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Abstract. We prove that the Covering Property Axiom CPAprism, which
holds in the iterated perfect set model, implies the following facts.

• If G is an intersection of ω1-many open sets of a Polish space and G has
cardinality continuum, then G contains a perfect set.

• There exists a subset G of the Cantor set which is an intersection of
ω1-many open sets but is not a union of ω1-many closed sets.

The example from the second fact refutes a conjecture of Brendle, Larson, and
Todorcevic.

1. Preliminaries and axiom CPAprism

Our set-theoretic terminology is standard and follows that of [3]. In particular,
|X| stands for the cardinality of a set X and c = |R|. The Cantor set 2ω will be
denoted by a symbol C. We use term Polish space for a complete separable metric
space without isolated points. For a Polish space X the symbol Perf(X) will
stand for a collection of all subsets of X homeomorphic to the Cantor set C. For a
fixed 0 < α < ω1 and 0 < β ≤ α a symbol πβ will stand for the projection from Cα

onto Cβ .
Axiom CPAprism was introduced by the authors in [5], where it is shown that it

holds in the iterated perfect set model. Also, CPAprism is a simpler version of the
axiom CPA, which is described in monograph [6]. (See also [4].) For the reader’s
convenience, we will restate the axiom in the next few paragraphs.

The main notions needed for the axiom are that of prism and prism-density. Let
0 < α < ω1 and let Φprism(α) be the family of all continuous injections f : Cα → Cα

with the property that

f(x) � β = f(y) � β ⇔ x � β = y � β for all β ∈ α and x, y ∈ Cα

or, equivalently, such that for every β < α

f �� β
def= {〈x � β, y � β〉 : 〈x, y〉 ∈ f}

is a one-to-one function from Cβ into Cβ . Functions f from Φprism(α) were first
introduced, in a more general setting, in [8], where they are called projection-keeping
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homeomorphisms. Note that Φprism(α) is closed under compositions and that, for
every 0 < β < α, if f ∈ Φprism(α), then f �� β ∈ Φprism(β). Let

Pα = {range(f) : f ∈ Φprism(α)},

and note that if f ∈ Φprism(α) and E ∈ Pα, then f [E] ∈ Pα. In [11] the elements
of Pα are called I-perfect, where I is the ideal of countable sets.

The simplest elements of Pα are perfect cubes, that is, the sets of the form
C =

∏
β<α Cβ , where Cβ ∈ Perf(C) for each β < α. (This is justified by a function

f = 〈fβ〉β<α ∈ Φprism(α), where each fβ is a homeomorphism from C onto Cβ .)
To state CPAprism we need a few more definitions. For a fixed Polish space X

we say that P ∈ Perf(X) is a prism if we consider it with an (implicitly given)
continuous injection f from Cα, 0 < α < ω1, onto P . We say that Q is a subprism
of a prism P ∈ Perf(X) provided Q = f [C], where f is as above and C ∈ Pα.
A family E ⊂ Perf(X) is prism-dense in X provided every prism in X contains a
subprism Q ∈ E . Now we are ready to state the axiom.

CPAprism: c = ω2 and for every Polish space X and every prism-dense family
E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \

⋃
E0| ≤ ω1.

If in the definition above we restrict our attention only to prisms which are perfect
cubes in Cω, we get a notion of cube-density which is stronger than that of prism-
density. This naturally leads to a weaker version of CPAprism, known as CPAcube,
which is obtained from CPAprism by replacing the word “prism” with “cube.” Thus,
any consequence of axiom CPAcube, which has been studied in [7, 4, 10, 6], follows
also from CPAprism.

2. Intersections of ω1-many open sets

For a Polish space X let Gω1 be the collection of the intersections of ω1-many
open subsets of X. We are going to prove the following theorem.

Theorem 2.1. CPAprism implies that the following property holds for every Polish
space X.

(∗) If G is a Gω1 subset of X and |G| = c, then G contains a perfect set.

