Uncountable γ -sets under axiom CPA $_{\text{cube}}^{\text{game}}$

Krzysztof Ciesielski*

Department of Mathematics, West Virginia University,

Morgantown, WV 26506-6310, USA
e-mail: K_Cies@math.wvu.edu; web page: http://www.math.wvu.edu/~kcies

Andrés Millán Millán[†]

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA; e-mail: amillan@math.wvu.edu

Janusz Pawlikowski[‡]

Department of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland; e-mail: pawlikow@math.uni.wroc.pl

Abstract

In the paper we formulate a Covering Property Axiom CPA $_{\mathrm{cube}}^{\mathrm{game}}$, which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong γ -sets in $\mathbb R$ (which are strongly meager) as well as uncountable γ -sets in $\mathbb R$ which are not strongly meager. These sets must be of cardinality $\omega_1 < \mathfrak{c}$, since every γ -set is universally null, while CPA $_{\mathrm{cube}}^{\mathrm{game}}$ implies that every universally null has cardinality less than $\mathfrak{c} = \omega_2$

We will also show that CPA_{cube}^{game} implies the existence of a partition of \mathbb{R} into ω_1 null compact sets.

1 Axiom CPA_{cube} and other preliminaries

Our set theoretic terminology is standard and follows that of [3]. In particular, |X| stands for the cardinality of a set X and $\mathfrak{c} = |\mathbb{R}|$. The Cantor set 2^{ω} will be denoted by a symbol \mathfrak{C} . We use term *Polish space* for a complete separable metric space without isolated points. For a Polish space X, the symbol

^{*}AMS classification numbers: Primary 03E35; Secondary 03E17, 26A03.

Key words and phrases: $\gamma\text{-set},$ strongly meager.

The work of the first author was partially supported by NATO Grant PST.CLG.977652.

[†]This work was completed when the second author was a Ph.D. student at West Virginia University. Some part of this work is likely to be included in his dissertation, written under the supervision of K. Ciesielski .

[‡]The work of the third author was partially supported by ??? Grant ???

 $\operatorname{Perf}(X)$ will denote the collection of all subsets of X homeomorphic to \mathfrak{C} . We will consider $\operatorname{Perf}(X)$ as ordered by inclusion.

Axiom $\operatorname{CPA}_{\operatorname{cube}}^{\operatorname{game}}$ was first formulated by Ciesielski and Pawlikowski in [4]. (See also [6].) It is a simpler version of a Covering Property Axiom CPA which holds in the iterated perfect set model. (See [4] or [6].) In order to formulate $\operatorname{CPA}_{\operatorname{cube}}^{\operatorname{game}}$ we need the following terminology and notation. A subset C of a product \mathfrak{C}^{ω} of the Cantor set is said to be a perfect cube if $C = \prod_{n \in \omega} C_n$, where $C_n \in \operatorname{Perf}(\mathfrak{C})$ for each n. For a fixed Polish space X let $\mathcal{F}_{\operatorname{cube}}$ stand for the family of all continuous injections from a perfect cube $C \subset \mathfrak{C}^{\omega}$ onto a set P from $\operatorname{Perf}(X)$. We consider each function $f \in \mathcal{F}_{\operatorname{cube}}$ from C onto P as a coordinate system imposed on P. We say that $P \in \operatorname{Perf}(X)$ is a cube if we consider it with (implicitly given) witness function $f \in \mathcal{F}_{\operatorname{cube}}$ onto P, and Q is a subcube of a cube $P \in \operatorname{Perf}(X)$ provided Q = f[C], where $f \in \mathcal{F}_{\operatorname{cube}}$ is the witness function for P and $C \subset \operatorname{dom}(f) \subset \mathfrak{C}^{\omega}$ is a perfect cube. Here and in what follows symbol $\operatorname{dom}(f)$ stands for the domain of f.

We say that a family $\mathcal{E} \subset \operatorname{Perf}(X)$ is *cube dense* in $\operatorname{Perf}(X)$ provided every cube $P \in \operatorname{Perf}(X)$ contains a subcube $Q \in \mathcal{E}$. More formally, $\mathcal{E} \subset \operatorname{Perf}(X)$ is cube dense provided

$$\forall f \in \mathcal{F}_{\text{cube}} \ \exists g \in \mathcal{F}_{\text{cube}} \ (g \subset f \ \& \ \text{range}(g) \in \mathcal{E}). \tag{1}$$

It is easy to see that the notion of cube density is a generalization of a notion of density with respect to $\langle \operatorname{Perf}(X), \subseteq \rangle$, that is, if \mathcal{E} is cube dense in $\operatorname{Perf}(X)$ then \mathcal{E} is dense in $\operatorname{Perf}(X)$. On the other hand, the converse implication is not true, as shown by the following simple example.

