
1

Axiom CPAcube and its consequences:
properties (A)–(E)

For a Polish space X we will consider Perf(X), the family of all subsets
of X homeomorphic to the Cantor set C, as ordered by inclusion. Thus, a
family E ⊂ Perf(X) is dense in Perf(X) provided for every P ∈ Perf(X)
there exists a Q ∈ E such that Q ⊂ P .

All different versions of our axiom will be more or less of the form:

If E ⊂ Perf(X) is appropriately dense in Perf(X), then some portion E0 of
E covers almost all of X in a sense that |X \

⋃
E0| < c.

If the word “appropriately” in the above is ignored, then it implies the
following statement:

Näıve-CPA: If E is dense in Perf(X), then |X \
⋃
E| < c.

It is a very good candidate for our axiom in the sense that it implies all
the properties we are interested in. It has, however, one major flaw — it is
false! This is the case since S ⊂ X \

⋃
E for some dense set E in Perf(X)

provided:

For each P ∈ Perf(X) there is a Q ∈ Perf(X) such that Q ⊂ P \ S.

This means that the family G of all sets of the form X \
⋃
E , where E is

dense in Perf(X), coincides with the σ-ideal s0 of Marczewski’s sets, since
G is clearly hereditary. Thus we have

s0 =
{
X \

⋃
E : E is dense in Perf(X)

}
. (1.1)

However, it is well known (see, e.g., [96, thm. 5.10]) that there are s0-sets
of cardinality c. Thus, our Näıve-CPA “axiom” cannot be consistent with
ZFC.

In order to formulate the real axiom CPAcube, we need the following
terminology and notation. A subset C of a product Cη of the Cantor set is
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2 1 Axiom CPAcube and its consequences: properties (A)–(E)

said to be a perfect cube if C =
∏

n∈η Cn, where Cn ∈ Perf(C) for each n.
For a fixed Polish space X let Fcube stand for the family of all continuous
injections from perfect cubes C ⊂ Cω onto perfect subsets of X. Each such
injection f is called a cube in X and is considered as a coordinate system
imposed on P = range(f).1 We will usually abuse this terminology and
refer to P itself as a cube (in X) and to f as a witness function for P . A
function g ∈ Fcube is a subcube of f provided g ⊂ f . In the above spirit
we call Q = range(g) a subcube of a cube P . Thus, when we say that Q is
a subcube of a cube P ∈ Perf(X) we mean that Q = f [C], where f is a
witness function for P and C ⊂ dom(f) ⊂ Cω is a perfect cube. Here and
in what follows, the symbol dom(f) stands for the domain of f .

We say that a family E ⊂ Perf(X) is Fcube-dense (or cube-dense) in
Perf(X) provided every cube P ∈ Perf(X) contains a subcube Q ∈ E .
More formally, E ⊂ Perf(X) is Fcube-dense provided

∀f ∈ Fcube ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E). (1.2)

It is easy to see that the notion of Fcube-density is a generalization of the
notion of density as defined in the first paragraph of this chapter:

If E is Fcube-dense in Perf(X), then E is dense in Perf(X). (1.3)

On the other hand, the converse implication is not true, as shown by the
following simple example.

Example 1.0.1 Let X = C×C and let E be the family of all P ∈ Perf(X)
such that either

• all vertical sections Px = {y ∈ C: 〈x, y〉 ∈ P} of P are countable, or

• all horizontal sections P y = {x ∈ C: 〈x, y〉 ∈ P} of P are countable.

Then E is dense in Perf(X), but it is not Fcube-dense in Perf(X).

Proof. To see that E is dense in Perf(X), let R ∈ Perf(X). We need to
find a P ⊂ R with P ∈ E . If all vertical sections of R are countable, then
P = R ∈ E . Otherwise, there exists an x such that Rx is uncountable.
Then there exists a perfect subset P of {x} ×Rx ⊂ R and clearly P ∈ E .

To see that E is not Fcube-dense in Perf(X), it is enough to notice that
P = X = C × C considered as a cube, where the second coordinate is
identified with Cω\{0}, has no subcube in E . More formally, let h be a
homeomorphism from C onto Cω\{0}, let g:C × C → Cω = C × Cω\{0} be
given by g(x, y) = 〈x, h(y)〉, and let f = g−1:Cω → C×C be the coordinate

1 In a language of forcing, a coordinate function f is simply a nice name for an element
from X.
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function making C×C = range(f) a cube. Then range(f) does not contain
a subcube from E .

With these notions in hand we are ready to formulate our axiom CPAcube.
For a Polish space X let

CPAcube[X]: c = ω2, and for every Fcube-dense family E ⊂ Perf(X) there
is an E0 ⊂ E such that |E0| ≤ ω1 and |X \

⋃
E0| ≤ ω1.

Then

CPAcube: CPAcube[X] for every Polish space X.

We will show in Remark 1.8.3 that both these versions of the axiom are
equivalent, that is, that CPAcube[X] is equivalent to CPAcube[Y ] for arbi-
trary Polish spaces X and Y .

The proof that CPAcube is consistent with ZFC (it holds in the iterated
perfect set model) will be presented in the next chapters. In the remainder
of this chapter we will take a closer look at CPAcube and its consequences.

It is also worth noticing that, in order to check that E is Fcube-dense,
it is enough to consider in condition (1.2) only functions f defined on the
entire space Cω, that is:

Fact 1.0.2 E ⊂ Perf(X) is Fcube-dense if and only if

∀f ∈ Fcube, dom(f) = Cω, ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E). (1.4)

Proof. To see this, let Φ be the family of all bijections h = 〈hn〉n<ω

between perfect subcubes
∏

n∈ωDn and
∏

n∈ω Cn of Cω such that each hn
is a homeomorphism between Dn and Cn. Then

f ◦ h ∈ Fcube for every f ∈ Fcube and h ∈ Φ with range(h) ⊂ dom(f).

Now take an arbitrary f :C → X from Fcube and choose an h ∈ Φ mapping
Cω onto C. Then f̂ = f◦h ∈ Fcube maps Cω intoX, and, using (1.4), we can
find a ĝ ∈ Fcube such that ĝ ⊂ f̂ and range(ĝ) ∈ E . Then g = f � h[dom(ĝ)]
satisfies (1.2).

Next, let us consider1

scube
0 =

{
X \

⋃
E : E is Fcube-dense in Perf(X)

}
(1.5)

= {S ⊂ X:∀ cube P ∈ Perf(X) ∃ subcube Q ⊂ P \ S}.
1 The second equation follows immediately from the fact that if E is Fcube-dense and

Y ⊂ X \
⋃

E, then Y = X \
⋃

E ′ for some Fcube-dense E ′. To see this, for every x ∈ X
choose Tx ∈ Perf(X) such that Tx ⊂ {x}∪

⋃
E and note that E ′ = E∪{Tx: x ∈ X \Y }

is as desired.
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It can be easily shown, in ZFC, that scube
0 forms a σ-ideal. However, we

will not use this fact in this text in that general form. This is the case,
since we will usually assume that CPAcube holds while CPAcube implies the
following stronger fact.

Proposition 1.0.3 If CPAcube holds, then scube
0 = [X]≤ω1 .

Proof. It is obvious that CPAcube implies scube
0 ⊂ [X]<c. The other

inclusion is always true, and it follows from the following simple fact.

Fact 1.0.4 [X]<c ⊂ scube
0 ⊂ s0 for every Polish space X.

Proof. Choose S ∈ [X]<c. In order to see that S ∈ scube
0 , note that

the family E = {P ∈ Perf(X):P ∩ S = ∅} is Fcube-dense in Perf(X).
Indeed, if function f :Cω → X is from Fcube, then there is a perfect subset
P0 of C that is disjoint with the projection π0(f−1(S)) of f−1(S) into
the first coordinate. Then f

[∏
i<ω Pi

]
∩ S = ∅, where Pi = C for all

0 < i < ω. Therefore, f
[∏

i<ω Pi

]
∈ E . Thus, X \

⋃
E ∈ scube

0 . Since
clearly S ⊂ X \

⋃
E , we get S ∈ scube

0 .
The inclusion scube

0 ⊂ s0 follows immediately from (1.1), (1.5), and (1.3).

1.1 Perfectly meager sets, universally null sets, and continuous
images of sets of cardinality continuum

The results presented in this section come from K. Ciesielski and J. Paw-
likowski [39]. An important quality of the ideal scube

0 , and so the power of
the assumption scube

0 = [X]<c, is well depicted by the following fact.

Proposition 1.1.1 If X is a Polish space and S ⊂ X does not belong to

scube
0 , then there exist a T ∈ [S]c and a uniformly continuous function h

from T onto C.

Proof. Take an S as above and let f :Cω → X be a continuous injection
such that f [C] ∩ S %= ∅ for every perfect cube C. Let g:C → C be a
continuous function such that g−1(y) is perfect for every y ∈ C. Then
clearly h0 = g ◦ π0 ◦ f−1: f [Cω] → C is uniformly continuous. Moreover, if
T = S ∩ f [Cω], then h0[T ] = C since

T ∩ h−1
0 (y) = T ∩ f [π−1

0 (g−1(y))] = S ∩ f [g−1(y)× C× C× · · ·] %= ∅
for every y ∈ C.
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Corollary 1.1.2 Assume scube
0 = [X]<c for a Polish space X. If S ⊂ X has

cardinality c, then there is a uniformly continuous function f :X → [0, 1]
such that f [S] = [0, 1]. In particular, CPAcube implies property (A).

Proof. If S is as above, then, by CPAcube, S /∈ scube
0 . Thus, by Proposi-

tion 1.1.1 there exists a uniformly continuous function h from a subset of S
onto C. Consider C as a subset of [0, 1] and let ĥ:X → [0, 1] be a uniformly
continuous extension of h. If g: [0, 1] → [0, 1] is continuous and such that
g[C] = [0, 1], then f = g ◦ ĥ is as desired.

For more on property (A) see also Corollary 3.3.5.
It is worth noticing here that the function f in Corollary 1.1.2 cannot be

required to be either monotone or in the class “D1” of all functions having
a finite or infinite derivative at every point. This follows immediately from
the following proposition, since each function that is either monotone or
“D1” belongs to the Banach class

(T2) =
{
f ∈ C(R): {y ∈ R: |f−1(y)| > ω} ∈ N

}
.

(See [58] or [114, p. 278].)

Proposition 1.1.3 There is, in ZFC, an S ∈ [R]c such that [0, 1] %⊂ f [S]
for every f ∈ (T2).

Proof. Let {fξ: ξ < c} be an enumeration of all functions from (T2) whose
range contains [0, 1]. Construct by induction a sequence 〈〈sξ, yξ〉: ξ < c〉
such that, for every ξ < c,

(i) yξ ∈ [0, 1] \ fξ[{sζ : ζ < ξ}] and |f−1
ξ (yξ)| ≤ ω.

(ii) sξ ∈ R \
(
{sζ : ζ < ξ} ∪

⋃
ζ≤ξ f

−1
ζ (yζ)

)
.

Then the set S = {sξ: ξ < c} is as required since yξ ∈ [0, 1] \ fξ[S] for every
ξ < c.

Theorem 1.1.4 If S ⊂ R is either perfectly meager or universally null,

then S ∈ scube
0 . In particular,

CPAcube =⇒ “scube
0 = [R]<c” =⇒ “(B) & (C).”

Proof. Take an S ⊂ R that is either perfectly meager or universally null
and let f :Cω → R be a continuous injection. Then S ∩ f [Cω] is either
meager or null in f [Cω]. Thus G = Cω \f−1(S) is either comeager or of full
measure in Cω. Hence the theorem follows immediately from the following
claim, which will be used many times in the sequel.
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Claim 1.1.5 Consider Cω with its usual topology and its usual product

measure. If G is a Borel subset of Cω that is either of the second category

or of positive measure, then G contains a perfect cube
∏

i<ω Pi.

In particular, if G is a countable cover of Cω formed by either measurable

sets or by sets with the Baire property, then there is a G ∈ G that contains

a perfect cube.

The measure version of the claim is a variant the following theorem:

(m) For every full measure subset H of [0, 1]× [0, 1] there are a perfect set
P ⊂ [0, 1] and a positive inner measure subset Ĥ of [0, 1] such that
P × Ĥ ⊂ H.

This was proved by H.G. Eggleston [52] and, independently, by M.L. Brod-
skǐı [13]. The category version of the claim is a consequence of the category
version of (m):

(c) For every Polish space X and every comeager subset G of X×X there
are a perfect set P ⊂ X and a comeager subset Ĝ of X such that
P × Ĝ ⊂ G.

This well-known result can be found in [74, exercise 19.3]. (Its version
for R2 is also proved, for example, in [45, condition ()), p. 416].) For
completeness, we will show here in detail how to deduce the claim from
(m) and (c).

We will start the argument with a simple fact, in which we will use the
following notations. If X is a Polish space endowed with a Borel measure,
then ψ0(X) will stand for the sentence

ψ0(X): For every full measure subset H of X ×X there are a perfect set
P ⊂ X and a positive inner measure subset Ĥ of X such that
P × Ĥ ⊂ H.

Thus ψ0([0, 1]) is a restatement of (m). We will also use the following
seemingly stronger variants of ψ0(X).

ψ1(X): For every full measure subset H of X ×X there are a perfect set
P ⊂ X and a subset Ĥ of X of full measure such that P × Ĥ ⊂ H.

ψ2(X): For a subset H of X × X of positive inner measure there are a
perfect set P ⊂ X and a positive inner measure subset Ĥ of X
such that P × Ĥ ⊂ H.
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Fact 1.1.6 Let n = 1, 2, 3, . . ..

(i) If E is a subset of Rn of a positive Lebesgue measure, then the set

Qn + E =
⋃

q∈Qn(q + E) has a full measure.

(ii) ψk(X) holds for all k < 3 and X ∈ {[0, 1], (0, 1),R,C}.

Proof. (i) Let λ be the Lebesgue measure on Rn, and for ε > 0 and
x ∈ Rn let B(x, ε) be an open ball in Rn of radius ε centered at x. By way
of contradiction, assume that there exists a positive measure set A ⊂ Rn

disjoint with Qn + E. Let a ∈ A and x ∈ E be the Lebesgue density
points of A and X, respectively. Take an ε > 0 such that λ(A∩B(a, ε)) >
(1 − 4−n)λ(B(a, ε)) and λ(E ∩ B(x, ε)) > (1 − 4−n)λ(B(x, ε)). Now, if
q ∈ Qn is such that q + x ∈ B(a, ε/2), then A ∩ (q + E) ∩ B(a, ε/2) %= ∅
since B(a, ε/2) ⊂ B(a, ε)∩B(q+x, ε), and thus λ(A∩(q+E)∩B(a, ε/2)) >
λ(B(a, ε/2))−2 ·4−nλ(B(a, ε)) ≥ 0. Hence A∩(Qn+E) %= ∅, contradicting
the choice of A.

(ii) First note that ψk(R) ⇔ ψk((0, 1)) ⇔ ψk([0, 1]) ⇔ ψk(C) for every
k < 3. This is justified by the fact that, for the mappings f : (0, 1) → R

given by f(x) = cot(xπ), the identity mapping id: (0, 1) → [0, 1], and
a function d:C → [0, 1] given by d(x) =

∑
i<ω

x(i)
2i+1 , the image and the

preimage of a measure zero (respectively, full measure) set is of measure
zero (respectively, of full measure).

Since, by (m), ψ0([0, 1]) is true, we also have that ψ0(X) also holds for
X ∈ {(0, 1),R,C}. To finish the proof it is enough to show that ψ0(R)
implies ψ1(R) and ψ2(R).

To prove ψ1(R), let H be a full measure subset of R×R and let us define
H0 =

⋂
q∈Q(〈0, q〉 + H). Then H0 is still of full measure, so, by ψ0(R),

there are perfect set P ⊂ R and a positive inner measure subset Ĥ0 of R

such that P × Ĥ0 ⊂ H0. Thus, P × (q + Ĥ0) ⊂ 〈0, q〉+H0 = H0 for every
q ∈ Q. Let Ĥ =

⋃
q∈Q(q + Ĥ0). Then P × Ĥ ⊂ H0 ⊂ H, and, by (i), Ĥ

has full measure. So, ψ1(R) is proved.
To prove ψ2(R), let H ⊂ R×R be of positive inner measure. Decreasing

H, if necessary, we can assume thatH is compact. LetH0 = Q2+H. Then,
by (i), H0 is of full measure, and so, by ψ0(R), there are a perfect set P0 ⊂ R

and a positive inner measure subset Ĥ0 of R such that P0×Ĥ0 ⊂ H0. Once
again, decreasing P0 and Ĥ0 if necessary, we can assume that they are
homeomorphic to C and that no relatively open subset of Ĥ0 has measure
zero. Since P0×Ĥ0 ⊂

⋃
q∈Q2(q+H) is covered by countably many compact

sets (P0× Ĥ0)∩ (q+H) with q ∈ Q2, there is a q = 〈q0, q1〉 ∈ Q2 such that
(P0 × Ĥ0) ∩ (q +H) has a nonempty interior in P0 × Ĥ0. Let U and V be
nonempty clopen (i.e., simultaneously closed and open) subsets of P0 and
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Ĥ0, respectively, such that U×V ⊂ (P0×Ĥ0)∩(q+H) ⊂ 〈q0, q1〉+H. Then
U and V are perfect and V has positive measure. Let P = −q0 + U and
Ĥ = −q1+V . Then P×Ĥ = (−q0+U)×(−q1+V ) = −〈q0, q1〉+(U×V ) ⊂
H, and so ψ2(R) holds.

Proof of Claim 1.1.5. Since the natural homeomorphism between C

and Cω\{0} preserves product measure, we can identify Cω = C × Cω\{0}

with C× C considered with its usual topology and its usual product mea-
sure. With this identification, the result follows easily, by induction on
coordinates, from the following fact:

(•) For every Borel subset H of C × C that is of the second category (of
positive measure) there are a perfect set P ⊂ C and a second category
(positive measure) subset Ĥ of C such that P × Ĥ ⊂ H.

The measure version of (•) is a restatement of ψ2(C), which was proved
in Fact 1.1.6(ii). To see the category version of (•), let H be a Borel subset
of C×C of the second category. Then there are clopen subsets U and V of
C such that H0 = H ∩ (U × V ) is comeager in U × V . Since U and V are
homeomorphic to C, we can apply (c) to H0 and U×V to find a perfect set
P ⊂ U and a comeager Borel subset Ĥ of V such that P × Ĥ ⊂ H0 ⊂ H,
finishing the proof.