Theorem 2.1 provides an affirmative answer to a question of Jörg Brendle, who
asked us in [1] whether (∗) can be deduced from our axiom CPA. The fact that (∗)
holds in the iterated perfect set model is proved in [2]. The argument presented
below is considerably simpler.

Before we prove Theorem 2.1 we would like to notice, in Corollary 2.4, that in
property (∗) we can replace the class of open sets by the considerably larger class
Π1

2. Here Σ1
1 stands for the class of analytic sets, that is, continuous images of Borel

sets; Π1
1 for the class of co-analytic sets, the complements of analytic sets; Σ1

2 for
continuous images of co-analytic sets, and Π1

2 for the class of all complements of Σ1
2

sets. For the argument that follows we need also to recall a theorem of Sierpiński
that every Σ1

2 set is the union of ω1 Borel sets. (See, e.g., [9, p. 324].)
To argue for Corollary 2.4 we need the following two results.

Claim 2.2. If G ⊂ Cω is comeager in Cω, then it contains a perfect cube
∏

i<ω Pi.

An argument for the claim can be found in [7], [4], or [6].



UNCOUNTABLE INTERSECTIONS OF OPEN SETS UNDER CPAprism 3

Fact 2.3. Under CPAcube (so, also under CPAprism) the following holds:

For every Σ1
2 subset B of a Polish space X there exists a family P of

ω1-many compact sets such that B =
⋃
P.

Proof. Since every Σ1
2 set is a union of ω1 Borel sets, we can assume that B is

Borel. Let E be the family of all P ∈ Perf(X) such that either P ⊂ B or P ∩B = ∅.
We claim that E is Fcube-dense. Indeed, if f : Cω → X is a continuous injection,
then f−1(B) is Borel in Cω. Thus, there exists a basic open set U in Cω, which is
homeomorphic to Cω, such that either U ∩ f−1(B) or U \ f−1(B) is comeager in
U . Apply Claim 2.2 to this comeager set to find a perfect cube P contained in it.
Then f [P ] ∈ E is a subcube of range(f). So, E is Fcube-dense.

By CPAcube there exists an E0 ⊂ E such that |E0| ≤ ω1 and |X \
⋃
E0| ≤ ω1.

Let P0 = {P ∈ E0 : P ⊂ B} and P = P0 ∪ {{x} : x ∈ B \
⋃
E0}. Then P is as

desired.

Corollary 2.4. Assume that CPAprism holds and X is a Polish space.

• If G is an intersection of ω1-many Π1
2 sets from X and |G| = c, then G contains

a perfect set.

Proof. Let G =
⋂

ξ<ω1
Tξ, where each Tξ ⊂ X is a Π1

2 set. Then

X \G =
⋃

ξ<ω1

(X \ Tξ)

and each set X \ Tξ is in the class Σ1
2, so, by Fact 2.3, it is a union of ω1-many

compact sets. Thus, each Tξ is an intersection of ω1 open sets.

Theorem 2.1 follows easily from the following combinatorial fact concerning it-
erated perfect sets.

Proposition 2.5. Let 0 < α < ω1 < c and H = Cα \
⋃

ξ<ω1
Fξ, where each set Fξ

is compact. Then either H contains a perfect set P , or else there exists an E ∈ Pα

disjoint with H.

Proof of Theorem 2.1. Let G = X \
⋃

ξ<ω1
Tξ, where each set Tξ is closed in X,

and assume that G does not contain a perfect set.
Let E = {P ∈ Perf(X) : P ∩G = ∅}. We will show that E is prism-dense. This

will finish the proof since then, by CPAprism, X \
⋃
E ⊃ G has cardinality ≤ ω1 < c.

So, let f : Cα → X be a continuous injection. We need to find an E ∈ Pα for
which f [E] ∈ E , that is, f [E] ∩ G = ∅. Let Fξ = f−1(Tξ) for ξ < ω1. Then
H = Cα \

⋃
ξ<ω1

Fξ is equal to f−1(G). If H contains a perfect set P , then so does
G ⊃ f [P ], contradicting our assumption. Thus, by Proposition 2.5, there exists an
E ∈ Pα disjoint with H = f−1(G). So, f [E] is disjoint with G.