Example 1.1 ([5, 6]) Let $X = \mathfrak{C} \times \mathfrak{C}$ and let \mathcal{E} be the family of all $P \in \operatorname{Perf}(X)$ such that either all vertical sections of P are countable, or else all horizontal sections of P are countable. Then \mathcal{E} is dense in $\operatorname{Perf}(X)$, but it is not cube dense in $\operatorname{Perf}(X)$.

It is also worth to notice that in order to check that \mathcal{E} is cube dense it is enough to consider in condition (1) only functions f defined on the entire space \mathfrak{C}^{ω} , that is

Fact 1.2 ([4, 5, 6]) $\mathcal{E} \subset \operatorname{Perf}(X)$ is cube dense if and only if

$$\forall f \in \mathcal{F}_{\text{cube}}, \ \text{dom}(f) = \mathfrak{C}^{\omega}, \ \exists g \in \mathcal{F}_{\text{cube}} \ (g \subset f \ \& \ \text{range}(g) \in \mathcal{E}).$$
 (2)

Let $\operatorname{Perf}^*(X)$ stand for the family of all sets P such that either $P \in \operatorname{Perf}(X)$ or P is a singleton in X. In what follows we will consider singletons as *constant cubes*, that is, with the constant coordinate function from \mathfrak{C}^{ω} onto the singleton. In particular, a subcube of a constant cube is the same singleton.

Consider the following game GAME_{cube}(X) of length ω_1 . The game has two players, Player I and Player II. At each stage $\xi < \omega_1$ of the game Player I can play an arbitrary cube $P_{\xi} \in \operatorname{Perf}^*(X)$ and Player II must respond with a subcube Q_{ξ} of P_{ξ} . The game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ is won by Player I provided

$$\bigcup_{\xi<\omega_1}Q_\xi=X;$$

otherwise the game is won by Player II.

By a strategy for Player II we will understand any function S such that $S(\langle\langle P_{\eta},Q_{\eta}\rangle:\eta<\xi\rangle,P_{\xi})$ is a subcube of P_{ξ} , where $\langle\langle P_{\eta},Q_{\eta}\rangle:\eta<\xi\rangle$ is any partial game. (We abuse here slightly the notation, since function S depends also on the implicitly given coordinate functions $f_{\eta}\colon \mathfrak{C}^{\omega}\to P_{\eta}$ making each P_{η} a cube.) A game $\langle\langle P_{\xi},Q_{\xi}\rangle:\xi<\omega_{1}\rangle$ is played according to a strategy S for Player II provided $Q_{\xi}=S(\langle\langle P_{\eta},Q_{\eta}\rangle:\eta<\xi\rangle,P_{\xi})$ for every $\xi<\omega_{1}$. A strategy S for Player II is a winning strategy for Player II provided Player II wins any game played according to the strategy S.

Here is the axiom.

CPA^{game}_{cube}: $\mathfrak{c} = \omega_2$ and for any Polish space X Player II has no winning strategy in the game GAME_{cube}(X).

Notice that

Proposition 1.3 ([4, 6]) Axiom CPA^{game}_{cube} implies

CPA_{cube}: $\mathfrak{c} = \omega_2$ and for every Polish space X and every cube dense family $\mathcal{E} \subset \operatorname{Perf}(X)$ there is an $\mathcal{E}_0 \subset \mathcal{E}$ such that $|\mathcal{E}_0| \leq \omega_1$ and $|X \setminus \bigcup \mathcal{E}_0| \leq \omega_1$.

In [4] (see also [6]) it was proved that CPA_{cube} (so, also CPA_{cube}^{game}) implies that $cof(\mathcal{N}) = \omega_1$ and that all perfectly meager sets and all universally null sets have cardinality at most ω_1 .

In what follows we will also use the following simple fact. Its proof can be found in [5] and [6].

Claim 1.4 Consider \mathfrak{C}^{ω} with standard topology and standard product measure. If G is a Borel subset of \mathfrak{C}^{ω} which is either of second category or of positive measure then G contains a perfect cube $\prod_{i \leq \omega} P_i$.