We will finish this section with the following consequence of CPAcube that
follows easily from Claim 1.1.5. In what follows we will use the following
notation: Σ1

1 will stand for the class of analytic sets, that is, continuous
images of Borel sets; Π1

1 will stand for the class of coanalytic sets, the
complements of analytic sets; and Σ1

2 will stand for continuous images of
coanalytic sets, and Π1

2 for the class of all complements of Σ1
2 sets. For the

argument that follows we also need to recall a theorem of W. Sierpiński
that every Σ1

2 set is the union of ω1 Borel sets. (See, e.g., [74, p. 324].)

Fact 1.1.7 If CPAcube holds, then for every Σ1
2 subset B of a Polish space

X there exists a family P of ω1 many compact sets such that B =
⋃
P.

Proof. Since every Σ1
2 set is a union of ω1 Borel sets, we can assume that

B is Borel. Let E be the family of all P ∈ Perf(X) such that either P ⊂ B
or P ∩ B = ∅. We claim that E is Fcube-dense. Indeed, if f :Cω → X is
a continuous injection, then f−1(B) is Borel in Cω. Thus, there exists a
basic open set U in Cω, which is homeomorphic to Cω, such that either
U ∩ f−1(B) or U \ f−1(B) is comeager in U . Apply Claim 1.1.5 to this
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comeager set to find a perfect cube P contained in it. Then f [P ] ∈ E is a
subcube of range(f). So, E is Fcube-dense.

By CPAcube, there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \
⋃
E0| ≤ ω1.

Let P0 = {P ∈ E0:P ⊂ B} and P = P0 ∪ {{x}:x ∈ B \
⋃
E0}. Then P is

as desired.

1.2 Uniformly completely Ramsey null sets

Uniformly completely Ramsey null sets are small subsets of [ω]ω that are
related to the Ramsey property. The notion has been formally defined by
U. Darji [47], though it was already studied by F. Galvin and K. Prikry
in [63]. Instead of using the original definition for this class, we will use
its characterization due to A. Nowik [107], in which we consider P(ω) as a
Polish space by identifying it with 2ω via the characteristic functions.

Proposition 1.2.1 (A. Nowik [107]) A subset X of [ω]ω is uniformly

completely Ramsey null if and only if for every continuous function

G:P(ω)→ P(ω) there exists an A ∈ [ω]ω such that |G[P(A)] ∩X| ≤ ω.

Recently A. Nowik [108] proved that under CPAcube every uniformly
completely Ramsey null set has cardinality less than continuum. This
answered a question of U. Darji, who asked whether there is a ZFC example
of a uniformly completely Ramsey null set of cardinality continuum. Since
Nowik’s argument is typical for the use of CPAcube, we reproduce it here,
with the author’s approval.

Theorem 1.2.2 (A. Nowik [108]) If X ∈ [ω]ω is uniformly completely

Ramsey null, then X ∈ scube
0 .

Proof. Let f :Cω → P(ω) be a continuous injection. We need to find a
perfect cube C ⊂ Cω such that f [C] ∩X = ∅.

Let 〈·, ·〉:ω×ω → ω be a bijection and define a function F :P(ω)→ Cω by
F (A)(n) = χ{a〈k,n〉:k<ω}, where {a0, a1, . . .} is an increasing enumeration of
A. It is easy to see that F is a continuous injection. Therefore, the function
G = f ◦ F :P(ω) → P(ω) is continuous and so, by Proposition 1.2.1, there
exists an A ∈ [ω]ω such that |(f ◦ F )[P(A)] ∩X| ≤ ω.

Let A = {a0, a1, a2, . . .} be an increasing enumeration of elements of A
and define a function Ξ:Cω → P(A) by

Ξ(x) = {a2〈k,n〉:x(n)(k) = 0} ∪ {a2〈k,n〉+1:x(n)(k) = 1}.

We claim that:
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(∗) F [Ξ[Cω]] is a perfect cube in Cω.

To see this, for every k, n < ω, let Ek,n = {a2〈k,n〉, a2〈k,n〉+1} and put

Dn =
{
x ∈ C:x−1(1) ⊆

⋃
k∈ω Ek,n & (∀k ∈ ω)

∣∣Ek,n ∩ x−1(1)
∣∣ = 1

}
.

It is easy to see that each Dn is perfect in C. We will show that

F [Ξ[Cω]] =
∏

n∈ωDn.

So, let x ∈ Cω. To see that F (Ξ(x)) ∈
∏

n∈ωDn, first notice that, if
{b0, b1, . . .} is an increasing enumeration of Ξ(x), then bi ∈ {a2i, a2i+1} for
every i < ω. Therefore b〈k,n〉 ∈ Ek,n for every k, n < ω. In particular,
F (Ξ(x))(n)−1(1) = {b〈k,n〉: k < ω} ∈ Dn for every n < ω.

To see the other inclusion, take 〈xn:n < ω〉 ∈
∏

n∈ωDn and define
B =

⋃
n<ω(xn)−1(1). Then F (B) = 〈xn:n < ω〉 and |B ∩ Ek,n| = 1

for every k, n < ω. Let x ∈ Cω be such that x(n)(k) = 0 if and only if
a2〈k,n〉 ∈ B. Then Ξ(x) = B and so 〈xn:n < ω〉 = F (Ξ(x)) ∈

∏
n∈ωDn,

finishing the proof of (∗).
Now, D = F [Ξ[Cω]] ⊂ Cω is a perfect cube and |f [D] ∩ X| ≤ ω, since

f [D] = f [F [Ξ[Cω]]] ⊂ f [F [P(A)]] = (f ◦ F )[P(A)]. Since D can be par-
titioned into continuum many disjoint perfect cubes, for some member of
the partition, say C, we will have f [C] ∩X = ∅.

Corollary 1.2.3 (A. Nowik [108]) CPAcube implies that every uniformly

completely Ramsey null set has cardinality less than continuum.

To discuss another application of CPAcube, let us consider the following
covering number connected to a theorem of H. Blumberg (see Section 1.7)
and studied by F. Jordan in [70]. Here B1 stands for the class of all Baire
class 1 functions f : R → R.

• cov(B1,Perf(R)) is the smallest cardinality of F ⊂ B1 such that for each
P ∈ Perf(R) there is an f ∈ F with f � P not continuous.

Jordan also proves [70, thm. 7(a)] that cov(B1,Perf(R)) is equal to the
covering number of the space Perf(R) (considered with the Hausdorff met-
ric) by the elements of some σ-ideal Zp and notices [70, thm. 17(a)] that
every compact set C ∈ Perf(R) contains a dense Gδ subset that belongs to
Zp. So, by Claim 1.1.5, the elements of Perf(R) ∩ Zp are Fcube-dense in
Perf(R). Thus

Corollary 1.2.4 CPAcube implies that cov(B1,Perf(R)) = cov(Zp) = ω1.
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1.3 cof(N ) = ω1

Next, following the argument of K. Ciesielski and J. Pawlikowski from [39],
we show that CPAcube implies that cof(N ) = ω1. So, under CPAcube, all
cardinals from Cichoń’s diagram (see, e.g., [4]) are equal to ω1.

Let CH be the family of all subsets
∏

n<ω Tn of ωω such that Tn ∈ [ω]≤n+1

for all n < ω. We will use the following characterization.

Proposition 1.3.1 (T. Bartoszyński [4, thm. 2.3.9])

cof(N ) = min
{
|F|:F ⊂ CH &

⋃
F = ωω

}
.

Lemma 1.3.2 The family C∗H = {X ⊂ ωω: X ⊂ T for some T ∈ CH} is

Fcube-dense in Perf(ωω).

Proof. Let f :Cω → ωω be a continuous function. By (1.4) it is enough
to find a perfect cube C in Cω such that f [C] ∈ C∗H .

Construct, by induction on n < ω, the families {Ei
s: s ∈ 2n & i < ω} of

nonempty clopen subsets of C such that, for every n < ω and s, t ∈ 2n,

(i) Ei
s = Ei

t for every n ≤ i < ω;
(ii) Ei

sˆ0 and Ei
sˆ1 are disjoint subsets of Ei

s for every i < n+ 1;
(iii) for every 〈si ∈ 2n: i < ω〉

f(x0) � 2(n+1)2 = f(x1) � 2(n+1)2 for every x0, x1 ∈
∏
i<ω

Esi
.

For each i < ω the fusion of {Ei
s: s ∈ 2<ω} will give us the i-th coordinate

set of the desired perfect cube C.
Condition (iii) can be ensured by the uniform continuity of f . Indeed, let

δ > 0 be such that f(x0) � 2(n+1)2 = f(x1) � 2(n+1)2 for every x0, x1 ∈ Cω

of distance less than δ. Then it is enough to choose {Ei
s: s ∈ 2n & i < ω}

such that (i) and (ii) are satisfied and every set
∏

i<ω Esi
from (iii) has

diameter less than δ. This finishes the construction.
Next, for every i, n < ω, let Ei

n =
⋃
{Ei

s: s ∈ 2n} and En =
∏

i<ω E
i
n.

Then C =
⋂

n<ω En =
∏

i<ω

(⋂
n<ω E

i
n

)
is a perfect cube in Cω, since⋂

n<ω E
i
n ∈ Perf(C) for every i < ω. Thus, to finish the proof it is enough

to show that f [C] ∈ C∗H .
So, for every k < ω, let n < ω be such that 2n

2 ≤ k + 1 < 2(n+1)2 , put

Tk = {f(x)(k):x ∈ En}=

{
f(x)(k):x ∈

∏
i<ω

Esi for some 〈si ∈ 2n: i < ω〉
}
,

and notice that Tk has at most 2n
2 ≤ k + 1 elements. Indeed, by (iii), the
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set
{
f(x)(k):x ∈

∏
i<ω Esi

}
is a singleton for every 〈si ∈ 2n: i < ω〉 while

(i) implies that
{∏

i<ω Esi
: 〈si ∈ 2n: i < ω〉

}
has 2n

2
elements. Therefore∏

k<ω Tk ∈ CH .
To finish the proof it is enough to notice that f [C] ⊂

∏
k<ω Tk.

Corollary 1.3.3 If CPAcube holds, then cof(N ) = ω1.

Proof. By CPAcube and Lemma 1.3.2, there exists an F ∈ [CH ]≤ω1 such
that |ωω \

⋃
F| ≤ ω1. This and Proposition 1.3.1 imply cof(N ) = ω1.

1.4 Total failure of Martin’s axiom

In this section we prove that CPAcube implies the total failure of Martin’s
axiom, that is, the property that:

For every nontrivial ccc forcing P there exists ω1 many dense sets in P such
that no filter intersects all of them.

The consistency of this fact with c > ω1 was first proved by J. Baum-
gartner [6] in a model obtained by adding Sacks reals side by side. The
topological and Boolean algebraic formulations of the theorem follow im-
mediately from the following proposition. The proof presented below comes
from K. Ciesielski and J. Pawlikowski [39].

Proposition 1.4.1 The following conditions are equivalent.

(a) For every nontrivial ccc forcing P there exists ω1 many dense sets in P

such that no filter intersects all of them.

(b) Every compact ccc topological space without isolated points is a union

of ω1 nowhere dense sets.

(c) For every atomless ccc complete Boolean algebraB there exist ω1 many

dense sets in B such that no filter intersects all of them.

(d) For every atomless ccc complete Boolean algebraB there exist ω1 many

maximal antichains in B such that no filter intersects all of them.

(e) For every countably generated atomless ccc complete Boolean algebra

B there exists ω1 many maximal antichains in B such that no filter

intersects all of them.

Proof. The equivalence of conditions (a), (b), (c), and (d) is well known.
In particular, equivalences (a)–(c) are explicitly given in [6, thm. 0.1].
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Clearly (d) implies (e). The remaining implication, (e)=⇒(d), is a ver-
sion of the theorem from [89, p. 158]. However, it is expressed there in
slightly different language, so we include its proof here.

Let 〈B,∨,∧,0,1〉 be an atomless ccc complete Boolean algebra. For
every σ ∈ 2<ω1 define, by induction on the length dom(σ) of a sequence σ,
a bσ ∈ B such that the following conditions are satisfied:

• b∅ = 1.
• bσ is a disjoint union of bσˆ0 and bσˆ1.
• If bσ > 0, then bσˆ0 > 0 and bσˆ1 > 0.
• If λ = dom(σ) is a limit ordinal, then bσ =

∧
ξ<λ bσ�ξ.

Let T = {s ∈ 2<ω1 : bs > 0}. Then T is a subtree of 2<ω1 ; its levels
determine antichains in B, so they are countable.

First assume that T has a countable height. Then T itself is countable.
Let B0 be the smallest complete subalgebra of B containing {bσ:σ ∈ T}
and notice that B0 is atomless. Indeed, if there were an atom a in B0,
then S = {σ ∈ T : a ≤ bσ} would be a branch in T so that δ =

⋃
S

would belong to 2<ω1 . Since bδ ≥ a > 0, we would also have δ ∈ T . But
then a ≤ bδ = bδˆ0 ∨ bδˆ1, so that either δ 0̂ or δ 1̂ belongs to S, which is
impossible.

Thus, B0 is a complete, countably generated, atomless subalgebra of B.
So, by (e), there exists a family A of ω1 many maximal antichains in B0

with no filter in B0 intersecting all of them. But then each A ∈ A is also a
maximal antichain in B and no filter in B would intersect all of them. So,
we have (d).

Next, assume that T has height ω1 and for every α < ω1 let

Tα = {σ ∈ T : dom(σ) = α}

be the α-th level of T . Also let bα =
∨

σ∈Tα
bσ. Notice that bα = bα+1

for every α < ω1. On the other hand, it may happen that bλ >
∧

α<λ bα
for some limit λ < ω1; however, this may happen only countably many
times, since B is ccc. Thus, there is an α < ω1 such that bβ = bα for every
α < β < ω1.

Now, let B0 be the smallest complete subalgebra of B below 1 \ bα
containing {bσ \ bα:σ ∈ T}. Then B0 is countably generated and, as
before, it can be shown that B0 is atomless. Thus, there exists a family A0

of ω1 many maximal antichains in B0 with no filter in B0 intersecting all of
them. Then no filter in B containing 1 \ bα intersects every A ∈ A0. But
for every α < β < ω1 the set Aβ = {bσ:σ ∈ Tβ} is a maximal antichain
in B below bα. Therefore, A1 = {Aβ :α < β < ω1} is an uncountable
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family of maximal antichains in B below bα with no filter in B containing
bα intersecting every A ∈ A1. Then it is easy to see that the family
A = {A0 ∪ A1: a0 ∈ A0 & A1 ∈ A1} is a family of ω1 many maximal
antichains in B with no filter in B intersecting all of them. This proves
condition (d).

Theorem 1.4.2 CPAcube implies the total failure of Martin’s axiom.

Proof. Let A be a countably generated, atomless, ccc complete Boolean
algebra and let {An:n < ω} generate A. By Proposition 1.4.1 it is enough
to show that A contains ω1 many maximal antichains such that no filter
in A intersects all of them.

Next let B be the σ-algebra of Borel subsets of a space C = 2ω. Re-
call that it is a free countably generated σ-algebra, with the free genera-
tors Bi = {s ∈ C: s(i) = 0}. Define h0: {Bn:n < ω} → {An:n < ω} by
h0(Bn) = An for all n < ω. Then h0 can be uniquely extended to a σ-
homomorphism h:B → A between σ-algebras B and A. (See, e.g., [121,
34.1 p. 117].) Let I = {B ∈ B:h[B] = 0}. Then I is a σ-ideal in B and
the quotient algebra B/I is isomorphic to A. (Compare also Loomis and
Sikorski’s theorem in [121, p. 117] or [86].) In particular, I contains all
singletons and is ccc, since A is atomless and ccc.

It follows that we need only to consider complete Boolean algebras of
the form B/I, where I is some ccc σ-ideal of Borel sets containing all
singletons. To prove that such an algebra has ω1 maximal antichains as
desired, it is enough to prove that:

(∗) C is a union of ω1 perfect sets {Nξ: ξ < ω1} that belong to I.

Indeed, assume that (∗) holds and for every ξ < ω1 let D∗
ξ be a family of all

B ∈ B\I with closures cl(B) disjoint from Nξ. Then Dξ = {B/I:B ∈ D∗
ξ}

is dense in B/I, since C \ Nξ is σ-compact and B/I is a σ-algebra. Let
A∗

ξ ⊂ D∗
ξ be such that Aξ = {B/I:B ∈ A∗

ξ} is a maximal antichain in
B/I. It is enough to show that no filter intersects all Aξ’s. But if there
were a filter F in B/I intersecting all Aξ’s, then for every ξ < ω1 there
would exist a Bξ ∈ A∗

ξ with Bξ/I ∈ F ∩ Aξ. Thus, the set
⋂

ξ<ω1
cl(Bξ)

would be nonempty, despite the fact that it is disjoint from
⋃

ξ<ω1
Nξ = C.

To finish the proof it is enough to show that (∗) follows from CPAcube.
But this follows immediately from the fact that any cube P in C contains
a subcube Q ∈ I as any cube P can be partitioned into c many disjoint
subcubes, and, by the ccc property of I, only countably many of them can
be outside I.
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1.5 Selective ultrafilters and the reaping numbers r and rσ

In this section, which is based in part on a paper by K. Ciesielski and
J. Pawlikowski [37], we will show that CPAcube implies that every selective
ultrafilter is generated by ω1 sets and that the reaping number r is equal to
ω1. The actual construction of a selective ultrafilter will require a stronger
version of the axiom and will be done in Theorem 5.3.3.

We will use here the terminology introduced in the Preliminaries chapter.
In particular, recall that the ideal [ω]<ω of finite subsets of ω is semiselec-
tive.

The most important combinatorial fact for us concerning semiselective
ideals is the following property. (See Theorem 2.1 and Remark 4.1 in [55].)
This is a generalization of a theorem of R. Laver [85], who proved this fact
for the ideal I = [ω]<ω.

Proposition 1.5.1 (I. Farah [55]) Let I be a semiselective ideal on ω.

For every analytic set S ⊂ Cω × [ω]ω and every A ∈ I+ there exist a

B ∈ I+ ∩ P(A) and a perfect cube C in Cω such that C × [B]ω is either

contained in or disjoint with S.

With this fact in hand we can prove the following theorem.

Theorem 1.5.2 Assume that CPAcube holds. If I is a semiselective ideal,

then there is a family W ⊂ I+, |W| ≤ ω1, such that for every analytic set

A ⊂ [ω]ω there is a W ∈ W for which either [W ]ω ⊂ A or [W ]ω ∩A = ∅.

