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Abstract

In the paper we prove that axiom CPAgame
prism, which follows from

the Covering Property Axiom CPA and holds in the iterated perfect
set model, implies that there exists a Hamel basis which is a union of
less than continuum many pairwise disjoint perfect sets. We will also
give two consequences of this last fact.

1 The result and its consequences

In this paper we will use standard set theoretic terminology as in [2]. We will
consider the real line R as a linear space over the rationals Q. Any linear
base of this space will be referred to as a Hamel base. For A ⊂ R we will
write LIN(A) to denote the linear subspace of R spanned by A.
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Axiom CPAgame
prism was introduced by the authors in [5], where it is shown

that it holds in the iterated perfect set model. Also, CPAgame
prism is a version of

the axiom CPA which is described in a monograph [6].
It is known that CPAgame

prism captures, to a big extend, the essence of the
iterated perfect set model. This follows from a resent result of J. Zapletal [13]
who proved that for a “nice” cardinal invariant κ if κ < c holds in any forcing
extension than κ < c follows already from CPAgame

prism.
For the reader convenience, we will restate CPAgame

prism, along with necessary
definitions, in the next section.

The main result of this paper is the following theorem.

Theorem 1.1 CPAgame
prism implies that there exists a family H of ω1 pairwise

disjoint perfect subsets of R such that H =
⋃
H is a Hamel basis.

This theorem will be proved in the following sections. For the rest of this
section we will discuss its two consequences.

Let I be a translation invariant ideal on R. We say that a subset X of R

is I-rigid provided X,R \X /∈ I but X�(r + X) ∈ I for every r ∈ R. An
easy inductive construction gives a non-measurable subset X of R without
the Baire property which is [R]<c-rigid. (First such a construction, under
CH, comes from Sierpiński [12]. Compare also [8].) Thus, under CH or MA
there are N ∩M-rigid sets, where N and M stand for the ideals of measure
zero and of the ideal meager subsets of R, respectively. Recently these sets
have been studied by Laczkovich [11] and Cichoń, Jasiński, Kamburelis, and
Szczepaniak [1]. In particular, Laczkovich [11, Theorem 2] implies that there
is no N ∩M-rigid set in the random and Cohen models. The next corollary
shows that the existence of such sets follows from CPAgame

prism.

Corollary 1.2 CPAgame
prism implies there exists an N ∩M-rigid set X which

is neither measurable nor has it the Baire property.

Proof. Let H = {Qξ: ξ < ω1} be from Theorem 1.1 and for every ξ < ω1

let Lξ = LIN
(⋃

η<ξ Qη

)
. Then R is an increasing union of Lξ’s and each Lξ

belongs to N ∩M, since it is a proper Borel subgroup of R.
Since, under CPAgame

prism, the cofinalities of the ideals N and M is equal to
ω1 (see [4] or [6]), there is a family {Cξ: ξ < ω1} such that every S ∈M∪N
is a subset of some Cξ. By induction choose X0 = {xξ: ξ < ω1} ⊂ R such
that

xξ /∈ Cξ ∪ LIN(Lξ ∪ {xζ : ζ < ξ}).
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Then X0 intersects the complement of every set from M∪N . Define

X =
⋃
ξ<ω1

(xξ + Lξ)

and notice that X0 ⊂ X and 2X0 ⊂ R\X. Thus, both X and R\X intersects
the complement of every set from M∪N . In particular, X,R\X /∈M∪N .

Next notice that for every r ∈ Lζ

X�(r + X) ⊂
⋃
ξ<ζ

[(xξ + Lξ) ∪ (r + xξ + Lξ)] ∈ N ∩M.

Thus, X is N ∩M-rigid, but also N -rigid and M-rigid. These last two facts
imply that X is neither measurable nor does it have the Baire property.

Our second application of Theorem 1.1 is the following result.

Corollary 1.3 CPAgame
prism implies there exists a function f : R → R such that

for every h ∈ R the difference function ∆h(x) = f(x + h) − f(x) is Borel;
however, for every α < ω1 there is an h ∈ R such that ∆h is not of Borel
class α.

Note that answering a question of Laczkovich [10] Filipów and RecGlaw [7]
gave an example of such an f under CH. RecGlaw also asked (private com-
munication) whether such a function can be constructed in absence of CH.
Corollary 1.3 gives an affirmative answer to this question. It is an open
question whether such a function exists in ZFC.

Proof. The proof is quite similar to that for Corollary 1.2.
Let H = {Qξ: ξ < ω1} be from Theorem 1.1. For every ξ < ω1 define

Lξ = LIN
(⋃

η<ξ Qη

)
and choose a Borel subset Bξ of Qξ of Borel class

greater than ξ. Define

X =
⋃
ξ<ω1

(Bξ + Lξ)

and let f be the characteristic function χ
X of X.