2 Disjoint coverings by ω_1 null compacts

Theorem 2.1 Assume that CPA_{cube}^{game} holds and let X be a Polish space. If $\mathcal{D} \subset Perf(X)$ is \mathcal{F}_{cube} -dense and it is closed under perfect subsets then there exists a partition of X into ω_1 disjoint sets from $\mathcal{D} \cup \{\{x\}: x \in X\}$.

In the proof we will use the following easy lemma.

Lemma 2.2 Let X be a Polish space and let $\mathcal{P} = \{P_i : i < \omega\} \subset \operatorname{Perf}^*(X)$. For every cube $P \in \operatorname{Perf}(X)$ there exists a subcube Q of P such that either $Q \cap \bigcup_{i < \omega} P_i = \emptyset$ or $Q \subset P_i$ for some $i < \omega$.

PROOF. Let $f \in \mathcal{F}_{\text{cube}}$ be such that $f[\mathfrak{C}^{\omega}] = P$.

If $P \cap \bigcup_{i < \omega} P_i$ is meager in P then, by Claim 1.4, we can find a subcube Q of P such that $Q \subset P \setminus \bigcup_{i < \omega} P_i$.

If $P \cap \bigcup_{i < \omega} P_i$ is not meager in P then there exists an $i < \omega$ such that $P \cap P_i$ has a non-empty interior in P. Thus, there exists a basic clopen set C in \mathfrak{C}^{ω} ,

which is a perfect cube, such that $f[C] \subset P_i$. So, Q = f[C] is a desired subcube of P.

PROOF OF THEOREM 2.1. For a cube $P \in \operatorname{Perf}(X)$ and a countable family $\mathcal{P} \subset \operatorname{Perf}^*(X)$ let $D(P) \in \mathcal{D}$ be a subcube of P and $Q(\mathcal{P}, P) \in \mathcal{D}$ be as in Lemma 2.2 used with D(P) in place of P. For a singleton $P \in \operatorname{Perf}^*(X)$ we just put $Q(\mathcal{P}, P) = P$.

Consider the following strategy S for Player II:

$$S(\langle\langle P_{\eta},Q_{\eta}\rangle:\eta<\xi\rangle,P_{\xi})=Q(\{Q_{\eta}:\eta<\xi\},P_{\xi}).$$

By CPA^{game}_{cube} strategy S is not a winning strategy for Player II. So there exists a game $\langle\langle P_\xi,Q_\xi\rangle \colon \xi<\omega_1\rangle$ played according to S in which Player II looses, that is, $X=\bigcup_{\xi<\omega_1}Q_\xi$.

Notice that for every $\xi < \omega_1$ either $Q_{\xi} \cap \bigcup_{\eta < \xi} Q_{\eta} = \emptyset$ or there is an $\eta < \omega_1$ such that $Q_{\xi} \subset Q_{\eta}$. Let

$$\mathcal{F} = \left\{ Q_{\xi} \colon \xi < \omega_1 \, \& \, Q_{\xi} \cap \bigcup_{\eta < \xi} Q_{\eta} = \emptyset \right\}.$$

Then \mathcal{F} is as desired.

Since a family of all measure zero perfect subsets of \mathbb{R}^n is $\mathcal{F}_{\text{cube}}$ -dense we get the following corollary.

Corollary 2.3 CPA^{game}_{cube} implies that there exists a partition of \mathbb{R}^n into ω_1 disjoint closed nowhere dense measure zero sets.

Note that the conclusion of Corollary 2.3 does not follow from the fact that \mathbb{R}^n can be covered by ω_1 perfect measure zero subsets. (See [10, thm. 6].)

3 Uncountable γ -sets

In this subsection we will prove that $\operatorname{CPA}_{\operatorname{cube}}^{\operatorname{game}}$ implies the existence of an uncountable γ -set. Recall that a subset T of a Polish space X is a γ -set provided for every open ω -cover $\mathcal U$ of T there is a sequence $\langle U_n \in \mathcal U \colon n < \omega \rangle$ such that $T \subset \bigcup_{n < \omega} \bigcap_{i > n} U_i$, where $\mathcal U$ is an ω -cover of T if for every finite set $A \subset T$ there a $U \in \mathcal U$ with $A \subset U$.

