
Overview

Many interesting mathematical properties, especially those concerning real
analysis, are known to be true in the iterated perfect set (Sacks) model,
while they are false under the continuum hypothesis. However, the proofs
that these facts are indeed true in this model are usually very technical and
involve heavy forcing machinery. In this book we extract a combinatorial
principle, an axiom similar to Martin’s axiom, that is true in the model and
show that this axiom implies the above-mentioned properties in a simple
“mathematical” way. The proofs are essentially simpler than the original
arguments.

It is also important that our axiom, which we call the Covering Property
Axiom and denote by CPA, captures the essence of the Sacks model at least
if it concerns most cardinal characteristics of continuum. This follows from
a recent result of J. Zapletal [131], who proved that for a “nice” cardinal
invariant κ, if κ < c holds in any forcing extension, then κ < c follows
already from CPA. (In fact, κ < c follows already from its weaker form,
which we denote CPAgame

prism.)
To follow all but the last chapter of this book only a moderate knowledge

of set theory is required. No forcing knowledge is necessary.

The iterated perfect set model, also known as the iterated Sacks model, is
a model of the set theory ZFC in which the continuum c = ω2 and many
of the consequences of the continuum hypothesis (CH) fail. In this book
we describe a combinatorial axiom of the form similar to Martin’s axiom,
which holds in the iterated perfect set model and represents a combinatorial
core of this model – it implies all the “general mathematical statements”
that are known (to us) to be true in this model.

It should be mentioned here that our axiom is more an axiom schema
with the perfect set forcing being a “built-in” parameter. Similar axioms
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also hold for several other forcings (like iterated Miller and iterated Laver
forcings; see, e.g., [131, sec. 5.1]). In this book, however, we concentrate
only on the axiom associated with the iterated perfect set model. This is
dictated by two reasons: The axiom has the simplest form in this particu-
lar model, and the iterated perfect set model is the most studied from the
class of forcing models we are interested in — we have a good supply of
statements against which we can test the power of our axiom. In partic-
ular, we use for this purpose the statements listed below as (A)–(H). The
citations in the parentheses refer to the proofs that a given property holds
in the iterated perfect set model. For the definitions see the end of the
next section.

(A) For every subset S of R of cardinality c there exists a (uniformly) con-
tinuous function f : R → [0, 1] such that f [S] = [0, 1]. (A. Miller [95])

(B) Every perfectly meager set S ⊂ R has cardinality less than c. (A. Miller
[95])

(C) Every universally null set S ⊂ R has cardinality less than c. (R. Laver
[84])

(D) The cofinality of the ideal N of null (i.e., Lebesgue measure zero) sets
is less than c. (Folklore, see, e.g., [97] or [4, p. 339])

(E) There exist selective ultrafilters on ω, and any such ultrafilter is gen-
erated by less than c many sets. (J. Baumgartner and R. Laver [7])

(F) There is no Darboux Sierpiński-Zygmund function f : R → R; that is,
for every Darboux function f : R → R there is a subset Y of R of car-
dinality c such that f � Y is continuous. (M. Balcerzak, K. Ciesielski,
and T. Natkaniec [2])

(G) For every Darboux function g: R → R there is a continuous nowhere
constant function f : R → R such that f + g is Darboux. (J. Steprāns
[123])

(H) The plane R2 can be covered by less than c many sets, each of which
is a graph of a differentiable function (allowing infinite derivatives) of
either a horizontal or vertical axis. (J. Steprāns [124])

The counterexamples under CH for (B) and (C) are Luzin and Sierpiński
sets. They have been constructed in [87]1 and [116], respectively. The
negation of (A) is witnessed by either a Luzin or a Sierpiński set, as noticed
in [116, 117]. The counterexamples under CH for (F) and (G) can be found
in [2] and [78], respectively. The fact that (D), (E), and (H) are false under
CH is obvious.
1 Constructed also a year earlier by Mahlo [88].
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The book is organized as follows. Since our main axiom, which we call
the Covering Property Axiom and denote by CPA, requires some extra
definitions that are unnecessary for most of the applications, we will in-
troduce the axiom in several approximations, from the easiest to state and
use to the most powerful but more complicated. All the versions of the
axiom will be formulated and discussed in the main body of the chapters.
The sections that follow contain only the consequences of the axioms. In
particular, most of the sections can be omitted in the first reading without
causing any difficulty in following the rest of the material.