Proof. Let S ⊂ C × [ω]ω be a universal analytic set, that is, such that
the family {Sx:x ∈ C} (where Sx = {y ∈ [ω]ω: 〈x, y〉 ∈ S}) contains all
analytic subsets of [ω]ω. (See, e.g., [69, lem. 39.4].) In fact, we will take S
such that, for any analytic set A in [ω]ω,

|{x ∈ C:Sx = A}| = c. (1.6)

(If U ⊂ C× [ω]ω is a universal analytic set, then S = C×U ⊂ C×C× [ω]ω

satisfies (1.6), where we identify C × C with C.) For this particular set S
consider the family E of all Q ∈ Perf(C) for which there exists a WQ ∈ I+

such that

Q× [WQ]ω is either contained in or disjoint from S. (1.7)

Note that, by Proposition 1.5.1, the family E is Fcube-dense in Perf(C). So,
by CPAcube, there exists an E0 ⊂ E , |E0| ≤ ω1, such that |C\

⋃
E0| < c. Let

W = {WQ:Q ∈ E0}.
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It is enough to see that this W is as required.
Clearly |W| ≤ ω1. Also, by (1.6), for an analytic set A ⊂ [ω]ω there exist

a Q ∈ E0 and an x ∈ Q such that A = Sx. So, by (1.7), {x} × [WQ]ω is
either contained in or disjoint from {x} × Sx = {x} ×A.

Recall (see, e.g., [4] or [128]) that a family W ⊂ [ω]ω is a reaping family
provided

∀A ∈ [ω]ω ∃W ∈ W (W ⊂ A or W ⊂ ω \A).

The reaping (or refinement) number r is defined as the minimum cardinality
of a reaping family. Also, a number rσ is defined as the smallest cardinality
of a familyW ⊂ [ω]ω such that for every sequence 〈An ∈ [ω]ω:n < ω〉 there
exists aW ∈ W such that for every n < ω eitherW ⊆∗ An orW ⊆∗ ω\An.
(See [18] or [128].) Clearly r ≤ rσ.

Corollary 1.5.3 If CPAcube holds, then for every semiselective ideal I
there exists a family W ⊂ I+, |W| ≤ ω1, such that for every A ∈ [ω]ω

there is a W ∈ W for which either W ⊆∗ A or W ⊆∗ ω \A. In particular,

CPAcube implies that r = ω1 < c.

Proof. The familyW from Theorem 1.5.2 works: since [A]ω is analytic in
[ω]ω, there exists aW ∈ W such that either [W ]ω ⊂ [A]ω or [W ]ω∩[A]ω = ∅.

Note also that CPAcube implies the second part of property (E).

Corollary 1.5.4 If CPAcube holds, then every selective ultrafilter F on ω

is generated by a family of size ω1 < c.

Proof. If F is a selective ultrafilter on ω, then I = P(ω)\F is a selective
ideal and I+ = F . Let W ⊂ I+ = F be as in Corollary 1.5.3. Then W
generates F .

Indeed, if A ∈ F , then there exists a W ∈ W such that either W ⊂ A

or W ⊂ ω \ A. But it is impossible that W ⊂ ω \ A, since then we would
have ∅ = A ∩W ∈ F .

As mentioned above, in Theorem 5.3.3 we will prove that some version of
our axiom implies that there exists a selective ultrafilter on ω. In particular,
the assumptions of the next corollary are implied by such a version of our
axiom.

Corollary 1.5.5 If CPAcube holds and there exists a selective ultrafilter

F on ω, then rσ = ω1 < c.
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Proof. Let W ∈ [F ]≤ω1 be a generating family for F . We will show that
it justifies rσ = ω1. Indeed, take a sequence 〈An ∈ [ω]ω:n < ω〉. For every
n < ω, let A∗

n belong to F ∩{An, ω \An}. Since F is selective, there exists
an A ∈ F such that A ⊆∗ A∗

n for every n < ω. Let W ∈ W be such that
W ⊂ A. Then for every n < ω either W ⊆∗ An or W ⊆∗ ω \An.

We are particularly interested in the number rσ since it is related to
different variants of sets of uniqueness coming from harmonic analysis, as
described in the survey paper [18]. In particular, from [18, thm. 12.6] it
follows that an appropriate version of our axiom implies that all covering
numbers described in the paper are equal to ω1.

1.6 On the convergence of subsequences of real-valued functions

This section can be viewed as an extension of the discussion of Egorov’s
theorem presented in [77, chapter 9]. In 1932, S. Mazurkiewicz [91] proved
the following variant of Egorov’s theorem, where a sequence 〈fn〉n<ω of
real-valued functions is uniformly bounded provided there exists an r ∈ R

such that range(fn) ⊂ [−r, r] for every n.

Mazurkiewicz’ Theorem For every uniformly bounded sequence 〈fn〉n<ω

of real-valued continuous functions defined on a Polish space X there exists
a subsequence that is uniformly convergent on some perfect set P .

The proof of the next theorem comes from the paper [39] of K. Ciesielski
and J. Pawlikowski .

Theorem 1.6.1 If CPAcube holds, then for every Polish space X and

every uniformly bounded sequence 〈fn:X → R〉n<ω of Borel measurable

functions there are two sequences, 〈Pξ: ξ < ω1〉 of compact subsets of X

and 〈Wξ ∈ [ω]ω: ξ < ω1〉, such that X =
⋃

ξ<ω1
Pξ and for every ξ < ω1:

〈fn � Pξ〉n∈Wξ
is a monotone uniformly convergent sequence of uniformly

continuous functions.

Proof. We first note that the family E of all P ∈ Perf(X) for which there
exists a W ∈ [ω]ω such that

the sequence 〈fn � P 〉n∈W is monotone and uniformly convergent

is Fcube-dense in Perf(X).
Indeed, let g ∈ Fcube, g:Cω → X and consider the functions hn = fn ◦ g.

Since h = 〈hn:n < ω〉:Cω → Rω is Borel measurable, there is a dense Gδ

subset G of Cω such that h � G is continuous. So, we can find a perfect
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Games and axiom CPAgame
cube

Before we get to the formulation of our next version of the axiom, it would
be good to note that in many applications we would prefer to have a full
covering of a Polish space X rather that the almost covering as claimed by
CPAcube. To get better access to the missing singletons1 we will extend the
notion of a cube by also allowing the “constant cubes:” A family Ccube(X)
of constant cubes is defined as the family of all constant functions from a
perfect cube C ⊂ Cω into X. We also define F∗

cube(X) as

F∗
cube = Fcube ∪ Ccube. (2.1)

Thus, F∗
cube is the family of all continuous functions from a perfect cube

C ⊂ Cω into X that are either one to one or constant. Now the range
of every f ∈ F∗

cube belongs to the family Perf∗(X) of all sets P such that
either P ∈ Perf(X) or P is a singleton. The terms “P ∈ Perf∗(X) is
a cube” and “Q is a subcube of a cube P ∈ Perf∗(X)” are defined in a
natural way.

Consider also the following game GAMEcube(X) of length ω1. The game
has two players, Player I and Player II. At each stage ξ < ω1 of the game
Player I can play an arbitrary cube Pξ ∈ Perf∗(X) and Player II must
respond with a subcube Qξ of Pξ. The game 〈〈Pξ, Qξ〉: ξ < ω1〉 is won by
Player I provided ⋃

ξ<ω1

Qξ = X;

otherwise, the game is won by Player II.
By a strategy for Player II we will consider any function S such that

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) is a subcube of Pξ, where 〈〈Pη, Qη〉: η < ξ〉 is any

1 The logic for accessing the singletons in such a strange is justified by the versions of
the axiom that will be presented in Chapter 6.

31
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partial game. (We abuse here slightly the notation, since the function S
also depends on the implicitly given coordinate functions fη:Cω → Pη,
making each Pη a cube.) A game 〈〈Pξ, Qξ〉: ξ < ω1〉 is played according
to a strategy S for Player II provided Qξ = S(〈〈Pη, Qη〉: η < ξ〉, Pξ) for
every ξ < ω1. A strategy S for Player II is a winning strategy for Player II
provided Player II wins any game played according to the strategy S.

Here is our new version of the axiom.

CPAgame
cube : c = ω2, and for any Polish space X Player II has no winning

strategy in the game GAMEcube(X).

Notice that

Proposition 2.0.1 Axiom CPAgame
cube implies CPAcube.

Proof. Let E ⊂ Perf(X) be an Fcube-dense family. Thus, for every cube
P ∈ Perf(X) there exists a subcube s(P ) ∈ E of P . Now, for a singleton
P ∈ Perf∗(X), put s(P ) = P and consider the following strategy (in fact,
it is a tactic) S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = s(Pξ).

By CPAgame
cube it is not a winning strategy for Player II. So there exists a

game 〈〈Pξ, Qξ〉: ξ < ω1〉 in which Qξ = s(Pξ) for every ξ < ω1 and Player II
loses, that is, X =

⋃
ξ<ω1

Qξ. Now, let E0 = {Qξ: ξ < ω1 & Qξ ∈ Perf(X)}.
Then |X \

⋃
E0| ≤ ω1, so CPAcube is justified.

2.1 CPAgame
cube and disjoint coverings

The results presented in this section come from a paper [39] of K. Ciesielski
and J. Pawlikowski.

Theorem 2.1.1 Assume that CPAgame
cube holds and let X be a Polish space.

If D ⊂ Perf(X) is Fcube-dense and it is closed under perfect subsets, then

there exists a partition of X into ω1 disjoint sets from D ∪ {{x}:x ∈ X}.

In the proof we will use the following easy lemma.

Lemma 2.1.2 Let P = {Pi: i < ω} ⊂ Perf∗(X), where X is a Polish space.

For every cube P ∈ Perf(X) there exists a subcube Q of P such that either

Q ∩
⋃

i<ω Pi = ∅ or Q ⊂ Pi for some i < ω.
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Proof. Let f ∈ Fcube be such that f [Cω] = P .
If P∩

⋃
i<ω Pi is meager in P , then, by Claim 1.1.5, we can find a subcube

Q of P such that Q ⊂ P \
⋃

i<ω Pi.
If P ∩

⋃
i<ω Pi is not meager in P , then there exists an i < ω such that

P ∩ Pi has a nonempty interior in P . Thus, there exists a basic clopen set
C in Cω, which is a perfect cube, such that f [C] ⊂ Pi. So, Q = f [C] is a
desired subcube of P .

Proof of Theorem 2.1.1. For a cube P ∈ Perf(X) and a countable
family P ⊂ Perf∗(X), let D(P ) ∈ D be a subcube of P and Q(P, P ) ∈ D
be as in Lemma 2.1.2 used with D(P ) in place of P . For a singleton
P ∈ Perf∗(X) we just put Q(P, P ) = P .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Qη: η < ξ}, Pξ).

By CPAgame
cube , strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II
looses, that is, X =

⋃
ξ<ω1

Qξ.
Notice that for every ξ < ω1 either Qξ ∩

⋃
η<ξ Qη = ∅ or there is an

η < ω1 such that Qξ ⊂ Qη. Let

F =


Qξ: ξ < ω1 & Qξ ∩

⋃
η<ξ

Qη = ∅


.

Then F is as desired.

Since a family of all measure zero perfect subsets of Rn is Fcube-dense,
we get the following corollary.

Corollary 2.1.3 CPAgame
cube implies that there exists a partition of Rn into

ω1 many disjoint closed nowhere dense measure zero sets.

Note that the conclusion of Corollary 2.1.3 does not follow from the
fact that Rn can be covered by ω1 perfect measure zero subsets. (See
A. Miller [94, thm. 6].)

The next corollary is a generalization of Fact 1.1.7.

Corollary 2.1.4 CPAgame
cube implies that for every Borel subset B of a Polish

space X there exists a family P of ω1 many disjoint compact sets such that

B =
⋃
P.

Proof. This follows immediately from Theorem 2.1.1 and the fact that
the family E = {P ∈ Perf(X):P ⊂ B or P ∩B = ∅} is Fcube-dense.



34 2 Games and axiom CPAgame
cube

2.2 MAD families and the numbers a and r

Recall that a family A ⊂ [ω]ω is almost disjoint provided |A ∩B| < ω and
it is maximal almost disjoint, MAD, provided it is not a proper subfamily
of any other almost disjoint family. The cardinal number a is defined as
follows:

a = min{|A|:A is infinite and MAD}.

The fact that a = ω1 holds in the iterated perfect set model was apparently
first noticed by Otmar Spinas (see A. Blass [9, sec. 11.5]), though it seems
that the proof of this result was never provided. The argument presented
below comes from K. Ciesielski and J. Pawlikowski [37].

Theorem 2.2.1 CPAgame
cube implies that a = ω1.

Our proof of Theorem 2.2.1 is based on the following lemma.

Lemma 2.2.2 For every countable infinite family W ⊂ [ω]ω of almost

disjoint sets and a cube P ∈ Perf([ω]ω) there exist a W ∈ [ω]ω and a

subcube Q of P such that W ∪ {W} is almost disjoint but W ∪ {W,x} is

not almost disjoint for every x ∈ Q.

Proof. Let W = {Wi: i < ω}. For every i < ω choose sets Vi ⊂ Wi

such that the Vi’s are pairwise disjoint and each Wi \Vi is finite, but Vω =
ω\

⋃
i<ω Vi is infinite. (For example, for every i < ω, put V ∗

i = Wi\
⋃

j<iWj

and Vi = V ∗
i \ {minV ∗

i }.) Let

B = {x ∈ P : (∀i ≤ ω) |x ∩ Vi| < ω}

and notice that B =
⋂

i≤ω

⋃
a∈[Vi]<ω{x ∈ P :x ∩ Vi = a} is a Borel subset

of P , since each set {x ∈ P :x ∩ Vi = a} is closed. Since either B or P \B
must be of the second category in P , by Claim 1.1.5 there is a subcube P ∗

of P such that either P ∗ ⊂ B or P ∗ ∩B = ∅.
If P ∗ ∩ B = ∅, then W = Vω and Q = P ∗ satisfy the conclusion of

the lemma. So, suppose that P ∗ ⊂ B. Let h:Cω → P ∗, h ∈ Fcube, be
a coordinate function making P ∗ a cube, let λ be the standard product
probability measure on Cω, and define a Borel measure µ on P ∗ by a
formula µ(B) = λ(h−1(B)).

For i, n < ω let

Pn
i = {x ∈ P ∗:x ∩ Vi ⊂ n}.

Then all the sets Pn
i =

⋃
a⊂n{x ∈ P ∗:x ∩ Vi = a} are Borel (since each

of the sets {x ∈ P ∗:x ∩ Vi = a} is closed) and P ∗ =
⋃

n<ω P
n
i for every
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i < ω. Thus for each i < ω there exists an n(i) < ω such that

µ
(
P

n(i)
i

)
> 1− 2−i.

Then the set T =
⋃

j<ω

⋂
j<i<ω P

n(i)
i has a µ-measure 1 so, by Claim 1.1.5,

there is a subcube Q of P ∗ that is a subset of T . Let

W =
⋃
i<ω

[Vi ∩ n(i)] .

We claim that W and Q satisfy the lemma.
It is obvious that W is almost disjoint with each Wi. So, fix an x ∈ Q.

To finish the proof it is enough to show that

x ⊆∗ W.

But x ∈ Q ⊂
⋃

j<ω

⋂
j<i<ω P

n(i)
i . Thus, there exists a j < ω such that

x ∈
⋂

j<i<ω P
n(i)
i . So,

x ∩
⋃

j<i<ω

Vi =
⋃

j<i<ω

(x ∩ Vi) ⊂
⋃

j<i<ω

(Vi ∩ n(i)) ⊂W

and the set x \W ⊂ x∩
(
Vω ∪

⋃
i≤j Vi

)
= (x∩Vω)∪

⋃
i≤j(x∩Vi) is finite,

as x ∈ Q ⊂ P ∗ ⊂ B.

Proof of Theorem 2.2.1. For a countably infinite almost disjoint family
W ⊂ [ω]ω and a cube P ∈ Perf([ω]ω), let W (W, P ) ∈ [ω]ω and a subcube
Q(W, P ) of P be as in Lemma 2.2.2. For P = {x} ∈ Perf∗([ω]ω), we put
Q(W, P ) = P and define W (W, P ) as some arbitrary W almost disjoint
with each set fromW and such that A∩x is infinite for some A ∈ W∪{W}.
(If |x ∩ V | < ω for every V ∈ W, we put W = x; otherwise, W is chosen
as an arbitrary set almost disjoint with each set from W.)

Let A0 ⊂ [ω]ω be an arbitrary infinite almost disjoint family and consider
the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q(A0 ∪ {Wη: η < ξ}, Pξ),

where the Wη’s are defined inductively by Wη = W (A0∪{Wζ : ζ < η}, Pη).
In other words, Player II remembers (recovers) the sets Wη associated
with the sets Pη played so far, and he uses them (and Lemma 2.2.2) to get
the next answer, Qξ = Q(A0 ∪ {Wη: η < ξ}, Pξ), while remembering (or
recovering each time) the set Wξ = W (A0 ∪ {Wη: η < ξ}, Pξ).

By CPAgame
cube , strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II
loses, that is, [ω]ω =

⋃
ξ<ω1

Qξ.
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Now, notice that the family A = A0 ∪{Wξ: ξ < ω1} is a MAD family. It
is clear that A is almost disjoint, since every set Wξ was chosen as almost
disjoint with every set from A0 ∪ {Wζ : ζ < ξ}. To see that A is maximal
it is enough to note that every x ∈ [ω]ω belongs to a Qξ for some ξ < ω1,
and so there is an A ∈ A0 ∪ {Wη: η ≤ ξ} such that A ∩ x is infinite.

By Theorem 2.2.1 we see that CPAgame
cube implies the existence of a MAD

family of size ω1. Next we will show that such a family can be simul-
taneously a reaping family. This result is similar in flavor to that from
Theorem 5.4.9.

Theorem 2.2.3 CPAgame
cube implies that there exists a family F ⊂ [ω]ω of

cardinality ω1 that is simultaneously MAD and reaping.

Proof. The proof is just a slight modification of that for Theorem 2.2.1.
For a countable infinite almost disjoint family W ⊂ [ω]ω and a cube

P ∈ Perf([ω]ω), letW0 ∈ [ω]ω and a subcube Q0 of P be as in Lemma 2.2.2.
Let A ∈ [ω]ω be almost disjoint with every set from W∪{W0}. By Laver’s
theorem [85] we can also find a subcube Q1 of Q0 and a W1 ∈ [A]ω such
that

• either W1 ∩ x = ∅ for every x ∈ Q1,
• or else W1 ⊂ x for every x ∈ Q1.

Let Q(W, P ) = Q1 and W(W, P ) = {W0,W1}. If P ∈ Perf∗([ω]ω) is a
singleton, then we put Q(W, P ) = P and we can easily find W0 and W1

satisfying the above conditions.
Let A0 ⊂ [ω]ω be an arbitrary infinite almost disjoint family and consider

the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q
(
A0 ∪

⋃
{Wη: η < ξ}, Pξ

)
,

where the Wη’s are defined as Wη =W(A0 ∪
⋃
{Wη: η < ξ}, Pη).