To see that f is as required note that

∆−h(x) =
[
χ

(h+X)\X − χ
X\(h+X)

]
(x).
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So, it is enough to show that each of the sets (h + X) \X and X \ (h + X)
is Borel, though they can be of arbitrary high class. For this, notice that for
every h ∈ Lα+1 \ Lα we have

h + X = h +
⋃
ξ<ω1

(Bξ + Lξ) =
⋃
ξ≤α

(h + Bξ + Lξ) ∪
⋃

α<ξ<ω1

(Bξ + Lξ)

and that the sets
⋃
ξ≤α(h + Bξ + Lξ) ⊂ Lα+1 and

⋃
α<ξ<ω1

(Bξ + Lξ) are
disjoint. So

(h + X) \X =
⋃
ξ≤α

(h + Bξ + Lξ) \X =
⋃
ξ≤α

(h + Bξ + Lξ) \
⋃
ξ≤α

(Bξ + Lξ)

is Borel, since each set Bξ + Lξ is Borel. (It is a subset of Qξ + Lξ, which is
homeomorphic to Qξ ×Lξ via addition function.) Similarly, set X \ (h+X)
is Borel.

Finally notice that for h ∈ Qα \Bα the set

(h + X) \X =
⋃
ξ≤α

(h + Bξ + Lξ)

is of Borel class greater than α, since so is (h+Qα)∩ [(h+X)\X] = h+Bα.
Thus, ∆h(x) can be of an arbitrarily high Borel class.

2 CPAgame
prism and how it implies the theorem

In what follows the Cantor set 2ω will be denoted by a symbol C. For a
Polish space X (i.e., a complete separable metric space) Perf(X) will stand
for a collection of all subsets of X homeomorphic to the Cantor set C.

The main notion behind a formulation of a CPAgame
prism is that of a prism

in a Polish space X and of its subprism. A prism in X is a perfect set
P ∈ Perf(X) which comes with (implicitly given) coordinate system, that
is, a homeomorphism from Cα, 0 < α < ω1, onto P . If P is a prism with a
coordinate function f : Cα → P then its subprism is any set of the form f [E],
where E is an iterated perfect set, that is, it belongs to the family Pα to be
defined latter.

In addition, we consider every singleton as a (trivial) prism, whose only
subprism is itself. We also define Perf∗(X) as a family of all sets P such that
either P ∈ Perf(X) or P is a singleton.
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CPAgame
prism is expressed in terms of the following game GAMEprism(X) of

length ω1. The game has two players, Player I and Player II. At each stage
ξ < ω1 of the game Player I plays a prism Pξ ∈ Perf∗(X) and Player II must
respond with a subprism Qξ of Pξ. The game 〈〈Pξ, Qξ〉: ξ < ω1〉 is won by
Player I provided ⋃

ξ<ω1

Qξ = X;

otherwise the game is won by Player II.
By a strategy for Player II we will understand any function S such that

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) is a subprism of Pξ, where 〈〈Pη, Qη〉: η < ξ〉 is any
partial game. (We abuse here slightly the notation, since function S depends
also on the implicitly given coordinate functions making each Pη a prism.)
A game 〈〈Pξ, Qξ〉: ξ < ω1〉 is played according to a strategy S for Player II
provided Qξ = S(〈〈Pη, Qη〉: η < ξ〉, Pξ) for every ξ < ω1. A strategy S for
Player II is a winning strategy for Player II provided Player II wins any game
played according to the strategy S.

Now, we can formulate the axiom.

CPAgame
prism: c = ω2 and for any Polish space X Player II has no winning
strategy in the game GAMEprism(X).

Now, Theorem 1.1 follows quite easily form the axiom and the following
lemma, which proof will take the reminder of this paper.

Lemma 2.1 Let M ⊂ R be a sigma-compact and linearly independent.
Then for every prism P in R there exist a subprism Q of P and a compact
subset R of P \M such that M ∪R is a maximal linearly independent subset
of M ∪Q.

Proof of Theorem 1.1. For a linearly independent sigma-compact set
M ⊂ R and a prism P in R let Q(M,P ) = Q and R(M,P ) = R ⊂ P \M be
as in Lemma 2.1. Consider Player II strategy S given by

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q
(⋃

{Rη: η < ξ}, Pξ
)
,

where Rη’s are defined inductively by Rη = R(
⋃
{Rζ : ζ < η}, Pη).

By CPAgame
prism strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II
loses, that is, R =

⋃
ξ<ω1

Qξ.
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Let H = {Rξ: ξ < ω1} and notice that
⋃
H is a Hamel basis. Indeed,

clearly
⋃
H is linearly independent. To see that it spans R it is enough to

notice that LIN(
⋃
η<ξ Rη) = LIN(

⋃
η<ξ Qη) for every ξ < ω1.

Although sets in H need not to be perfect, they are clearly pairwise dis-
joint and compact. Thus, the theorem follows immediately from the following
remark.

