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Abstract

Let (FP) abbreviate the statement that
∫ 1

0

(∫ 1

0
f dy

)
dx =

∫ 1

0

(∫ 1

0
f dx

)
dy

holds for every bounded function f : [0, 1]2 → R whenever each of the
integrals involved exists. We shall denote by (SFP) the statement that
the equality above holds for every bounded function f : [0, 1]2 → R
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having measurable vertical and horizontal sections. It follows from
well-known results that both of (FP) and (SFP) are independent from
the axioms of ZFC. We investigate the logical connections of these
statements with several other strong Fubini type properties of the
ideal of null sets. In particular, we establish the equivalence of (SFP)
to the nonexistence of certain sets with paradoxical properties, a phe-
nomenon that was already known for (FP). We also give the category
analogues of these statements and, whenever possible, we try to put
the statements in a setting of general ideals as initiated by RecIlaw and
Zakrzewski.

1 Introduction

In this paper we investigate the equality

∫ 1

0

(∫ 1

0

f dy

)
dx =

∫ 1

0

(∫ 1

0

f dx

)
dy (1)

under different conditions on the function f : [0, 1]2 → R. It was already
known to Cauchy that (1) holds for any continuous function f : [0, 1]2 → R.
Cauchy new also (see [1]) that this is false when we allow just one point of
discontinuity for f : if f(x, y) = (x2 − y2)/(x2 + y2)2 then the two sides of
(1) equal π/4 and −π/4, respectively. (Another simple example is f(x, y) =
(x−y)/(x+y)3, where the corresponding values are −1/2 and 1/2.) However,
it was proved in 1883 by du Bois-Reymond [4] that if f is Riemann integrable

on [0, 1]2 then both of the integrals
∫ 1

0

(∫
0

1
f dy

)
dx and

∫ 1

0

(∫
0

1
f dx

)
dy are

equal to the double integral
∫∫

[0,1]2
f(x, y) dx dy, where

∫
denotes the Dar-

boux upper integral. In particular, if f is Riemann integrable on [0, 1]2 and

the integrals
∫ 1

0
fx dy and

∫ 1

0
f y dx exist for every x, y ∈ [0, 1] then (1) holds.

Here fx, f
y : [0, 1] → R are the sections of f ; that is, fx(y) = f(x, y) = f y(x)

for every x, y ∈ [0, 1].

The most important theorem on (1) is that of Fubini [8]1 stating that (1)
holds provided that f is summable on [0, 1] × [0, 1].

1According to [9, p. 161] Fubini’s proof was defective. Later different proofs were
provided by Hobson [10] and de la Vallée-Poussin [3].
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The first theorem stating (1) without assuming the measurability of f was
proved in 1911 by L. Lichtenstein [20],2 who showed that (1) holds for every
bounded function f for which f y is Riemann integrable for every y ∈ [0, 1],
and fx is measurable for every x ∈ [0, 1].

Motivated by Lichtenstein’s result Sierpiński [22] proved that, under the
continuum hypothesis (CH), there exists a function f : [0, 1]2 → {0, 1} for

which
∫ 1

0
f y dx = 0 and

∫ 1

0
fx dy = 1 for every x, y ∈ [0, 1]. In particular, the

iterated integrals for this function exist but are not equal, and so (1) fails.
Actually, Sierpiński proves the following statement under CH:

S2 : there exists a set H ⊂ [0, 1]2 such that the horizontal sections of H
are of measure zero and the vertical sections of H are of full measure.
That is, λ(Hy) = λ([0, 1]\Hx) = 0 for every x, y ∈ [0, 1], where λ is the
Lebesgue measure, Hy = {x : 〈x, y〉 ∈ H} and Hx = {y : 〈x, y〉 ∈ H}.

Then Sierpiński notes that the characteristic function of H has the properties
described above. This example shows that in the theorems of Fubini and
Lichtenstein we cannot omit the conditions that f is summable or that the
sections f y are Riemann integrable.

Can Sierpiński’s example be constructed in ZFC? The negative answer
was given in 1980 by Friedman [7], who proved that there are models of set
theory ZFC in which the following statement, which we call Fubini property,
holds.

(FP) If f : [0, 1]2 → R is a bounded function such that fx and f y are measur-

able for every x, y ∈ [0, 1] and the mappings [0, 1] � x 
→
∫ 1

0
f(x, y) dy

and [0, 1] � y 
→
∫ 1

0
f(x, y) dx are measurable then (1) holds.

Later it was shown independently by Laczkovich [16] and Freiling [5] that
(FP) is, in fact, equivalent to the negation of the statement S2. Now it is
easy to see that S2 implies the inequality cov(N ) ≤ non(N ). Here cov(N )
denotes the minimum cardinality of a system of null sets that can cover R

and non(N ) is the minimum cardinality of a set of positive outer measure. It
was shown by Kunen [14] that the inequality cov(N ) > non(N ) is consistent
with ZFC. Since this inequality implies ¬S2 which, in turn, is equivalent to
(FP), we find that the consistency of (FP) also follows from Kunen’s theorem.

2Note that Sierpiński in [22] incorrectly refers this result to another paper of Lichten-
stein of 1910. We like to thank Dr. J. Trzeciak for helping us to spot this error.
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We may also ask whether or not the following stronger version of (FP),
which we call strong Fubini property, is consistent with ZFC.

(SFP) If f : [0, 1]2 → R is a bounded function such that fx and f y are measur-

able for every x, y ∈ [0, 1] then the mappings [0, 1] � x 
→
∫ 1

0
f(x, y) dy

and [0, 1] � y 
→
∫ 1

0
f(x, y) dx are measurable and (1) holds.