By CPAgame
cube , strategy S is not a winning strategy for Player II. So

there exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to the strategy
S in which Player II loses, that is, [ω]ω =

⋃
ξ<ω1

Qξ. Then the family
F = A0 ∪

⋃
{Wξ: ξ < ω1} is MAD and reaping.

2.3 Uncountable γ-sets and strongly meager sets

In this section we will prove that CPAgame
cube implies the existence of an

uncountable γ-set. We will also show that such a set can be, but need
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Prisms and axioms CPAgame
prism and CPAprism

The axioms CPAgame
cube and CPAcube deal with the notion of Fcube-density,

where Fcube is the family of all injections f :C → X with C being a perfect
cube in Cω. In the applications of these axioms we were using the facts
that different subfamilies of Perf(X) are Fcube-dense. Unfortunately, in
many cases, the notion of Fcube-density is too weak to do the job — in the
applications that follow, the families E ⊂ Perf(X) will not be Fcube-dense,
but they will be dense in a weaker sense defined below. Luckily, this weaker
notion of density still leads to consistent axioms.

To define this weaker notion of density, let us first take another look
at the notion of “cube.” Let A be a nonempty countable set of ordinal
numbers. The notion of a perfect cube in CA can be defined the same
way as it was done for Cω. However, it will be more convenient for us to
define it as follows. Let Φcube(A) be the family of all continuous injections
f :CA → CA such that

f(x)(α) = f(y)(α) for all α ∈ A and x, y ∈ CA with x(α) = y(α).

In other words, Φcube(A) is the family of all functions of the form f =
〈fα〉α∈A, where each fα is an injection from C into C. Then the family of
all perfect cubes in CA for an appropriate A is equal to

CUBE(A) = {range(f): f ∈ Φcube(A)},

while the family Fcube defined in the first chapter consists of all continuous
injections f :C → X with C ∈ CUBE(ω).

In the definitions that follow, the notion of a “cube” will be replaced
by that of a “prism.” So, let Φprism(A) be the family of all continuous
injections f :CA → CA with the property that

f(x) � α = f(y) � α ⇔ x � α = y � α for all α ∈ A and x, y ∈ CA (3.1)

49
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or, equivalently, such that, for every α ∈ A,

f �� α def= {〈x � α, y � α〉: 〈x, y〉 ∈ f}

is a one to one function from CA∩α into CA∩α. For example, if A =
{0, 1, 2}, then function f belongs to Φprism(A) provided there exist con-
tinuous functions f0:C → C, f1:C2 → C, and f2:C3 → C such that
f(x0, x1, x2) = 〈f0(x0), f1(x0, x1), f2(x0, x1, x2)〉 for all x0, x1, x2 ∈ C and
maps f0, 〈f0, f1〉, and f are one to one. Functions f from Φprism(A) were
first introduced, in a more general setting, in [73], where they are called
projection-keeping homeomorphisms. Note that

Φprism(A) is closed under compositions (3.2)

and tha,t for every ordinal number α > 0,

if f ∈ Φprism(A), then f �� α ∈ Φprism(A ∩ α). (3.3)

Let

PA = {range(f): f ∈ Φprism(A)}.

We will write Φprism for
⋃

0<α<ω1
Φprism(α) and define

Pω1

def=
⋃

0<α<ω1
Pα = {range(f): f ∈ Φprism}.

Following [73], we will refer to elements of Pω1 as iterated perfect sets.
(In [131], the elements of Pα are called I-perfect, where I is the ideal of
countable sets.)

Let Fprism(X) (or just Fprism, if X is clear from the context) be the
family of all continuous injections f :E → X, where E ∈ Pω1 and X is a
fixed Polish space. We adopt the shortcuts similar to those for cubes. Thus,
we say that P ∈ Perf(X) is a prism if we consider it with an (implicitly
given) witness function f ∈ Fprism onto P . Then Q is a subprism of a prism
P providedQ = f [E], where E ∈ Pα and E ⊂ dom(f). Also, singletons {x}
in X will be identified with constant functions from E ∈ Pω1 to {x}, and
these functions will be considered as elements of Cprism ⊂ F∗

prism, similarly
as in (2.1).

Following the schema presented in (1.9), we say that a family E ⊂
Perf(X) is Fprism-dense provided

∀f ∈ Fprism ∃g ∈ Fprism (g ⊂ f & range(g) ∈ E).

Similarly as in Fact 1.0.2, using (3.2) we can also prove that:
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Fact 3.0.1 E ⊂ Perf(X) is Fprism-dense if and only if

∀α < ω1 ∀f ∈ Fprism, dom(f) = Cα ∃g ∈ Fprism (g ⊂ f & range(g) ∈ E).

Notice also that Φcube(A) ⊂ Φprism(A), so every cube is also a prism.
From this and Fact 3.0.1 (see also Fact 1.8.5) it is also easy to see that

if E ⊂ Perf(X) is Fcube-dense, then E is also Fprism-dense. (3.4)

The converse of (3.4), however, is false. (See Remark 3.2.6.)
Now we are ready to state the next version of our axiom, in which the

game GAMEprism(X) is an obvious generalization of GAMEcube(X).

CPAgame
prism: c = ω2, and for any Polish space X Player II has no winning

strategy in the game GAMEprism(X).

Remark 3.0.2 In order to apply CPAgame
prism, we will always construct some

strategy S for Player II and then use the axiom to conclude that, since S
is not winning, there exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to
S in which Player I wins. But in any such game, for every ξ < ω1, we have

Qξ = S(〈〈Pη, Qη〉: η < ξ〉, Pξ). (3.5)

Thus, in order to construct a meaningful Player II strategy S, for each se-
quence 〈Pξ ∈ Perf∗(X): ξ < ω1〉 we will be defining by induction a sequence
〈Qξ: ξ < ω1〉 such that each Qξ is a subprism of Pξ and the definition of
Qξ may depend only on 〈Pη: η ≤ ξ〉, that is, it cannot depend on any Pη

with ξ < η < ω1. If such a sequence 〈Qξ: ξ < ω1〉 is defined, then each
Qξ can be expressed as in (3.5), where S is the function representing our
inductive construction.

If we proceed as described above, then we say that the strategy S is
associated with our inductive construction. (Such an S is not defined yet
on all required sequences, but it is defined on all sequences relevant for us.
So, we will be assuming that, on the other sequences, it is defined in some
fixed, trivial way.)

Notice that if a prism P ∈ Perf(X) is considered with a witness func-
tion f ∈ Fprism from Cα onto P , then P is also a cube and any subcube
of P is also a subprism of P . Thus, any Player II strategy in a game
GAMEcube(X) can be translated to a strategy in a game GAMEprism(X).
(You need to identify appropriately Cα with Cω: First you identify Cα with
the product Cω × Cα\{0}, which is important for a finite α, and then this
second space is identified with Cω coordinatewise.) In particular, CPAgame

prism
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implies CPAgame
cube . In addition, essentially the same argument as was used

for Proposition 2.0.1 also gives the following.

Proposition 3.0.3 Axiom CPAgame
prism implies the following prism version

of the axiom CPAcube:

CPAprism: c = ω2, and for every Polish space X and every Fprism-dense

family E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and

|X \
⋃
E0| ≤ ω1.

By (3.4) it is also obvious that CPAprism implies CPAcube. All these im-
plications can be summarized by a graph.

CPAgame
prism

✏✏✏✏✶

�����

CPAgame
cube

CPAprism

�����

✏✏✏✏✶ CPAcube

We will prove the consistency of CPAgame
prism in Chapter 7. For the re-

mainder of this chapter we will concentrate on some basic consequences of
CPAprism. Most of the applications of the axioms CPAprism and CPAgame

prism

will be presented in the following two chapters. We finish this section with
few simple but important general remarks.

Although we will not use this, it is illuminating to note that every iter-
ated perfect set E ∈ Pα comes with a canonical projection-keeping homeo-
morphism f ∈ Φprism(α) for which range(f) = E. To see it, first note that
for every T ∈ Perf(C) there is a canonical homeomorphism hT from T onto
C defined by hT (t)(i) = t(mi

T ), where mi
T is the i-th forking place of t in

T , that is,

mi
T = min

{
k < ω: k > mi−1

T & (∃s ∈ T ) s � k = t � k & s(k) %= t(k)
}
.

Then for x ∈ E, β < α, and i < ω we define

f−1(x)(β)(i) = h{y(β):y∈E & x�β=y�β}(x(β))(i).

In other wards, we obtain the value of f−1(x) by removing from each 0-
1 sequence x(β) its subsequences, where x(β) does not branch. It is not
difficult to see that such a defined f indeed belongs to Φprism(α) and that
range(f) = E.



Prisms and axioms CPAgame
prism and CPAprism 53

Note also that for every 0 < α < ω1

if f ∈ Φprism(α) and P ∈ Pα, then f [P ] ∈ Pα. (3.6)

Indeed, if P = g[Cα] for some g ∈ Φprism(α), then, by condition (3.2), we
have f [P ] = f [g[Cα]] = (f ◦ g)[Cα] ∈ Pα.

In what follows, for a fixed 0 < α < ω1 and 0 < β ≤ α, the symbol πβ
will stand for the projection from Cα onto Cβ , that is, Cα 4 x πβ5→ x � β ∈ Cβ .
We will always consider Cα with the following metric ρ: Fix an enumeration
{〈βk, nk〉: k < ω} of α× ω and for distinct x, y ∈ Cα define

ρ(x, y) = 2−min{k<ω:x(βk)(nk) �=y(βk)(nk)}. (3.7)

The open ball in Cα with a center at z ∈ Cα and radius ε > 0 will be
denoted by Bα(z, ε). Notice that in this metric any two open balls are
either disjoint or one is a subset of the other. Also, for every γ < α and
ε > 0

πγ [Bα(x, ε)] = Bγ [(x � γ, ε)] for every x ∈ Cα. (3.8)

It is also easy to see that any Bα(z, ε) is a clopen set, and, in fact, it is a
perfect cube in Cα, so it belongs to Pα. In fact, more can be said:

If Bα
def= {B ⊂ Cα: B is clopen in Cα}, then Bα ⊂ Pα. (3.9)

This is the case, since any clopen E in Cα is a finite union of disjoint open
balls, each of which belongs to Pα, and it is easy to see that Pα is closed
under finite unions of open balls.

From this we conclude immediately that

a clopen subset of E ∈ Pα belongs to Pα (3.10)

and

a clopen subset of a prism is its subprism, (3.11)

while (3.3) implies

πβ [E] ∈ Pβ for every 0 < β < α < ω1 and E ∈ Pα. (3.12)

Notice also that if P ∈ Pα and 0 < β < α, then

P ∩ π−1
β (P ′) ∈ Pα for every P ′ ∈ Pβ with P ′ ⊂ πβ [P ]. (3.13)

Indeed, let f ∈ Φprism(β) and g ∈ Φprism(α) be such that f [Cβ ] = P ′ and
g[Cα] = P . Let Q = (g �� β)−1[P ′] = (g �� β)−1 ◦ f [Cβ ]. Then, Q ∈ Pβ

since, by (3.3), (g �� β)−1 ◦f ∈ Φprism(β). Thus π−1
β (Q) belongs to Pα and

P ∩ π−1
β (P ′) = g[π−1

β (Q)] ∈ Pα.
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3.1 Fusion for prisms

One of the main technical tools used to prove that a family of perfect sets
is dense is the so-called fusion lemma. It says that, for an appropriately
chosen decreasing sequence {Pn:n < ω} of perfect sets, its intersection
P =

⋂
n<ω Pn, called the fusion, is still a perfect set. The simple structure

of perfect cubes makes it quite easy to formulate a “cube fusion lemma” in
which the fusion set P is also a perfect cube. However, so far we have not
had any need for such a lemma (at least in an explicit form), since its use
was always hidden in the proofs of the results we quoted, like Claim 1.1.5
or Proposition 1.5.1. On the other hand, the new and more complicated
structure of prisms does not leave us the option of avoiding fusion argu-
ments any longer — we have to face it up front.

For a fixed 0 < α < ω1, let {〈βk, nk〉: k < ω} be the enumeration of α×ω
used in the definition (3.7) of the metric ρ and let

Ak = {〈βi, ni〉: i < k} for every k < ω. (3.14)

Lemma 3.1.1 (Fusion Sequence) Let 0 < α < ω1, and for k < ω let

Ek =
{
Es: s ∈ 2Ak

}
be a family of closed subsets of Cα. Assume that for

every k < ω, s, t ∈ 2Ak , and β < α we have:

(i) The diameter of Es goes to 0 as the length of s goes to ∞.

(ii) If i < k, then Es ⊂ Es�Ai .

(ag) (agreement) If s � (β × ω) = t � (β × ω), then πβ [Es] = πβ [Et].

(sp) (split) If s � (β × ω) %= t � (β × ω), then πβ [Es] ∩ πβ [Et] = ∅.

Then Q =
⋂

k<ω

⋃
Ek belongs to Pα.

Proof. For x ∈ Cα, let x̄ ∈ 2α×ω be defined by x̄(β, n) = x(β)(n).
First note that, by conditions (i) and (sp), for every k < ω the sets

in Ek are pairwise disjoint. Thus, taking into account (ii), the function
h:Cα → Cα defined by

h(x) = r ⇐⇒ {r} =
⋂
k<ω

Ex̄�Ak

is well defined and is one to one. It is also easy to see that h is continuous
and that Q = h [Cα]. Thus, we need to prove only that h is projection-
keeping.

To show this, fix β < α, put S =
⋃

i<ω 2Ai , and notice that, by (i) and
(ag), for every x ∈ Cα we have
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{h(x) � β} = πβ

[⋂
{Ex̄�Ak

: k < ω}
]

=
⋂
{πβ [Ex̄�Ak

]: k < ω}

=
⋂
{πβ [Es]: s ∈ S & s ⊂ x̄}

=
⋂
{πβ [Es]: s ∈ S & s � (β × ω) ⊂ x̄}.

Now, if x � β = y � β, then for every s ∈ S

s � (β × ω) ⊂ x̄ ⇔ s � (β × ω) ⊂ ȳ,

so h(x) � β = h(y) � β.
On the other hand, if x � β %= y � β, then there is a k < ω large enough

such that for s = x̄ � Ak and t = ȳ � Ak we have s � (β × ω) %= t � (β × ω).
But then {h(x) � β} and {h(y) � β} are subsets of πβ [Es] and πβ [Et],
respectively, which, by (sp), are disjoint. So, h(x) � β %= h(y) � β.

In most of our applications the task of constructing sequences 〈Ek: k < ω〉
satisfying the specific conditions (ag) and (sp) can be reduced to checking
some simple density properties listed in our next lemma. In its statement
we consider Pα as ordered by inclusion and use the standard terminology
from the theory of partially ordered sets: D ⊂ Pα is dense provided for
every E ∈ Pα there is an E′ ∈ D with E′ ⊂ E; it is open provided for
every E ∈ D if E′ ∈ Pα and E′ ⊂ E, then E′ ∈ D. Moreover, for a family
E of pairwise disjoint subsets of Pα, we say that E ′ ⊂ Pα is a refinement of
E provided E ′ = {PE :E ∈ E}, where PE ⊂ E for all E ∈ E .

Lemma 3.1.2 Let 0 < α < ω1 and k < ω. If Ek =
{
Es ∈ Pα: s ∈ 2Ak

}
satisfies (ag) and (sp), then:

(A) There exists an Ek+1 =
{
Es ∈ Pα: s ∈ 2Ak+1

}
of sets of diameter less

than 2−(k+1) such that (ii), (ag), and (sp) hold for all s, t ∈ 2Ak+1 and

r ∈ 2Ak .

Moreover, if D ⊂ [Pα]<ω is a family of pairwise disjoint sets such that

∅ ∈ D, D is closed under refinements, and

(†) for every E ∈ D and E ∈ Pα which is disjoint with
⋃
E there exists an

E′ ∈ Pα ∩ P(E) such that {E′} ∪ E ∈ D,

then

(B) there exists a refinement E ′k ∈ D of Ek satisfying (ag) and (sp);

(C) there exists an Ek+1 as in (A) such that Ek+1 ∈ D.
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Proof. For s ∈ 2Ak and j < 2, let ŝ j stand for s∪{〈〈βk, nk〉, j〉} ∈ 2Ak+1 .
Let {si: i < 2k+1} be an enumeration of 2Ak+1 . By induction on i < 2k+1,

we will construct a sequence 〈xsi ∈ Cα: i < 2k+1〉 such that for every
i < 2k+1

(a) xsi ∈ Esi�Ak
,

(b) for every m < i, if β = max{β̄: si � (β̄ × ω) = sm � (β̄ × ω)}, then

xsi � β = xsm � β and xsi(β) %= xsm(β).

The point xs0 is chosen arbitrarily from Es0�Ak
. To make an induc-

tive step, if for some 0 < i ≤ 2k+1 points {xsm
:m < i} are already

constructed, choose an m̄ < i for which β as in (b) is maximal. No-
tice that by the inductive assumption and the condition (ag) we have
xsm̄

� β ∈ πβ [Esm̄�Ak
] = πβ [Esi�Ak

]. So we can choose an xsi
∈ Esi�Ak

extending xsm̄ � β and such that xsi(β) %= xsm(β) for all m < i. It is easy
to see that such an xsi

satisfies (a) and condition (b) for m = m̄. For other
m < i, condition (b) follows from the maximality of β and the assumption
that Ek satisfies (ag) and (sp).

Conditions (a) and (b) imply that E ′k+1 =
{
{xs}: s ∈ 2Ak+1

}
satisfy

condition (A) except for being a subset of Pα. Let ε ∈
(
0, 2−(k+1)

)
be

small enough that for every m < i < 2k+1 and β as in (b) we have
πβ+1[Bα(xsi , ε)] ∩ πβ+1[Bα(xsm , ε)] = ∅. For s ∈ 2Ak and j < 2, define

Esˆj = Es ∩Bα(xsˆj , ε).

Then Ek+1 =
{
Es: s ∈ 2Ak+1

}
is a subset of Pα by (3.10). Condition (ii) is

clear from the construction, while (ag) for Ek+1 follows from (b) and (3.8).
Property (sp) holds by (b) and the choice of ε, since (sp) was true for E ′k+1.
We have completed the proof of (A).

To prove condition (B), fix an enumeration {si: i < 2k} of 2Ak and define
γ = max{β0, . . . , βk} < α. Also, for i,m < 2k, put E−1

si
= Esi and

βmi = max{β ≤ γ: si � (β × ω) = sm � (β × ω)}.