Remark 2.2 If there exists a family H of ω1 pairwise disjoint compact sub-
sets of R such that

⋃
H is a Hamel basis then there exists such an H with

H ⊂ Perf(R).

Proof. Let H0 be a family of ω1 pairwise disjoint compact subsets of R

such that
⋃
H0 is a Hamel basis. Partitioning each H ∈ H0 into its perfect

part and singletons from scattered part we can assume that H0 contains only
perfect sets and singletons. To get H as required fix a perfect set P0 ∈ H0

and an x ∈ P0 and notice that if we replace each P ∈ H0 \{P0} with px+qP
for some p, q ∈ Q\{0} then the resulting family will still be pairwise disjoint
with union being a Hamel basis. Thus, without loss of generality, we can
assume that every open interval in R contains ω1 perfect sets from H0. Now,
for every singleton {x} in H0 we can choose a sequence P x

1 > P x
2 > P x

3 > · · ·
from H0 converging to x, and replace a family {x} ∪ {P x

n :n < ω} with its
union. (We assume that we choose different sets P x

n for different singletons.)
If H is such a modification of H0 then H is as desired.

3 Iterated perfect sets and fusion lemmas for

prisms

Let 0 < α < ω1. To define Pα we need to consider the family Φprism(α) of all
continuous injections f : Cα → Cα with the property that

f(x) � β = f(y) � β ⇔ x � β = y � β for all β < α and x, y ∈ Cα (1)

or, equivalently, such that for every β < α

f �� β def
= {〈x � β, y � β〉: 〈x, y〉 ∈ f}

is a one-to-one function from Cβ into Cβ. For example, if α = 3 then f ∈
Φprism(α) provided there exist continuous functions f0: C → C, f1: C

2 → C,
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and f2: C
3 → C such that f(x0, x1, x2) = 〈f0(x0), f1(x0, x1), f2(x0, x1, x2)〉 for

all x0, x1, x2 ∈ C and maps f0, 〈f0, f1〉, and f are one-to-one. Functions f
from Φprism(α) were first introduced, in more general setting, in [9] where
they are called projection-keeping homeomorphisms. Note that

Φprism(α) is closed under the compositions (2)

and that for every 0 < β < α

if f ∈ Φprism(α) then f �� β ∈ Φprism(β). (3)

We define Pα as
Pα = {range(f): f ∈ Φprism(α)}.

The simplest possible elements of Pα are the perfect cubes, that is, the sets
of the form

∏
β<αCβ, where Cβ ∈ C for every β < α. (If fβ is a continuous

injection from C onto Pβ and f : Cα → Cα is given by f(x)(β) = fβ(xβ) then
f ∈ Φprism(α) and range(f) =

∏
β<αCβ.)

Note also that

if f ∈ Φprism(α) and P ∈ Pα then f [P ] ∈ Pα. (4)

Indeed, if P = g[Cα] for some g ∈ Φprism(α) then, by condition (2), we have
f [P ] = f [g[Cα]] = (f ◦ g)[Cα] ∈ Pα.

In what follows for a fixed 0 < α < ω1 and 0 < β ≤ α the symbol πβ
will stand for the projection from Cα onto Cβ. We will always consider Cα

with the following standard metric ρ: fix an enumeration {〈βk, nk〉: k < ω}
of α× ω and for distinct x, y ∈ Cα define

ρ(x, y) = 2−min{k<ω:x(βk)(nk) �=y(βk)(nk)}. (5)

The open ball in Cα with a center at z ∈ Cα and radius ε > 0 will be denoted
by Bα(z, ε). Notice that in this metric any two open balls are either disjoint
or one is a subset of another. Also for every γ < α and ε > 0

πγ[Bα(x, ε)] = πγ[Bα(y, ε)] for every x, y ∈ Cα with x � γ = y � γ. (6)

It is also easy to see that any Bα(z, ε) is a clopen set and, in fact, it is a
perfect cube in Cα, so it belongs to Pα.
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For a fixed 0 < α < ω1 let {〈βk, nk〉: k < ω} be an enumeration of α × ω
used in the definition (5) of the metric ρ and let

Ak = {〈βi, ni〉: i < k} for every k < ω. (7)

In what follows we will need the following simple fusion lemma, which can
be found in [5]. For reader convenience we include here its short proof.

Lemma 3.1 Let 0 < α < ω1 and for k < ω let Ek =
{
Es ∈ Pα: s ∈ 2Ak

}
.

Assume that for every k < ω, s, t ∈ 2Ak , and β < α we have:

(i) the diameter of Es is less than or equal to 2−k,

(ii) if i < k then Es ⊂ Es�i,

(ag) (agreement) if s � (β × ω) = t � (β × ω) then πβ[Es] = πβ[Et],

(sp) (split) if s � (β × ω) �= t � (β × ω) then πβ[Es] ∩ πβ[Et] = ∅.

Then Q =
⋂
k<ω

⋃
Ek belongs to Pα.