 γ -sets were introduced by Gerlits and Nagy [8]. They were studied by Galvin and Miller [7], Recław [12], Bartoszyński, Recław [2], and others. It is known that under the Martin's axiom there are γ -sets of cardinality continuum [7]. On the other hand, every γ -set is strong measure zero [8], so it is consistent with ZFC that every γ -set is countable. Moreover, CPA $_{\text{cube}}^{\text{game}}$ implies that every γ -set has cardinality at most $\omega_1 < \mathfrak{c}$, since every strong measure zero is universally null and under CPA $_{\text{cube}}^{\text{game}}$ every universally null has cardinality $\leq \omega_1$.

In what follows we will use the characterization of γ -sets due to Recław [12]. To formulate it we need to fix some terminology. Thus, in what follows we

will consider $\mathcal{P}(\omega)$ as a Polish space by identifying it with 2^{ω} via characteristic functions. For $A, B \subset \omega$ we will write $A \subseteq^* B$ when $|A \setminus B| < \omega$. We say that a family $\mathcal{A} \subset \mathcal{P}(\omega)$ is *centered* provided $\bigcap \mathcal{A}_0$ is infinite for every finite $\mathcal{A}_0 \subset \mathcal{A}$; and \mathcal{A} has a pseudointersection provided there exists a $B \in [\omega]^{\omega}$ such that $B \subseteq^* A$ for every $A \in \mathcal{A}$. In addition for the rest of this section \mathcal{K} will stand for the family of all continuous functions from $\mathcal{P}(\omega)$ to $\mathcal{P}(\omega)$ and for $A \in \mathcal{P}(\omega)$ we put $A^* = \{B \in \mathcal{P}(\omega) : B \subseteq^* A\}$.

Proposition 3.1 (Recław [12]) For $T \subset \mathcal{P}(\omega)$ the following conditions are equivalent.

- (i) T is a γ -set.
- (ii) For every $f \in \mathcal{K}$ if f[T] is centered than f[T] has a pseudointersection.

In the proof that follows we will apply axiom CPA_{cube}^{game} to the cubes from the space \mathcal{K} . The fact that the subcubes given by the axiom cover \mathcal{K} will allow us to use the above characterization to conclude that the constructed set is indeed a γ -set. It is also possible to construct an uncountable γ -set by applying axiom CPA_{cube}^{game} to the space $\mathcal Y$ of all ω -covers of $\mathcal P(\omega)$, similarly as in Section 5. However, we believe that greater diversification of spaces to which we apply CPA_{cube}^{game} makes the paper more interesting.

In what follows we will need the following two lemmas.

Lemma 3.2 For every countable set $Y \subset \mathcal{P}(\omega)$ the set

$$\mathcal{K}_Y = \{ f \in \mathcal{K} : f[Y] \text{ is centered} \}$$

is Borel in K.

PROOF. Let $Y = \{y_i : i < \omega\}$ and note that

$$\mathcal{K}_Y = \bigcap_{n,k < \omega} \bigcup_{m \geq k} \bigcap_{i < n} \{ f \in \mathcal{K} : m \in f(y_i) \}.$$

So, \mathcal{K}_Y is a G_δ set, since each set $\{f \in \mathcal{K}: m \in f(y_i)\}$ is open in \mathcal{K} .

Lemma 3.3 Let $Y \subset \mathcal{P}(\omega)$ be countable and such that $[\omega]^{<\omega} \subset Y$. For every $W \in [\omega]^{\omega}$ and a compact set $Q \subset \mathcal{K}_Y$ there exist $V \in [W]^{\omega}$ and a continuous function $\varphi: Q \to [\omega]^{\omega}$ such that $\varphi(f)$ is a pseudointersection of $f[Y] \cup f[V^*]$ for every $f \in Q$.

Moreover, if \mathcal{J} is an infinite family of non-empty pairwise disjoint finite subsets of W then we can choose V such that it contains infinitely many J's from \mathcal{J} .

¹More precisely, if \mathcal{B}_0 is a countable base for $\mathcal{P}(\omega)$ and \mathcal{B} is the collection of all finite unions of elements from \mathcal{B}_0 then we can define \mathcal{Y} as \mathcal{B}^{ω} considered with the product topology, where \mathcal{B} is taken with discrete topology.

PROOF. First notice that there exists a continuous $\psi: Q \to [\omega]^{\omega}$ such that $\psi(f)$ is a pseudointersection of f[Y] for every $f \in Q$.