By induction we will construct the sequences 〈{Em
si
∈ Pα: i < 2k}:m < 2k〉

and 〈Pm ∈ Pα:m < 2k〉 such that, for every j,m < 2k,

(a) Em = {Em
si

: i < 2k} satisfies (ag);
(b) Em

sj
⊂ Em−1

sj
and if x ∈ Em−1

sj
and πγ(x) ∈ πγ [Em

sj
], then x ∈ Em

sj
;

(c) πγ [Pm] = πγ [Em
sm

];
(d) Pm ⊂ Em−1

sm
and {Pi: i ≤ m} ∈ D.
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So, assume that for some m < 2k the sequence 〈Pi: i < m〉 and the family
Em−1 satisfying (ag) are already constructed. Notice that, by (b), sets in
Em−1 are pairwise disjoint, since this was the case for E−1 = Ek. Thus, by
condition (†) applied to the family E = {Pi: i < m}, we can choose a Pm ∈
Pα ∩ P(Em−1

sm
) such that {Pm} ∪ {Pi: i < m} ∈ D. This guarantees (d).

Next, for i < 2k define

Em
si

= Em−1
si

∩ π−1
βm

i
(πβm

i
[Pm]) =

{
x ∈ Em−1

si
:x � βmi ∈ πβm

i
[Pm]

}
and notice that πβm

i
[Pm] ⊂ πβm

i
[Em−1

sm
] = πβm

i
[Em−1

si
]. So, by (3.13),

Em
si
∈ Pα. Also, the definition ensures (b) since βmi ≤ γ.

Note that, by the inductive assumption (a), for all i < 2k we have

πβm
i

[Em
si

] = πβm
i

[Em−1
si

] ∩ πβm
i

[Pm] = πβm
i

[Em−1
sm

] ∩ πβm
i

[Pm] = πβm
i

[Pm].

Since βmm = γ, this implies (c). To prove (a), pick β < α and different
i, j < 2k such that si � (β×ω) = sj � (β×ω). If β ≤ βmi , then also β ≤ βmj
and πβ [Em

si
] = πβ [Pm] = πβ [Em

sj
]. So, assume that β > βmi and β > βmj .

Then βmi = βmj and

πβ [Em
si

] =
{
πβ(x):x ∈ Em−1

si
& x � βmi ∈ πβm

i
[Pm]

}
=

{
πβ(x):x ∈ Em−1

sj
& x � βmj ∈ πβm

j
[Pm]

}
= πβ [Em

sj
].

So Em satisfies (a). This finishes the construction.
Notice that by the maximality of γ and properties (a) and (c), the family

E ′k = {Pm:m < 2k} satisfies (ag). Since it is a refinement of Ek, it also
satisfies (sp). So (B) is proved.

To find Ek+1 as in (C), first take an E ′k+1 satisfying (A) and then use (B)
to find its refinement Ek+1 ∈ D satisfying (ag) and (sp).

One of the most important consequences of Lemma 3.1.2 is the following.

Corollary 3.1.3 Let 0 < α < ω1 and let {Dk: k < ω} be a collection of

dense open subsets of Pα. If for every k < ω

D∗
k =

{⋃
D:D ∈ [Dk]<ω and the sets in D are pairwise disjoint

}
,

then D̄ =
⋂

k<ωD
∗
k is open and dense in Pα.

Proof. It is clear that D̄ is open. To see its density, notice that the
families

Dk =
{
D ∈ [Dk]<ω and sets in D are pairwise disjoint

}
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satisfy condition (†). Let E ∈ Pα, choose an E∅ ∈ D0 ⊂ D∗
0 below E,

and put E0 = {E∅}. Applying (C) from Lemma 3.1.2 by induction we can
define families Ek ∈ Dk, k < ω, such that conditions (i), (ii), (ag), and (sp)
from Lemma 3.1.1 are satisfied. But then Q =

⋂
k<ω

⋃
Ek ⊂ E belongs

to D̄.

3.2 On F-independent prisms

The following variant of the Kuratowski-Ulam theorem will be useful in
what follows.

Lemma 3.2.1 Let X be a Polish space and consider XT with the product

topology, where T %= ∅ is an arbitrary set. Fix at most countable family

K of sets K � T . Then for every comeager set H ⊂ XT there exists a

comeager set G ⊂ H such that for every x ∈ G and K ∈ K the set

Gx�K =
{
y ∈ XT\K : (x � K) ∪ y ∈ G

}
is comeager in XT\K .

Proof. Let {Ki: i < ω} be an enumeration of K with infinite repetitions.
We construct, by induction on i < ω, a decreasing sequence 〈Gi: i < ω〉 of
comeager subsets of H such that for every i < ω:

(i) The set (Gi)x�Ki
is comeager in XT\Ki for every x ∈ Gi.

Put G−1 = H and assume that for some i < ω the comeager set Gi−1 is
already constructed. To define Gi identify XT with XKi ×XT\Ki . Then,
by the Kuratowski-Ulam theorem, the set

A =
{
y ∈ XKi : (Gi−1)y is comeager in XT\Ki

}
is comeager in XKi . Put Gi = Gi−1 ∩ (A×XT\Ki).

Clearly Gi ⊂ Gi−1 is comeager in XT . If x ∈ Gi, then x � Ki ∈ A

and so (Gi)x�Ki = (Gi−1)x�Ki is comeager in XT\Ki . So, (i) holds. This
completes the definition of the sequence 〈Gi: i < ω〉.

Let G =
⋂

i<ω Gi. Clearly G ⊂ H is comeager in XT . To see the
additional part, take a K ∈ K. Since G =

⋂
{Gi: i < ω & Ki = K}, for

every x ∈ G the set

Gx�K =
⋂
{(Gi)x�Ki : i < ω & Ki = K}

is comeager in XT\K .



3.2 On F-independent prisms 59

Applying Lemma 3.2.1 to X = C, T = α, and K = α we immediately
obtain the following corollary.

Corollary 3.2.2 Let 0 < α < ω1. For every comeager set H ⊂ Cα there

exists a comeager set G ⊂ H such that for every x ∈ G and β < α the set

Gx�β =
{
y ∈ Cα\β : (x � β) ∪ y ∈ G

}
is comeager in Cα\β .

Let X be a Polish space, 0 < n < ω, and F ⊂ Xn be an n-ary relation.
We say that a set S ⊂ X is F -independent provided F (x(0), . . . , x(n− 1))
does not hold for any one to one x:n → S. For a family F of finitary
relations on X (i.e., relations F ⊂ Xn, where 0 < n < ω) we say that
S ⊂ X is F-independent provided S is F -independent for every F ∈ F .
We will use the term unary relation for any 1-ary relation.

Proposition 3.2.3 Let 0 < α < ω1 and F be a countable family of closed

finitary relations on Cα. Assume that every unary relation in F is nowhere

dense in Cα and that for every F ∈ F there exists a comeager subset GF

of Cα such that:

(ex) For every F -independent finite set S ⊂ GF , x ∈ S, and β < α the set{
z ∈ Cα\β : S ∪ {z ∪ x � β} ⊂ GF is F -independent

}
is dense in Cα\β .

Then there is an E ∈ Pα that is F-independent.

Note that, without the assumption that the unary relations in F are
nowhere dense the proposition is false: The unary relation F = Cα satisfies
the condition (ex) (with GF = Cα) and no nonempty set is F -independent.
On the other hand, for any n-ary relation F ∈ F with n > 1, condition
(ex) implies that F is nowhere dense in (Cα)n. However, not every nowhere
dense binary relation satisfies (ex). For example, F = {〈x, y〉:x(0) = y(0)}
is nowhere dense and it does not satisfy (ex) if α > 1.

Proof. First notice that, applying Corollary 3.2.2, if necessary, we can
assume that for every F ∈ F , x ∈ GF , and β < α the set (GF )x�β is
comeager in Cα\β . But this implies that each set from the condition (ex)
is comeager in Cα\β since it is an intersection of (GF )x�β and an open
set

{
z ∈ Cα\β : S ∪ {z ∪ x � β} is F -independent

}
. In particular, if we put

G =
⋂

F∈F GF , then G is comeager in Cα and it is easy to see that it
satisfies the following condition.
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(EX) For every F-independent finite set S ⊂ G, x ∈ S, and β < α the set{
z ∈ Cα\β : S ∪ {z ∪ x � β} ⊂ G is F-independent

}
is dense in Cα\β .

Let {Fk: k < ω} be an enumeration of F with infinite repetitions. Also,
for k < ω, let Ak = {〈βi, ni〉: i < k} be as in condition (3.14). By induction
on k < ω we will construct two sequences: 〈εk > 0: k < ω〉 converging to 0
and

〈{
xs ∈ G: s ∈ 2Ak

}
: k < ω

〉
of F-independent sets such that for every

β < α, k < ω, and s, t ∈ 2Ak :

(a) xs � β = xt � β if and only if s � β × ω = t � β × ω.
(b) If Es = Bα(xs, εk) and Ek = {Es: s ∈ 2Ak}, then the Ek’s satisfy (ii),

(ag), and (sp) from Lemma 3.1.1.
(c) If Fk is an n-ary relation, then Fk(z0, . . . , zn−1) does not hold provided

each zi is chosen from a different ball from Ek.

Before we construct such sequences, let us first note that E =
⋂

k<ω

⋃
Ek

is as desired. Indeed, E ∈ Pα by Lemma 3.1.1. To see that E is
F-independent, pick an n-ary relation F ∈ F , {z0, . . . , zn−1} ∈ [E]n, and
find a k < ω with Fk = F that is big enough so that εk is smaller than the
distance between zi and zj for all i < j < n. Then the zi’s must belong to
distinct elements of Ek; so, by (c), F (z0, . . . , zn−1) does not hold.

For k = 0 we pick an arbitrary F-independent x∅ ∈ G by choosing an
arbitrary element of G that does not belong to any nowhere dense unary
relation from F . Also, we choose an ε0 ∈ (0, 1] ensuring (c), which can be
done since F0 is closed. (This is a nontrivial requirement only when F0 is
a unary relation.) Clearly (a)–(c) are satisfied.

Assume that for some k < ω the construction is done up to the level
k. For s ∈ 2Ak and j < 2, let ŝ j = s ∪ {〈〈βk, nk〉, j〉} ∈ 2Ak+1 and
define xsˆ0 = xs. Let

{
si: i < 2k

}
be an enumeration of 2Ak and put

S =
{
xsˆ0: s ∈ 2Ak

}
. Points xsiˆ1 ∈ G ∩ Esi

will be chosen by induction
on i ≤ 2k such that the set Si = S ∪

{
xsjˆ1: j < i

}
is F-independent and

condition (a) is satisfied for the elements of Si. Clearly, by the inductive
assumption, (a) is satisfied for the elements of S0 = S. So, assume that
for some i ≤ 2k the set Si is already constructed. We need to find an
appropriate xsiˆ1 ∈ G ∩ Esi

. Let β < α be maximal such that there is an
s ∈

{
ŝ 0: s ∈ 2Ak

}
∪ {sj 1̂: j < i} with s � β × ω = (si 1̂) � β × ω and let

x = xs � β. We will choose xsiˆ1 extending x and such that xsiˆ1(β) %= xt(β)
for all xt ∈ Si. Notice that this will ensure that condition (a) is satisfied
for the elements of Si+1. Surprisingly, a more difficult condition to ensure
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will be that xsiˆ1 ∈ Esi = Bα(xsiˆ0, εk), since at the first glance it is not
even obvious that

Bα(xsiˆ0, εk) contains an extension of x. (3.15)

To argue for this, first notice that maximality of β ensures that β ≥ βk,
since si 0̂ ∈ Si and (si 0̂) � βk × ω = (si 1̂) � βk × ω. If β = βk, we have
x = xsiˆ0 � β and (3.15) is obvious. So, assume that β > βk. Then there
is a j < i such that s = sj 1̂. We also have sj � β × ω = si � β × ω; so, by
the inductive assumption, xsj � β = xsi � β.

Now, let n < ω be the smallest such that 2−n < εk. Then, by the
definition of the metric on Cα, the fact that xs = xsjˆ1 ∈ Esj = Bα(xsj , εk)
means that xs(γ)(m) = xsj

(γ)(m) for every 〈γ,m〉 ∈ An. Therefore, we
have x(γ)(m) = xs(γ)(m) = xsj

(γ)(m) = xsi
(γ)(m) for every 〈γ,m〉 ∈ An

with γ < β. Thus, we can extend x to an element y ∈ Cα for which
y(γ)(m) = xsi(γ)(m) for every 〈γ,m〉 ∈ An. But this y witnesses (3.15).

To finish the construction of xsiˆ1, notice that by (3.15) we can find
an open ball B in Cα\β such that {x} × B ⊂ Bα(xsiˆ0, εk). Decreasing
B, if necessary, we can also insure that y(β) %= xt(β) for every t ∈ Si
and y ∈ {x} × B. By condition (EX) we can find a z ∈ B such that
Si ∪ {x ∪ z} ⊂ G is F-independent. We put xsiˆ1 = x ∪ z.

Thus, we constructed an F-independent set {xsˆj : s ∈ 2Ak & j < 2} ⊂ G
satisfying (a) and such that xsˆ0, xsˆ1 ∈ Es for every s ∈ 2Ak . To finish the
construction insuring (a)–(c) we need to choose an εk+1 ≤ 2−(k+1) small
enough to guarantee the following properties.

• Esˆj = Bα(xsˆ0, εk1) ⊂ Es for every s ∈ 2Ak and j < 2. This will ensure
condition (ii).

• Condition (sp) holds. This can be done, since (a) is satisfied.

• Condition (c) is satisfied. This can be done since
{
xs: s ∈ 2Ak+1

}
is

F-independent and Fk+1 is a closed relation.

Note that (ag) is guaranteed by (a) and our definition of the Es’s. This
finishes the proof of Proposition 3.2.3.

It worth mentioning that Proposition 3.2.3 can be viewed as a general-
ization of J. Mycielski’s theorem [101]. (Compare also [102].) Also, in the
case when F consists of one binary relation R, a slight modification of the
argument for Proposition 3.2.3 gives us the following.
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Proposition 3.2.4 Let 0 < α < ω1 and let R be a closed binary relation

on Cα. Assume that there exists a comeager subset G of Cα such that:

(bin) For every x ∈ G, ε > 0, and β < α there is a y ∈ G ∩Bα(x, ε) \ {x}
such that y � β = x � β and {x, y} is R-independent.

Then there is an E ∈ Pα that is R-independent.

Proof. Let F = {R}. We will just indicate the modifications needed
in the proof of Proposition 3.2.3 to obtain the current result. Thus, we
construct the sequences 〈εk > 0: k < ω〉 and

〈{
xs ∈ G: s ∈ 2Ak

}
: k < ω

〉
subject to the same requirements. As before, this will give us the desired
E ∈ Pα.

First notice that, by Corollary 3.2.2, decreasing G if necessary, we can
assume that

Gx�β =
{
y ∈ Cα\β : (x � β) ∪ y ∈ G

}
is comeager for every x ∈ G and β < α.

The choice of x∅ is trivial, since any point from G together with any
ε0 satisfy the requirements. To make an inductive step assume that for
some k < ω the construction is done up to the level k. As before, for
s ∈ 2Ak we put xsˆ0 = xs, fix an enumeration

{
si: i < 2k

}
of 2Ak , and put

S =
{
xsˆ0: s ∈ 2Ak

}
. Before we choose points xsiˆ1 we need to make some

preparations.
Let β̄ = max{βi: i ≤ k} < α and notice that, by (bin), for every i < 2k

we can find a yi ∈ G ∩ Esi
\ {xsi

} such that yi � β̄ = xsi
� β̄ and {xsi

, yi}
is R-independent. Note that this, together with condition (c) for the step
k, implies that the set T = S ∪

{
yi: i < 2k

}
is R-independent. Now, by the

closure assumption about R, we can find an ε ∈ (0, εk] such that the balls
{Bα(t, ε): t ∈ T} are pairwise disjoint and any selector from this family
is R-independent. Note also that Bα(xsi

, ε) ∪ Bα(yi, ε) ⊂ Esi
for every

i < 2k as ε ≤ εk. Since we will choose xsiˆ1 ∈ Bα(yi, ε) ∩G, the resulting
set

{
xs: s ∈ 2Ak+1

}
⊂ G will be R-independent. We just need to insure

that it satisfies (a).
Points xsiˆ1 will be chosen by induction on i < 2k such that the elements

of the set Si = S ∪ {xsjˆ1: j < i} satisfy condition (a). For this, we
proceed precisely as in the proof of Proposition 3.2.3. We take a maximal
β < α for which there exists an s ∈

{
ŝ 0: s ∈ 2Ak

}
∪ {sj 1̂: j < i} with

s � β × ω = (si 1̂) � β × ω and let x = xs � β. We will choose xsiˆ1

extending x and such that xsiˆ1(β) %= xt(β) for all xt ∈ Si, ensuring that
condition (a) is satisfied for the elements of Si+1. For this we need to notice



3.2 On F-independent prisms 63

that, similarly as for (3.15), we can prove that

Bα(yi, ε) contains an extension of x.

The same argument works here, since we have shown there that
x(γ)(m) = xs(γ)(m) = xsj (γ)(m) = xsi(γ)(m) for all appropriate pairs
〈γ,m〉 ∈ An with γ < β, while we have β ≤ β̄ and yi � β̄ = xsi

� β̄. In
other words, x(γ)(m) = xti(γ)(m) for all appropriate pairs 〈γ,m〉 ∈ An

with γ < β, which gives us the above condition.
Now, since Gx = Gxs�β is comeager in Cα\β , there exists an

xsiˆ1 ∈ Bα(yi, ε) ∩ ({x} × {z ∈ Gx: z(β) %= xt(β) for all xt ∈ Si}).

It is easy to see that such an xsiˆ1 satisfies all the requirements.
The choice of an appropriate εk+1 is done as in Proposition 3.2.3.

In what follows we will also need the following fact, which is one of the
most important properties of prisms (or, more precisely, iterated perfect
sets) and distinguishes them from cubes. (Compare also [73, thm. 20].)

Lemma 3.2.5 For every 0 < α < ω1, E ∈ Pα, a Polish space X, and a

continuous function f :E → X there exists a P ∈ Pα such that P ⊂ E and

either f is constant on P or else there exists a 0 < β ≤ α such that f ◦π−1
β

is a one to one function on πβ [P ] ∈ Pβ .

Notice that the property that “f ◦ π−1
β is a function on πβ [P ]” means

simply that the value of f � P at x ∈ P depends only on x � β, the first
β coordinates of x. Also, we could eliminate from the lemma the case
“f is constant on P” if we allow β = 0, but then we could not claim that
πβ [P ] = {∅} belongs to Pβ because P0 is not defined.

Proof. Since E ∈ Pα, there is a g ∈ Φprism(α) mapping Cα onto E.
Notice that it is enough to prove the lemma for f̄ = f ◦g and Ē = Cα: If P̄
satisfies the lemma for this pair, then P = g[P̄ ] satisfies it for the original
pair. Thus, without loss of generality we can assume that E = Cα.

