Consequences of the Covering Property Axiom CPA

Based on *Covering Property Axiom CPA*, by K. Ciesielski and J. Pawlikowski, to appear in **Cambridge Tracts in Mathematics**, Cambridge Univ. Press.

Under CPA we have $\mathfrak{c} = \omega_2$; 2^{ω_1} can be arbitrarily large.

Real Functions

- (F1) There exists a family \mathcal{G} of uniformly continuous functions from \mathbb{R} to [0,1] such that $|\mathcal{G}| = \omega_1$ and for every $S \in [\mathbb{R}]^c$ there exists a $g \in \mathcal{G}$ with g[S] = [0,1].
- (F2) There exists a family \mathcal{F} of less than continuum many \mathcal{C}^1 functions from \mathbb{R} to \mathbb{R} such that the plain \mathbb{R}^2 is covered by functions from \mathcal{F} and their inverses (i.e., each $f \in \mathcal{F}$ is a used as a function on a horizontal axis and on a vertical axis.)
- (F3) For every Borel function $f: \mathbb{R} \to \mathbb{R}$ there exists a family \mathcal{F} of less than continuum many " \mathcal{C}^{1} " functions (i.e., differentiable functions with continuous derivatives, where derivative can be infinite) whose graphs cover the graph of f.
- (F4) For an arbitrary function h from a subset S of a Polish space X onto a Polish space Y there exists a uniformly continuous function f from a subset of X into Y such that $|f \cap h| = \mathfrak{c}$. In particular,
 - there is no Darboux Sierpiński-Zygmund function $f: \mathbb{R} \to \mathbb{R}$, that is, for every Darboux function $f: \mathbb{R} \to \mathbb{R}$ there is a subset Y of \mathbb{R} of cardinality \mathfrak{c} such that $f \upharpoonright Y$ is continuous;
 - for any function h from a subset S of \mathbb{R} onto a perfect subset of \mathbb{R} there exists a function $f \in {}^{\circ}\mathcal{C}_{perf}^{\infty}$ such that $|f \cap h| = \mathfrak{c}$ and f can be extended to a function $\bar{f} \in {}^{\circ}\mathcal{C}^1(\mathbb{R})$ such that either $\bar{f} \in \mathcal{C}^1$ or \bar{f} is an autohomeomorphism of \mathbb{R} with $\bar{f}^{-1} \in \mathcal{C}^1$.
- (F5) For every Darboux function $g: \mathbb{R} \to \mathbb{R}$ there exists a continuous nowhere constant function $f: \mathbb{R} \to \mathbb{R}$ such that f + g is Darboux.
- (F6) There is a family \mathcal{H} of ω_1 pairwise disjoint perfect subsets of \mathbb{R} such that $H = \bigcup \mathcal{H}$ is a Hamel basis, that is, a linear basis of \mathbb{R} over \mathbb{Q} . In particular,
 - there is a non-measurable subset X of \mathbb{R} without the Baire property which is $\mathcal{N} \cap \mathcal{M}$ -rigid, that is, such that $X \triangle (r + X) \in \mathcal{N} \cap \mathcal{M}$ for every $r \in \mathbb{R}$,

- there is a function $f: \mathbb{R} \to \mathbb{R}$ such that for every $h \in \mathbb{R}$ the difference function $\Delta_h(x) = f(x+h) - f(x)$ is Borel, but for every $\alpha < \omega_1$ there is an $h \in \mathbb{R}$ such that Δ_h is not of Borel class α .
- (F7) There exists a discontinuous, almost continuous, and additive function $f: \mathbb{R} \to \mathbb{R}$ whose graph is of measure zero.
- (F8) There exists a Hamel basis H such that $E^+(H)$ has measure zero, where $E^+(A)$ is a linear combination of $A \subset \mathbb{R}$ with non-negative rational coefficients.
- (F9) For a Polish space X and uniformly bounded sequence $\langle f_n: X \to \mathbb{R} \rangle_{n < \omega}$ of Borel measurable functions there are the sequences: $\langle P_{\xi}: \xi < \omega_1 \rangle$ of compact subsets of X and $\langle W_{\xi} \in [\omega]^{\omega}: \xi < \omega_1 \rangle$ such that $X = \bigcup_{\xi < \omega_1} P_{\xi}$ and for every $\xi < \omega_1$:

 $\langle f_n \upharpoonright P_{\xi} \rangle_{n \in W_{\xi}}$ is a monotone uniformly convergent sequence of uniformly continuous functions.