Although we did not find in the literature (SFP) in its specific, it follows
easily from the following strong approximation property (for measure).

(SAP) If f : [0, 1]2 → R is such that fx and f y are measurable for every x, y ∈
[0, 1] then there is a measurable function F : [0, 1]2 → R such that
fx = Fx a.e. and f y = F y a.e. for every x, y ∈ [0, 1].

In [21, p. 139], the theorem stating the consistency of (SAP) is attributed to
H. Woodin. The first published proof can be found in [21, Theorem 2.17(ii)].
Therefore (SAP) and, consequently, (SFP) are both consistent with ZFC.

As we shall see later, the statements (SAP) and (SFP) are, in fact, equiv-
alent. One of the goals of this paper will be to find several other statements
equivalent to (SFP), including one that states the nonexistence of certain
sets with paradox properties, analogously to the equivalence (FP) ⇐⇒ ¬S2.
Since all these statements can be expressed in a setting of general ideals on
Polish spaces, we will do this in the next section.

2 Kuratowski-Ulam type theorems for ideals

We use standard set theoretic terminology as in [2].
Let X be a Polish space and let I be an ideal in X. We shall denote

by BI the σ-algebra generated by I and by the Borel subsets B of X. The
ideals that are the most interesting for us are the σ-ideals N of Lebesgue
measure zero subsets of R and M of meager subsets of R. Then BN and
BM are the families of measurable sets, and the sets with the Baire property,
respectively. The sections of a set A ⊂ X2 are defined by

Ax = {y ∈ X : 〈x, y〉 ∈ A} and Ay = {x ∈ X : 〈x, y〉 ∈ A}

for every x, y ∈ X.
Recall that the Kuratowski-Ulam theorem says that for every A ⊂ R2

with the Baire property, if Ax ∈ M for every x ∈ R then {y : Ay /∈ M} ∈ M.
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Thus the following Kuratowski-Ulam property of an arbitrary ideal I is a
stronger version of the theorem, when considered with I = M.

(KU) If A ⊂ X2 is such that Ax ∈ I and Ay ∈ BI for every x, y ∈ X and
{y : Ay /∈ I} ∈ BI , then {y : Ay /∈ I} ∈ I.

We will also consider the following two strong Kuratowski-Ulam properties.

(SKU) If A ⊂ X2 is such that Ax ∈ I and Ay ∈ BI for every x, y ∈ X, then
{y : Ay /∈ I} ∈ I.

(SKU∗) If A ⊂ X2 is such that Ax ∈ BI and Ay ∈ BI for every x, y ∈ X, then
{y : Ay /∈ I} ∈ BI .

Note that RecIlaw and Zakrzewski in [21] refer to (SKU) as “strong Fubini
property” and denote it as (SFP). However, we prefer to reserve the adjective
“Fubini” to the properties that refer explicitly to the properties of integrals.

Our first aim is to establish the logical connections between these three
statements and the nonexistence of sets having some paradoxical properties
with respect to the ideal I. We shall say that a set H ⊂ A × B is a 0–1 set
(in A×B) provided Hy ∈ I for every y ∈ B and B \Hx ∈ I for every x ∈ A.
Note that

if there is a 0–1 set in A × B then there is one also in B × A. (2)

Indeed, if H is a 0–1 set in A×B then {〈x, y〉 ∈ B ×A : 〈y, x〉 /∈ H} is a 0–1
set in B × A.

We shall use the notation Ac = X \A for every A ⊂ X. We will also use
the following propositions concerning the existence of various 0–1 sets.

S2
I : There exists a 0–1 set in X × X.

S2w
I : There exists a set A ⊂ X not in I such that A×X contains a 0–1 set.

EI : There exist sets A,B ⊂ X not in I such that both A×B and Ac ×Bc

contain 0–1 sets.
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To state the next theorem, we need also the following classical cardinal
numbers connected to I.

add(I) = min{|F| : F ⊂ I &
⋃

F /∈ I}

cov(I) = min{|F| : F ⊂ I &
⋃

F = X}
non(I) = min{|A| : A ⊂ X & A /∈ I}
shr(I) = min{κ : ∀A ⊂ X(A /∈ I =⇒ [A]κ \ I �= ∅)}.

In other words, shr(I) is the smallest cardinal κ such that any subset A of
X not belonging to I contains a subset B such that |B| ≤ κ and B /∈ I.
Clearly non(I) ≤ shr(I).

Theorem 1 Let I be an ideal in an uncountable Polish space X. Then we
have the following implications:

(SKU)

❄

✲ (KU)

❄

[shr(I) < cov(I)] ✲ ¬EI ✲ ¬S2w
I

✲ ¬S2
I

✲ [non(I) < 2ω &

add(I) < cov(I)]

Moreover, if I satisfies the following condition:

(∗) every set B ∈ BI \ I contains a subset S /∈ BI

then the chart can be expanded as

(SKU∗)

❄

✲ (SKU)

❄

✲ (KU)

❄

[shr(I) < cov(I)] ✲ ¬EI ✲ ¬S2w
I

✲ ¬S2
I

✲ [non(I) < 2ω &

add(I) < cov(I)]

Proof. (SKU∗) =⇒ (SKU): The argument for this implication is closely
related to that for [21, Theorem 2.11]. Let A ⊂ X2 and suppose that Ax ∈ I
and Ay ∈ BI for every x, y ∈ X. By (SKU∗) we have C := {y : Ay /∈ I} ∈ BI .
If C /∈ I then, by (∗), there is a subset D ⊂ C such that D /∈ BI . Put

H = A ∩ (X × D).
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Then Hy ∈ BI for every y ∈ X, since y ∈ D implies Hy = Ay and y /∈ D
implies Hy = ∅. Since H ⊂ A, we also have Hx ∈ I for every x ∈ X.
Applying (SKU∗) again we find that

{y : Hy /∈ I} = D ∈ BI ,

which is impossible.