If there is a P ∈ Pα on which f is constant, then we are done. So, assume
that this is not the case, that is, that

there is no P ∈ Pα such that f is constant on P . (3.16)

First we prove that under the additional assumption that

(•) f ◦ π−1
γ is a function on πβ [Ê] for no γ < α and Ê ∈ Pα
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we can find a P ∈ Pα on which f is one to one.
To see this, for every 0 < γ < α consider the closed set

Fγ =
{
z ∈ Cγ : f is constant on {z} × Cα\γ

}
and notice that it must be nowhere dense: If it had contained a nonempty
open ball B, then P = B × Cα\γ ∈ Pα would have contradicted (•). Thus,
the set F =

⋃
0<γ<α Fγ × Cα\γ is meager, and so, by Corollary 3.2.2, we

can find a comeager set G ⊂ Cα \ F such that for every x ∈ G and γ < α

the set Gx�γ is comeager in Cα\γ . But this implies that

f is not constant on {x � γ} ×Gx�γ for any γ < α and x ∈ G,

since otherwise f would be constant on the closure of {x � γ}×Gx�γ , which
is equal to {x � γ} × Cα\γ , and x would belong to F , contradicting x ∈ G.
So the relation R = {〈x0, x1〉: f(x0) = f(x1)} and G satisfy the condition
(bin) from Proposition 3.2.4. Therefore, there exists an R-independent
P ∈ Pα and it is easy to see that f is one to one on such a P . Thus (•)
implies what we promised.

To prove the lemma in a general case, let β ≤ α be the smallest ordinal
such that f̂ = f ◦ π−1

β is a function on πβ [Ê] ∈ Pβ for some Ê ∈ Pα. Note
that, by (3.16), β > 0. Using the argument from the first paragraph of
the proof we can assume that Ê = Cα. (Recall that the function g is in
this argument is projection-keeping.) Then, the minimality of β implies
that f̂ satisfies (•). Thus, from what we have already proved, we can
conclude that there is a P̂ ∈ Pβ such that f̂ is one to one on P̂ . Then
P = P̂ × Cα\β ∈ Pα and β are as desired.

Remark 3.2.6 Notice that Lemma 3.2.5 is false if we replace Pα with
CUBE(α). Indeed, this is obviously the case if we take f :C2 → C given by
f(x0, x1) = x1.

The result presented in the reminder of this section will be used only
in Section 5.1. We say that an n-ary relation F on a Polish space X is
symmetric provided for any sequence 〈xi ∈ X: i < n〉 and any permutation
π of n

F (x0, . . . , xn−1) holds if and only if F
(
xπ(0), . . . , xπ(n−1)

)
holds.

For such an F and A ⊂ X we put

F ∗A = A ∪ {x ∈ X: (∃a1, . . . , an−1 ∈ A) F (x, a1, . . . , an−1)}.
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If F is unary relation, we interpret the above as F ∗ A = A ∪ F . If
F is a family of symmetric finitary relations on X, then we put F ∗ A =⋃

F∈F F∗A. Also, an F-closure of A, denoted by clF (A), is the least B ⊂ X
containing A such that F∗B = B. Note that clF (A) =

⋃
n<ω Fn∗A, where

F0∗A = A and Fn+1∗A = F∗(Fn∗A). Thus, if F is a countable family of
closed symmetric finitary relations, then clF (A) is Fσ in X for a σ-compact
A ⊂ X since F ∗K is closed for every F ∈ F and compact K ⊂ X.

We are most interested in these notions when we are concerned with
either linear independence (over Q) or algebraic independence in R. In the
first case, F is defined as the family of all relations Fw of all 〈x0, . . . , xn−1〉
for which

w(xπ(0), . . . , xπ(n−1)) = 0 for some permutation π of n,

where w is a nonzero linear function with rational coefficients. In this
case F-independence stands for linear independence (over Q) and clF (A)
is the linear span of A. When F is the family of all relations Fw, where
w spans over all nonzero polynomials with rational coefficients, then
F-independence stands for algebraic independence while clF (A) is the al-
gebraic closure of Q(A).

We will also need one more notion. For a family F of closed symmetric
finitary relations on X and an M ⊂ X we define FM as the collection of
all possible projections of the relations from F along M . In other words,
FM is the collection of all (symmetric) relations

{〈x0, . . . , xk−1〉: (∃ak, . . . , an−1 ∈M) F (x0, . . . , xk−1, ak, . . . , an−1)},

where F ∈ F is an n-ary relation and 0 < k ≤ n. Note that if M is
compact, then each relation in FM is still closed and for every A ⊂ X we
have

clF (M ∪A) = clFM
(A). (3.17)

Also, if M is F-independent, then

A ∪M is F-independent provided A is FM -independent. (3.18)

The following lemma will be the crucial for our applications presented
in Section 5.1. We will also present there, in Remark 5.1.6, an example
showing that in the lemma we cannot require R = Q.
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Lemma 3.2.7 Let F be an arbitrary family of closed symmetric finitary

relations in a Polish space X. Then for every prism P in X there exists

a subprism Q of P and a compact F-independent set R ⊂ P such that

Q ⊂ clF (R).

Proof. For 0 < α < ω1, let Iα be the statement:

Iα: The lemma holds for any prism P with witness function f :Cα → P .

We will prove Iα by induction on α.
First notice that Iα implies the following:

I∗α: For every k < ω and continuous functions g0, . . . , gk:Cα → X, there
exist an E ∈ Pα and a compact F-independent set R ⊂

⋃
i≤k gi[C

α]
such that

⋃
i≤k gi[E] ⊂ clF (R).

To see that I∗α holds true for k = 0, for every n-ary relation F ∈ F
define F 0 = {〈x0, . . . , xn−1〉 ∈ (Cα)n :F (g0(x0), . . . , g0(xn−1))}. By Iα
applied to F0 = {F 0:F ∈ F} we can find an F0-independent set R0 ⊂ Cα

and an E ∈ Pα such that E ⊂ clF0(R). But then R = g0[R0] is compact
F-independent and g0[E] ⊂ clF (g0[R0]) = clF (R).

To make an inductive step assume that I∗α holds for some k < ω and take
continuous functions g0, . . . , gk+1:Cα → X. By the inductive assumption
we can find an E0 ∈ Pα and a compact F-independent set R0 ⊂

⋃
i≤k gi[C

α]
such that

⋃
i≤k gi[E0] ⊂ clF (R0). Let h ∈ Φprism(α) be a mapping from Cα

onto E0. Using the case k = 0 to the function gk+1 ◦ h and the fam-
ily FR0 we can find an E1 ∈ Pα and a compact FR0-independent set
R1 ⊂ (gk+1 ◦h)[Cα] such that (gk+1 ◦h)[E1] ⊂ clFR0

(R1). Then, by (3.18),
we conclude that R = R0 ∪ R1 is F-independent. Put E = h[E1] ∈ Pα.
Then, by (3.17), we have gk+1[E] ⊂ clFR0

(R1) = clF (R0 ∪ R1) = clF (R),
while clearly

⋃
i≤k gi[E] ⊂

⋃
i≤k gi[E0] ⊂ clF (R0) ⊂ clF (R). Thus, E and

R satisfy I∗α.

Now we are ready to prove Iα. So, fix 0 < α < ω1 and assume that Iγ
is true for all 0 < γ < α. Let P be a prism in X with witness function
f :Cα → P . We need to find an appropriate Q and R.

Let W be the set of all β ≤ α for which there exists an E ∈ Pα and an
F ∈ F such that for every z ∈ πβ [E] there is a finite set Rz ⊂ P for which

f [{x ∈ E: z ⊂ x}] ⊂ F ∗Rz. (3.19)

Notice that W is nonempty since α ∈ W . So β = minW is well defined.
Let E ∈ Pα be such that (3.19) holds for β. As usual, replacing f with its
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composition with an appropriate function from Φprism(α), if necessary, we
can assume that E = Cα.

If β = 0, then f [Cα] ⊂ clF (R0) for some finite set R0 ⊂ P , and we can
find an F-independent finite R ⊂ R0 with f [Cα] ⊂ clF (R). (Note that if T
is F-independent and x ∈ X \clF (T ), then T ∪{x} is also F-independent.)
Thus, Q = f [Cα] and R satisfy Iα. So, for the rest of the proof we will
assume that β > 0.

Next, assume that 0 < β < α. Let Bβ be a countable basis of Cα\β

consisting of nonempty clopen sets and assume that F satisfying (3.19) is
(n+ 1)-ary. For every B ∈ Bβ consider the set

KB =
{
z ∈ Cβ : (∃〈x1, . . . , xn〉 ∈ Pn) (∀y ∈ B) F (f(z ∪ y), x1, . . . , xn)

}
.

It is easy to see that each set KB is closed. Notice also that

Cβ =
⋃

B∈Bβ

KB . (3.20)

To see this, fix a z ∈ Cβ . By (3.19), there exists a finite set Sz ⊂ Cα such
that Cα\β =

⋃
x1,...,xn∈f [Sz ]{y ∈ Cα\β :F (f(z ∪ y), x1, . . . , xn)}. Since each

set {y ∈ Cα\β :F (f(z ∪ y), x1, . . . , xn)} is closed, one of them must contain
a B ∈ Bβ , and so z ∈ KB .

Thus, by (3.20), there exists a B ∈ Bβ such that KB has a nonempty
interior. In particular, there is a nonempty clopen set U ⊂ KB . But
then for every z ∈ U there is a g(z) = 〈g1(z), . . . , gn(z)〉 ∈ Pn such that
F (f(z ∪ y), g1(z), . . . , gn(z)) holds for every y ∈ B. Now

T = {〈z, p̄〉 ∈ U × Pn: (∀y ∈ B) F (f(z ∪ y), p̄)}

is a compact subset of U × Pn and g constitutes a selector of T . Thus,
we can choose g to be Borel. In particular, there is a dense Gδ subset
W of U such that g � W is continuous. So, by Claim 1.1.5, we can find
a perfect cube C ⊂ W ⊂ Cβ . Now, identifying C with Cβ , we conclude
that the functions g1, . . . , gn:Cβ → P are continuous and that the relation
F (f(z ∪ y), g1(z), . . . , gn(z)) holds for every z ∈ Cβ and y ∈ B.

Since, by the inductive hypothesis, Iβ is true, condition I∗β holds as well.
Thus, there exist an E ∈ Pβ and a compact F-independent set R ⊂ P such
that

⋃n
i=1 gi[E] ⊂ clF (R). Since Q = f [E ×B] is a subprism of P , we just

need to show that Q ⊂ clF (R). To see this just note that for every z ∈ E
we have f [{z} × B] ⊂ F ∗ {g1(z), . . . , gn(z)} ⊂ clF (

⋃n
i=1 gi[E]) ⊂ clF (R).

This finishes the proof of the case 0 < β < α.
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For the reminder of the proof we will assume that β = α. This means
that there is no E ∈ Pα such that for some F ∈ F and β < α

(∀z ∈ πβ [E])
(
∃Rz ∈ [P ]<ω

)
f [{x ∈ E: z ⊂ x}] ⊂ F ∗Rz. (3.21)

For every n-ary F ∈ F , let F ∗ = {〈x0, . . . , xn−1〉:F (f(x0), . . . , f(xn−1))}
and let F∗ = {F ∗:F ∈ F}. We will apply Proposition 3.2.3 to find an
F∗-independent E ∈ Pα. Then Q = f [E] is an F-independent subprism of
P and together with R = Q they satisfy the lemma.

To see that the assumptions of Proposition 3.2.3 are satisfied, first notice
that unary relations in F∗ are nowhere dense. Indeed, otherwise there is a
unary relation F ∗ ∈ F∗ and a nonempty clopen set E ⊂ F ∗. But then E
contradicts (3.21), as f [E] ⊂ F ∗ ∅. Thus, we just need to show that the
condition (ex) is satisfied.

So, fix an F ∈ F . For 0 < β < α and B ∈ Bβ let

K(B) =
{
z ∈ Cβ :

(
∃Rz ∈ [P ]<ω

)
f [{z} ×B] ⊂ F ∗Rz

}
.

Clearly K(B) is Fσ. Notice also that it is meager, since otherwise there
would exist a nonempty clopen U ⊂ K(B) and E = U×B would contradict
(3.21). Thus, each set Kβ =

⋃
B∈Bα

K(B) is meager. Also, for every
z ∈ Cβ\Kβ and for every finite R ⊂ P the set

{
y ∈ Cα\β : f(z ∪ y) /∈ F ∗R

}
is dense and open. In particular, if R is a finite F -independent subset of
P , then

WR =
{
y ∈ Cα\β :R ∪ {f(z ∪ y)} is F -independent

}
(3.22)

is dense and open. Let

H =
⋂

0<β<α

((
Cβ \Kβ

)
× Cα\β

)

and notice that H is comeager since each Kβ is meager in Cβ . By Corol-
lary 3.2.2 we can find a comeager set G ⊂ H such that

Gx�β =
{
y ∈ Cα\β : (x � β) ∪ y ∈ G

}
is comeager for every x ∈ G and β < α. To finish the proof it is enough
to show that G satisfies (ex) for F ∗. So, take an F ∗-independent finite set
S ⊂ G, an x ∈ S, and a β < α.

First let us assume that β > 0. Then x ∈ S ⊂ G ⊂ H implies that
z = x � β ∈ Cβ \Kβ . In particular, the set Wf [S] from (3.22) is comeager,
and so is Wf [S]∩Gx�β . To get (ex) it is enough to notice that Wf [S]∩Gx�β
is a subset of

{
y ∈ Cα\β : S ∪ {y ∪ z} ⊂ G is F ∗-independent

}
.
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Finally, assume that β = 0. We need to show that the set

{y ∈ G:S ∪ {y} is F ∗-independent}

is dense. But this set must be comeager, since otherwise its complement
would contain a nonempty clopen set E, which wold contradict (3.21) with
β = 0.

3.3 CPAprism, additivity of s0, and more on (A)

The results presented in this section come from K. Ciesielski and J. Paw-
likowski [43].

We will start with noticing that the axiom CPAprism leads in a natural
way to the following generalization of the ideal scube

0 :

sprism
0 =

{
X \

⋃
E : E is Fprism-dense in Perf(X)

}
.

Similarly as for Proposition 1.0.3, it can be shown that

Proposition 3.3.1 If CPAprism holds, then sprism
0 = [X]≤ω1 .

It can be also shown, refining the argument for Fact 1.0.4, that

Fact 3.3.2 For a Polish space X we have [X]<c ⊂ scube
0 ⊂ sprism

0 ⊂ s0.

However, we will not use these facts in the rest of this text.

The next lemma and its corollaries represent a very useful application of
Lemma 3.2.5. For a fixed Polish space X and 0 < α < ω1, let Fα denote
the family of all continuous injections from Cα into X. Note that if we
consider Fα with the topology of uniform convergence, then

Fα is a Polish space. (3.23)

To prove (3.23) it is enough to show that Fα is a Gδ subset of the space
C = C(Cα, X) of all continuous functions from Cα into X. But Fα is the
intersection of the open sets Gn, n < ω, where the sets Gn are constructed
as follows. Fix a finite partition Pn of Cα into clopen sets each of the
diameter less than 2−n, and let Hn be the family of all mappings h from Pn

into the topology of X such that h(P )∩ h(P ′) = ∅ for distinct P, P ′ ∈ Pn.
We put

Gn =
⋃

h∈Hn

{f ∈ C: (∀P ∈ Pn)(∀x ∈ P ) f(x) ∈ h(P )}.
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This completes the argument for (3.23).

Lemma 3.3.3 Let X be a Polish space and 0 < α < ω1. Then every

function f :Cβ → Fα from Fprism(Fα) has a restriction f∗ ∈ Fprism(Fα)
with the property that there exists an f̂ ∈ Fprism(X) defined on a subset

of Cβ+α such that

(a) f̂(s, t) = f∗(s)(t) for all 〈s, t〉 ∈
(
Cβ × Cα

)
∩ dom(f̂), and

(b) for each s ∈ dom(f∗) function f̂(s, ·): {t ∈ Cα: 〈s, t〉 ∈ dom(f̂)} → X

is a restriction of f∗(s) and belongs to Fprism(X).

Proof. Let f :Cβ → Fα, f ∈ Fprism(Fα), and define a function g from a
set Cβ × Cα = Cβ+α into X by g(s, t) = f(s)(t) for 〈s, t〉 ∈ Cβ × Cα. It is
easy to see that g is continuous.

Apply Lemma 3.2.5 to E = Cβ+α ∈ Pβ+α and to the function g to find
a γ ≤ β + α and a subset P ∈ Pβ+α of E such that g ◦ π−1

γ is a function
on πγ [P ] ∈ Pγ that is either one to one or constant. Let f∗ = f � πβ [P ].
We will show that it is as desired.

First note that

γ = β + α and g is one to one on P .

Indeed, if z ∈ range(f∗)∩Fprism(X) and z = f∗(s), then for every different
t0, t1 ∈ Cα with 〈s, t0〉, 〈s, t1〉 ∈ P we have g(s, t0) = f(s)(t0) = z(t0) %=
z(t1) = g(s, t1). So, g cannot be constant and if γ < β + α, then we can
find t0 and t1 such that πγ(〈s, t0〉) = πγ(〈s, t1〉), contradicting the above
calculation.

It is easy to see that f̂ = g � P is as desired.

Lemma 3.3.3 implies the following useful fact.

Proposition 3.3.4 CPAprism implies that for every Polish space X there

exists a family H of continuous functions from compact subsets of X onto

C× C such that |H| ≤ ω1 and

• for every prism P in X there are h ∈ H and c ∈ C such that

h−1({c} × C) and h−1(〈c, d〉) are subprisms of P for every d ∈ C.

In particular, F = {h−1({c} × C):h ∈ H & c ∈ C} is Fprism-dense in X.

Proof. Let 0 < α < ω1. We will use the notation as in Lemma 3.3.3.
Since the family of all sets range(f∗) is Fprism-dense in Fα by CPAprism,

we can find a Gα = {f∗ξ : ξ < ω1} such that Rα = Fα \
⋃

ξ<ω1
range(f∗ξ ) has

cardinality less than or equal to ω1.
If f∗ ∈ Gα, then f̂ maps injectively a P = Pf ∈ Pβ+α onto Q = Qf ⊂ X.
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Moreover, for every z ∈ Fα \Rα there are f∗ ∈ Gα and s ∈ dom(f∗) such
that z = f∗(s) and f̂(s, ·) ∈ Fprism(X) is a restriction of z.