(F10) Let X be an arbitrary set and $f_n: X \to \mathbb{R}$ be a sequence of functions such that the set $\{f_n(x): n < \omega\}$ is bounded for every $x \in X$. Then there are the sequences: $\langle P_{\xi}: \xi < \omega_1 \rangle$ of subsets of X and $\langle W_{\xi} \in [\omega]^{\omega}: \xi < \omega_1 \rangle$ such that $X = \bigcup_{\xi < \omega_1} P_{\xi}$ and for every $\xi < \omega_1$:

 $\langle f_n \upharpoonright P_{\xi} \rangle_{n \in W_{\xi}}$ is monotone and uniformly convergent.

Combinatorial Cardinal Characteristics

- (C1) $\operatorname{cof}(\mathcal{N}) = \omega_1$, i.e., the cofinality of the measure ideal \mathcal{N} is ω_1 . In particular
 - $-\mathfrak{c} > \omega_1$ and there exists a Boolean algebra *B* of cardinality ω_1 which is not a union of strictly increasing ω -sequence of subalgebras of *B*.
- (C2) There exists a family $\mathcal{F} \subset [\omega]^{\omega}$ of cardinality ω_1 which is simultaneously independent and splitting. In particular, $\mathfrak{i} = \mathfrak{s} = \omega_1$.
- (C3) There exists a family $\mathcal{F} \subset [\omega]^{\omega}$ of cardinality ω_1 which is simultaneously maximal almost disjoint and reaping. In particular, $\mathfrak{a} = \mathfrak{r} = \omega_1$.
- (C4) $\mathfrak{u} = \mathfrak{r}_{\sigma} = \omega_1$, where \mathfrak{u} is the smallest cardinality of the base for a nonprincipal ultrafilter on ω .
- (C5) $\operatorname{add}(s_0) = \omega_1$, where s_0 is the Marczewski's ideal.
- (C6) $\operatorname{cov}(s_0) = \mathfrak{c}$
- (C7) $\mathfrak{c} > \omega_1$ and for every Polish space there exists a partition of X into ω_1 disjoint closed nowhere dense measure zero sets.

Small Sets

- (S1) Every perfectly meager set $S \subset \mathbb{R}$ has cardinality less than \mathfrak{c} .
- (S2) Every universally null set $S \subset \mathbb{R}$ has cardinality less than \mathfrak{c} .
- (S3) (Nowik) Every uniformly completely Ramsey null set $S \subset [\omega]^{\omega}$ has cardinality less than \mathfrak{c} .
- (S4) There exists an uncountable γ -set. It can be ensured that it is strongly meager, or that it is not strongly meager.

$\beta \mathbb{N}$ and $\beta \mathbb{Q}$

- (β 1) There exist 2^{ω_1} -many distinct selective ultrafilter on ω .
- $(\beta 2)$ Every selective filter on ω can be extended to a selective ultrafilter.
- (β 3) Every selective ultrafilter on ω is generated by ω_1 -many sets.
- (β 4) There exist 2^{ω_1} -many distinct non-selective *P*-points.
- (β 5) There exists a non-principal ultrafilter on \mathbb{Q} which is crowded, that is, it is generated by (relatively) closed sets without isolated points.

Other

• TOTAL FAILURE OF MARTIN'S AXIOM: $\mathfrak{c} > \omega_1$ and for every non-trivial ccc forcing \mathbb{P} there exists ω_1 -many dense sets in \mathbb{P} such that no filter intersects all of them.