(SKU∗) =⇒ ¬EI : Suppose that EI holds. Then there are sets A,B ⊂ X,
H ⊂ A × B, and K ⊂ Ac × Bc such that A /∈ I, B /∈ I, H is a 0–1 set in
A × B, and K is a 0–1 set in Ac × Bc.

First assume that A,B ∈ BI . Then Hx, H
y ∈ BI for every x, y ∈ X. By

(∗), there is a set D ⊂ B such that D /∈ BI . Putting E = H ∪ (A × D) we
have Ex, E

y ∈ BI for every x, y ∈ X, and {y : Ey /∈ I} = D /∈ BI . This,
however, contradicts (SKU∗).

Therefore we may assume that at least one of A and B does not belong
to BI . By symmetry we may suppose B /∈ BI . Put

M = H ∪ ((Ac × Bc) \ K) ∪ (A × Bc)

and notice that M refutes (SKU∗). Indeed, to see that the sections of M
belong to BI note that if y ∈ B then My = Hy ∈ I and for y ∈ Bc we have
X \ My = Ky ∈ I. Similarly, if x ∈ A then X \ Mx = B \ Hx ∈ I and
for x ∈ Ac we have Mx = Ac \ Kx ∈ I. However, {y : My /∈ I} = B /∈ BI
contradicts (SKU∗).

(SKU) =⇒ (KU): This implication is immediate from the definitions.

All the remaining implications will be proved by contraposition.

(SKU) =⇒ ¬S2w
I : Suppose that S2w

I holds. Then, by (2), there are sets
A ⊂ X and H ⊂ X × A such that A /∈ I and H is a 0–1 set in X × A. Let
K = (X × A) \ H. Then Kx ∈ I and Ky ∈ BI for every x, y ∈ X while
{y : Ky /∈ I} = A /∈ I, which contradicts (SKU).

(KU) =⇒ ¬S2
I : If S2

I holds then there is a 0–1 set in X2 which clearly
contradicts (KU).

¬S2
I =⇒ [non(I) < 2ω & add(I) < cov(I)]: A proof that there is a 0–1 set

if either non(I) = 2ω or add(I) = cov(I) can be found, for example, in [17,
Theorem 2]. (Note that the proof given in [17] is valid for every ideal.)

¬S2w
I =⇒ ¬Sw

I : The implication S2
I =⇒ S2w

I is obvious.
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¬EI =⇒ ¬S2w
I : Assume that S2w

I holds. Then there are sets A ⊂ X and
H ⊂ A × X such that A /∈ I and H is a 0–1 set in A × X. If Ac ∈ I then
EI is satisfied with B = A. If Ac /∈ I then EI is satisfied with B = Ac, since
H ∩ (A×Ac) is a 0–1 set in A×Ac, and the existence of a 0–1 set in Ac ×A
follows from (2).

[shr(I) < cov(I)] =⇒ ¬EI : For the proof of EI =⇒ [shr(I) ≥ cov(I)]
we shall need the following lemma, which is implicit in [5, p. 193] and [21,
Lemma 2.7]. For the sake of completeness we give the simple proof. In the
lemma we use the notation I|A to denote the ideal {B ∈ I : B ⊂ A}.

Lemma 2 If A,B ⊂ X, A,B /∈ I, and there is a 0–1 set in A × B then
cov(I|A) ≤ non(I|B).

Proof. Let H be a 0–1 set in A × B. Then Hy ∈ I for every y ∈ B and
B \ Hx ∈ I for every x ∈ A. If D ⊂ B, |D| = non(I|B), and D /∈ I then
A =

⋃
y∈D Hy, since x ∈ A\

⋃
y∈D Hy would imply Hx ∩D = ∅ contradicting

B \ Hx ∈ I. Thus cov(I|A) ≤ |D| = non(I|B). �
Now we turn to the proof of EI =⇒ [shr(I) ≥ cov(I)]. By EI , there are

sets A,B /∈ I such that both of A × B and Ac × Bc contain 0–1 sets. If
Ac /∈ I and Bc /∈ I then Lemma 2 gives cov(I|A) ≤ non(I|B) ≤ shr(I) and
cov(I|Ac) ≤ non(I|Bc) ≤ shr(I), and hence

cov(I) ≤ max{cov(I|A), cov(I|Ac)} ≤ shr(I).

On the other hand, if Ac ∈ I then there is a 0–1 set in X × B and thus
cov(I) ≤ non(I|B) ≤ shr(I). We have the same conclusion if Bc ∈ I. �

For a semigroup G of Borel functions from X to X and an ideal I on
X we say that I is G-invariant provided g−1(A) ∈ I for every g ∈ G and
A ∈ I; and I is G-ergodic when X \

⋃
g∈G g

−1(A) ∈ I for every A ∈ BI \ I.
Clearly if G is the group of rational translations in R then the ideals N and
M are G-invariant and G-ergodic.

If we strengthen a bit the assumptions of the main part of Theorem 1
then we can get few more implications.

Corollary 3 Let I be a σ-ideal in the Polish space X and suppose that there
is a countable semigroup G of Borel functions from X to X such that I is
G-invariant and G-ergodic. Then we have the following implications:
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(SKU)

❄

✻

✲ (KU)

❄

✻

[shr(I) < cov(I)] ✲ ¬EI ✲ ¬S2w
I

✲ ¬S2
I

✲ [non(I) < 2ω &

add(I) < cov(I)]

Proof. The equivalence (SKU) ⇐⇒ ¬S2w
I is proved in [21, Lemma 2.8].

