Nice Hamel bases under the Covering Property Axiom

Krzysztof Ciesielski*

Department of Mathematics, West Virginia University,

Morgantown, WV 26506-6310, USA

e-mail: K_Cies@math.wvu.edu; web page: http://www.math.wvu.edu/~kcies

Janusz Pawlikowski[†]

Department of Mathematics, University of Wrocław,

pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland; e-mail: pawlikow@math.uni.wroc.pl

Abstract

In the paper we prove that axiom CPA^{game}_{prism}, which follows from the Covering Property Axiom CPA and holds in the iterated perfect set model, implies that there exists a Hamel basis which is a union of less than continuum many pairwise disjoint perfect sets. We will also give two consequences of this last fact.

1 The result and its consequences

In this paper we will use standard set theoretic terminology as in [2]. We will consider the real line \mathbb{R} as a linear space over the rationals \mathbb{Q} . Any linear base of this space will be referred to as a *Hamel base*. For $A \subset \mathbb{R}$ we will write LIN(A) to denote the linear subspace of \mathbb{R} spanned by A.

^{*}AMS classification numbers: Primary 26A15, 03E65; Secondary 26A30, 03E35.

Key words and phrases: Hamel base, CPA, rigid set, difference property.

The work of the first author was partially supported by NATO Grant PST.CLG.977652.

[†]The second author wishes to thank West Virginia University for its hospitality during 1998–2001, when the results presented here were obtained.

Axiom CPA_{prism}^{game} was introduced by the authors in [5], where it is shown that it holds in the iterated perfect set model. Also, CPA^{game}_{prism} is a version of the axiom CPA which is described in a monograph [6].

It is known that CPA_{prism}^{game} captures, to a big extend, the essence of the iterated perfect set model. This follows from a resent result of J. Zapletal [13] who proved that for a "nice" cardinal invariant κ if $\kappa < \mathfrak{c}$ holds in any forcing extension than $\kappa < \mathfrak{c}$ follows already from CPA_{prism}^{game} . For the reader convenience, we will restate CPA_{prism}^{game} , along with necessary

definitions, in the next section.

The main result of this paper is the following theorem.

Theorem 1.1 CPA^{game}_{prism} implies that there exists a family \mathcal{H} of ω_1 pairwise disjoint perfect subsets of \mathbb{R} such that $H = \bigcup \mathcal{H}$ is a Hamel basis.

This theorem will be proved in the following sections. For the rest of this section we will discuss its two consequences.

Let \mathcal{I} be a translation invariant ideal on \mathbb{R} . We say that a subset X of \mathbb{R} is \mathcal{I} -rigid provided $X, \mathbb{R} \setminus X \notin \mathcal{I}$ but $X \triangle (r+X) \in \mathcal{I}$ for every $r \in \mathbb{R}$. An easy inductive construction gives a non-measurable subset X of \mathbb{R} without the Baire property which is $[\mathbb{R}]^{<\mathfrak{c}}$ -rigid. (First such a construction, under CH, comes from Sierpiński [12]. Compare also [8].) Thus, under CH or MA there are $\mathcal{N} \cap \mathcal{M}$ -rigid sets, where \mathcal{N} and \mathcal{M} stand for the ideals of measure zero and of the ideal meager subsets of \mathbb{R} , respectively. Recently these sets have been studied by Laczkovich [11] and Cichoń, Jasiński, Kamburelis, and Szczepaniak [1]. In particular, Laczkovich [11, Theorem 2] implies that there is no $\mathcal{N} \cap \mathcal{M}$ -rigid set in the random and Cohen models. The next corollary shows that the existence of such sets follows from CPA^{game}_{prism}.

Corollary 1.2 CPA^{game}_{prism} implies there exists an $\mathcal{N} \cap \mathcal{M}$ -rigid set X which is neither measurable nor has it the Baire property.

PROOF. Let $\mathcal{H} = \{Q_{\xi}: \xi < \omega_1\}$ be from Theorem 1.1 and for every $\xi < \omega_1$ let $L_{\xi} = \text{LIN}\left(\bigcup_{\eta < \xi} Q_{\eta}\right)$. Then \mathbb{R} is an increasing union of L_{ξ} 's and each L_{ξ} belongs to $\mathcal{N} \cap \mathcal{M}$, since it is a proper Borel subgroup of \mathbb{R} .

Since, under CPA_{prism}^{game} , the cofinalities of the ideals \mathcal{N} and \mathcal{M} is equal to ω_1 (see [4] or [6]), there is a family $\{C_{\xi}: \xi < \omega_1\}$ such that every $S \in \mathcal{M} \cup \mathcal{N}$ is a subset of some C_{ξ} . By induction choose $X_0 = \{x_{\xi}: \xi < \omega_1\} \subset \mathbb{R}$ such that

 $x_{\xi} \notin C_{\xi} \cup \text{LIN}(L_{\xi} \cup \{x_{\zeta}: \zeta < \xi\}).$

Then X_0 intersects the complement of every set from $\mathcal{M} \cup \mathcal{N}$. Define

$$X = \bigcup_{\xi < \omega_1} (x_\xi + L_\xi)$$

and notice that $X_0 \subset X$ and $2X_0 \subset \mathbb{R} \setminus X$. Thus, both X and $\mathbb{R} \setminus X$ intersects the complement of every set from $\mathcal{M} \cup \mathcal{N}$. In particular, $X, \mathbb{R} \setminus X \notin \mathcal{M} \cup \mathcal{N}$.

Next notice that for every $r \in L_{\zeta}$

$$X \triangle (r+X) \subset \bigcup_{\xi < \zeta} [(x_{\xi} + L_{\xi}) \cup (r + x_{\xi} + L_{\xi})] \in \mathcal{N} \cap \mathcal{M}.$$

Thus, X is $\mathcal{N} \cap \mathcal{M}$ -rigid, but also \mathcal{N} -rigid and \mathcal{M} -rigid. These last two facts imply that X is neither measurable nor does it have the Baire property.

Our second application of Theorem 1.1 is the following result.

Corollary 1.3 CPA^{game} implies there exists a function $f: \mathbb{R} \to \mathbb{R}$ such that for every $h \in \mathbb{R}$ the difference function $\Delta_h(x) = f(x+h) - f(x)$ is Borel; however, for every $\alpha < \omega_1$ there is an $h \in \mathbb{R}$ such that Δ_h is not of Borel class α .

Note that answering a question of Laczkovich [10] Filipów and Recław [7] gave an example of such an f under CH. Recław also asked (private communication) whether such a function can be constructed in absence of CH. Corollary 1.3 gives an affirmative answer to this question. It is an open question whether such a function exists in ZFC.

PROOF. The proof is quite similar to that for Corollary 1.2.

Let $\mathcal{H} = \{Q_{\xi}: \xi < \omega_1\}$ be from Theorem 1.1. For every $\xi < \omega_1$ define $L_{\xi} = \text{LIN}\left(\bigcup_{\eta < \xi} Q_{\eta}\right)$ and choose a Borel subset B_{ξ} of Q_{ξ} of Borel class greater than ξ . Define

$$X = \bigcup_{\xi < \omega_1} (B_\xi + L_\xi)$$

and let f be the characteristic function χ_X of X.