Proof. For x ∈ Cα let x̄ ∈ 2α×ω be defined by x̄(β, n) = x(β)(n).
First note that, by conditions (i) and (sp), for every k < ω the sets in

Ek are pairwise disjoint and each of the diameter at most 2−k. Thus, taking
into account (ii), the function h: Cα → Cα defined by

h(x) = r ⇐⇒ {r} =
⋂
k<ω

Ex̄�Ak

is well defined and is one-to-one. It is also easy to see that h is continuous
and that Q = h [Cα]. Thus, we need to prove only that h ∈ Φprism(α), that
is, that h is projection-keeping.

To show this fix β < α, put S =
⋃
i<ω 2Ai , and notice that, by (i) and

(ag), for every x ∈ Cα we have

{h(x) � β} = πβ

[⋂
{Ex̄�Ak

: k < ω}
]

=
⋂
{πβ[Ex̄�Ak

]: k < ω}

=
⋂
{πβ[Es]: s ∈ S & s ⊂ x̄}

=
⋂
{πβ[Es]: s ∈ S & s � (β × ω) ⊂ x̄}.
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Now, if x � β = y � β then for every s ∈ S

s � (β × ω) ⊂ x̄ ⇔ s � (β × ω) ⊂ ȳ

so h(x) � β = h(y) � β.
On the other hand, if x � β �= y � β then there exists a k < ω big enough

such that for s = x̄ � Ak and t = ȳ � Ak we have s � (β×ω) �= t � (β×ω). But
then {h(x) � β} and {h(y) � β} are subsets of πβ[Es] and πβ[Et], respectively,
which, by (sp), are disjoint. So, h(x) � β �= h(y) � β.

In what follows we will also need the following simple fact, which follows
from the fact that every dense Gδ subset of a Polish space X ×X contains a
product G× P , where G is dense Gδ in X and P ∈ Perf(X). For the proof
see e.g. [4] or [6].

Claim 3.2 Let 0 < α < ω1. If G is a second category Borel subset of Cα

then G contains a perfect cube
∏

β<α Pβ.

We will also use the following variant of Kuratowski-Ulam theorem, which
can be deduced from the classical Kuratowski-Ulam theorem via a simple
closure argument. Its proof can be found in [3] or [6].

Lemma 3.3 Let 0 < α < ω1. For every comeager set H ⊂ Cα there exists a
comeager set G ⊂ H such that for every x ∈ G and β < α the set

Gx�β =
{
y ∈ Cα\β: (x � β) ∪ y ∈ G

}

is comeager in Cα\β.

4 Proof of Lemma 2.1

Let X be a Polish space, 0 < n < ω, and F ⊂ Xn be an n-ary relation. We
say that a set S ⊂ X is F -independent provided F (x(0), . . . , x(n− 1)) does
not hold for any one-to-one x:n → S. For a family F of finitary relations
on X (i.e., relations F ⊂ Xn where 0 < n < ω) we say that S ⊂ X is
F -independent provided S is F -independent for every F ∈ F . We will use
the term unary relation for any 1-ary relation.
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Proposition 4.1 Let 0 < α < ω1 and F be a countable family of closed
finitary relations on Cα. Assume that every unary relation in F is nowhere
dense in Cα and that for every F ∈ F there exists a comeager subset GF of
Cα such that

(ex) for every F -independent finite set S ⊂ GF , x ∈ S, and β < α the set

{
z ∈ Cα\β: S ∪ {z ∪ x � β} ⊂ GF is F -independent

}

is dense in Cα\β.

Then there is an E ∈ Pα which is F -independent.

Note that without the assumption that the unary relations in F are
nowhere dense the proposition is false: the unary relation F = Cα satisfies
the condition (ex) (with GF = Cα) and no non-empty set is F -independent.
On the other hand, for any n-ary relation F ∈ F with n > 1 condition
(ex) implies that F is nowhere dense in (Cα)n. However, not every nowhere
dense binary relation satisfies (ex). For example F = {〈x, y〉:x(0) = y(0)} is
nowhere dense and it does not satisfy (ex) if α > 1.

Proof. First notice that applying Lemma 3.3, if necessary, we can as-
sume that for every F ∈ F , x ∈ GF , and β < α the set (GF )x�β is
comeager in Cα\β. But this implies that each set from the condition (ex)
is comeager in Cα\β since it is an intersection of (GF )x�β and an open set{
z ∈ Cα\β: S ∪ {z ∪ x � β} is F -independent

}
. In particular, if we put G =⋂

F∈F GF then G is comeager in Cα and it is easy to see that it satisfies the
following condition.

(EX) For every F -independent finite set S ⊂ G, x ∈ S, and β < α the set

{
z ∈ Cα\β: S ∪ {z ∪ x � β} ⊂ G is F -independent

}

is dense in Cα\β.