The same argument gives ¬S2
I ⇐⇒ (KU). The other implications follow

from Theorem 1. �
We do not know if the hypothesis above also implies (SKU∗) ⇐⇒ ¬EI

even in the presence of (∗). However, as we shall see later, this equivalence
holds for I = N and I = M.

The condition (∗) was only used in the proof of Theorem 1 in the im-
plications (SKU∗) =⇒ ¬EI and (SKU∗) =⇒ (SKU). The following example
shows that it is really needed in these arguments.

Example 4 Let X = R and let I be a prime ideal containing all sets of car-
dinality less than 2ω. For this ideal (SKU∗) holds while all other statements
of the diagram are false.

Proof. Since I is prime, we have BI = P(R). Thus (SKU∗) holds. On the
other hand, clearly non(I) = 2ω, so the statements of the diagram are false.
�

We shall also investigate the following Borel approximation property:

(BAP) if A ⊂ X2 is such that Ax ∈ BI and Ay ∈ BI for every x, y ∈ X, then
there is a Borel set B ⊂ X2 such that (A∆B)x ∈ I for I-a.e. x ∈ X
and (A∆B)y ∈ I for I-a.e. y ∈ X.

We will leave the following simple fact without a proof.

Fact 5 If I is a σ-ideal on X then (BAP) is equivalent to the following
statement.

• If f : X2 → R is such that fx and f y are BI-measurable for every
x, y ∈ X then there is a Borel function g : X2 → R such that fx = gx

I-a.e. and f y = gy I-a.e. for I-almost every x, y ∈ X.
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Also, (BAP) is equivalent to (SAP) for I = N and for I = M.

We state the equivalence to (SAP) only for the ideals N and M to avoid
a problem of defining the meaning of BI-measurability of a function from X2

into R. (A generalization of (SAP) to the category case is natural.)

Notice that it would not be reasonable to require in (BAP) the existence
of a Borel set B such that (A∆B)x ∈ I and (A∆B)y ∈ I for every x and y.
In fact, this stronger form of (BAP) is satisfied neither by N nor by M as
the following simple example shows.

Let H be a non-Borel subset of the Cantor set, and put A = H × [0, 1].
Then Ax ∈ BI and Ay ∈ BI hold for every x, y ∈ [0, 1] for both I = N and
I = M. Suppose there is a Borel set B ⊂ [0, 1]2 such that (A∆B)x ∈ N for
every x ∈ [0, 1]. Then {x ∈ [0, 1] : Bx /∈ N } = H contradicting the fact that
this set must be Borel whenever B is Borel. (See e.g. [12, (16.1) Theorem,
p. 94].) The same argument works for I = M.

In what follows we will prove that (SAP) is equivalent to (SKU∗) for
I = N and I = M. We start in this direction noticing the following simple
fact, which will be left without a proof.

Proposition 6 Suppose that {y : Ay /∈ I} ∈ BI for every Borel set A ⊂ X2.
Then (BAP) =⇒ (SKU∗).

Note that the assumption of Proposition 6 is not satisfied by every ideal.
For example, if I equals the ideal of countable sets or that of the first category
null sets than there is a Borel set A ⊂ R2 such that {y : Ay /∈ I} /∈ BI .

We do not know whether or not (BAP) implies (SKU∗) for every ideal.

3 Strong Fubini properties for measure

It was proved by C. Freiling in [5] (see also Laczkovich [16]) that (FP) is
equivalent to ¬S2

N . Our aim here is to give a similar characterization of
(SFP), by showing that it is equivalent to ¬EN as well as to several other
strong Fubini type properties, including (BAP) for N . Recall that BN coin-
cides with the σ-algebra of measurable subsets of R.

Notice also that the chart implies that all the properties considered there
are independent of the axioms of set theory ZFC. This is the case, as since
the relations add(N ) = cov(N ) = non(N ) = 2ω and shr(N ) < cov(N )
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are both consistent with ZFC: the first is a consequence of the Martin’s
Axiom, while the second holds in the random reals model. (For the proof
of shr(N ) < cov(N ) see [18] or [11]. This was certainly already known to
Kunen [14].)
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Theorem 7 The following statements are equivalent to each other.

(i) If f is a bounded function on [0, 1]2 such that the sections fx and f y are

measurable for every x, y ∈ [0, 1] then the mapping x 
→
∫ 1

0
f(x, y) dy

is measurable on [0, 1].

(ii) The strong Fubini property (SFP) holds.

(iii) N has property (SAP).

(iv) N has property (BAP).

(v) N has property (SKU∗).

(vi) EN is false.

In particular, for I = N we have the following relations.

(BAP) ✲✛ (SAP) ✲✛ (SFP)

❄

✻

(SKU∗)

❄

✻

✲ (SKU)

❄

✻

✲ (KU)

❄

✻

(FP)

❄

✻

[shr(N ) < cov(N )] ✲ ¬EN ✲ ¬S2w
N

✲ ¬S2
N

✲ [non(N ) < 2ω &

add(N ) < cov(N )]

Proof. The implications in the chart follow from the main part of the
theorem, from Freiling’s result quoted above, as well as from Theorem 1 and
Corollary 3.

In the course of the proof the sign
∫

will abbreviate
∫ 1

0
unless another

domain is indicated.