To prove Proposition 2.5 we need some auxiliary terminology. For a proper ideal
I of subsets of C and an ordinal 0 < α < ω1 we say that a tree T ⊂ C≤α (ordered
by inclusion) is a co-I tree, T ∈ T α

I , provided
• for every β < α and t ∈ T ∩ Cβ we have C \ succT (t) ∈ I, where succT (t) ={

s(β) : t ⊂ s ∈ T ∩ Cβ+1
}

is the set of all immediate successors of t in T ,
and

• for every limit ordinal λ ≤ α the λ-th level T ∩ Cλ of T consists all the
branches of T ∩ C<λ, that is, t ∈ T ∩ Cλ if and only if t � γ ∈ T for every
γ < λ.
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Also let Kα
I = {T ∩ Cα : T ∈ T α

I } and let Iα =
⋃

K∈Kα
I
P(Cα \ K). It is easy to

see that Iα is an ideal on Cα. We will call Iα the α-th Fubini power of the ideal I.
This notion, with slightly different emphasis, appears also in Zapletal [11].

We will be interested in these notions only for I of the form Iκ = [C]≤κ, where
κ < c is equal to either ω or ω1. It is easy to see that the families T α

Iκ
and Kα

Iκ
are

closed under the intersection of κ-many of their elements. So (Iκ)α is a κ+-additive
ideal on Cα.

A big part of the difficulty behind our proof of Theorem 2.1 lies in the following
lemma generalizing the Cantor-Bendixon theorem that an uncountable closed set
contains a perfect set. In fact, this result is true not only for closed sets, but also for
analytic sets. This version of the lemma, which can be viewed as a generalization
of the Suslin theorem that an uncountable analytic set contains a perfect set, can
be found in [11, Lemma 4.1.29(2)]. (See also [11, Lemma 3.3.1].)

Lemma 2.6. Let 0 < α < ω1. If F is a closed subset of Cα and F /∈ (Iω)α, then F
contains an iterated perfect set, that is, there exists an E ∈ Pα such that E ⊂ F .

Proof of Proposition 2.5. If there is a ξ < ω1 such that Fξ /∈ (Iω)α, then, by
Lemma 2.6, there is an E ∈ Pα such that E ⊂ Fξ. Clearly this E is disjoint with
H = Cα \

⋃
ξ<ω1

Fξ. So, assume that Fξ ∈ (Iω)α for every ξ < ω. We will show
that H contains a perfect set.

For every ξ < ω1, since Fξ ∈ (Iω)α, there is a Tξ ∈ T α
Iω

disjoint with Fξ. But
then T =

⋂
ξ<ω1

Tξ ∈ T α
Iω1

is disjoint with
⋃

ξ<ω1
Fξ, so T is a subset of H. Thus,

it is enough to show that T contains a perfect set. But this follows immediately
from the assumption that ω1 < c.

If α is a successor ordinal, say α = β + 1, then take t ∈ πβ [T ] and a perfect set
C ⊂ succT (t). Then P = {t} × C is a perfect subset of T .

If α is a limit ordinal, take an increasing sequence 〈αn : n < ω〉 cofinal with α.
By induction on n < ω choose a sequence 〈tσ ∈ παn

[T ] : n < ω & σ ∈ 2n〉 such that
tσˆ0 and tσˆ1 are distinct extensions of tσ. Then

P = {t ∈ Cα : t � αn ∈ {tσ : σ ∈ 2n} for every n < ω}

is a perfect subset of T .

Note that Lemma 2.6 (see [11, Lemma 3.3.1]) and appropriate CPA versions hold
also for many other “nicely definable” forcings. (See [11, chapter 5].) The form
of these CPA’s remains the most similar to our axiom for the forcings for which
Lemma 3.4 remains valid. This, for example, includes Miller forcing. For these
forcings the argument remains intact, so appropriate CPA’s also imply (∗).