Thus, we start in Chapter 1 with a formulation of the simplest form of
our axiom, CPAcube, which is based on a natural notion of a cube in a
Polish space. In Section 1.1 we show that CPAcube implies properties (A)–
(C), while in Section 1.2 we present A. Nowik’s proof [107] that CPAcube

implies that

(I) Every uniformly completely Ramsey null S ⊂ R has cardinality less
than c.

In Section 1.3 we prove that CPAcube implies property (D), that is,
cof(N ) = ω1, and Section 1.4 is devoted to the proof that CPAcube implies
the following fact, known as the total failure of Martin’s axiom:

(J) c > ω1 and for every nontrivial forcing P satisfying the countable chain
condition (ccc), there exists ω1 many dense sets in P such that no filter
intersects all of them.

Recall that a forcing P is ccc provided it has no uncountable antichains,
where A ⊂ P is an antichain in P provided no distinct elements of A have
a common extension in P. The consistency of (J) was first proved by
J. Baumgartner [6] in a model obtained by adding Sacks reals side by side.

In Section 1.5 we show that CPAcube implies that every selective ultra-
filter is generated by ω1 sets (i.e., the second part of property (E)) and
that

(K) r = ω1,

where r is the reaping (or refinement) number, that is,

r = min {|W|:W ⊂ [ω]ω & ∀A ∈ [ω]ω ∃W ∈ W (W ⊂ A or W ⊂ ω \A)}.

In Section 1.6 we prove that CPAcube implies the following version of a
theorem of S. Mazurkiewicz [91]:
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(L) For each Polish space X and for every uniformly bounded sequence
〈fn:X → R〉n<ω of Borel measurable functions there are the sequences:
〈Pξ: ξ < ω1〉 of compact subsets of X and 〈Wξ ∈ [ω]ω: ξ < ω1〉 such
that X =

⋃
ξ<ω1

Pξ and for every ξ < ω1:

〈fn � Pξ〉n∈Wξ
is a monotone uniformly convergent sequence of uni-

formly continuous functions.

We also show that CPAcube+“∃ selective ultrafilter on ω” implies the fol-
lowing variant of (L):

(L∗) Let X be an arbitrary set and let fn:X → R be a sequence of func-
tions such that the set {fn(x):n < ω} is bounded for every x ∈ X.
Then there are the sequences: 〈Pξ: ξ < ω1〉 of subsets of X and
〈Wξ ∈ F : ξ < ω1〉 such that X =

⋃
ξ<ω1

Pξ and for every ξ < ω1:

〈fn � Pξ〉n∈Wξ
is monotone and uniformly convergent.

It should be noted here that a result essentially due to W. Sierpiński
(see Example 1.6.2) implies that (L∗) is false under Martin’s axiom.

In Section 1.7 we present some consequences of cof(N ) = ω1 that seem
to be related to the iterated perfect set model. In particular, we prove that
cof(N ) = ω1 implies that

(M) c > ω1 and there exists a Boolean algebra B of cardinality ω1 that is
not a union of a strictly increasing ω-sequence of subalgebras of B.

The consistency of (M) was first proved by W. Just and P. Koszmider [72]
in a model obtained by adding Sacks reals side by side, while S. Koppel-
berg [79] showed that Martin’s axiom contradicts (M).

The last section of Chapter 1 consists of remarks on a form and consis-
tency of CPAcube. In particular, we note that CPAcube is false in a model
obtained by adding Sacks reals side by side.