(i)=⇒(ii): Let f be a bounded function on [0, 1]2 such that the sections fx

and f y are measurable for every x, y ∈ [0, 1]. By (i), for every x, y ∈ [0, 1] the
mappings x 
→

∫
f(x, y) dy and y 
→

∫
f(x, y) dx are measurable. We need to

prove that the integrals I1 =
∫

(
∫
f(x, y) dy) dx and I2 =

∫
(
∫
f(x, y) dx) dy

are equal.
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By way of contradiction assume that I1 �= I2. Then, by Freiling’s the-
orem [5], there exists a 0–1 set A ⊂ [0, 1]2. After removing from A some
vertical sections we obtain a set B such that By ∈ N for every y, and
{x ∈ [0, 1] : [0, 1] \ Bx ∈ N } is not measurable. But then the characteristic
function of B refutes (i).

(ii)=⇒(iii): Suppose (SFP). Let f : [0, 1]2 → R be a function with measurable
sections. We have to show that there is a measurable function F : [0, 1]2 → R

such that Fx = fx a.e. for every x ∈ [0, 1] and F y = f y a.e. for every
y ∈ [0, 1]. In the proof we may assume that f is bounded. For x, y ∈ [0, 1]
put G(x, y) =

∫ y

0
f(x, t) dt. Then G is well defined and measurable. Indeed,

by (SFP), Gy is measurable for every y ∈ [0, 1]. Also, Gx is continuous for
every x ∈ [0, 1]. Thus, by Lebesgue’s theorem [19], G is measurable. Let
H = ∂

∂y
G where ∂

∂y
G exists, and H = 0 elsewhere. Then H is measurable,

and for every x ∈ [0, 1] we have Hx(y) = fx(y) for almost all y ∈ [0, 1]. Then,
by (SFP) and the Fubini theorem,

∫ b

0

(∫ a

0

f y(x) dx

)
dy =

∫ a

0

(∫ b

0

fx(y) dy

)
dx

=

∫ a

0

(∫ b

0

Hx(y) dy

)
dx

=

∫ b

0

(∫ a

0

Hy(x) dx

)
dy

for every a, b ∈ [0, 1]. Thus, for every a ∈ [0, 1] and almost every y ∈
[0, 1] we have

∫ a

0
f y(x) dx =

∫ a

0
Hy(x) dx. So, for almost every y ∈ [0, 1] we

have
∫ a

0
f y(x) dx =

∫ a

0
Hy(x) dx for every rational a ∈ [0, 1]. Thus, by the

continuity of the integral, for almost every y ∈ [0, 1] we have
∫ a

0
f y(x) dx =∫ a

0
Hy(x) dx for every a ∈ [0, 1]. Then, for almost every y ∈ [0, 1], that is, for

y′s outside some null set T ⊂ [0, 1], we have Hy(x) = f y(x) for almost every
x ∈ [0, 1]. To get F as desired define it as equal to f on [0, 1] × T and equal
to H otherwise.

(iii)=⇒(iv): This is obvious, and follows from Fact 5.

(iv)=⇒(v): If A ⊂ [0, 1]2 is Borel then the set {y ∈ [0, 1] : Ay /∈ N } is
measurable by Fubini’s theorem. Thus we may apply Proposition 6.

(v)=⇒(vi): This was proved in Theorem 1.
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(vi)=⇒(i): Suppose that (i) is false. Then there exists a bounded function
f : [0, 1]2 → R such that the sections of f are measurable, but the function
h(x) =

∫
fx dy, defined for x ∈ [0, 1], is not. Fix a real number b such

that the set H = {x ∈ [0, 1] : h(x) < b} is not measurable, and define
K = {x ∈ [0, 1] : h(x) ≥ b}. Then λ(H) + λ(K) > 1, where λ stands for
Lebesgue outer measure. Thus, there exists a real number a < b such that
λ(Ha) + λ(K) > 1, where Ha = {x ∈ [0, 1] : h(x) ≤ a}.

Select measurable sets M and N such that Ha ⊂ M , λ(Ha) = λ(M),
K ⊂ N , and λ(K) = λ(N). Then λ(M) + λ(N) = λ(Ha) + λ(K) > 1,
and thus P = M ∩ N is of positive measure. Clearly, λ(P ) = λ(Ha ∩ P ) =
λ(K ∩ P ). The measure space 〈P, 1

λ(P )
(λ � P )〉 is isomorphic to 〈[0, 1], λ〉.

Let φ be an isomorphism from [0, 1] onto P , and put f1(x, y) = f(φ(x), y)
for x, y ∈ [0, 1]. Then the sections of f1 are measurable and both of the sets
U = {x ∈ [0, 1] :

∫
f1(x, y) dy ≤ a} and V = {x ∈ [0, 1] :

∫
f1(x, y) dy ≥ b}

have outer measure 1.
We shall denote by Ω the product space [0, 1]ω equipped with the product

measure µ and define µ(H) = inf{µ(M) : H ⊂ M and M is µ-measurable}
for every H ⊂ Ω. For x ∈ [0, 1] and v = 〈v1, v2, . . .〉 ∈ Ω let

F (x, v) = lim sup
n→∞

f1(x, v1) + · · · + f1(x, vn)

n
.

By the strong law of large numbers for every x ∈ [0, 1] the equation F (x, v) =∫
f1(x, y) dy holds for µ-a.e. v ∈ Ω. Thus, Fx is µ-a.e. constant for every

x ∈ [0, 1] since Fx(v) =
∫
f1(x, y) dy = Fx(v

′) holds for µ-a.e. v, v′ ∈ Ω.
Moreover, for x ∈ U we have F (x, v) ≤ a for µ-a.e. v ∈ Ω, and for x ∈ V
we have F (x, v) ≥ b for µ-a.e. v ∈ Ω. Also, F v(x) is measurable for every
v ∈ Ω, being a lim sup of measurable functions 1

n
[(f1)

v1(x) + · · · + (f1)
vn(x)].