3. The complements of Gω1 sets

Brendle, Larson, and Todorcevic conjectured in [2, conj. 5.11] that, in the it-
erated perfect set model, the complement of a Gω1 set is also Gω1 , that is, that
any Gω1 set is a union of ω1-many closed sets. In this section we will prove that
the conjecture is false, by showing that the existence of a counterexample follows
from CPAprism. More precisely, this follows from the following theorem, which is
interesting in its own right.

Let X be the family of all continuous functions f from an uncountable Gδ subset
of C into C.
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Theorem 3.1. CPAprism implies that there exists a sequence 〈gα ∈ X : α < ω1〉
such that for every g ∈ X there is an α < ω1 such that |g ∩ gα| = c.

Before we prove the theorem we notice that it easily implies the following corol-
lary, which refutes [2, conj. 5.11]. It also gives a negative answer to [2, Ques-
tion 5.13]. Note that in the proof of the corollary we use from Theorem 3.1 only
the fact that g ∩ gα �= ∅.
Corollary 3.2. If ω1 < c and G = C2 \

⋃
α<ω1

gα, where the gα’s are from Theo-
rem 3.1, then G is not a union of ω1-many closed sets.

In particular, CPAprism implies that G is Gω1 but C2 \G is not.

Proof. To see that G is not a union of ω1-many closed sets, notice that

if P ⊂ G is compact then π[P ] is countable.(1)

To see this, take a compact subset P of C2 for which π[P ] is uncountable. We need
to show that P ∩

⋃
α<ω1

gα �= ∅. So, take a Borel selection g : π[P ] → C for P . (For
example, put g(x) = min{y ∈ C : 〈x, y〉 ∈ P}.) Then, there exists a dense Gδ subset
D of π[P ] such that g � D is continuous. Thus, g � D ∈ X and (g � D)∩ gα �= ∅ for
some α < ω1. In particular, P ∩

⋃
α<ω1

gα ⊃ (g � D) ∩ gα �= ∅.
Next, let P = {Pξ : ξ < ω1} be a family of compact subsets of G. We need

to show that G �=
⋃
P. But, by (1), there exists an x ∈ C \

⋃
ξ<ω1

π[Pξ]. Let
p ∈ ({x} × C) \

⋃
α<ω1

gα. Then p ∈ G \
⋃
P.

To see the additional part, first note that C2 \ G is not Gω1 , by the above
argument. To see that G is Gω1 , it is enough to show that its complement

⋃
α<ω1

gα

is a union of ω1-many compact sets. But every gα is a Gδ subset of C2, so it is a
Polish space. Thus gα is a union of ω1 compact sets — this follows directly from
the formulation of CPAprism (as well as from CPAcube).

The proof1 of Theorem 3.1 is based on the following simple observation. Note
also that if we are willing to prove the theorem only with the conclusion that
g ∩ gα �= ∅ (i.e., a version needed to prove Corollary 3.2), then in Lemma 3.3 one
need only require that F ∩ f �= ∅ for every continuous f : C → C. The argument
for this version is a bit simpler, and in this form Lemma 3.3 is more likely to be
known.

Lemma 3.3. There exists a continuous function F from a Gδ subset T of C into
C such that |F ∩ f | = c for every continuous f : C → C.

Proof. Let C be the family of all continuous functions f : C → C, considered with
the sup norm. Then C is homeomorphic to the Baire space ωω, and so is C×C. (To
see this use, for example, [9, thm. 7.7].) Let T be a Gδ subset of C homeomorphic
to ωω and let h = 〈h1, h2〉 : T → C × C be a homeomorphism. Define F : T → C by

F (t) = [h1(t)](t).

Clearly F is continuous. To see the other part, take an f ∈ C and notice that
P = (h1)−1(f) is uncountable. It is enough to show that F � P = f � P .

Indeed, if t ∈ P , then h1(t) = f and F (t) = [h1(t)](t) = f(t).