Let {Fk: k < ω} be an enumeration of F with infinite repetitions. Also,
for k < ω let Ak = {〈βi, ni〉: i < k} be as in the condition (7). By induction
on k < ω we will construct two sequences: 〈εk > 0: k < ω〉 converging to
0 and

〈{
xs ∈ G: s ∈ 2Ak

}
: k < ω

〉
of F -independent sets such that for every

β < α, k < ω, and s, t ∈ 2Ak
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(a) xs � β = xt � β if and only if s � β × ω = t � β × ω;

(b) if Es = Bα(xs, εk) and Ek = {Es: s ∈ 2Ak} then Ek’s satisfy (ii), (ag),
and (sp) from Lemma 3.1;

(c) if Fk is an n-ary relation then Fk(z0, . . . , zn−1) does not hold provided
each zi is chosen from a different ball from Ek.

Before we construct such sequences, let us first note that E =
⋂
k<ω

⋃
Ek

is as desired. Indeed, E ∈ Pα by Lemma 3.1. To see that E is F -independent
pick an n-ary relation F ∈ F , {z0, . . . , zn−1} ∈ [E]n, and find a k < ω with
Fk = F which is big enough so that εk is smaller than the distance between
zi and zj for all i < j < n. Then zi’s must belong to distinct elements of Ek
so, by (c), F (z0, . . . , zn−1) does not hold.

For k = 0 we pick an arbitrary F -independent x∅ ∈ G by choosing an
arbitrary element of G which does not belong to any nowhere dense unary
relation from F . Also, we choose an ε0 ∈ (0, 1] ensuring (c), which can be
done since F0 is closed. (This is a non-trivial requirement only when F0 is
an unary relation.) Clearly (a)-(c) are satisfied.

Assume that for some k < ω the construction is done up to the level k. For
s ∈ 2Ak and j < 2 let ŝ j = s ∪ {〈〈βk, nk〉, j〉} ∈ 2Ak+1 and define xsˆ0 = xs.
Let

{
si: i < 2k

}
be an enumeration of 2Ak and put S =

{
xsˆ0: s ∈ 2Ak

}
.

Points xsiˆ1 ∈ G ∩ Esi
will be chosen by induction on i ≤ 2k such that the

set Si = S∪
{
xsjˆ1: j < i

}
is F -independent and the condition (a) is satisfied

for the elements of Si. Clearly, by the inductive assumption (a) is satisfied
for the elements of S0 = S. So, assume that for some i ≤ 2k the set Si is
already constructed. We need to find an appropriate xsiˆ1 ∈ G ∩ Esi

. Let
β < α be maximal such that there is an s ∈

{
ŝ 0: s ∈ 2Ak

}
∪{sj 1̂: j < i} with

s � β × ω = (sî 1) � β × ω and let x = xs � β. We will choose xsiˆ1 extending
x and such that xsiˆ1(β) �= xt(β) for all xt ∈ Si. Notice that this will ensure
that the condition (a) is satisfied for the elements of Si+1. Surprisingly, more
difficult condition to insure will be that xsiˆ1 ∈ Esi

= Bα(xsiˆ0, εk), since at
the first glance it is not even obvious that

Bα(xsiˆ0, εk) contains an extension of x. (8)

To argue for this first notice that maximality of β insures that β ≥ βk,
since sî 0 ∈ Si and (sî 0) � βk × ω = (sî 1) � βk × ω. If β = βk we have
x = xsiˆ0 � β and (8) is obvious. So, assume that β > βk. Then there is a
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j < i such that s = sj 1̂. We also have sj � β × ω = si � β × ω so, by the
inductive assumption, xsj

� β = xsi
� β.

Now, let n < ω be the smallest such that 2−n < εk. Then, by the
definition of the metric on Cα, the fact that xs = xsjˆ1 ∈ Esj

= Bα(xsj
, εk)

means that xs(γ)(m) = xsj
(γ)(m) for every 〈γ,m〉 ∈ An. Therefore, we have

x(γ)(m) = xs(γ)(m) = xsj
(γ)(m) = xsi

(γ)(m) for every 〈γ,m〉 ∈ An with
γ < β. Thus, we can extend x to an element y ∈ Cα for which y(γ)(m) =
xsi

(γ)(m) for every 〈γ,m〉 ∈ An. But this y witnesses (8).
To finish the construction of xsiˆ1 notice that by (8) we can find an open

ball B in Cα\β such that {x}×B ⊂ Bα(xsiˆ0, εk). Decreasing B, if necessary,
we can also insure that y(β) �= xt(β) for every t ∈ Si and y ∈ {x} × B.
By condition (EX) we can find a z ∈ B such that Si ∪ {x ∪ z} ⊂ G is
F -independent. We put xsiˆ1 = x ∪ z.

Thus, we constructed an F -independent set {xsˆj: s ∈ 2Ak & j < 2} ⊂ G
satisfying (a) and such that xsˆ0, xsˆ1 ∈ Es for every s ∈ 2Ak . To finish
the construction insuring (a)-(c) we need to choose an εk+1 ≤ 2−(k+1) small
enough to guarantee the following properties.

