} \cap \mathcal{M}$ for every $r \in \mathbb{R}$,
- there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $h \in \mathbb{R}$ the difference function $\Delta_{h}(x)=f(x+h)-f(x)$ is Borel, but for every $\alpha<\omega_{1}$ there is an $h \in \mathbb{R}$ such that Δ_{h} is not of Borel class α.
(F7) There exists a discontinuous, almost continuous, and additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose graph is of measure zero.
(F8) There exists a Hamel basis H such that $E^{+}(H)$ has measure zero, where $E^{+}(A)$ is a linear combination of $A \subset \mathbb{R}$ with non-negative rational coefficients.
(F9) For a Polish space X and uniformly bounded sequence $\left\langle f_{n}: X \rightarrow \mathbb{R}\right\rangle_{n<\omega}$ of Borel measurable functions there are the sequences: $\left\langle P_{\xi}: \xi<\omega_{1}\right\rangle$ of compact subsets of X and $\left\langle W_{\xi} \in[\omega]^{\omega}: \xi<\omega_{1}\right\rangle$ such that $X=\bigcup_{\xi<\omega_{1}} P_{\xi}$ and for every $\xi<\omega_{1}$:
$\left\langle f_{n} \upharpoonright P_{\xi}\right\rangle_{n \in W_{\xi}}$ is a monotone uniformly convergent sequence of uniformly continuous functions.
(F10) Let X be an arbitrary set and $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of functions such that the set $\left\{f_{n}(x): n<\omega\right\}$ is bounded for every $x \in X$. Then there are the sequences: $\left\langle P_{\xi}: \xi<\omega_{1}\right\rangle$ of subsets of X and $\left\langle W_{\xi} \in[\omega]^{\omega}: \xi<\omega_{1}\right\rangle$ such that $X=\bigcup_{\xi<\omega_{1}} P_{\xi}$ and for every $\xi<\omega_{1}$:
$\left\langle f_{n} \upharpoonright P_{\xi}\right\rangle_{n \in W_{\xi}}$ is monotone and uniformly convergent.

Combinatorial Cardinal Characteristics

(C1) $\operatorname{cof}(\mathcal{N})=\omega_{1}$, i.e., the cofinality of the measure ideal \mathcal{N} is ω_{1}. In particular
$-\mathfrak{c}>\omega_{1}$ and there exists a Boolean algebra B of cardinality ω_{1} which is not a union of strictly increasing ω-sequence of subalgebras of B.
(C2) There exists a family $\mathcal{F} \subset[\omega]^{\omega}$ of cardinality ω_{1} which is simultaneously independent and splitting. In particular, $\mathfrak{i}=\mathfrak{s}=\omega_{1}$.
(C3) There exists a family $\mathcal{F} \subset[\omega]^{\omega}$ of cardinality ω_{1} which is simultaneously maximal almost disjoint and reaping. In particular, $\mathfrak{a}=\mathfrak{r}=\omega_{1}$.
(C4) $\mathfrak{u}=\mathfrak{r}_{\sigma}=\omega_{1}$, where \mathfrak{u} is the smallest cardinality of the base for a nonprincipal ultrafilter on ω.
(C5) $\operatorname{add}\left(s_{0}\right)=\omega_{1}$, where s_{0} is the Marczewski's ideal.
(C6) $\operatorname{cov}\left(s_{0}\right)=\mathfrak{c}$
(C7) $\mathfrak{c}>\omega_{1}$ and for every Polish space there exists a partition of X into ω_{1} disjoint closed nowhere dense measure zero sets.

Small Sets

(S1) Every perfectly meager set $S \subset \mathbb{R}$ has cardinality less than \mathfrak{c}.
(S2) Every universally null set $S \subset \mathbb{R}$ has cardinality less than \mathfrak{c}.
(S3) (Nowik) Every uniformly completely Ramsey null set $S \subset[\omega]^{\omega}$ has cardinality less than \mathfrak{c}.
(S4) There exists an uncountable γ-set. It can be ensured that it is strongly meager, or that it is not strongly meager.
$\beta \mathbb{N}$ and $\beta \mathbb{Q}$
($\beta 1$) There exist $2^{\omega_{1}}$-many distinct selective ultrafilter on ω.
$(\beta 2)$ Every selective filter on ω can be extended to a selective ultrafilter.
($\beta 3$) Every selective ultrafilter on ω is generated by ω_{1}-many sets.
($\beta 4$) There exist $2^{\omega_{1}}$-many distinct non-selective P-points.
$(\beta 5)$ There exists a non-principal ultrafilter on \mathbb{Q} which is crowded, that is, it is generated by (relatively) closed sets without isolated points.

Other

- Total failure of Martin's Axiom: $\mathfrak{c}>\omega_{1}$ and for every non-trivial ccc forcing \mathbb{P} there exists ω_{1}-many dense sets in \mathbb{P} such that no filter intersects all of them.