To see that f is as required note that

$$\Delta_{-h}(x) = \left[\chi_{(h+X)\setminus X} - \chi_{X\setminus (h+X)}\right](x).$$

So, it is enough to show that each of the sets $(h + X) \setminus X$ and $X \setminus (h + X)$ is Borel, though they can be of arbitrary high class. For this, notice that for every $h \in L_{\alpha+1} \setminus L_{\alpha}$ we have

$$h + X = h + \bigcup_{\xi < \omega_1} (B_\xi + L_\xi) = \bigcup_{\xi \le \alpha} (h + B_\xi + L_\xi) \cup \bigcup_{\alpha < \xi < \omega_1} (B_\xi + L_\xi)$$

and that the sets $\bigcup_{\xi \leq \alpha} (h + B_{\xi} + L_{\xi}) \subset L_{\alpha+1}$ and $\bigcup_{\alpha < \xi < \omega_1} (B_{\xi} + L_{\xi})$ are disjoint. So

$$(h+X) \setminus X = \bigcup_{\xi \le \alpha} (h+B_{\xi}+L_{\xi}) \setminus X = \bigcup_{\xi \le \alpha} (h+B_{\xi}+L_{\xi}) \setminus \bigcup_{\xi \le \alpha} (B_{\xi}+L_{\xi})$$

is Borel, since each set $B_{\xi} + L_{\xi}$ is Borel. (It is a subset of $Q_{\xi} + L_{\xi}$, which is homeomorphic to $Q_{\xi} \times L_{\xi}$ via addition function.) Similarly, set $X \setminus (h + X)$ is Borel.

Finally notice that for $h \in Q_{\alpha} \setminus B_{\alpha}$ the set

$$(h+X) \setminus X = \bigcup_{\xi \le \alpha} (h+B_{\xi}+L_{\xi})$$

is of Borel class greater than α , since so is $(h + Q_{\alpha}) \cap [(h + X) \setminus X] = h + B_{\alpha}$. Thus, $\Delta_h(x)$ can be of an arbitrarily high Borel class.

2 CPA_{prism}^{game} and how it implies the theorem

In what follows the Cantor set 2^{ω} will be denoted by a symbol \mathfrak{C} . For a Polish space X (i.e., a complete separable metric space) $\operatorname{Perf}(X)$ will stand for a collection of all subsets of X homeomorphic to the Cantor set \mathfrak{C} .

The main notion behind a formulation of a $\operatorname{CPA}_{\operatorname{prism}}^{\operatorname{game}}$ is that of a prism in a Polish space X and of its subprism. A prism in X is a perfect set $P \in \operatorname{Perf}(X)$ which comes with (implicitly given) coordinate system, that is, a homeomorphism from \mathfrak{C}^{α} , $0 < \alpha < \omega_1$, onto P. If P is a prism with a coordinate function $f: \mathfrak{C}^{\alpha} \to P$ then its subprism is any set of the form f[E], where E is an *iterated perfect set*, that is, it belongs to the family \mathbb{P}_{α} to be defined latter.

In addition, we consider every singleton as a (trivial) prism, whose only subprism is itself. We also define $\operatorname{Perf}^*(X)$ as a family of all sets P such that either $P \in \operatorname{Perf}(X)$ or P is a singleton. $\operatorname{CPA}_{\operatorname{prism}}^{\operatorname{game}}$ is expressed in terms of the following game $\operatorname{GAME}_{\operatorname{prism}}(X)$ of length ω_1 . The game has two players, Player I and Player II. At each stage $\xi < \omega_1$ of the game Player I plays a prism $P_{\xi} \in \operatorname{Perf}^*(X)$ and Player II must respond with a subprism Q_{ξ} of P_{ξ} . The game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ is won by Player I provided

$$\bigcup_{\xi < \omega_1} Q_\xi = X;$$

otherwise the game is won by Player II.

By a strategy for Player II we will understand any function S such that $S(\langle\langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle, P_{\xi})$ is a subprism of P_{ξ} , where $\langle\langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle$ is any partial game. (We abuse here slightly the notation, since function S depends also on the implicitly given coordinate functions making each P_{η} a prism.) A game $\langle\langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ is played according to a strategy S for Player II provided $Q_{\xi} = S(\langle\langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle, P_{\xi})$ for every $\xi < \omega_1$. A strategy S for Player II is a *winning strategy* for Player II provided Player II wins any game played according to the strategy S.

Now, we can formulate the axiom.

 CPA_{prism}^{game} : $\mathfrak{c} = \omega_2$ and for any Polish space X Player II has no winning strategy in the game $GAME_{prism}(X)$.

Now, Theorem 1.1 follows quite easily form the axiom and the following lemma, which proof will take the reminder of this paper.

Lemma 2.1 Let $M \subset \mathbb{R}$ be a sigma-compact and linearly independent. Then for every prism P in \mathbb{R} there exist a subprism Q of P and a compact subset R of $P \setminus M$ such that $M \cup R$ is a maximal linearly independent subset of $M \cup Q$.

PROOF OF THEOREM 1.1. For a linearly independent sigma-compact set $M \subset \mathbb{R}$ and a prism P in \mathbb{R} let Q(M, P) = Q and $R(M, P) = R \subset P \setminus M$ be as in Lemma 2.1. Consider Player II strategy S given by

$$S(\langle \langle P_{\eta}, Q_{\eta} \rangle : \eta < \xi \rangle, P_{\xi}) = Q\left(\bigcup \{R_{\eta} : \eta < \xi\}, P_{\xi}\right),$$

where R_{η} 's are defined inductively by $R_{\eta} = R(\bigcup \{R_{\zeta} : \zeta < \eta\}, P_{\eta}).$

By CPA^{game}_{prism} strategy S is not a winning strategy for Player II. So there exists a game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ played according to S in which Player II loses, that is, $\mathbb{R} = \bigcup_{\xi < \omega_1} Q_{\xi}$.

Let $\mathcal{H} = \{R_{\xi}: \xi < \omega_1\}$ and notice that $\bigcup \mathcal{H}$ is a Hamel basis. Indeed, clearly $\bigcup \mathcal{H}$ is linearly independent. To see that it spans \mathbb{R} it is enough to notice that $\operatorname{LIN}(\bigcup_{\eta < \xi} R_{\eta}) = \operatorname{LIN}(\bigcup_{\eta < \xi} Q_{\eta})$ for every $\xi < \omega_1$.

Although sets in \mathcal{H} need not to be perfect, they are clearly pairwise disjoint and compact. Thus, the theorem follows immediately from the following remark.

Remark 2.2 If there exists a family \mathcal{H} of ω_1 pairwise disjoint compact subsets of \mathbb{R} such that $\bigcup \mathcal{H}$ is a Hamel basis then there exists such an \mathcal{H} with $\mathcal{H} \subset \operatorname{Perf}(\mathbb{R})$.

PROOF. Let \mathcal{H}_0 be a family of ω_1 pairwise disjoint compact subsets of \mathbb{R} such that $\bigcup \mathcal{H}_0$ is a Hamel basis. Partitioning each $H \in \mathcal{H}_0$ into its perfect part and singletons from scattered part we can assume that \mathcal{H}_0 contains only perfect sets and singletons. To get \mathcal{H} as required fix a perfect set $P_0 \in \mathcal{H}_0$ and an $x \in P_0$ and notice that if we replace each $P \in \mathcal{H}_0 \setminus \{P_0\}$ with px + qP for some $p, q \in \mathbb{Q} \setminus \{0\}$ then the resulting family will still be pairwise disjoint with union being a Hamel basis. Thus, without loss of generality, we can assume that every open interval in \mathbb{R} contains ω_1 perfect sets from \mathcal{H}_0 . Now, for every singleton $\{x\}$ in \mathcal{H}_0 we can choose a sequence $P_1^x > P_2^x > P_3^x > \cdots$ from \mathcal{H}_0 converging to x, and replace a family $\{x\} \cup \{P_n^x: n < \omega\}$ with its union. (We assume that we choose different sets P_n^x for different singletons.) If \mathcal{H} is such a modification of \mathcal{H}_0 then \mathcal{H} is as desired.