• Esˆj = Bα(xsˆ0, εk1) ⊂ Es for every s ∈ 2Ak and j < 2. This will ensure
condition (ii).

• Condition (sp) holds. This can be done, since (a) is satisfied.

• Condition (c) is satisfied. This can be done since
{
xs: s ∈ 2Ak+1

}
is

F -independent and Fk+1 is a closed relation.

Note that (ag) is guaranteed by (a) and our definition of Es’s. This finishes
the proof of Proposition 4.1.

We say that an n-ary relation F on a Polish space X is symmetric pro-
vided for any sequence 〈xi ∈ X: i < n〉 and any permutation π of n

F (x0, . . . , xn−1) holds if and only if F
(
xπ(0), . . . , xπ(n−1)

)
holds.

For such an F and A ⊂ X we put

F ∗ A = A ∪ {x ∈ X: (∃a1, . . . , an−1 ∈ A) F (x, a1, . . . , an−1)} .

If F is unary relation we interpret the above as F ∗A = A∪F . If F is a family
of symmetric finitary relations on X then we put F ∗A =

⋃
F∈F F ∗A. Also,

an F-closure of A, denoted by clF(A), is the least B ⊂ X containing A such
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that F ∗ B = B. Note that clF(A) =
⋃
n<ω Fn ∗ A, where F0 ∗ A = A and

Fn+1∗A = F ∗(Fn∗A). Thus, if F is a countable family of closed symmetric
finitary relations then clF(A) is Fσ in X for a sigma-compact A ⊂ X since
F ∗K is closed for every F ∈ F and compact K ⊂ X.

We are the most interested in these notions when we are concerned with ei-
ther linear independence (over Q) or algebraic independence in R. In the first
case F = Flin is defined as the family of all relations F� of all 〈x0, . . . , xn−1〉
for which

2(xπ(0), . . . , xπ(n−1)) = 0 for some permutation π of n, (9)

where 2 is a non-zero linear function with rational coefficients. In this case F -
independence stands for linear independence (over Q) and clF(A) is the linear
span of A. When F is the family of all relations F�, where 2 spans over all
non-zero polynomials with rational coefficients, then F -independence stands
for algebraic independence, while clF(A) is the algebraic closure of Q(A).

We will need also one more notion. For a family F of closed symmetric
finitary relations on X and an M ⊂ X we define FM as the collection of all
possible projections of the relations from F along M . In other words, FM is
the collection of all (symmetric) relations

{〈x0, . . . , xk−1〉: (∃ak, . . . , an−1 ∈ M) F (x0, . . . , xk−1, ak, . . . , an−1)} , (10)

where F ∈ F is an n-ary relation and 0 < k ≤ n. Note that if M is compact
then each relation in FM is still closed and for every A ⊂ X we have

clF(M ∪ A) = clFM
(A). (11)

Also, if M is F -independent then

A ∪M is F -independent provided A is FM -independent. (12)

Lemma 4.2 Let F be an arbitrary family of closed symmetric finitary re-
lations in a Polish space X. Then for every prism P in X there exists
a subprism Q of P and a compact F -independent set R ⊂ P such that
Q ⊂ clF(R).

Proof. For 0 < α < ω1 let Iα be the statement:

Iα: the lemma holds for any prism P with witness function f : Cα → P .
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We will prove Iα by induction on α.
First notice that Iα implies the following:

I∗α: for every k < ω and continuous functions g0, . . . , gk: C
α → X there

exist an E ∈ Pα and a compact F -independent set R ⊂
⋃
i≤k gi[C

α]
such that

⋃
i≤k gi[E] ⊂ clF(R).

To see that I∗α holds true for k = 0, for every n-ary relation F ∈ F define
F 0 = {〈x0, . . . , xn−1〉 ∈ (Cα)n :F (g0(x0), . . . , g0(xn−1))}. By Iα applied to
F0 = {F 0:F ∈ F} we can find an F0-independent set R0 ⊂ Cα and an E ∈ Pα
such that E ⊂ clF0(R). But then R = g0[R0] is compact, F -independent,
and g0[E] ⊂ clF(g0[R0]) = clF(R).

To make an inductive step assume that I∗α holds for some k < ω and take
continuous functions g0, . . . , gk+1: C

α → X. By the inductive assumption we
can find an E0 ∈ Pα and a compact F -independent set R0 ⊂

⋃
i≤k gi[C

α]
such that

⋃
i≤k gi[E0] ⊂ clF(R0). Let h ∈ Φprism(α) be a mapping from

Cα onto E0. Using the case k = 0 to the function gk+1 ◦ h and the family
FR0 we can find an E1 ∈ Pα and a compact FR0-independent set R1 ⊂
(gk+1◦h)[Cα] such that (gk+1◦h)[E1] ⊂ clFR0

(R1). Then, by (12), we conclude
that R = R0 ∪ R1 is F -independent. Put E = h[E1] ∈ Pα. Then, by
(11), we have gk+1[E] ⊂ clFR0

(R1) = clF(R0 ∪ R1) = clF(R), while clearly⋃
i≤k gi[E] ⊂

⋃
i≤k gi[E0] ⊂ clF(R0) ⊂ clF(R). Thus, E and R satisfy I∗α.