Now put

G(u, v) = lim sup
n→∞

F (u1, v) + · · · + F (un, v)

n

for every u, v ∈ Ω. Then, by the strong law of large numbers, for every
v ∈ Ω we have G(u, v) =

∫
F vdx for µ-a.e. u ∈ Ω. In particular, Gv is µ-a.e.

constant for every v ∈ Ω since Gv(u) =
∫
F vdx = Gv(u′) holds for µ-a.e.

u, u′ ∈ Ω. Also, Gu(v) is µ-a.e. constant for every u ∈ Ω since it is a lim sup
of µ-a.e. constant functions 1

n
[Fu1(v) + · · · + Fun(v)].

Put E = {〈u, v〉 ∈ Ω2 : G(u, v) ≤ a}. Since every vertical and hor-
izontal section of G is µ-a.e. constant, it follows that every vertical and
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horizontal section of E is either null or of full measure. Let us define A1 =
{u ∈ Ω: µ(Eu) = 1}, A2 = {u ∈ Ω: µ(Eu) = 0}, B1 = {v ∈ Ω: µ(Ev) = 1},
and B2 = {v ∈ Ω: µ(Ev) = 0}. By [6, 254 L Theorem, p. 249], we have
µ(Uω) = µ(V ω) = 1. If u ∈ Uω, then G(u, v) ≤ a for µ-a.e. v; that is,
µ(Eu) = 1. Similarly, if u ∈ V ω then µ(Eu) = 0. Therefore Uω ⊂ A1 and
V ω ⊂ A2 and thus µ(A1) = µ(A2) = 1.

Suppose µ(B2) > 0. Then E ∩ (A1 × B2) is a 0–1 set in A1 × B2 and
(A2 ×B1) \E is a 0–1 set in A2 ×B1. On the other hand, if µ(B1) > 0, then
(A2 ×B1)\E is a 0–1 set in A2 ×B1 and E∩(A1 ×B2) is a 0–1 set in A1 ×B2.
We obtain that the statement of EN is true apart from the fact that the sets
Ai and Bi are in Ω instead of [0, 1]. However, the measure spaces Ω and [0, 1]
are isomorphic, therefore we can find sets in [0, 1] with the same properties.
Thus EN holds, which completes the proof. �

4 The category case

In this section we will prove that the category analogue of Theorem 7 is true
with one obvious modification: the integral conditions (FP) and (SFP) have
no meaning in this case.

Recall that BM coincides with the σ-algebra of sets H ⊂ R having the
Baire property, and that (SAP) is equivalent to the following statement:
if A ⊂ [0, 1]2 is such that Ax and Ay have the Baire property for every
x, y ∈ [0, 1] then there is a set B ⊂ [0, 1]2 having the Baire property such
that (A∆B)x ∈ M and (A∆B)y ∈ M for every x, y ∈ [0, 1].

Notice also that the chart below implies that all the properties con-
sidered there are independent of the axioms of set theory ZFC. This is
the case, as since the relations add(M) = cov(M) = non(M) = 2ω and
shr(M) < cov(M) are both consistent with ZFC: the first is a consequence
of the Martin’s Axiom, while the second holds in the Cohen model. (For the
proof of shr(M) < cov(M) see [13] or [11].)

Theorem 8 The following statements are equivalent to each other.

(i) M has property (SAP).

(ii) M has property (BAP).

(iii) M has property (SKU∗).
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(iv) EM is false.

In particular, for I = M we have the following relations.

(BAP) ✲✛ (SAP)

❄

✻

(SKU∗)

❄

✻

✲ (SKU)

❄

✻

✲ (KU)

❄

✻

[shr(M) < cov(M)] ✲ ¬EM ✲ ¬S2w
M

✲ ¬S2
M

✲ [non(M) < 2ω &

add(M) < cov(M)]

In the proof of the theorem we will need the following lemma.

Lemma 9 If A ⊂ [0, 1]2 is Borel then the set {y ∈ [0, 1] : Ay /∈ M} has the
Baire property.

Proof. There is an open set G ⊂ [0, 1]2 such that M = G∆A is meager.
Then the set {y ∈ [0, 1] : Gy /∈ M} = {y ∈ [0, 1] : Gy �= ∅} is open, and the
set {y ∈ [0, 1] : My /∈ M} is meager by the Kuratowski-Ulam theorem. Since

{y ∈ [0, 1] : Ay /∈ M}∆{y ∈ [0, 1] : Gy /∈ M} ⊂ {y ∈ [0, 1] : My /∈ M},

it follows that {y ∈ [0, 1] : Ay /∈ M} has the Baire property. �

Proof of Theorem 8. The implications in the chart follow from the main
part of the theorem, Theorem 1, and Corollary 3.

(i)⇐⇒(ii): This follows from Fact 5.

(ii)=⇒(iii): This follows from Lemma 9 and Proposition 6.

(iii)=⇒(ii): Suppose that the sections of a set A ⊂ [0, 1]2 have the Baire
property. It is clear from (SKU∗) that for every interval J the set HJ =
{y ∈ [0, 1] : J \ Ay ∈ M} has the Baire property. Let

E =
⋃

{J × HJ : J = (p, q) ⊂ [0, 1] for some rational numbers p < q}.
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Then E has the Baire property, and it is easy to see that for F = E∆A we
have F y = Ey∆Ay ∈ M for every y ∈ [0, 1]. It is also clear that Fx = Ex∆Ax

has the Baire property for every x ∈ [0, 1]. Since M has property (SKU∗),
by Theorem 1 it also has property (KU) and so U := {x : Fx /∈ M} ∈ M.
Let H = E \ (U × [0, 1]). Then H has the Baire property and we have
(A∆H)x ∈ M and (A∆H)y ∈ M for every x, y ∈ [0, 1].