3 Iterated perfect sets and fusion lemmas for prisms

Let $0 < \alpha < \omega_1$. To define \mathbb{P}_{α} we need to consider the family $\Phi_{\text{prism}}(\alpha)$ of all continuous injections $f: \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ with the property that

$$f(x) \upharpoonright \beta = f(y) \upharpoonright \beta \iff x \upharpoonright \beta = y \upharpoonright \beta \quad \text{for all } \beta < \alpha \text{ and } x, y \in \mathfrak{C}^{\alpha} \quad (1)$$

or, equivalently, such that for every $\beta < \alpha$

$$f \models \beta \stackrel{\text{def}}{=} \{ \langle x \models \beta, y \models \beta \rangle \colon \langle x, y \rangle \in f \}$$

is a one-to-one function from \mathfrak{C}^{β} into \mathfrak{C}^{β} . For example, if $\alpha = 3$ then $f \in \Phi_{\text{prism}}(\alpha)$ provided there exist continuous functions $f_0: \mathfrak{C} \to \mathfrak{C}, f_1: \mathfrak{C}^2 \to \mathfrak{C}$,

and $f_2: \mathfrak{C}^3 \to \mathfrak{C}$ such that $f(x_0, x_1, x_2) = \langle f_0(x_0), f_1(x_0, x_1), f_2(x_0, x_1, x_2) \rangle$ for all $x_0, x_1, x_2 \in \mathfrak{C}$ and maps $f_0, \langle f_0, f_1 \rangle$, and f are one-to-one. Functions f from $\Phi_{\rm prism}(\alpha)$ were first introduced, in more general setting, in [9] where they are called *projection-keeping homeomorphisms*. Note that

$$\Phi_{\text{prism}}(\alpha)$$
 is closed under the compositions (2)

and that for every $0 < \beta < \alpha$

if
$$f \in \Phi_{\text{prism}}(\alpha)$$
 then $f \upharpoonright \beta \in \Phi_{\text{prism}}(\beta)$. (3)

We define \mathbb{P}_{α} as

$$\mathbb{P}_{\alpha} = \{ \operatorname{range}(f) \colon f \in \Phi_{\operatorname{prism}}(\alpha) \}.$$

The simplest possible elements of \mathbb{P}_{α} are the *perfect cubes*, that is, the sets of the form $\prod_{\beta < \alpha} C_{\beta}$, where $C_{\beta} \in \mathfrak{C}$ for every $\beta < \alpha$. (If f_{β} is a continuous injection from \mathfrak{C} onto P_{β} and $f: \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ is given by $f(x)(\beta) = f_{\beta}(x_{\beta})$ then $f \in \Phi_{\text{prism}}(\alpha)$ and range $(f) = \prod_{\beta < \alpha} C_{\beta}$.)

Note also that

if
$$f \in \Phi_{\text{prism}}(\alpha)$$
 and $P \in \mathbb{P}_{\alpha}$ then $f[P] \in \mathbb{P}_{\alpha}$. (4)

Indeed, if $P = g[\mathfrak{C}^{\alpha}]$ for some $g \in \Phi_{\text{prism}}(\alpha)$ then, by condition (2), we have $f[P] = f[g[\mathfrak{C}^{\alpha}]] = (f \circ g)[\mathfrak{C}^{\alpha}] \in \mathbb{P}_{\alpha}.$

In what follows for a fixed $0 < \alpha < \omega_1$ and $0 < \beta \leq \alpha$ the symbol π_{β} will stand for the projection from \mathfrak{C}^{α} onto \mathfrak{C}^{β} . We will always consider \mathfrak{C}^{α} with the following standard metric ρ : fix an enumeration $\{\langle \beta_k, n_k \rangle : k < \omega\}$ of $\alpha \times \omega$ and for distinct $x, y \in \mathfrak{C}^{\alpha}$ define

$$\rho(x,y) = 2^{-\min\{k < \omega : x(\beta_k)(n_k) \neq y(\beta_k)(n_k)\}}.$$
(5)

The open ball in \mathfrak{C}^{α} with a center at $z \in \mathfrak{C}^{\alpha}$ and radius $\varepsilon > 0$ will be denoted by $B_{\alpha}(z,\varepsilon)$. Notice that in this metric any two open balls are either disjoint or one is a subset of another. Also for every $\gamma < \alpha$ and $\varepsilon > 0$

$$\pi_{\gamma}[B_{\alpha}(x,\varepsilon)] = \pi_{\gamma}[B_{\alpha}(y,\varepsilon)] \quad \text{for every } x, y \in \mathfrak{C}^{\alpha} \text{ with } x \upharpoonright \gamma = y \upharpoonright \gamma.$$
(6)

It is also easy to see that any $B_{\alpha}(z,\varepsilon)$ is a clopen set and, in fact, it is a perfect cube in \mathfrak{C}^{α} , so it belongs to \mathbb{P}_{α} .

For a fixed $0 < \alpha < \omega_1$ let $\{\langle \beta_k, n_k \rangle : k < \omega\}$ be an enumeration of $\alpha \times \omega$ used in the definition (5) of the metric ρ and let

$$A_k = \{ \langle \beta_i, n_i \rangle : i < k \} \quad \text{for every } k < \omega.$$
(7)

In what follows we will need the following simple fusion lemma, which can be found in [5]. For reader convenience we include here its short proof.

Lemma 3.1 Let $0 < \alpha < \omega_1$ and for $k < \omega$ let $\mathcal{E}_k = \{E_s \in \mathbb{P}_{\alpha} : s \in 2^{A_k}\}$. Assume that for every $k < \omega$, $s, t \in 2^{A_k}$, and $\beta < \alpha$ we have:

- (i) the diameter of E_s is less than or equal to 2^{-k} ,
- (ii) if i < k then $E_s \subset E_{s \upharpoonright i}$,
- (ag) (agreement) if $s \upharpoonright (\beta \times \omega) = t \upharpoonright (\beta \times \omega)$ then $\pi_{\beta}[E_s] = \pi_{\beta}[E_t]$,
- (sp) (split) if $s \upharpoonright (\beta \times \omega) \neq t \upharpoonright (\beta \times \omega)$ then $\pi_{\beta}[E_s] \cap \pi_{\beta}[E_t] = \emptyset$.

Then $Q = \bigcap_{k < \omega} \bigcup \mathcal{E}_k$ belongs to \mathbb{P}_{α} .

PROOF. For $x \in \mathfrak{C}^{\alpha}$ let $\bar{x} \in 2^{\alpha \times \omega}$ be defined by $\bar{x}(\beta, n) = x(\beta)(n)$.