Now, let Hf ∈ Φprism(β + α) be from Cβ+α onto P and consider the
composition f̂ ◦Hf :Cβ+α → Q. Then the functions (f̂ ◦Hf )−1:Qf → Cβ+α

are our desired functions modulo some projections. More precisely, let
k0:Cβ → C be a homeomorphism and choose a mapping k1:C→ C be such
that k−1

1 (c) ∈ Perf(C) for every c ∈ C. Define hαf :Qf → C× C by

hαf (x) = 〈(k0 ◦ πβ)((f̂ ◦Hf )−1(x)), k1([(f̂ ◦Hf )−1(x)](β))〉.

Then the family H0 = {hαf :α < ω1 & f∗ ∈ Gα} works for all functions not
in R =

⋃
0<α<ω1

Rα. Also, for every function g ∈ R it is easy to find a
continuous function hg from range(g) onto C×C such that h−1

g ({c}×C) and
h−1
g (〈c, d〉) are subprisms of range(g) for every c, d ∈ C. Then the family
H = H0 ∪ {hg: g ∈ R} is as desired.

Proposition 3.3.4 implies the following stronger version of property (A).
This can be considered as a version of a remark due to A. Miller [95, p. 581],
who noticed that in the iterated perfect set model functions coded in the
ground model can be taken as a family G.

Corollary 3.3.5 Assume that CPAprism holds. Then:

(A∗) There exists a family G of uniformly continuous functions from R to

[0, 1] such that |G| = ω1 and for every S ∈ [R]c there exists a g ∈ G
with g[S] = [0, 1].

Proof. Let H be as in Proposition 3.3.4 for X = R, k:C → [0, 1] be
continuous surjection, and for every h = 〈h0, h1〉 ∈ H let gh: R → [0, 1]
be a continuous extension of a function h∗: dom(h) → [0, 1] defined by
h∗(x) = k(h1(x)). We claim that G = {gh:h ∈ H} is as desired.

Since, by Proposition 3.3.1, sprism
0 = [R]≤ω1 , there exists a prism P in

R such that S intersects every subprism of P . Let h ∈ H and c ∈ C be
such that h−1({c}×C) and h−1(〈c, d〉) are subprisms of P for every d ∈ C.
Then S intersects each h−1(〈c, d〉) and so h[S] contains {c} × C. Thus
gh[S] = [0, 1].

Next we will show that CPAprism implies1 that the additivity of the
ideal s0

add(s0) = min
{
|F |:F ⊂ s0 &

⋃
F /∈ s0

}
,

1 In fact, this also follows from CPAcube.
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is equal to ω1. This stays in contrast with Proposition 6.1.1, in which we
will show that CPA implies cov(s0) = ω2.

Notice that the numbers add(s0), cov(s0), non(s0), and cof(s0) have
been intensively studied. (See, e.g., [71].) It is known that cof(s0) > c (see
[71, thm. 1.3]) and that non(s0) = c since there are s0-sets of cardinality
c. There are models of ZFC+MA with c = ω2 and cov(s0) = ω1, while the
proper forcing axiom, PFA, implies that add(s0) = c.

In what follows we need the following useful fact, which is essentially [71,
lem. 1.1]. (Compare also [111, thm 2.4(1)].)

Fact 3.3.6 For any open dense subset D of Perf(C) (considered as ordered

by inclusion) there exists a maximal antichain A ⊂ D consisting of pair-

wise disjoint sets such that every P ∈ Perf(
⋃
A) is covered by less than

continuum many sets from A.

Proof. Let Perf(C) = {Pα:α < c}. We will build inductively a sequence
〈〈Aα, xα〉 ∈ D × C:α < c〉 aiming for A = {Aα:α < c}. At step α < c,
given already 〈〈Aβ , xβ〉:β < α〉, we look at Pα.

Choice of xα: If Pα ⊂
⋃

β<αAβ , we take xα as an arbitrary element of C;
otherwise we pick xα ∈ Pα \

⋃
β<αAβ .

Choice of Aα: If there is a β < α such that Pα ∩Aβ is uncountable, we let
Aα = Aβ ; otherwise pick Aα ∈ D below Pα and notice that we can refine
it, if necessary, to be disjoint with

⋃
β<αAβ ∪ {xβ :β ≤ α}.

It is easy to see that A = {Aα:α < c} is as required.

Corollary 3.3.7 CPAprism implies that add(s0) = ω1.

Proof. Let H = {hξ: ξ < ω1} be as in Proposition 3.3.4 with X = C. For
every ξ < ω1 put A0

ξ = {h−1
ξ ({c}× C): c ∈ C}. Then each A0

ξ is a family of
pairwise disjoint sets and A0 =

⋃
ξ<ω1

A0
ξ is dense in Perf(C).

For each ξ < ω1 let A∗
ξ be a maximal antichain extending A0

ξ , define
Dξ = {P ∈ Perf(C):P ⊂ A for some A ∈ A∗

ξ}, and let Aξ ⊂ Dξ be as in
Fact 3.3.6. Then A =

⋃
ξ<ω1

Aξ is still dense in Perf(C).
For each ξ < ω1 let {Pα

ξ :α < c} be an enumeration of Aξ. (Note that
each Aξ has cardinality c, since this was the case for the sets A0

ξ .) Pick xαξ
from each Pα

ξ and put Aξ = {xαξ :α < c}. Then Aξ ∈ s0 for every ξ < ω1.
However, A =

⋃
ξ<ω1

Aξ /∈ s0 since it intersects every element of a dense
set A.

It can be also shown that CPAprism, with the help of Proposition 3.3.4,
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implies that the Sacks forcing P = 〈Perf(C),⊂〉 collapses c to ω1. However,
this also follows immediately from a theorem of P. Simon [122], that P

collapses c to b while CPAcube already implies that b ≤ cof(N ) = ω1.
Note also that although the family F from Proposition 3.3.4 is Fprism-

dense, we certainly cannot repeat the proof of Corollary 3.3.7 to show
that, under CPAprism, add(sprism

0 ) = ω1 – this clearly contradicts Proposi-
tion 3.3.1. The place where the proof breaks is Fact 3.3.6, which cannot
be proved for a simple density being replaced by an Fprism-density.

3.4 Intersections of ω1 many open sets

The results presented in this section come from K. Ciesielski and J. Paw-
likowski [41].

For a Polish space X let Gω1 be the collection of the intersections of ω1

many open subsets of X. Next we are going to prove the following theorem.

Theorem 3.4.1 CPAprism implies that the following property holds for

every Polish space X.

(N∗) If G is a Gω1 subset of X and |G| = c, then G contains a perfect set.

Theorem 3.4.1 provides an affirmative answer to a question of J. Brendle,
who asked us, in [11], whether (N∗) can be deduced from our axiom CPA.
The fact that (N∗) holds in the iterated perfect set model is proved by
J. Brendle, P. Larson, and S. Todorcevic [12]. The argument presented
below is considerably simpler.

Before we prove Theorem 3.4.1, we would like to note that in prop-
erty (N∗) we can replace the class of open sets with a considerably larger
class Π1

2.

Corollary 3.4.2 Assume that CPAprism holds and X is a Polish space.

• If G is an intersection of ω1 many Π1
2 sets from X and |G| = c, then

G contains a perfect set.

Proof. Let G =
⋂

ξ<ω1
Tξ, where each Tξ ⊂ X is a Π1

2 set. Then we
have X \ G =

⋃
ξ<ω1

(X \ Tξ) and each set X \ Tξ is in the class Σ1
2; so,

by Fact 1.1.7, it is a union of ω1 many compact sets. Thus, each Tξ is an
intersection of ω1 open sets.

Theorem 3.4.1 follows easily from the following combinatorial fact con-
cerning iterated perfect sets.
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CPAprism and coverings with smooth
functions

This chapter is based on K. Ciesielski and J. Pawlikowski [38]. Below we
will use standard notation for the classes of differentiable partial functions
from R into R. Thus, if X is an arbitrary subset of R without isolated
points, we will write C0(X) or C(X) for the class of all continuous functions
f :X → R and D1(X) for the class of all differentiable functions f :X → R,
that is, those for which the limit

f ′(x0) = lim
x→x0, x∈X

f(x)− f(x0)
x− x0

exists and is finite for all x0 ∈ X. Also, for 0 < n < ω we will write
Dn(X) to denote the class of all functions f :X → R that are n times
differentiable with all derivatives being finite and Cn(X) for the class of
all f ∈ Dn(X) whose n-th derivative f (n) is continuous. The symbol
C∞(X) will be used for all infinitely many times differentiable functions
from X into R. In addition, we say that a function f :X → R is in the
class “Dn(X)” if f ∈ Cn−1(X) and it has the n-th derivative, which can
be infinite; f is in the class “Cn(X)” when f is in “Dn(X)” and its n-
th derivative is continuous when its range [−∞,∞] is considered with the
standard topology. “C∞(X)” will stand for all functions f :X → R that
are either in C∞(X) or, for some 0 < n < ω, are in “Cn(X)” and f (n)

is constant and equal to ∞ or −∞. (Thus, in general, “C∞(X)” is not a
subclass of “Cn(X).”) In addition, we assume that functions defined on
a singleton are in the C∞ class, that is, C∞({x}) = R{x}. We will use
these symbols mainly for X’s that are either in the class Perf(R) or are
the singletons. In particular, Cnperf will stand for the union of all Cn(P ) for
which P ⊂ R is either in Perf(R) or is a singleton. The classes Dn

perf ,
C∞perf , and “C∞perf” are defined in a similar way. We will drop the parameter
X if X = R. In particular, Dn = Dn(R) and Cn = Cn(R). The relations
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between these classes for n < ω are given in the following chart, where the
arrows −→ indicate the strict inclusions �.

Cn ✛ “Dn+1” ✛ “Cn+1”

❄ ❄

Dn+1 ✛ Cn+1

Chart 1.

In addition, for F ⊂ R2 we define F−1 = {〈y, x〉: 〈x, y〉 ∈ F} and for
F ⊂ P(R2) we put F−1 = {F−1:F ∈ F}.

4.1 Chapter overview; properties (H∗) and (R)

The main result of this chapter is the following theorem.

Theorem 4.1.1 The following facts follow from CPAprism.

(a) For every Borel measurable function g: R → R there exists a family of

functions {fξ ∈ “C∞perf”: ξ < ω1} such that

g =
⋃

ξ<ω1

fξ.

Moreover, for each ξ < ω1 there exists an extension f̄ξ: R → R of fξ
such that

(i) f̄ξ ∈ “C1” and

(ii) either f̄ξ ∈ C1 or f̄ξ is a homeomorphism from R onto R such that

f̄−1
ξ ∈ C1.

(b) There exists a sequence {fξ ∈ RR: ξ < ω1} of C1 functions such that

R2 =
⋃

ξ<ω1

(fξ ∪ f−1
ξ ).

Clearly parts (a) and (b) of the theorem imply properties (R) and (H∗),
respectively. In particular, we have

Corollary 4.1.2 CPAprism implies properties (R) and (H∗).
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Note also that, by Corollary 5.0.2, under CPAgame
prism, the functions fξ in

Theorem 4.1.1(a) may be chosen to have disjoint graphs. Also, R2 can
be covered by ω1 pairwise disjoint sets P such that either P or P−1 is a
function in the class C1

perf ∩ “C∞perf”.
The essence of Theorem 4.1.1 lies in the following real analysis fact.

Its proof is combinatorial in nature and uses no extra set-theoretical
assumptions.

Proposition 4.1.3 Let g: R → R be Borel and 0 < α < ω1.

(a) For every continuous injection h:Cα → R there exists an E ∈ Pα such

that g � h[E] ∈ “C∞perf” and there is an extension f : R → R of g � h[E]
such that f ∈ “C1” and either f ∈ C1 or f is an autohomeomorphism

of R with f−1 ∈ C1.

(b) For every continuous injection h:Cα → R2 there exists an E ∈ Pα such

that either F = h[E] ⊂ R2 or its inverse, F−1, is a function that can

be extended to a C1 function f : R → R.

With Proposition 4.1.3 in hand the proof of Theorem 4.1.1 becomes an
easy exercise.

Proof of Theorem 4.1.1. (a) Let g: R → R be a Borel function and let
E be the family of all P ∈ Perf(R) such that

g � P ∈ “C∞perf” and there is an extension f : R → R of g � P such that
f ∈ “C1” and either f ∈ C1 or f is an autohomeomorphism of R with
f−1 ∈ C1.

By Proposition 4.1.3(a), the family E is Fprism-dense: If P ∈ Perf(R) is a
prism and h:Cα → R from Fprism witnesses it, then Q = h[E] as in the
proposition is a subprism of P with Q ∈ E . So, by CPAprism, there exists
an E0 ∈ [E ]≤ω1 such that |R\

⋃
E0| ≤ ω1. Let E1 = E0∪{{r}: r ∈ R\

⋃
E0}.

Then the family {g � P :P ∈ E1} satisfies the theorem.
(b) Let E be the family of all P ∈ Perf(R2) such that either P or P−1

is a function that can be extended to a C1 function f : R → R. By Propo-
sition 4.1.3(b) the family E is Fprism-dense, so there exists an E0 ∈ [E ]≤ω1

such that |R \
⋃
E0| ≤ ω1. Let E1 = E0 ∪ {{x}:x ∈ R2 \

⋃
E0}. For every

P ∈ E1 let fP : R → R be a C1 function that extends either P or P−1. Then
the family {fP :P ∈ E1} is as desired.
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The proof of Proposition 4.1.3 will be left to the next sections of this
chapter. Meanwhile, we want to present a discussion of Theorem 4.1.1.

First we reformulate Theorem 4.1.1 in a language of a covering number
cov defined below, where X is an infinite set (in our case X ⊂ R2 with
|X| = c) and A,F ⊂ P(X):

cov(A,F) = min
({
κ: (∀A ∈ A)(∃G ∈ [F ]≤κ) A ⊂

⋃
G
}
∪ {|X|+}

)
.

If A ⊂ X, we will write cov(A,F) for cov({A},F). Notice the following
monotonicity of the cov operator: For every A ⊂ B ⊂ X, A ⊂ B ⊂ P(X),
and F ⊂ G ⊂ P(X),

cov(A,G) ≤ cov(B,G) ≤ cov(B,F) & cov(A,G) ≤ cov(B,G) ≤ cov(B,F).

In terms of the cov operator, Theorem 4.1.1 can be expressed in the
following form, where Borel stands for the class of all Borel functions
f : R → R.

Corollary 4.1.4 CPAprism implies that

(a) cov
(
Borel, “C∞perf”

)
= ω1 < c;

(b) cov
(
Borel, “C1”

)
= ω1 < c;

(c) cov
(
Borel, C1 ∪ (C1)−1

)
= ω1 < c;

(d) cov
(
R2, C1 ∪ (C1)−1

)
= ω1 < c.

Proof. The fact that all numbers cov(A,G) listed above are ≤ ω1 follows
directly from Theorem 4.1.1. The other inequalities follow from Exam-
ples 4.5.6 and 4.5.8.

Theorem 4.1.1(b) and Corollary 4.1.4(d) can be treated as generaliza-
tions of a result of J. Steprāns [124] who proved that in the iterated perfect
set model we have cov

(
R2,

(
“D1”

)
∪

(
“D1”

)−1
)
≤ ω1. This clearly fol-

lows from Corollary 4.1.4(d) since C1 � “D1”. (See survey article [15]. For
more information on how to “locate” Steprāns’ result in [124], see also [32,
cor. 9].)

The following proposition shows that Theorem 4.1.1 is, in a way, the
best possible. (Parts (i), (ii), and (iii) relate, respectively, to items (b),
(c) together with (d), and (a) from Corollary 4.1.4.)
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Proposition 4.1.5 The following are true in ZFC.

(i) cov
(
Borel, C1

)
= cov

(
“C1”, C1

)
= cov

(
“C1”, D1

perf

)
= c. Moreover,

cov(“Cn”, Cn) = cov(“Cn”, Dn
perf) = c for every 0 < n < ω.

(ii) cov
(
Borel, C2 ∪ (C2)−1

)
= cov

(
“C2”, D2

perf ∪ (D2
perf)

−1
)

= c and

cov
(
R2, C2 ∪ (C2)−1

)
= cov

(
“C2”, D2

perf ∪ (D2
perf)

−1
)

= c.

(iii) cov
(
Borel, C∞perf

)
= cov

(
“C1”, C∞perf

)
= cov

(
“C1”, D1

perf

)
= c and

cov (Borel, “C∞”) = cov
(
C1, “C∞”

)
= cov

(
C1, “D2”

)
= c. Moreover,

cov
(
Cn, “Dn+1”

)
= c for every 0 < n < ω.

Proof. Part (i) follows immediately from Examples 4.5.2 and 4.5.3.
Part (ii) follows from the monotonicity of the cov operator and Exam-

ple 4.5.1.
The first part of (iii) follows from (i). The remaining two parts follow,

respectively, from Examples 4.5.4 and 4.5.5.

Corollary 4.1.4 and Proposition 4.1.5 establish the values of the cov oper-
ator for all classes in Chart 1 except for cov (Dn, Cn) and cov (“Dn”, “Cn”).
These are established in the following theorem, the proof of which will be
left to the latter sections of this chapter.

Theorem 4.1.6 If CPAprism holds, then, for every 0 < n < ω,

cov (Dn, Cn) = cov (“Dn”, “Cn”) = ω1 < c.

Note also that, by Corollary 5.0.2, under CPAgame
prism, covering functions

in Theorem 4.1.6 may be chosen to have disjoint graphs.
With this theorem in hand we can summarize the values of the cov

operator between the classes from Chart 1 in the following graphical form.
Here the mark “c” next to the arrow means that the covering of the larger
class by the functions from the smaller class is equal to c and that this
can be proved in ZFC. The mark “< c” next to the arrow means that it is
consistent with ZFC (and it follows from CPAprism) that the appropriate
cov number is < c. (From Examples 4.5.6, 4.5.7, and 4.5.8 it follows that all
these numbers are greater than or equal to min{cov(M), cov(N )} > ω. So,
under the continuum hypothesis CH or Martin’s axiom, all these numbers
are equal to c.)
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C0 ✛
< c

“D1” ✛
< c

“C1”

❄
c

❄
c

D1 ✛
< c

C1

Cn ✛
c

“Dn+1” ✛
< c

“Cn+1”

❄
c

❄
c

Dn+1 ✛
< c

Cn+1

Chart 2. Values of the cov operator for n = 0 (left) and n > 0 (right).