(iii)=⇒(iv): This was proved in Theorem 1.

(iv)=⇒(iii): We prove that if (SKU∗) is false then EM is true. We will work
in R instead of [0, 1].

Suppose that there exists a set A ⊂ R2 such that Ax and Ay have the
Baire property for every x, y ∈ R, and H = {y ∈ R : Ay /∈ M} /∈ BM.
By Banach’s theorem, there exists a nonempty open set G ⊂ R such that
H \ G ∈ M and H is of second category in every nonempty open subset of
G. (See [15, §10, V. pp. 83–85].) Since H /∈ BM, the set G\H is not meager,
and thus we can select an open interval I ⊂ G such that G \ H is of second
category in every nonempty open subinterval of I. We conclude that both
H and R \ H are of second category in every nonempty open subinterval of
I. Let φ be a homeomorphism from I onto R, and put

C = {〈x, φ(y)〉 : 〈x, y〉 ∈ A ∩ (R × I)}.
Then Cx and Cy have the Baire property for every x, y ∈ R, and the set
K = {y ∈ R : Cy /∈ M} has the property that both K and R \ K are of
second category in every subinterval of R. Let

D = {〈x + r, y〉 : 〈x, y〉 ∈ C & r ∈ Q}.
Then Dy ∈ M if y /∈ K and R \ Dy ∈ M if y ∈ K. Also, the set
Dx =

⋃
r∈Q Cx−r has the Baire property for every x ∈ R. Let us put

U = {x ∈ R : R \ Dx ∈ M}. We shall distinguish between two cases.

Case I: R\U ∈ M. Then the set D∩ [U×(R\K)] is a 0–1 set in U×(R\K),
and (R \U) ×K is a 0–1 set in (R \U) ×K. That is, EM holds in this case.

Case II: R \U /∈ M. If x ∈ R \U then R \Dx /∈ M and, as Dx has the Baire
property, there exists an open interval J with rational endpoints such that
Dx ∩ J ∈ M. Since R \ U /∈ M, it follows that we can fix an open interval
J with rational endpoints such that the set V = {x ∈ R : Dx ∩ J ∈ M} is of
second category. Let ψ be a homeomorphism from J onto R, and put

E = {〈x, ψ(y)〉 : 〈x, y〉 ∈ D ∩ (R × J)}.
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Then Ey ∈ M if y /∈ ψ[K ∩ J ] and R \ Ey ∈ M if y ∈ ψ[K ∩ J ]. Also, the
set W = {x ∈ R : Ex ∈ M} is of second category. Now we define

F = {〈x, y + r〉 : 〈x, y〉 ∈ E & r ∈ Q}.

Then either F y ∈ M or R \ F y ∈ M for every y. If Y = {y : R \ F y ∈ M}
then Y /∈ M, as ψ[K ∩ J ] ⊂ Y . Also, we have Fx ∈ M if x ∈ W and
R \ Fx ∈ M if x /∈ W . Thus (W × Y ) \ F is a 0–1 set in W × Y and
[(R \ W ) × (R \ Y )] ∩ F is a 0–1 set in (R \ W ) × (R \ Y ). Therefore, EM
holds in this case as well. �

5 More on condition EI

The definition of EI does not involve the topology of the space X; it is
meaningful for any ideal of subsets of a set X. We begin with an equivalent
form of EI . We shall use the notation Ac = X \ A.

Proposition 10 For every ideal I the statement EI is equivalent to the
following:

E∗
I : Either there exists a set A ⊂ X such that A,Ac /∈ I and there is a 0–1

set in A×Ac, or there exists a set A ⊂ X such that there are 0–1 sets
both in A × A and in Ac × Ac.

Proof. Suppose E∗
I . If H is a 0–1 set in A × Ac where A,Ac /∈ I, then EI

is satisfied with B = Ac. If there are 0–1 sets both in A × A and in Ac × Ac

then we may assume A /∈ I, since otherwise we replace A by Ac. Then EI is
satisfied with B = A.

Next suppose EI . Suppose that A,B /∈ I, H is a 0–1 set in A × B and
K is a 0–1 set in Ac × Bc. If A \ B ∈ I and B \ A ∈ I then there are 0–1
sets both in A × A and in Ac × Ac, and then E∗

I holds.
Therefore we may assume that at least one of the sets A \ B and B \ A

does not belong to I. By symmetry, we may assume that D := A \ B /∈ I.
We also have Dc /∈ I, since Dc ⊃ B. We prove that there is a 0–1 set in
D × Dc. Indeed, we have Dc = Ac ∪ B, and thus

D × Dc = (D × Ac) ∪ (D × B).
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Since (D×Ac) ⊂ (Bc ×Ac) and (D×B) ⊂ (A×B), it follows that there are
0–1 sets both in D×Ac and in D×B, and then there is also one in D×Dc.
�

In the sequel we shall assume that X is an Abelian group and I is a
translation invariant ideal in X. The paper [17] investigated the logical con-
nections between several statements including S2

I and S2w
I and the following

three conditions.

S1
I : There exists a set A ⊂ X such thatA /∈ I, X\A /∈ I, and (A+h)\A ∈ I

for every h ∈ X.