First note that, by conditions (i) and (sp), for every $k < \omega$ the sets in \mathcal{E}_k are pairwise disjoint and each of the diameter at most 2^{-k} . Thus, taking into account (ii), the function $h: \mathfrak{C}^{\alpha} \to \mathfrak{C}^{\alpha}$ defined by

$$h(x) = r \iff \{r\} = \bigcap_{k < \omega} E_{\bar{x} \upharpoonright A_k}$$

is well defined and is one-to-one. It is also easy to see that h is continuous and that $Q = h[\mathfrak{C}^{\alpha}]$. Thus, we need to prove only that $h \in \Phi_{\text{prism}}(\alpha)$, that is, that h is projection-keeping.

To show this fix $\beta < \alpha$, put $S = \bigcup_{i < \omega} 2^{A_i}$, and notice that, by (i) and (ag), for every $x \in \mathfrak{C}^{\alpha}$ we have

$$\{h(x) \upharpoonright \beta\} = \pi_{\beta} \left[\bigcap \{E_{\bar{x} \upharpoonright A_{k}} : k < \omega\} \right]$$

$$= \bigcap \{\pi_{\beta}[E_{\bar{x} \upharpoonright A_{k}}] : k < \omega\}$$

$$= \bigcap \{\pi_{\beta}[E_{s}] : s \in S \& s \subset \bar{x}\}$$

$$= \bigcap \{\pi_{\beta}[E_{s}] : s \in S \& s \upharpoonright (\beta \times \omega) \subset \bar{x}\}.$$

Nice Hamel bases under CPA January 7, 2004

Now, if $x \upharpoonright \beta = y \upharpoonright \beta$ then for every $s \in S$

$$s \upharpoonright (\beta \times \omega) \subset \bar{x} \quad \Leftrightarrow \quad s \upharpoonright (\beta \times \omega) \subset \bar{y}$$

so $h(x) \upharpoonright \beta = h(y) \upharpoonright \beta$.

On the other hand, if $x \upharpoonright \beta \neq y \upharpoonright \beta$ then there exists a $k < \omega$ big enough such that for $s = \bar{x} \upharpoonright A_k$ and $t = \bar{y} \upharpoonright A_k$ we have $s \upharpoonright (\beta \times \omega) \neq t \upharpoonright (\beta \times \omega)$. But then $\{h(x) \upharpoonright \beta\}$ and $\{h(y) \upharpoonright \beta\}$ are subsets of $\pi_\beta[E_s]$ and $\pi_\beta[E_t]$, respectively, which, by (sp), are disjoint. So, $h(x) \upharpoonright \beta \neq h(y) \upharpoonright \beta$.

In what follows we will also need the following simple fact, which follows from the fact that every dense G_{δ} subset of a Polish space $X \times X$ contains a product $G \times P$, where G is dense G_{δ} in X and $P \in \text{Perf}(X)$. For the proof see e.g. [4] or [6].

Claim 3.2 Let $0 < \alpha < \omega_1$. If G is a second category Borel subset of \mathfrak{C}^{α} then G contains a perfect cube $\prod_{\beta < \alpha} P_{\beta}$.

We will also use the following variant of Kuratowski-Ulam theorem, which can be deduced from the classical Kuratowski-Ulam theorem via a simple closure argument. Its proof can be found in [3] or [6].

Lemma 3.3 Let $0 < \alpha < \omega_1$. For every comeager set $H \subset \mathfrak{C}^{\alpha}$ there exists a comeager set $G \subset H$ such that for every $x \in G$ and $\beta < \alpha$ the set

$$G_{x \restriction \beta} = \left\{ y \in \mathfrak{C}^{\alpha \setminus \beta} \colon (x \restriction \beta) \cup y \in G \right\}$$

is comeager in $\mathfrak{C}^{\alpha\setminus\beta}$.

4 Proof of Lemma 2.1

Let X be a Polish space, $0 < n < \omega$, and $F \subset X^n$ be an n-ary relation. We say that a set $S \subset X$ is *F*-independent provided $F(x(0), \ldots, x(n-1))$ does not hold for any one-to-one $x: n \to S$. For a family \mathcal{F} of finitary relations on X (i.e., relations $F \subset X^n$ where $0 < n < \omega$) we say that $S \subset X$ is \mathcal{F} -independent provided S is F-independent for every $F \in \mathcal{F}$. We will use the term unary relation for any 1-ary relation. **Proposition 4.1** Let $0 < \alpha < \omega_1$ and \mathcal{F} be a countable family of closed finitary relations on \mathfrak{C}^{α} . Assume that every unary relation in \mathcal{F} is nowhere dense in \mathfrak{C}^{α} and that for every $F \in \mathcal{F}$ there exists a comeager subset G_F of \mathfrak{C}^{α} such that

(ex) for every F-independent finite set $S \subset G_F$, $x \in S$, and $\beta < \alpha$ the set

$$\{z \in \mathfrak{C}^{\alpha \setminus \beta} \colon S \cup \{z \cup x \upharpoonright \beta\} \subset G_F \text{ is } F \text{-independent}\}$$

is dense in $\mathfrak{C}^{\alpha\setminus\beta}$.

Then there is an $E \in \mathbb{P}_{\alpha}$ which is \mathcal{F} -independent.

Note that without the assumption that the unary relations in \mathcal{F} are nowhere dense the proposition is false: the unary relation $F = \mathfrak{C}^{\alpha}$ satisfies the condition (ex) (with $G_F = \mathfrak{C}^{\alpha}$) and no non-empty set is *F*-independent. On the other hand, for any *n*-ary relation $F \in \mathcal{F}$ with n > 1 condition (ex) implies that *F* is nowhere dense in $(\mathfrak{C}^{\alpha})^n$. However, not every nowhere dense binary relation satisfies (ex). For example $F = \{\langle x, y \rangle : x(0) = y(0)\}$ is nowhere dense and it does not satisfy (ex) if $\alpha > 1$.

PROOF. First notice that applying Lemma 3.3, if necessary, we can assume that for every $F \in \mathcal{F}$, $x \in G_F$, and $\beta < \alpha$ the set $(G_F)_{x \restriction \beta}$ is comeager in $\mathfrak{C}^{\alpha \setminus \beta}$. But this implies that each set from the condition (ex) is comeager in $\mathfrak{C}^{\alpha \setminus \beta}$ since it is an intersection of $(G_F)_{x \restriction \beta}$ and an open set $\{z \in \mathfrak{C}^{\alpha \setminus \beta}: S \cup \{z \cup x \restriction \beta\} \text{ is } F\text{-independent}\}$. In particular, if we put $G = \bigcap_{F \in \mathcal{F}} G_F$ then G is comeager in \mathfrak{C}^{α} and it is easy to see that it satisfies the following condition.

(EX) For every \mathcal{F} -independent finite set $S \subset G$, $x \in S$, and $\beta < \alpha$ the set

$$\{z \in \mathfrak{C}^{\alpha \setminus \beta} \colon S \cup \{z \cup x \upharpoonright \beta\} \subset G \text{ is } \mathcal{F}\text{-independent}\}$$

is dense in $\mathfrak{C}^{\alpha \setminus \beta}$.

