Contents

Over	rview	page xi
Preli	iminaries	xix
1	Axiom CPA _{cube} and its consequences:	
	properties (A)–(E)	1
1.1	Perfectly meager sets, universally null sets, and	
	continuous images of sets of cardinality continuum	4
1.2	Uniformly completely Ramsey null sets	9
1.3	$\operatorname{cof}(\mathcal{N}) = \omega_1$	11
1.4	Total failure of Martin's axiom	12
1.5	Selective ultrafilters and the reaping numbers \mathfrak{r} and \mathfrak{r}_{σ}	15
1.6	On the convergence of subsequences of real-valued	
	functions	17
1.7	Some consequences of $cof(\mathcal{N}) = \omega_1$: Blumberg's theorem,	
	strong measure zero sets, magic sets, and the cofinality of	
	Boolean algebras	21
1.8	Remarks on a form and consistency of the axiom $\mathrm{CPA}_\mathrm{cube}$	27
2	Games and axiom CPA ^{game} _{cube}	31
2.1	CPA ^{game} _{cube} and disjoint coverings	32
2.2	MAD families and the numbers ${\mathfrak a}$ and ${\mathfrak r}$	34
2.3	Uncountable γ -sets and strongly meager sets	36

2.4	Nowhere meager set $A \times A \subset \mathbb{R}^2$ intersecting continuous	
	functions on a small set	45
2.5	Remark on a form of CPA_{cube}^{game}	48
3	Prisms and axioms CPA ^{game} _{prism} and CPA _{prism}	49
3.1	Fusion for prisms	54
3.2	On \mathcal{F} -independent prisms	58
3.3	CPA_{prism} , additivity of s_0 , and more on (A)	69
3.4	Intersections of ω_1 many open sets	73
3.5	α -prisms and separately nowhere constant functions	78
3.6	Multi-games and other remarks on CPA ^{game} _{prism} and	
	$\mathrm{CPA}_{\mathrm{prism}}$	88
4	$\mathbf{CPA}_{\mathbf{prism}}$ and coverings with smooth functions	91
4.1	Chapter overview; properties (H^*) and (R)	92
4.2	Proof of Proposition 4.1.3	97
4.3	Proposition 4.2.1: a generalization of a theorem	
	of Morayne	100
4.4	Theorem 4.1.6: on cov $(D^n, \mathcal{C}^n) < \mathfrak{c}$	103
4.5	Examples related to the cov operator	105
5	Applications of CPA ^{game} _{prism}	110
5.1	Nice Hamel bases	110
5.2	Some additive functions and more on Hamel bases	116
5.3	Selective ultrafilters and the number $\mathfrak u$	128
5.4	Nonselective P -points and number i	133
5.5	Crowded ultrafilters on \mathbb{Q}	139
6	CPA and properties (F^*) and (G)	143
6.1	$\operatorname{cov}(s_0) = \mathfrak{c}$ and many ultrafilters	145
6.2	Surjections onto nice sets must be continuous on big sets	147
6.3	Sums of Darboux and continuous functions	148
6.4	Remark on a form of CPA_{cube}^{sec}	154
7	CPA in the Sacks model	155
7.1	Notations and basic forcing facts	155
7.2	Consistency of CPA	160
Not	ation	162
Refe	References	
Inde	Index	

х