The values of cov operator next to the vertical arrows are justified by
cov(“Cn”, Dn) = c (Proposition 4.1.5(i)), while the marks “< c” below
the upper horizontal arrows and that directly below them follow from
Theorem 4.1.6. The remaining arrow in the right part of the chart
is the restatement of the last part of Proposition 4.1.5(iii), while its
counterpart in the left part of the chart follows from Corollary 4.1.4(b):
cov

(
C, “C1”

)
= cov

(
Borel, “C1”

)
< c is a consequence of CPAprism. Fi-

nally, let us mention that in Corollary 4.1.4(b) there is no chance of in-
creasing the Borel family in any essential way and keep the result. This
follows from the following fact:

cov(Sc, C) = cov
(
RR, C

)
≥ cof(c), (4.1)

where the symbol Sc stands for the family of all symmetrically continuous
functions f : R → R that are, in particular, continuous outside of some set
of measure zero and the first category. (See K. Ciesielski [28, cor. 1.1] and
the remarks below on the operator dec.)

The number cov(A,F) is very closely related to the decomposition num-
ber dec(A,F) defined as

min
(
{κ ≥ ω: (∀A ∈A)(∃G ∈ [F ]κ) G is a partition of A} ∪ {|X|+}

)
,

which was first studied by J. Cichoń, M. Morayne, J. Pawlikowski, and
S. Solecki [24] for the Baire class α functions. (More information on
dec(F ,G) can be found in a survey article [26, sec. 4].) It is easy to see
that if A and F are some classes of partial functions and Fr denotes all
possible restrictions of functions from F , then cov(A,F) = dec(A,Fr). In
particular, for all situations relevant to our discussion above, the operators
cov and dec have the same values.

Our number cov is also related to the following general class of problems.
We say that the families A,F ⊂ P(X) satisfy the Intersection Theorem,
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which we denote by

IntTh(A,F),

if for every A ∈ A there exists an F ∈ G such that |A ∩ F | = |X|. If
A = {A}, we write IntTh(A,F) in place of IntTh(A,F). This kind of
theorem has been studied for a large part of the twentieth century. In
particular, in the early 1940s S. Ulam asked in the Scottish Book [90, prob-
lem 17.1] if IntTh(C,Analytic) holds, that is, whether for every f ∈ C there
exists a real analytic function g: R → R that agrees with f on a perfect
set. (See [127].) In 1947, Z. Zahorski [130] gave a negative answer to this
question by proving that the proposition IntTh(C∞,Analytic) is false. In
the same paper he also raised a natural question, which has become known
as the Ulam-Zahorski Problem: Does IntTh(C,G) hold for G = C∞ (or
G = Cn or G = Dn)? Here is a quick summary of what is known about
this problem. (See [15].)

Proposition 4.1.7

(a) ¬IntTh(C∞,Analytic) (Z. Zahorski [130])
(b) IntTh(C, C1) (S. Agronsky, A. M. Bruckner, M. Laczkovich, and

D. Preiss [1])
(c) IntTh(C1, C2) (A. Olevskǐı [109])
(d) ¬IntTh(C, C2) and ¬IntTh(Cn, Cn+1) for n ≥ 2. (A. Olevskǐı [109])

We are interested in these problems because for the families A,F ∈ P(Rn)
of uncountable Borel sets

¬IntTh(A,F) =⇒ cov(A,F) = c, (4.2)

as, in this situation, if ¬IntTh(A,F), then there exists an A ∈ A, |A| = c,
such that |A ∩ F | ≤ ω for every F ∈ F . Thus in the examples relevant
to Proposition 4.1.5, instead of proving cov(A,F) = c we will in fact be
showing a stronger fact that ¬IntTh(A0,F) for an appropriate choice of
A0 ⊂ A ∈ A.

4.2 Proof of Proposition 4.1.3

Proposition 4.1.3 will be deduced from the following fact, which is a gener-
alization of a theorem of M. Morayne [99]. (Morayne proved his results for
E and E1 being perfect sets, that is, for α = 1.) For a set X we will use the
symbol ∆X to denote the diagonal inX×X, that is, ∆X = {〈x, x〉:x ∈ X}.
We will usually write simply ∆ in place of ∆X , since X is always clear from
the context.



5

Applications of CPAgame
prism

First notice that the proof that is identical to that for Theorem 2.1.1 also
gives its prism version which reads as follows.

Theorem 5.0.1 Assume that CPAgame
prism holds and let X be a Polish space.

If D ⊂ Perf(X) is Fprism-dense and it is closed under perfect subsets, then

there exists a partition of X into ω1 disjoint sets from D ∪ {{x}:x ∈ X}.

Notice that, by using Theorem 5.0.1, we can obtain the following gener-
alizations of Theorems 4.1.1 and 4.1.6.

Corollary 5.0.2 The graphs of covering functions in Theorems 4.1.1

and 4.1.6 can be chosen as pairwise disjoint.

5.1 Nice Hamel bases

The results presented in this section are based on K. Ciesielski and J. Paw-
likowski [40].

In the next two sections we will consider R as a linear space over Q. For
Z ⊂ R, its linear span with respect to this structure will be denoted by
LIN(Z). Notice that if Lm, for 0 < m < ω, is the collection of all functions
K: Rm → R given by a formula

K(x0, . . . , xm−1) =
∑

i<m qixi, where qi ∈ Q \ {0} for all i < m, (5.1)

then

LIN(Z) =
⋃

0<m<ω

⋃
:∈Lm

K[Zm].

Also, Z ⊂ R is linearly independent (over Q) provided K(x0, . . . , xm−1) %= 0
for every K ∈ Lm, 0 < m < ω, and {x0, . . . , xm−1} ∈ [Z]m. It should be

110
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clear that the linear independence over Q is an F-independence for the
family F of closed symmetric relations F:, with K ∈ Ln, defined by

F:(x0, . . . , xn−1)⇔ K(xπ(0), . . . , xπ(n−1)) = 0 for some permutation π of n.

We also have LIN(Z) = clF (Z) for every Z ⊂ R. Recall also that the
subset H of R is a Hamel basis provided it is a linear basis of R over Q,
that is, it is linearly independent and LIN(H) = R.

The first result we prove in this section is that CPAgame
prism implies the

existence of a Hamel basis that is a union of ω1 pairwise disjoint perfect
sets. This can be viewed as a generalization of Theorem 5.0.1. To prove
this we will need, as usual, some prism density results.

For a Polish space X and a family F of finitary relations on X, we say
that F has countable character provided for every n-ary relation F ∈ F
and every F -independent set {x1, . . . , xn} ∈ [X]n the set

{x ∈ X:F (x, x1, . . . , xn−1)}

is countable. It should be clear that the linear independence family F
defined above is of countable character. Similarly, algebraic independence
can be expressed in this language. (See page 65.)

The next fact can be considered a first approximation of what we will
need for finding our Hamel basis. However, it is not strong enough for
what we need: Both its assumptions and its conclusion are too strong.

Proposition 5.1.1 Let X be a Polish space and F be a countable family

of closed finitary relations on X such that F has countable character.

Then for every prism P in X there is a subprism Q of P such that Q is

F-independent.

Proof. This follows easily from Proposition 3.2.3. Indeed, pick an
h ∈ Φprism(α) such that P = h[Cα], for every n-ary relation F on X

let

F ∗ = {〈p1, . . . , pn〉 ∈ (Cα)n:F (h(p1), . . . , h(pn)) holds},

and put F∗ = {F ∗:F ∈ F}. The countable character of F implies that
(ex) holds with G = Cα for every F ∗ ∈ F∗. So, by Proposition 3.2.3, there
exists an F∗-independent E ∈ Pα. But this means that Q = h[E] is an
F-independent subprism of P .

From Proposition 5.1.1 and the remark preceding its statement we im-
mediately conclude that
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Corollary 5.1.2 For every prism P in R there is a subprism Q of P such

that Q is algebraically (so linearly) independent.

From Theorem 5.0.1 and Corollary 5.1.2 we can also easily deduce the
following fact.

Corollary 5.1.3 CPAgame
prism implies that R is a union of ω1 disjoint, closed,

algebraically independent sets.

Remark 5.1.4 Note that Corollary 5.1.2 is false if we replace prisms with
cubes. In particular, there is a cube P in R without a linearly independent
subcube.

Proof. Indeed, let P1 and P2 be disjoint perfect subsets of R such that
P1 ∪ P1 is linearly independent over Q. Let f :P1 × P2 → R be defined by
a formula f(x1, x2) = x1 + x2. Then P = f [P1 × P2] is a cube in R. To
see that P has no linearly independent subcube, let Q = Q1 × Q2 be a
subcube of P and choose different a1, b1 ∈ Q1 and a2, b2 ∈ Q2. Then the
set {a1 + a2, a1 + b2, b1 + a2, b1 + a2} ⊂ Q is clearly linearly dependent.

It seems that the conclusion from Corollary 5.1.3 is already close to the
existence of a Hamel basis that is union of ω1 disjoint closed sets. However,
the sets from Corollary 5.1.3 can be pairwise highly linearly dependent.
Thus, in order to prove the Hamel basis result, we need a density result
that is considerably stronger than that from Corollary 5.1.2.

Lemma 5.1.5 LetM ⊂ R be a σ-compact and linearly independent. Then

for every prism P in R there exist a subprism Q of P and a compact subset

R of P \M such that M ∪ R is a maximal linearly independent subset of

M ∪Q.

Proof. Let F be the linear independent family defined at the beginning
of this section and let M̄ = 〈Mn:n < ω〉 be an increasing family of compact
sets such that M =

⋃
n<ωMn. Let FM̄ =

⋃
n<ω FMn

, where each FMn

is defined as on page 65, that is, FMn is the the collection of all possible
projections of the relations from F along Mn.

If M ∩ P is of second category in P , then we can choose a subprism Q

of P with Q ⊂M . Then Q and R = ∅ have the desired properties. On the
other hand, if M ∩P is of the first category in P , then, by Claim 1.1.5, we
can find a subprism P1 of P disjoint with M .

Now, applying Lemma 3.2.7 we can find a subprism Q of P1 and a
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compact FM̄ -independent set R ⊂ P1 ⊂ P \M such that Q ⊂ clFM̄
(R).

But then M ∪R is F-independent; see (3.18). Moreover,

Q ⊂ clFM̄
(R) = clF (M ∪R) = LIN(M ∪R).

So, M ∪Q ⊂ LIN(M ∪R), proving that Q and R are as desired.

Remark 5.1.6 In Lemma 5.1.5 we cannot require R = Q.

Proof. Let P1, P2, and f be as in Remark 5.1.4. If M = P2, then P has
no subprism Q such that M ∪Q is linearly independent, since any vertical
section of Q is a translation of a portion of M .

The next theorem represents a generalization of Proposition 5.1.1 and
Theorem 5.0.1.

Theorem 5.1.7 CPAgame
prism implies that there exists a family H of ω1 pair-

wise disjoint perfect subsets of R such that H =
⋃
H is a Hamel basis.

Proof. For a linearly independent σ-compact set M ⊂ R and a prism P

in R, let Q(M,P ) = Q and R(M,P ) = R ⊂ P \M be as in Lemma 5.1.5.
Consider Player II strategy S given by

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q
(⋃

{Rη: η < ξ}, Pξ

)
,

where the Rη’s are defined inductively by Rη = R(
⋃
{Rζ : ζ < η}, Pη).

By CPAgame
prism, strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II
loses, that is, R =

⋃
ξ<ω1

Qξ.
Let H = {Rξ: ξ < ω1} and notice that

⋃
H is a Hamel basis. Indeed,

clearly
⋃
H is linearly independent. To see that it spans R it is enough to

notice that LIN
(⋃

η<ξ Qη

)
⊂ LIN

(⋃
η<ξ Rη

)
for every ξ < ω1.

Although sets in H need not be perfect, they are clearly pairwise disjoint
and compact. Thus, the theorem follows immediately from the following
remark.

Remark 5.1.8 If there exists a family H of ω1 pairwise disjoint compact
subsets of R such that

⋃
H is a Hamel basis, then there exists such an H

with H ⊂ Perf(R).

Proof. Let H0 be a family of ω1 pairwise disjoint compact subsets of
R such that

⋃
H0 is a Hamel basis. Partitioning each H ∈ H0 into its

perfect part and singletons from its scattered part we can assume that
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H0 contains only perfect sets and singletons. To get H as required, fix
a perfect set P0 ∈ H0 and an x ∈ P0 and notice that if we replace each
P ∈ H0 \ {P0} with px + qP for some p, q ∈ Q \ {0}, then the resulting
family will still be pairwise disjoint with union being a Hamel basis. Thus,
without loss of generality, we can assume that every open interval in R

contains ω1 perfect sets from H0. Now, for every singleton {x} in H0, we
can choose a sequence P x

1 > P x
2 > P x

3 > · · · from H0 converging to x and
replace a family {x} ∪ {P x

n :n < ω} with its union. (We assume that we
choose different sets P x

n for different singletons.) IfH is such a modification
of H0, then H is as desired.

Recall that a subset T of R is a transcendental basis of R over Q provided
T is a maximal algebraically independent subset of R. The proof that is
identical to that for Theorem 5.1.7 also gives the following result.

Theorem 5.1.9 CPAgame
prism implies that there exists a family T of ω1 pair-

wise disjoint perfect subsets of R such that T =
⋃
T is a transcendental

basis of R over Q.

Next, we will present two interesting consequences of the existence of a
Hamel basis described in Theorem 5.1.7. Let I be a translation invariant
ideal on R. We say that a subset X of R is I-rigid provided X,R \X /∈ I
but X�(r + X) ∈ I for every r ∈ R. An easy inductive construction
gives a nonmeasurable subset X of R without the Baire property, which is
[R]<c-rigid. (The first such construction, under CH, can be found in a
paper [119] by W. Sierpiński. Compare also [68].) Thus, under CH or
MA there are N ∩M-rigid sets. Recently these sets have been studied
by M. Laczkovich [83] and J. Cichoń, A. Jasiński, A. Kamburelis, and
P. Szczepaniak [23]. In particular, M. Laczkovich’s result from [83, thm. 2]
implies that there is no N ∩M-rigid set in the random and Cohen mod-
els. The next corollary shows that the existence of such sets follows from
CPAgame

prism.

Corollary 5.1.10 CPAgame
prism implies there exists an N ∩M-rigid set X

that is neither measurable nor has the Baire property.

Proof. LetH = {Qξ: ξ < ω1} be from Theorem 5.1.7 and for every ξ < ω1

let Lξ = LIN
(⋃

η<ξ Qη

)
. Then R is an increasing union of Lξ’s and each

Lξ belongs to N ∩M, since it is a proper Borel subgroup of R.
Since CPAgame

prism implies that cof(N ) = cof(M) = ω1, there exists a
family {Cξ: ξ < ω1} ⊂ M ∪N such that every S ∈ M∪N is a subset of
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some Cξ. By induction choose X0 = {xξ: ξ < ω1} ⊂ R such that

xξ /∈ Cξ ∪ LIN(Lξ ∪ {xζ : ζ < ξ}).

Then X0 intersects the complement of every set from M∪N . Define

X =
⋃

ξ<ω1

(xξ + Lξ)

and notice that X0 ⊂ X and 2X0 ⊂ R \ X. Therefore, both X and
R \X intersect the complement of every set from M∪N . In particular,
X,R \X /∈M∪N .

Next notice that for every r ∈ Lζ

X�(r +X) ⊂
⋃
ξ<ζ

[(xξ + Lξ) ∪ (r + xξ + Lξ)] ∈ N ∩M.

Thus, X isN∩M-rigid, but alsoN -rigid andM-rigid. These last two facts
imply that X is neither measurable nor does it have the Baire property.

Our next application of Theorem 5.1.7 is the following.

Corollary 5.1.11 CPAgame
prism implies there exists a function f : R → R such

that for every h ∈ R the difference function ∆h(x) = f(x + h) − f(x) is

Borel; however, for every α < ω1 there is an h ∈ R such that ∆h is not of

the Borel class α.

Note that, answering a question of M. Laczkovich from [82], R. Filipów
and I. RecTlaw [57] gave an example of such an f under CH. I. RecTlaw also
asked (private communication) whether such a function can be constructed
in the absence of CH. Corollary 5.1.11 gives an affirmative answer to this
question. It is an open question whether such a function exists in ZFC.

Proof. The proof is quite similar to that for Corollary 5.1.10.
Let H = {Qξ: ξ < ω1} be from Theorem 5.1.7. For every ξ < ω1 define

Lξ = LIN
(⋃

η<ξ Qη

)
and choose a Borel subset Bξ of Qξ of Borel class

greater than ξ. Define

X =
⋃

ξ<ω1

(Bξ + Lξ)

and let f be the characteristic function χX of X.
To see that f is as required note that

∆−h(x) =
[
χ

(h+X)\X − χX\(h+X)

]
(x).

So, it is enough to show that each of the sets (h+X) \X and X \ (h+X)
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is Borel, though they can be of arbitrary high class. For this, notice that
for every h ∈ Lα+1 \ Lα we have

h+X = h+
⋃

ξ<ω1

(Bξ + Lξ) =
⋃
ξ≤α

(h+Bξ + Lξ) ∪
⋃

α<ξ<ω1

(Bξ + Lξ)

and that the sets
⋃

ξ≤α(h+ Bξ + Lξ) ⊂ Lα+1 and
⋃

α<ξ<ω1
(Bξ + Lξ) are

disjoint. So

(h+X) \X =
⋃
ξ≤α

(h+Bξ + Lξ) \X =
⋃
ξ≤α

(h+Bξ + Lξ) \
⋃
ξ≤α

(Bξ + Lξ)

is Borel, since each set Bξ + Lξ is Borel. (It is a subset of Qξ + Lξ, which
is homeomorphic to Qξ × Lξ via the addition function.) Similarly, set
X \ (h+X) is Borel.

Finally notice that for h ∈ Qα \Bα the set

(h+X) \X =
⋃
ξ≤α

(h+Bξ + Lξ)

is of the Borel class greater than α, since (h+Qα)∩ [(h+X)\X] = h+Bα

has the same property. Thus, ∆h(x) can be of an arbitrarily high Borel
class.

5.2 Some additive functions and more on Hamel bases

The results presented in this section come from K. Ciesielski and J. Paw-
likowski [42].

The proof of the next application is essentially more involved than those
presented so far and requires considerably more preparation. However,
it can be viewed as a “model example” of how some CH proofs can be
modified to the proofs from CPAgame

prism. Recall that a function f : R → R

is almost continuous provided any open subset U of R2 that contains the
graph of f also contains a graph of a continuous function from R to R. It
is known that if f is almost continuous, then its graph is connected in R2

(i.e., f is a connectivity function) and that f has the intermediate value
property (i.e., f is Darboux). (See, e.g., [105] or [29].) Recall also that a
function f : R → R is additive provided f(x + y) = f(x) + f(y) for every
x, y ∈ R. It is well known that every function defined on a Hamel basis can
be uniquely extended to an additive function. (See, e.g., [25, thm. 7.3.2].)

Our next goal will be to construct an additive discontinuous, almost
continuous function f : R → R whose graph is of measure zero. In fact,
we will show that, under CPAgame

prism, such an f can be found inside a set