In Chapter 2 we revise slightly the notion of a cube and introduce a cube-
game GAMEcube — a covering game of length ω1 that is a foundation for
our next (stronger) variant of the axiom, CPAgame

cube . In Section 2.1, as its
application, we show that CPAgame

cube implies that:

(N) c > ω1 and for every Polish space there exists a partition of X into ω1

disjoint closed nowhere dense measure zero sets.

In Section 2.2 we show that CPAgame
cube implies that:

(O) c > ω1 and there exists a family F ⊂ [ω]ω of cardinality ω1 that is
simultaneously maximal almost disjoint (MAD) and reaping.
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Section 2.3 is devoted to the proof that, under CPAgame
cube ,

(P) there exists an uncountable γ-set.

Chapter 3 begins with a definition of a prism, which is a generalization
of a notion of cube in a Polish space. This notion, perhaps the most
important notion of this text, is then used in our next generation of the
axioms, CPAgame

prism and CPAprism, which are prism (stronger) counterparts
of axioms CPAgame

cube and CPAcube. Since the notion of a prism is rather
unknown, in the first two sections of Chapter 3 we develop the tools that
will help us to deal with them (Section 3.1) and prove for them the main
duality property that distinguishes them from cubes (Section 3.2). In the
remaining sections of the chapter we discuss some applications of CPAprism.
In particular, we prove that CPAprism implies the following generalization
of property (A):

(A∗) There exists a family G of uniformly continuous functions from R to
[0, 1] such that |G| = ω1 and for every S ∈ [R]c there exists a g ∈ G
with g[S] = [0, 1].

We also show that CPAprism implies that:

(Q) add(s0), the additivity of the Marczewski’s ideal s0, is equal to ω1 < c.

In Section 3.4 we prove that:

(N∗) If G ∈ Gω1 , where Gω1 is the family of the intersections of ω1 many
open subsets of a given Polish space X, and |G| = c, then G contains
a perfect set; however, there exists a G ∈ Gω1 that is not a union of
ω1 many closed subsets of X.

Thus, under CPAprism, Gω1 sets act to some extent as Polish spaces, but
they fall short of having property (N). The fact that the first part of (N∗)
holds in the iterated perfect set model was originally proved by J. Brendle,
P. Larson, and S. Todorcevic [12, thm. 5.10]. The second part of (N∗)
refutes their conjecture [12, conj. 5.11]. We finish Chapter 3 with several
remarks on CPAgame

prism. In particular, we prove that CPAgame
prism implies axiom

CPAgame
prism(X ), in which the game is played simultaneously over ω1 Polish

spaces.
Chapters 4 and 5 deal with the applications of the axioms CPAprism and

CPAgame
prism, respectively. Chapter 4 contains a deep discussion of a problem

of covering R2 and Borel functions from R to R by continuous functions of
different smoothness levels. In particular, we show that CPAprism implies
the following strengthening of property (H):
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(H∗) There exists a family F of less than continuum many C1 functions
from R to R (i.e., differentiable functions with continuous derivatives)
such that R2 is covered by functions from F and their inverses.

We also show the following covering property for the Borel functions:

(R) For every Borel function f : R → R there exists a family F of less than
continuum many “C1” functions (i.e., differentiable functions with con-
tinuous derivatives, where the derivative can be infinite) whose graphs
cover the graph of f .

We also examine which functions can be covered by less than c many Cn
functions for n > 1 and give examples showing that all of the covering
theorems discussed are the best possible.

Chapter 5 concentrates on several specific applications of CPAgame
prism.

Thus, in Section 5.1 we show that CPAgame
prism implies that:

(S) There is a family H of ω1 pairwise disjoint perfect subsets of R such
that H =

⋃
H is a Hamel basis, that is, a linear basis of R over Q.

We also show that the following two properties are the consequences of (S):

(T) There exists a nonmeasurable subset X of R without the Baire prop-
erty that is N ∩M-rigid, that is, such that X�(r+X) ∈ N ∩M for
every r ∈ R.

(U) There exists a function f : R → R such that for every h ∈ R the
difference function ∆h(x) = f(x + h) − f(x) is Borel; however, for
every α < ω1 there is an h ∈ R such that ∆h is not of Borel class α.