Now, we are ready to prove Iα. So, fix 0 < α < ω1 and assume that
Iγ is true for all 0 < γ < α. Let P be a prism in X with witness function
f : Cα → P . We need to find appropriate Q and R.

Let W be the set of all β ≤ α for which there exists an E ∈ Pα and an
F ∈ F such that for every z ∈ πβ[E] there is a finite set Rz ⊂ P for which

f [{x ∈ E: z ⊂ x}] ⊂ F ∗Rz. (13)

Notice that W is non-empty since α ∈ W . So β = minW is well defined.
Let E ∈ Pα be such that (13) holds for β. Replacing f with its composition
with an appropriate function from Φprism(α) (compare (4)), if necessary, we
can assume that E = Cα.

If β = 0 then f [Cα] ⊂ clF(R0) for some finite set R0 ⊂ P , and we can
find an F -independent finite R ⊂ R0 with f [Cα] ⊂ clF(R). (Note that if T
is F -independent and x ∈ X \ clF(T ) then T ∪ {x} is also F -independent.)
Thus, Q = f [Cα] and R satisfy Iα. So, for the rest of the proof we will assume
that β > 0.
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Next, assume that 0 < β < α. Let Bβ be a countable basis of Cα\β

consisting of non-empty clopen sets and assume that F satisfying (13) is
(n + 1)-ary. For every B ∈ Bβ consider the set

KB =
{
z ∈ Cβ: (∃〈x1, . . . , xn〉 ∈ P n) (∀y ∈ B) F (f(z ∪ y), x1, . . . , xn)

}
.

It is easy to see that each set KB is closed. Notice also that

Cβ =
⋃
B∈Bβ

KB. (14)

To see this, fix a z ∈ Cβ. By (13), there exists a finite set Sz ⊂ Cα such
that Cα\β =

⋃
x1,...,xn∈f [Sz ]{y ∈ Cα\β:F (f(z ∪ y), x1, . . . , xn)}. Since each set

{y ∈ Cα\β:F (f(z ∪ y), x1, . . . , xn)} is closed, one of them must contain a
B ∈ Bβ, and so z ∈ KB.

Thus, by (14), there exists a B ∈ Bβ such that KB has a non-empty
interior. In particular, there is a non-empty clopen set U ⊂ KB. But then
for every z ∈ U there exists a g(z) = 〈g1(z), . . . , gn(z)〉 ∈ P n such that
F (f(z ∪ y), g1(z), . . . , gn(z)) holds for every y ∈ B. Now

T = {〈z, p̄〉 ∈ U × P n: (∀y ∈ B) F (f(z ∪ y), p̄)}

is a compact subset of U × P n and g constitutes a selector of T . Thus, we
can choose g to be Borel. In particular, there is a dense Gδ subset W of
U such that g � W is continuous. So, by Claim 3.2, we can find a perfect
cube C ⊂ W ⊂ Cβ. Now, identifying C with Cβ, we conclude that functions
g1, . . . , gn: C

β → P are continuous and that F (f(z∪y), g1(z), . . . , gn(z)) holds
for every z ∈ Cβ and y ∈ B.

Since, by the inductive hypothesis, Iβ is true, condition I∗β holds as well.
Thus, there exist an E ∈ Pβ and a compact F -independent set R ⊂ P such
that

⋃n
i=1 gi[E] ⊂ clF(R). Since Q = f [E × B] is a subprism of P , we just

need to show that Q ⊂ clF(R). To see this it just note that for every z ∈ E
we have f [{z} × B] ⊂ F ∗ {g1(z), . . . , gn(z)} ⊂ clF (

⋃n
i=1 gi[E]) ⊂ clF(R).

This finishes the proof of the case 0 < β < α.

For the reminder of the proof we will assume that β = α. This means
that there is no E ∈ Pα such that for some F ∈ F and β < α

(∀z ∈ πβ[E]) (∃Rz ∈ [P ]<ω) f [{x ∈ E: z ⊂ x}] ⊂ F ∗Rz. (15)
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For every n-ary F ∈ F let F ∗ = {〈x0, . . . , xn−1〉:F (f(x0), . . . , f(xn−1))}
and let F∗ = {F ∗:F ∈ F}. We will apply Proposition 4.1 to find an F∗-
independent E ∈ Pα. Then Q = f [E] is F -independent subprism of P and
together with R = Q they satisfy the lemma.