Let $\{F_k: k < \omega\}$ be an enumeration of \mathcal{F} with infinite repetitions. Also, for $k < \omega$ let $A_k = \{\langle \beta_i, n_i \rangle : i < k\}$ be as in the condition (7). By induction on $k < \omega$ we will construct two sequences: $\langle \varepsilon_k \rangle = 0 : k < \omega \rangle$ converging to 0 and $\langle \{x_s \in G : s \in 2^{A_k}\} : k < \omega \rangle$ of \mathcal{F} -independent sets such that for every $\beta < \alpha, k < \omega$, and $s, t \in 2^{A_k}$

- (a) $x_s \upharpoonright \beta = x_t \upharpoonright \beta$ if and only if $s \upharpoonright \beta \times \omega = t \upharpoonright \beta \times \omega$;
- (b) if $E_s = B_{\alpha}(x_s, \varepsilon_k)$ and $\mathcal{E}_k = \{E_s : s \in 2^{A_k}\}$ then \mathcal{E}_k 's satisfy (ii), (ag), and (sp) from Lemma 3.1;
- (c) if F_k is an *n*-ary relation then $F_k(z_0, \ldots, z_{n-1})$ does not hold provided each z_i is chosen from a different ball from \mathcal{E}_k .

Before we construct such sequences, let us first note that $E = \bigcap_{k < \omega} \bigcup \mathcal{E}_k$ is as desired. Indeed, $E \in \mathbb{P}_{\alpha}$ by Lemma 3.1. To see that E is \mathcal{F} -independent pick an *n*-ary relation $F \in \mathcal{F}$, $\{z_0, \ldots, z_{n-1}\} \in [E]^n$, and find a $k < \omega$ with $F_k = F$ which is big enough so that ε_k is smaller than the distance between z_i and z_j for all i < j < n. Then z_i 's must belong to distinct elements of \mathcal{E}_k so, by (c), $F(z_0, \ldots, z_{n-1})$ does not hold.

For k = 0 we pick an arbitrary \mathcal{F} -independent $x_{\emptyset} \in G$ by choosing an arbitrary element of G which does not belong to any nowhere dense unary relation from \mathcal{F} . Also, we choose an $\varepsilon_0 \in (0, 1]$ ensuring (c), which can be done since F_0 is closed. (This is a non-trivial requirement only when F_0 is an unary relation.) Clearly (a)-(c) are satisfied.

Assume that for some $k < \omega$ the construction is done up to the level k. For $s \in 2^{A_k}$ and j < 2 let $s\hat{j} = s \cup \{\langle \langle \beta_k, n_k \rangle, j \rangle\} \in 2^{A_{k+1}}$ and define $x_{s\hat{0}} = x_s$. Let $\{s_i: i < 2^k\}$ be an enumeration of 2^{A_k} and put $S = \{x_{s\hat{0}}: s \in 2^{A_k}\}$. Points $x_{s\hat{i}\hat{1}} \in G \cap E_{s\hat{i}}$ will be chosen by induction on $i \leq 2^k$ such that the set $S_i = S \cup \{x_{s\hat{j}\hat{1}}: j < i\}$ is \mathcal{F} -independent and the condition (a) is satisfied for the elements of S_i . Clearly, by the inductive assumption (a) is satisfied for the elements of $S_0 = S$. So, assume that for some $i \leq 2^k$ the set S_i is already constructed. We need to find an appropriate $x_{s\hat{i}\hat{1}} \in G \cap E_{s\hat{i}}$. Let $\beta < \alpha$ be maximal such that there is an $s \in \{s\hat{0}: s \in 2^{A_k}\} \cup \{s_j\hat{1}: j < i\}$ with $s \upharpoonright \beta \times \omega = (s_i\hat{1}) \upharpoonright \beta \times \omega$ and let $x = x_s \upharpoonright \beta$. We will choose $x_{s\hat{i}\hat{1}}$ extending x and such that $x_{s\hat{i}\hat{1}}(\beta) \neq x_t(\beta)$ for all $x_t \in S_i$. Notice that this will ensure that the condition (a) is satisfied for the elements of site is not even obvious that

$$B_{\alpha}(x_{s_i \circ 0}, \varepsilon_k)$$
 contains an extension of x . (8)

To argue for this first notice that maximality of β insures that $\beta \geq \beta_k$, since $s_i \circ 0 \in S_i$ and $(s_i \circ 0) \upharpoonright \beta_k \times \omega = (s_i \circ 1) \upharpoonright \beta_k \times \omega$. If $\beta = \beta_k$ we have $x = x_{s_i \circ 0} \upharpoonright \beta$ and (8) is obvious. So, assume that $\beta > \beta_k$. Then there is a j < i such that $s = s_j 1$. We also have $s_j \upharpoonright \beta \times \omega = s_i \upharpoonright \beta \times \omega$ so, by the inductive assumption, $x_{s_i} \upharpoonright \beta = x_{s_i} \upharpoonright \beta$.

Now, let $n < \omega$ be the smallest such that $2^{-n} < \varepsilon_k$. Then, by the definition of the metric on \mathfrak{C}^{α} , the fact that $x_s = x_{s_j} \in E_{s_j} = B_{\alpha}(x_{s_j}, \varepsilon_k)$ means that $x_s(\gamma)(m) = x_{s_j}(\gamma)(m)$ for every $\langle \gamma, m \rangle \in A_n$. Therefore, we have $x(\gamma)(m) = x_s(\gamma)(m) = x_{s_j}(\gamma)(m) = x_{s_i}(\gamma)(m)$ for every $\langle \gamma, m \rangle \in A_n$ with $\gamma < \beta$. Thus, we can extend x to an element $y \in \mathfrak{C}^{\alpha}$ for which $y(\gamma)(m) = x_{s_i}(\gamma)(m)$ for every $\langle \gamma, m \rangle \in A_n$. But this y witnesses (8).

To finish the construction of $x_{s_i \, \hat{}\, 1}$ notice that by (8) we can find an open ball B in $\mathfrak{C}^{\alpha \setminus \beta}$ such that $\{x\} \times B \subset B_{\alpha}(x_{s_i \, \hat{}\, 0}, \varepsilon_k)$. Decreasing B, if necessary, we can also insure that $y(\beta) \neq x_t(\beta)$ for every $t \in S_i$ and $y \in \{x\} \times B$. By condition (EX) we can find a $z \in B$ such that $S_i \cup \{x \cup z\} \subset G$ is \mathcal{F} -independent. We put $x_{s_i \, \hat{}\, 1} = x \cup z$.

Thus, we constructed an \mathcal{F} -independent set $\{x_{s^{\hat{j}}}: s \in 2^{A_k} \& j < 2\} \subset G$ satisfying (a) and such that $x_{s^{\hat{n}}0}, x_{s^{\hat{n}}1} \in E_s$ for every $s \in 2^{A_k}$. To finish the construction insuring (a)-(c) we need to choose an $\varepsilon_{k+1} \leq 2^{-(k+1)}$ small enough to guarantee the following properties.

- $E_{s^{j}} = B_{\alpha}(x_{s^{0}}, \varepsilon_{k_{1}}) \subset E_{s}$ for every $s \in 2^{A_{k}}$ and j < 2. This will ensure condition (ii).
- Condition (sp) holds. This can be done, since (a) is satisfied.
- Condition (c) is satisfied. This can be done since $\{x_s: s \in 2^{A_{k+1}}\}$ is \mathcal{F} -independent and F_{k+1} is a closed relation.

Note that (ag) is guaranteed by (a) and our definition of E_s 's. This finishes the proof of Proposition 4.1.