The implication CPAgame
prism=⇒(T) answers a question related to the work

of J. Cichoń, A. Jasiński, A. Kamburelis, and P. Szczepaniak [23]. The
implication CPAgame

prism=⇒(U) shows that a recent construction of such a
function from CH due to R. Filipów and I. RecTlaw [57] (and answering a
question of M. Laczkovich from [82]) can also be repeated with the help of
our axiom. In Section 5.2 we show that CPAgame

prism implies that:

(V) There exists a discontinuous, almost continuous, and additive function
f : R → R whose graph is of measure zero.

The first construction of such a function, under Martin’s axiom, was given
by K. Ciesielski in [27]. It is unknown whether it can be constructed in
ZFC. We also prove there that, under CPAgame

prism:

(W) There exists a Hamel basis H such that E+(H) has measure zero.
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Here E+(A) is a linear combination of A ⊂ R with nonnegative rational
coefficients. This relates to the work of P. Erdős [54], H. Miller [98], and
K. Muthuvel [100], who constructed such and similar Hamel bases under
different set theoretical assumptions. It is unknown whether (W) holds in
ZFC. In Section 5.3 we deduce from CPAgame

prism that every selective ideal on
ω can be extended to a maximal selective ideal. In particular, the first part
of condition (E) holds and u = rσ = ω1, where u is the smallest cardinality
of the base for a nonprincipal ultrafilter on ω. In Section 5.4 we prove that
CPAgame

prism implies that:

(X) There exist many nonselective P -points as well as a family F ⊂ [ω]ω

of cardinality ω1 that is simultaneously independent and splitting.

In particular, i = ω1, where i is the smallest cardinality of an infinite
maximal independent family. We finish the chapter with the proof that
CPAgame

prism implies that:

(Y) There exists a nonprincipal ultrafilter on Q that is crowded.

In Chapter 6 we formulate the most general form of our axiom, CPA,
and show that it implies all the other versions of the axiom. In Section 6.1
we conclude from CPA that

(Z) cov(s0) = c.

In Section 6.2 we show that CPA implies the following two generalizations
of property (F):

(F∗) For an arbitrary function h from a subset S of a Polish space X onto
a Polish space Y there exists a uniformly continuous function f from
a subset of X into Y such that |f ∩ h| = c.

(F′) For any function h from a subset S of R onto a perfect subset of R

there exists a function f ∈ “C∞perf” such that |f ∩ h| = c, and f can
be extended to a function f̄ ∈ “C1(R)” such that either f̄ ∈ C1 or f̄
is an autohomeomorphism of R with f̄−1 ∈ C1.

In Section 6.3 we show that (A)&(F∗)=⇒(G). In particular, (G) follows
from CPA.

Finally, in Chapter 7 we show that CPA holds in the iterated perfect set
model.



Preliminaries

Our set theoretic terminology is standard and follows that of [4], [25], and
[81]. The sets of real, rational, and integer numbers are denoted by R,
Q, and Z, respectively. If a, b ∈ R and a < b, then (b, a) = (a, b) will
stand for the open interval {x ∈ R: a < x < b}. Similarly, [b, a] = [a, b]
is an appropriate closed interval. The Cantor set 2ω will be denoted by
the symbol C. In this text we use the term Polish space for a complete
separable metric space without isolated points. A subset of a Polish
space is perfect if it is closed and contains no isolated points. For a Polish
space X, the symbol Perf(X) will denote the collection of all subsets of X
homeomorphic to C; the closure of an A ⊂ X will be denoted by cl(A);
and, as usual, C(X) will stand for the family of all continuous functions
from X into R.

A function f : R → R is Darboux if a conclusion of the intermediate value
theorem holds for f or, equivalently, when f maps every interval onto
an interval; f is a Sierpiński-Zygmund function if its restriction f � Y is
discontinuous for every subset Y of R of cardinality c; and f is nowhere
constant if it is not constant on any nontrivial interval.