To see that the assumptions of Proposition 4.1 are satisfied, first notice
that unary relations in F∗ are nowhere dense. Indeed, otherwise there is
a unary relation F ∗ ∈ F∗ and a non-empty clopen set E ⊂ F ∗. But then
E contradicts (15), as f [E] ⊂ F ∗ ∅. Thus, we just need to show that the
condition (ex) is satisfied.

So, fix an F ∈ F . For 0 < β < α and B ∈ Bβ let

K(B) =
{
z ∈ Cβ: (∃Rz ∈ [P ]<ω) f [{z} ×B] ⊂ F ∗Rz

}
.

Clearly K(B) is Fσ. Notice also that it is meager, since otherwise there would
exist a non-empty clopen U ⊂ K(B) and E = U ×B would contradict (15).
Thus, each set Kβ =

⋃
B∈Bα

K(B) is meager. Also, for every z ∈ Cβ \ Kβ

and for every finite R ⊂ P the set
{
y ∈ Cα\β: f(z ∪ y) /∈ F ∗R

}
is dense and

open. In particular, if R is a finite F -independent subset of P then

WR =
{
y ∈ Cα\β:R ∪ {f(z ∪ y)} is F -independent

}
(16)

is dense and open. Let

H =
⋂

0<β<α

((
Cβ \Kβ

)
× Cα\β

)

and notice that H is comeager since each Kβ is meager in Cβ. By Lemma 3.3
we can find a comeager set G ⊂ H such that

Gx�β =
{
y ∈ Cα\β: (x � β) ∪ y ∈ G

}

is comeager every x ∈ G and β < α. To finish the proof it is enough to show
that G satisfy (ex) for F ∗. So, take an F ∗-independent finite set S ⊂ G, an
x ∈ S, and a β < α.

First let us assume that β > 0. Then x ∈ S ⊂ G ⊂ H implies that
z = x � β ∈ Cβ \Kβ. In particular, the set Wf [S] from (16) is comeager, and
so is Wf [S] ∩ Gx�β. To get (ex) it is enough to notice that Wf [S] ∩ Gx�β is a
subset of

{
y ∈ Cα\β: S ∪ {y ∪ z} ⊂ G is F ∗-independent

}
.

Finally assume that β = 0. We need to show that the set

{y ∈ G:S ∪ {y} is F ∗-independent}
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is dense. But this set must be comeager, since otherwise its complement
would contain a non-empty clopen set E which wold contradict (15) with
β = 0.

Proof of Lemma 2.1. Let F = Flin be the linear independence family
defined at (9) and let M̄ = 〈Mn:n < ω〉 be an increasing family of compact
sets such that M =

⋃
n<ωMn. Let FM̄ =

⋃
n<ω FMn , where each FMn is

defined at (10), that is, FMn is the the collection of all possible projections
of the relations from F along Mn.

If M ∩ P is of second category in P then we can choose a subprism Q
of P with Q ⊂ M . Then Q and R = ∅ have the desired properties. On the
other hand, if M ∩P is of first category in P then, by Claim 3.2, we can find
a subprism P1 of P disjoint with M .

Now, applying Lemma 4.2 we can find a subprism Q of P1 and a compact
FM̄ -independent set R ⊂ P1 ⊂ P \M such that Q ⊂ clFM̄

(R). But then
M ∪R is F -independent, see (12). Moreover,

Q ⊂ clFM̄
(R) = clF(M ∪R) = LIN(M ∪R).

So, M ∪Q ⊂ LIN(M ∪R) proving that Q and R are as desired.

5 Remarks

It is worth to notice that in case when M = ∅ Lemma 2.1 can be proved
easier, and in a stronger form.

Proposition 5.1 Every prism P in R there is a subprism Q which is linearly
independent.

Proof. This follows from Proposition 4.1 used with F = Flin.

Remark 5.2 Note that Proposition 5.1 is false if we require Q to be a sub-
cube of prism P , that is, Q = f [C], where C is a perfect cube in Cα and
f : Cα → P is a coordinate function making P a prism.

Proof. Indeed, let P1 and P2 be disjoint perfect subsets of R such that
P1 ∪ P1 is linearly independent over Q. Let f :P1 × P2 → R be defined by a
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formula f(x1, x2) = x1 + x2. Identifying P1 and P2 with C we think about
f as defined on C2 and treat P as a prism. To see that P has no linearly
independent subcube let Q = Q1×Q2 be a subcube of P and choose different
a1, b1 ∈ Q1 and a2, b2 ∈ Q2. Then {a1 + a2, a1 + b2, b1 + a2, b1 + a2} ⊂ Q and
they are clearly linearly dependent.

Remark 5.3 In Lemma 2.1 we cannot require R = Q.

Proof. Let P1, P2, and f be as in Remark 5.2. If M = P2 then P has
no subprism Q such that M ∪ Q is linearly independent, since any vertical
section of Q is a translation of a portion of M .
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