1It was pointed to us by the referee that “Theorem 3.1 is of the syntactical form isolated in
[11] for the consequences of CPA, while Corollary 3.2 is not of this form.” This certainly sheds
more light on our work. However, in order to use the results from [11] to deduce Theorem 3.1, in
addition to checking “the syntactical form,” one needs also to know how to force the conclusion
of Theorem 3.1. So, one cannot use [11] without actually using forcing technic.
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One of the most important properties of prisms, distinguishing them from cubes,
is the following fact, which is a particular case of [8, thm. 20]. In its current form
it has been used in [5]. Its proof can be also found in [6, Lemma 3.2.2].

Lemma 3.4. For every 0 < α < ω1, a Polish space X, and a continuous function
f : Cα → X there exist 0 < β ≤ α and E ∈ Pα such that f ◦ π−1

β is a function on

πβ [E] ∈ Pβ which is either one-to-one or constant.

We will also need the following result.

Proposition 3.5. CPAprism implies that there exists a family F = {fα : α < ω1}
of continuous injections from C2 into C such that {fα[{x} × C] : x ∈ C & α < ω1}
is dense in Perf(C).

Proof. Let C be the family of all continuous functions from C into C endowed with
the uniform convergence topology, and let X be a subspace of C consisting of all
continuous injections from C into C. Note that X is a Gδ subset of X and that X
is a Polish space. Thus, there exists a metric on X which makes it a Polish space.

For every prism P in X witnessed by a continuous injection f from Cα onto
P there exists a subprism P ∗ defined as follows. Let f∗ : Cα+1 → C be defined
by f∗(x) = f(x � α)(x(α)). Clearly f∗ is continuous. Apply Lemma 3.4 to the
function f∗ to find a β ≤ α + 1 and an E ∈ Pα+1 such that f∗ ◦ π−1

β is a function
on πβ [P ] ∈ Pβ which is either one-to-one or constant. Note that

β = α + 1 and f∗ is one-to-one on E,

since there are distinct x, y ∈ E with x � α = y � α for which we have f∗(x) �= f∗(y).
Let P ∗ = f [πα[E]] and fP∗ = f∗ � E.

Since E = {P ∗ : P is a prism in X} is prism-dense, by CPAprism we can find an
E0 ∈ [E ]≤ω1 such that Y = X \

⋃
E has cardinality at most ω1.

For Q ∈ E0, if fQ is defined on E ∈ Pα+1 let g ∈ Φprism(α + 1) be a projection-
keeping homeomorphism from Cα+1 into E. If in Cα+1 = Cα × C we identify Cα

with C, then gQ = fQ ◦ g is an injection from C2 into C, and for every h ∈ Q there
is an x ∈ C such that gQ[{x} × C] ⊂ h[C]. Now, if the domains of the functions
from Y are identified with C2, then F = Y ∪ {gQ : Q ∈ E0} is as desired.

Proof of Theorem 3.1. Let {fα : α < ω1} be as in Proposition 3.5 and let F : T → C

be as in Lemma 3.3. For α < ω1 let Kα = fα[C × T ]. Define gα : Kα → C by

gα(fα(x, t)) = F (t) for every 〈x, t〉 ∈ C × T .

Clearly the functions gα are continuous and defined on Gδ sets.
Fix a g ∈ X . We need to find an α < ω1 such that |g∩gα| = c. Since the domain

of g is uncountable, it contains a perfect set P . So, there are α < ω1 and x0 ∈ C

such that fα[{x0} × C] ⊂ P . Let f ∈ C be defined by f(y) = g(fα(x0, y)). Then,
by Lemma 3.3, there is a Q ∈ Perf(T ) such that F � Q = f � Q. Thus, for every
t ∈ Q ⊂ T we have

gα(fα(x0, t)) = F (t) = f(t) = g(fα(x0, t)).

Thus, gα � fα[{x0} ×Q] = g � fα[{x0} ×Q].
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