A set S ⊂ R is perfectly meager if S ∩P is meager in P for every perfect
set P ⊂ R, and S is universally null provided for every perfect set P ⊂ R

the set S ∩ P has measure zero with respect to every countably additive
probability measure on P vanishing on singletons.

For an ideal I on a set X, its cofinality is defined by

cof(I) = min{|B|:B generates I}

and its covering as

cov(I) = min
{
|B|:B ⊂ I &

⋃
B = X

}
.

The symbol N will stand for the ideal of Lebesgue measure zero subsets

xix
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of R. For a fixed Polish space X. the ideal of its meager subsets will be
denoted by M, and we will use the symbol s0 (or s0(X)) to denote the
σ-ideal of Marczewski’s s0-sets, that is,

s0 = {S ⊂ X: (∀P ∈ Perf(X))(∃Q ∈ Perf(X)) Q ⊂ P \ S}.

For an ideal I on a set X we use the symbol I+ to denote its coideal, that
is, I+ = P(X) \ I.

For an ideal I on ω containing all finite subsets of ω we use the following
generalized selectivity terminology. We say (see I. Farah [55]) that an ideal
I is selective provided for every sequence F0 ⊃ F1 ⊃ · · · of sets from I+

there exists an F∞ ∈ I+ (called a diagonalization of this sequence) with
the property that F∞ \ {0, . . . , n} ⊂ Fn for all n ∈ F∞. Notice that this
definition agrees with the definition of selectivity given by S. Grigorieff
in [65, p. 365]. (The ideals selective in the above sense Grigorieff calls
inductive, but he also proves [65, cor. 1.15] that the inductive ideals and
the ideals selective in his sense are the same notions.)

For A,B ⊂ ω we write A ⊆∗ B when |A \ B| < ω. A set D ⊂ I+ is
dense in I+ provided for every B ∈ I+ there exists an A ∈ D such that
A ⊆∗ B, and the set D is open in I+ if B ∈ D provided there is an A ∈ D
such that B ⊆∗ A. For D̄ = 〈Dn ⊂ I+:n < ω〉 we say that F∞ ∈ I+

is a diagonalization of D̄ provided F∞ \ {0, . . . , n} ∈ Dn for every n < ω.
Following I. Farah [55] we say that an ideal I on ω is semiselective provided
for every sequence D̄ = 〈Dn ⊂ I+:n < ω〉 of dense and open subsets of I+

the family of all diagonalizations of D̄ is dense in I+.
Following S. Grigorieff [65, p. 390] we say that I is weakly selective

(or weak selective) provided for every A ∈ I+ and f :A → ω there exists
a B ∈ I+ such that f � B is either one to one or constant. (I. Farah,
in [55, sec. 2], terms such ideals as having the Q+-property. Note also that
J. Baumgartner and R. Laver, in [7], call such ideals selective, despite the
fact that they claim to use Grigorieff’s terminology from [65].)

We have the following implications between these notions (see I. Farah
[55, sec. 2]):

I is selective =⇒ I is semiselective =⇒ I is weakly selective

All these notions represent different generalizations of the properties of the
ideal [ω]<ω. In particular, it is easy to see that [ω]<ω is selective.

We say that an ideal I on a countable setX is selective (weakly selective)
provided it is such upon an identification of X with ω via an arbitrary
bijection. A filter F on a countable set X is selective (semiselective, weakly
selective) provided the same property has its dual ideal I = {X\F :F ∈ F}.
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It is important to note that a maximal ideal (or an ultrafilter) is selective
if and only if it is weakly selective. This follows, for example, directly from
the definitions of these notions as in S. Grigorieff [65]. Recall also that the
existence of selective ultrafilters cannot be proved in ZFC. (K. Kunen [80]
proved that there are no selective ultrafilters in the random real model.
This also follows from the fact that every selective ultrafilter is a P -point,
while S. Shelah proved that there are models with no P -points; see, e.g., [4,
thm. 4.4.7].)
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