S1s
I : There exists an f : X → X such that {x ∈ X : f(x+h)−f(x) �= 0} ∈ I

for every h ∈ X, and f−1({y}) ∈ I for every y ∈ X.

DI : There exists a partition {A,B} of X such that cov(I|A) ≤ non(I|B)
and cov(I|B) ≤ non(I|A).

In [17, Theorem 2] it was shown that if I is a σ-ideal and |X| is less than
the first (2-valued) measurable cardinal then the following implications hold.

S1s
I

✲ S1
I

✲ DI

❄ ❄

[cov(I) ≤ shr(I)]✲S2w
I

✲S2
I

✟✟✟✟✟✟✟✟✯❍❍❍❍❍❍❍❍❥
[cov(I) ≤ non(I)]

✟✟✟✟✟✟✟✟✯ ❍❍❍❍❍❍❍❍❥

Diagram 1.

In the next theorem we try to locate the position of EI in this diagram.
As we shall see, it must be somewhere in the middle column.

Theorem 11 Let I be an invariant ideal in the Abelian group X. Then we
have the following implications:

[S1
I or S2w

I ] =⇒ EI =⇒ [S1
I or (cov(I) ≤ non(I)) or S2w

I ] .
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In the prove of the theorem we will use the following lemma.

Lemma 12 Let I be an invariant ideal in an Abelian group X. If there is
a partition {A,B} of X such that cov(I|A) ≤ non(I|A) and cov(I|B) ≤
non(I|B) then cov(I) ≤ non(I).

Proof. If non(I|A) = non(I|B) = κ then non(I) = κ and

cov(I) = max{cov(I|A), cov(I|B)} ≤ κ.

Therefore we may assume that non(I|A) �= non(I|B). By symmetry we may
suppose non(I|A) < non(I|B). Let non(I|A) = λ and let H ⊂ A be a set
with |H| = λ and H /∈ I. Then, for every x ∈ X we have H + x /∈ I and
|H + x| = λ < non(I|B). Thus H + x cannot be a subset of B. Therefore
(H + x) ∩A �= ∅ for every x. This implies that for every x there is an h ∈ H
such that h+ x ∈ A; that is, x ∈ A − h. Thus X =

⋃
h∈H(A − h).

Since A − h can be covered by cov(I|A) ≤ λ elements of I and |H| = λ,
it follows that X also can be covered by λ elements of I. In other words,
cov(I) ≤ λ = non(I). �
Proof of Theorem 11. S2w

I =⇒ EI was proved in Theorem 1.

S1
I =⇒ EI : Suppose S1

I , and let A ⊂ X be a set such that A /∈ I, X \A /∈ I,
and (A + h) \ A ∈ I for every h ∈ X. We claim that there is a 0–1 set in
A×Ac. Indeed, let H = {〈x, y〉 ∈ A×Ac : y /∈ (A−x)\A}. For every x ∈ A
we have Ac \ Hx = (A − x) \ A ∈ I. If y ∈ Ac then we have

〈x, y〉 ∈ H =⇒ y /∈ A − x =⇒ x /∈ A − y

=⇒ x ∈ A \ (A − y) = [(A+ y) \ A] − y ∈ I,

and thus Hy ∈ I for every y ∈ Ac. Therefore, H is a 0–1 set in A × Ac.

Now we turn to the proof of the second implication of Theorem 11. Sup-
pose that EI holds. By Proposition 10, one of the following statements is
true: (i) there exists a set A ⊂ X such that A,Ac /∈ I and there is a 0–1 set
in A × Ac, or (ii) there exists a set A ⊂ X such that there are 0–1 sets both
in A × A and in Ac × Ac.

Suppose (ii). If Ac ∈ I then there is a 0–1 set in X × X, and thus S2w
I

(even S2
I) holds. We have the same conclusion if A ∈ I. If A,X \A /∈ I then,

by Lemma 2, we obtain cov(I|A) ≤ non(I|A) and cov(I|Ac) ≤ non(I|Ac).
Therefore, by Lemma 12, we get cov(I) ≤ non(I).
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Next suppose (i). Then there exists a set A ⊂ X such that A,Ac /∈ I,
and there is a 0–1 set in A × Ac. If (A + h) \ A ∈ I for every h ∈ X then
we have S1

I . Therefore we may assume that there is an h ∈ X such that
B := (A+ h) \ A = (A+ h) ∩ Ac /∈ I. Since

B × X ⊂ [(A+ h) × Ac] ∪ [Ac × A]

and there are 0–1 sets both in (A+ h) ×Ac and Ac ×A, it follows that there
is a 0–1 set in B × X, and thus S2w

I holds. �
We conclude with another simple observation.

Proposition 13 For every invariant ideal I on an Abelian group X we have
S2w
I =⇒ DI and EI =⇒ DI.

Proof. Suppose that S2w
I holds. Then there exists a set A ⊂ X such that

A /∈ I, and there is a 0–1 set in A × X. If Ac ∈ I then S2
I holds, which

implies DI by Diagram 1. Therefore we may assume Ac /∈ I.
Since there is a 0–1 set in A × X, there is one also in A × Ac and hence

in Ac ×A as well. Then, by Lemma 2, it follows that cov(I|A) ≤ non(I|Ac)
and cov(I|Ac) ≤ non(I|A); that is, DI holds.

Now each of the statements S1
I , cov(I) ≤ non(I), and S2w

I implies DI .
(For the first two of these implications we again refer to Diagram 1.) There-
fore, by Theorem 11, we have EI =⇒ DI . �

We remark that the implication S2w
I =⇒ DI was not noted in [17]. It

would be interesting to decide whether or not there are other implications
that can be inserted into Diagram 1.
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