We say that an *n*-ary relation F on a Polish space X is symmetric provided for any sequence $\langle x_i \in X : i < n \rangle$ and any permutation π of n

 $F(x_0,\ldots,x_{n-1})$ holds if and only if $F(x_{\pi(0)},\ldots,x_{\pi(n-1)})$ holds.

For such an F and $A \subset X$ we put

$$F * A = A \cup \{x \in X : (\exists a_1, \dots, a_{n-1} \in A) | F(x, a_1, \dots, a_{n-1})\}.$$

If F is unary relation we interpret the above as $F * A = A \cup F$. If \mathcal{F} is a family of symmetric finitary relations on X then we put $\mathcal{F} * A = \bigcup_{F \in \mathcal{F}} F * A$. Also, an \mathcal{F} -closure of A, denoted by $cl_{\mathcal{F}}(A)$, is the least $B \subset X$ containing A such that $\mathcal{F} * B = B$. Note that $\operatorname{cl}_{\mathcal{F}}(A) = \bigcup_{n < \omega} \mathcal{F}^n * A$, where $\mathcal{F}^0 * A = A$ and $\mathcal{F}^{n+1} * A = \mathcal{F} * (\mathcal{F}^n * A)$. Thus, if \mathcal{F} is a countable family of closed symmetric finitary relations then $\operatorname{cl}_{\mathcal{F}}(A)$ is F_{σ} in X for a sigma-compact $A \subset X$ since F * K is closed for every $F \in \mathcal{F}$ and compact $K \subset X$.

We are the most interested in these notions when we are concerned with either linear independence (over \mathbb{Q}) or algebraic independence in \mathbb{R} . In the first case $\mathcal{F} = \mathcal{F}_{\text{lin}}$ is defined as the family of all relations F_{ℓ} of all $\langle x_0, \ldots, x_{n-1} \rangle$ for which

$$\ell(x_{\pi(0)}, \dots, x_{\pi(n-1)}) = 0 \text{ for some permutation } \pi \text{ of } n, \tag{9}$$

where ℓ is a non-zero linear function with rational coefficients. In this case \mathcal{F} independence stands for linear independence (over \mathbb{Q}) and $\operatorname{cl}_{\mathcal{F}}(A)$ is the linear
span of A. When \mathcal{F} is the family of all relations F_{ℓ} , where ℓ spans over all
non-zero polynomials with rational coefficients, then \mathcal{F} -independence stands
for algebraic independence, while $\operatorname{cl}_{\mathcal{F}}(A)$ is the algebraic closure of $\mathbb{Q}(A)$.

We will need also one more notion. For a family \mathcal{F} of closed symmetric finitary relations on X and an $M \subset X$ we define \mathcal{F}_M as the collection of all possible projections of the relations from \mathcal{F} along M. In other words, \mathcal{F}_M is the collection of all (symmetric) relations

$$\{\langle x_0, \dots, x_{k-1} \rangle : (\exists a_k, \dots, a_{n-1} \in M) \ F(x_0, \dots, x_{k-1}, a_k, \dots, a_{n-1})\}, \quad (10)$$

where $F \in \mathcal{F}$ is an *n*-ary relation and $0 < k \leq n$. Note that if M is compact then each relation in \mathcal{F}_M is still closed and for every $A \subset X$ we have

$$cl_{\mathcal{F}}(M \cup A) = cl_{\mathcal{F}_M}(A).$$
(11)

Also, if M is \mathcal{F} -independent then

$$A \cup M$$
 is \mathcal{F} -independent provided A is \mathcal{F}_M -independent. (12)

Lemma 4.2 Let \mathcal{F} be an arbitrary family of closed symmetric finitary relations in a Polish space X. Then for every prism P in X there exists a subprism Q of P and a compact \mathcal{F} -independent set $R \subset P$ such that $Q \subset cl_{\mathcal{F}}(R)$.

PROOF. For $0 < \alpha < \omega_1$ let I_{α} be the statement:

 I_{α} : the lemma holds for any prism P with witness function $f: \mathfrak{C}^{\alpha} \to P$.

We will prove I_{α} by induction on α .

First notice that I_{α} implies the following:

 I_{α}^{*} : for every $k < \omega$ and continuous functions $g_{0}, \ldots, g_{k}: \mathfrak{C}^{\alpha} \to X$ there exist an $E \in \mathbb{P}_{\alpha}$ and a compact \mathcal{F} -independent set $R \subset \bigcup_{i \leq k} g_{i}[\mathfrak{C}^{\alpha}]$ such that $\bigcup_{i < k} g_{i}[E] \subset \mathrm{cl}_{\mathcal{F}}(R)$.

To see that I_{α}^* holds true for k = 0, for every *n*-ary relation $F \in \mathcal{F}$ define $F^0 = \{\langle x_0, \ldots, x_{n-1} \rangle \in (\mathfrak{C}^{\alpha})^n : F(g_0(x_0), \ldots, g_0(x_{n-1}))\}$. By I_{α} applied to $\mathcal{F}_0 = \{F^0 : F \in \mathcal{F}\}$ we can find an \mathcal{F}_0 -independent set $R_0 \subset \mathfrak{C}^{\alpha}$ and an $E \in \mathbb{P}_{\alpha}$ such that $E \subset cl_{\mathcal{F}_0}(R)$. But then $R = g_0[R_0]$ is compact, \mathcal{F} -independent, and $g_0[E] \subset cl_{\mathcal{F}}(g_0[R_0]) = cl_{\mathcal{F}}(R)$.

To make an inductive step assume that I^*_{α} holds for some $k < \omega$ and take continuous functions $g_0, \ldots, g_{k+1} : \mathfrak{C}^{\alpha} \to X$. By the inductive assumption we can find an $E_0 \in \mathbb{P}_{\alpha}$ and a compact \mathcal{F} -independent set $R_0 \subset \bigcup_{i \leq k} g_i[\mathfrak{C}^{\alpha}]$ such that $\bigcup_{i \leq k} g_i[E_0] \subset \operatorname{cl}_{\mathcal{F}}(R_0)$. Let $h \in \Phi_{\operatorname{prism}}(\alpha)$ be a mapping from \mathfrak{C}^{α} onto E_0 . Using the case k = 0 to the function $g_{k+1} \circ h$ and the family \mathcal{F}_{R_0} we can find an $E_1 \in \mathbb{P}_{\alpha}$ and a compact \mathcal{F}_{R_0} -independent set $R_1 \subset (g_{k+1} \circ h)[\mathfrak{C}^{\alpha}]$ such that $(g_{k+1} \circ h)[E_1] \subset \operatorname{cl}_{\mathcal{F}_{R_0}}(R_1)$. Then, by (12), we conclude that $R = R_0 \cup R_1$ is \mathcal{F} -independent. Put $E = h[E_1] \in \mathbb{P}_{\alpha}$. Then, by (11), we have $g_{k+1}[E] \subset \operatorname{cl}_{\mathcal{F}_{R_0}}(R_1) = \operatorname{cl}_{\mathcal{F}}(R_0 \cup R_1) = \operatorname{cl}_{\mathcal{F}}(R)$, while clearly $\bigcup_{i \leq k} g_i[E] \subset \bigcup_{i \leq k} g_i[E_0] \subset \operatorname{cl}_{\mathcal{F}}(R_0) \subset \operatorname{cl}_{\mathcal{F}}(R)$. Thus, E and R satisfy I^*_{α} .

Now, we are ready to prove I_{α} . So, fix $0 < \alpha < \omega_1$ and assume that I_{γ} is true for all $0 < \gamma < \alpha$. Let P be a prism in X with witness function $f: \mathfrak{C}^{\alpha} \to P$. We need to find appropriate Q and R.

Let W be the set of all $\beta \leq \alpha$ for which there exists an $E \in \mathbb{P}_{\alpha}$ and an $F \in \mathcal{F}$ such that for every $z \in \pi_{\beta}[E]$ there is a finite set $R_z \subset P$ for which

$$f[\{x \in E : z \subset x\}] \subset F * R_z.$$
(13)

Notice that W is non-empty since $\alpha \in W$. So $\beta = \min W$ is well defined. Let $E \in \mathbb{P}_{\alpha}$ be such that (13) holds for β . Replacing f with its composition with an appropriate function from $\Phi_{\text{prism}}(\alpha)$ (compare (4)), if necessary, we can assume that $E = \mathfrak{C}^{\alpha}$.

If $\beta = 0$ then $f[\mathfrak{C}^{\alpha}] \subset \operatorname{cl}_{\mathcal{F}}(R_0)$ for some finite set $R_0 \subset P$, and we can find an \mathcal{F} -independent finite $R \subset R_0$ with $f[\mathfrak{C}^{\alpha}] \subset \operatorname{cl}_{\mathcal{F}}(R)$. (Note that if Tis \mathcal{F} -independent and $x \in X \setminus \operatorname{cl}_{\mathcal{F}}(T)$ then $T \cup \{x\}$ is also \mathcal{F} -independent.) Thus, $Q = f[\mathfrak{C}^{\alpha}]$ and R satisfy I_{α} . So, for the rest of the proof we will assume that $\beta > 0$. Next, assume that $0 < \beta < \alpha$. Let \mathcal{B}_{β} be a countable basis of $\mathfrak{C}^{\alpha \setminus \beta}$ consisting of non-empty clopen sets and assume that F satisfying (13) is (n+1)-ary. For every $B \in \mathcal{B}_{\beta}$ consider the set

$$K_B = \left\{ z \in \mathfrak{C}^{\beta} : (\exists \langle x_1, \dots, x_n \rangle \in P^n) \, (\forall y \in B) \; F(f(z \cup y), x_1, \dots, x_n) \right\}.$$

It is easy to see that each set K_B is closed. Notice also that

$$\mathfrak{C}^{\beta} = \bigcup_{B \in \mathcal{B}_{\beta}} K_B.$$
(14)

To see this, fix a $z \in \mathfrak{C}^{\beta}$. By (13), there exists a finite set $S_z \subset \mathfrak{C}^{\alpha}$ such that $\mathfrak{C}^{\alpha \setminus \beta} = \bigcup_{x_1, \dots, x_n \in f[S_z]} \{ y \in \mathfrak{C}^{\alpha \setminus \beta} \colon F(f(z \cup y), x_1, \dots, x_n) \}$. Since each set $\{ y \in \mathfrak{C}^{\alpha \setminus \beta} \colon F(f(z \cup y), x_1, \dots, x_n) \}$ is closed, one of them must contain a $B \in \mathcal{B}_{\beta}$, and so $z \in K_B$.

Thus, by (14), there exists a $B \in \mathcal{B}_{\beta}$ such that K_B has a non-empty interior. In particular, there is a non-empty clopen set $U \subset K_B$. But then for every $z \in U$ there exists a $g(z) = \langle g_1(z), \ldots, g_n(z) \rangle \in P^n$ such that $F(f(z \cup y), g_1(z), \ldots, g_n(z))$ holds for every $y \in B$. Now

$$T = \{ \langle z, \bar{p} \rangle \in U \times P^n : (\forall y \in B) \ F(f(z \cup y), \bar{p}) \}$$

is a compact subset of $U \times P^n$ and g constitutes a selector of T. Thus, we can choose g to be Borel. In particular, there is a dense G_{δ} subset W of U such that $g \upharpoonright W$ is continuous. So, by Claim 3.2, we can find a perfect cube $C \subset W \subset \mathfrak{C}^{\beta}$. Now, identifying C with \mathfrak{C}^{β} , we conclude that functions $g_1, \ldots, g_n: \mathfrak{C}^{\beta} \to P$ are continuous and that $F(f(z \cup y), g_1(z), \ldots, g_n(z))$ holds for every $z \in \mathfrak{C}^{\beta}$ and $y \in B$.

Since, by the inductive hypothesis, I_{β} is true, condition I_{β}^* holds as well. Thus, there exist an $E \in \mathbb{P}_{\beta}$ and a compact \mathcal{F} -independent set $R \subset P$ such that $\bigcup_{i=1}^{n} g_i[E] \subset \operatorname{cl}_{\mathcal{F}}(R)$. Since $Q = f[E \times B]$ is a subprism of P, we just need to show that $Q \subset \operatorname{cl}_{\mathcal{F}}(R)$. To see this it just note that for every $z \in E$ we have $f[\{z\} \times B] \subset F * \{g_1(z), \ldots, g_n(z)\} \subset \operatorname{cl}_{\mathcal{F}}(\bigcup_{i=1}^{n} g_i[E]) \subset \operatorname{cl}_{\mathcal{F}}(R)$. This finishes the proof of the case $0 < \beta < \alpha$.

For the reminder of the proof we will assume that $\beta = \alpha$. This means that there is no $E \in \mathbb{P}_{\alpha}$ such that for some $F \in \mathcal{F}$ and $\beta < \alpha$

$$(\forall z \in \pi_{\beta}[E]) (\exists R_z \in [P]^{<\omega}) f[\{x \in E : z \subset x\}] \subset F * R_z.$$
(15)

For every *n*-ary $F \in \mathcal{F}$ let $F^* = \{\langle x_0, \ldots, x_{n-1} \rangle : F(f(x_0), \ldots, f(x_{n-1})) \}$ and let $\mathcal{F}^* = \{F^* : F \in \mathcal{F}\}$. We will apply Proposition 4.1 to find an \mathcal{F}^* independent $E \in \mathbb{P}_{\alpha}$. Then Q = f[E] is \mathcal{F} -independent subprism of P and together with R = Q they satisfy the lemma.

To see that the assumptions of Proposition 4.1 are satisfied, first notice that unary relations in \mathcal{F}^* are nowhere dense. Indeed, otherwise there is a unary relation $F^* \in \mathcal{F}^*$ and a non-empty clopen set $E \subset F^*$. But then E contradicts (15), as $f[E] \subset F * \emptyset$. Thus, we just need to show that the condition (ex) is satisfied.

So, fix an $F \in \mathcal{F}$. For $0 < \beta < \alpha$ and $B \in \mathcal{B}_{\beta}$ let

$$K(B) = \left\{ z \in \mathfrak{C}^{\beta} \colon (\exists R_z \in [P]^{<\omega}) \ f[\{z\} \times B] \subset F * R_z \right\}.$$

Clearly K(B) is F_{σ} . Notice also that it is meager, since otherwise there would exist a non-empty clopen $U \subset K(B)$ and $E = U \times B$ would contradict (15). Thus, each set $K_{\beta} = \bigcup_{B \in \mathcal{B}_{\alpha}} K(B)$ is meager. Also, for every $z \in \mathfrak{C}^{\beta} \setminus K_{\beta}$ and for every finite $R \subset P$ the set $\{y \in \mathfrak{C}^{\alpha \setminus \beta} : f(z \cup y) \notin F * R\}$ is dense and open. In particular, if R is a finite F-independent subset of P then

$$W_R = \left\{ y \in \mathfrak{C}^{\alpha \setminus \beta} \colon R \cup \{ f(z \cup y) \} \text{ is } F \text{-independent} \right\}$$
(16)

is dense and open. Let

$$H = \bigcap_{0 < \beta < \alpha} \left(\left(\mathfrak{C}^{\beta} \setminus K_{\beta} \right) \times \mathfrak{C}^{\alpha \setminus \beta} \right)$$

and notice that H is comeager since each K_{β} is meager in \mathfrak{C}^{β} . By Lemma 3.3 we can find a comeager set $G \subset H$ such that

$$G_{x \restriction \beta} = \left\{ y \in \mathfrak{C}^{\alpha \setminus \beta} \colon (x \restriction \beta) \cup y \in G \right\}$$

is comeager every $x \in G$ and $\beta < \alpha$. To finish the proof it is enough to show that G satisfy (ex) for F^* . So, take an F^* -independent finite set $S \subset G$, an $x \in S$, and a $\beta < \alpha$.

First let us assume that $\beta > 0$. Then $x \in S \subset G \subset H$ implies that $z = x \upharpoonright \beta \in \mathfrak{C}^{\beta} \setminus K_{\beta}$. In particular, the set $W_{f[S]}$ from (16) is comeager, and so is $W_{f[S]} \cap G_{x \upharpoonright \beta}$. To get (ex) it is enough to notice that $W_{f[S]} \cap G_{x \upharpoonright \beta}$ is a subset of $\{y \in \mathfrak{C}^{\alpha \setminus \beta} : S \cup \{y \cup z\} \subset G \text{ is } F^*\text{-independent}\}$.

Finally assume that $\beta = 0$. We need to show that the set

$$\{y \in G: S \cup \{y\} \text{ is } F^*\text{-independent}\}\$$

is dense. But this set must be comeager, since otherwise its complement would contain a non-empty clopen set E which wold contradict (15) with $\beta = 0$.

PROOF OF LEMMA 2.1. Let $\mathcal{F} = \mathcal{F}_{\text{lin}}$ be the linear independence family defined at (9) and let $\overline{M} = \langle M_n : n < \omega \rangle$ be an increasing family of compact sets such that $M = \bigcup_{n < \omega} M_n$. Let $\mathcal{F}_{\overline{M}} = \bigcup_{n < \omega} \mathcal{F}_{M_n}$, where each \mathcal{F}_{M_n} is defined at (10), that is, \mathcal{F}_{M_n} is the the collection of all possible projections of the relations from \mathcal{F} along M_n .

If $M \cap P$ is of second category in P then we can choose a subprism Q of P with $Q \subset M$. Then Q and $R = \emptyset$ have the desired properties. On the other hand, if $M \cap P$ is of first category in P then, by Claim 3.2, we can find a subprism P_1 of P disjoint with M.

Now, applying Lemma 4.2 we can find a subprism Q of P_1 and a compact $\mathcal{F}_{\bar{M}}$ -independent set $R \subset P_1 \subset P \setminus M$ such that $Q \subset cl_{\mathcal{F}_{\bar{M}}}(R)$. But then $M \cup R$ is \mathcal{F} -independent, see (12). Moreover,

$$Q \subset \operatorname{cl}_{\mathcal{F}_{\bar{M}}}(R) = \operatorname{cl}_{\mathcal{F}}(M \cup R) = \operatorname{LIN}(M \cup R).$$

So, $M \cup Q \subset \text{LIN}(M \cup R)$ proving that Q and R are as desired.

5 Remarks

It is worth to notice that in case when $M = \emptyset$ Lemma 2.1 can be proved easier, and in a stronger form.

Proposition 5.1 Every prism P in \mathbb{R} there is a subprism Q which is linearly independent.

PROOF. This follows from Proposition 4.1 used with $\mathcal{F} = \mathcal{F}_{\text{lin}}$.

Remark 5.2 Note that Proposition 5.1 is false if we require Q to be a subcube of prism P, that is, Q = f[C], where C is a perfect cube in \mathfrak{C}^{α} and $f: \mathfrak{C}^{\alpha} \to P$ is a coordinate function making P a prism.

PROOF. Indeed, let P_1 and P_2 be disjoint perfect subsets of \mathbb{R} such that $P_1 \cup P_1$ is linearly independent over \mathbb{Q} . Let $f: P_1 \times P_2 \to \mathbb{R}$ be defined by a

formula $f(x_1, x_2) = x_1 + x_2$. Identifying P_1 and P_2 with \mathfrak{C} we think about f as defined on \mathfrak{C}^2 and treat P as a prism. To see that P has no linearly independent subcube let $Q = Q_1 \times Q_2$ be a subcube of P and choose different $a_1, b_1 \in Q_1$ and $a_2, b_2 \in Q_2$. Then $\{a_1 + a_2, a_1 + b_2, b_1 + a_2, b_1 + a_2\} \subset Q$ and they are clearly linearly dependent.

Remark 5.3 In Lemma 2.1 we cannot require R = Q.

PROOF. Let P_1 , P_2 , and f be as in Remark 5.2. If $M = P_2$ then P has no subprism Q such that $M \cup Q$ is linearly independent, since any vertical section of Q is a translation of a portion of M.

References

- J. Cichoń, A. Jasiński, A. Kamburelis, P. Szczepaniak, On translations of subsets of the real line, Proc. Amer. Math. Soc. 130(6) (2002), 1833– 1842. (Preprint* available.)¹
- [2] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge Univ. Press 1997.
- [3] K. Ciesielski, A. Millán, Separately nowhere constant functions; n-cube and α-prism densities, preprint*.
- [4] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA_{cube} and its consequences, Fund. Math. 176(1) (2003), 63–75. (Preprint* available.)
- K. Ciesielski, J. Pawlikowski, Crowded and selective ultrafilters under the Covering Property Axiom, J. Appl. Anal. 9(1) (2003), 19–55. (Preprint* available.)
- [6] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA. A combinatorial core of the iterated perfect set model, version of January 2003, work in progress*.
- [7] R. Filipów, I. Recław, On the difference property of Borel measurable and (s)-measurable functions, Acta Math. Hungar. 96(1) (2002), 21–25.

¹Preprints marked by * are available in electronic form from *Set Theoretic Analysis Web Page:* http://www.math.wvu.edu/~kcies/STA/STA.html

- [8] A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962), 111–115.
- [9] V. Kanovei, Non-Glimm-Effros equivalence relations at second projective level, Fund. Math. 154 (1997), 1–35.
- [10] M. Laczkovich, Functions with measurable differences, Acta Mathematica Academiae Scientarum Hungaricae 35(1-2) (1980), 217–235.
- [11] M. Laczkovich, Two constructions of Sierpiński and some cardinal invariants of ideals, Real Anal. Exchange 24(2) (1998–99), 663–676.
- [12] W. Sierpiński, Sur les translations des ensembles linéaires, Fund. Math.
 19 (1932), 22–28. Reprinted in Oeuvres Choisies, vol. III, 95–100.
- [13] Zapletal, J. Descriptive Set Theory and Definable Forcing, Mem. Amer. Math. Soc. 167, 2004.