Indeed, let $Y = \{y_i : i < \omega\}$ and for every $f \in Q$ let $\psi(f) = \{n_i^f : i < \omega\}$, where $n_0^f = \min f(y_0)$ and $n_{i+1}^f = \min \{n \in \bigcap_{j \le i} f(y_j) : n > n_i^f\}$. The set in the definition of n_{i+1}^f is non-empty, since f[Y] is centered, as $f \in Q \subset \mathcal{K}_Y$. It is easy to see that ψ is continuous and that $\psi(f)$ is as desired.

We will define a sequence $\langle J_i \in \mathcal{J}: i < \omega \rangle$ such that $\max J_i < \min J_{i+1}$ for every $i < \omega$. We are aiming for $V = \bigcup_{i < \omega} J_i$.

A set $J_0 \in \mathcal{J}$ is chosen arbitrarily. Now, if J_i is already defined for some $i < \omega$ we define J_{i+1} as follows. Let $w_i = 1 + \max J_i$. Thus $J_i \subset w_i$. For every $f \in Q$ define

$$m_i^f = \min \left(\psi(f) \cap \bigcap f[\mathcal{P}(w_i)] \right).$$

The set $\psi(f) \cap \bigcap f[\mathcal{P}(w_i)]$ is infinite, since $\psi(f)$ is a pseudointersection of f[Y] while $\mathcal{P}(w_i) \subset Y$. Let $k_i^f = \min K_i^f$, where

$$K_i^f = \left\{ k \geq w_i \hbox{:}\, m_i^f \in f(a) \text{ for all } a \subset \omega \text{ with } a \cap k \subset w_i \right\}.$$

The fact that $K_i^f \neq \emptyset$ follows from the continuity of f since $m_i^f \in f(a)$ for all $a \subset w_i$. Notice that, by the continuity of ψ and the assignment of k_i^f , for every $p < \omega$ the set $U_p = \{f \in Q: k_i^f < p\}$ is open in Q. Since sets $\{U_p: p < \omega\}$ form an increasing cover of Q, compactness of Q implies the existence of $p_i < \omega$ such that $Q \subset U_{p_i}$. Thus, $w_i \leq k_i^f < p_i$ for every $f \in Q$. We define J_{i+1} as an arbitrary element of $\mathcal J$ disjoint with p_i and notice that

$$m_i^f \in f(a)$$
 for every $f \in Q$ and $a \subset \omega$ with $a \cap \min J_{i+1} \subset w_i$.

This finishes the inductive construction.

Let $V = \bigcup_{i < \omega} J_i \subset W$ and $\varphi(f) = \{m_i^f : i < \omega\}$. It is easy to see that φ is continuous (though, we will not use this fact). To finish the proof it is enough to show that $\varphi(f)$ is a pseudointersection of $f[Y] \cup f[V^*]$ for every $f \in Q$.

So, fix an $f \in Q$. Clearly $\varphi(f) \subset \psi(f)$ is a pseudointersection of f[Y] since so was $\psi(f)$. To see that $\varphi(f)$ is a pseudointersection of $f[V^*]$ take an $a \subseteq^* V$. Then for almost all $i < \omega$ we have $a \cap \min J_{i+1} \subset w_i$, so that $m_i^f \in f(a)$. Thus $\varphi(f) \subseteq^* f(a)$.

Theorem 3.4 CPA^{game} implies that there exists an uncountable γ -set in $\mathcal{P}(\omega)$.

PROOF. For $\alpha < \omega_1$ and an \subseteq *-decreasing sequence $\mathcal{V} = \{V_{\xi} \in [\omega]^{\omega} : \xi < \alpha\}$ let $W(\mathcal{V}) \in [\omega]^{\omega}$ be such that $W(\mathcal{V}) \subsetneq^* V_{\xi}$ for all $\xi < \alpha$. Moreover, if $P \in \operatorname{Perf}^*(\mathcal{K})$ is a cube then we define a subcube $Q = Q(\mathcal{V}, P)$ of P and an infinite subset $V = V(\mathcal{V}, P)$ of $W = W(\mathcal{V})$ as follows. Let $Y = \mathcal{V} \cup [\omega]^{<\omega}$ and choose a subcube Q of P such that either $Q \cap \mathcal{K}_Y = \emptyset$ or $Q \subset \mathcal{K}_Y$. This can be done by Claim 1.4 since \mathcal{K}_Y is Borel. If $Q \cap \mathcal{K}_Y = \emptyset$ we put V = W. Otherwise we apply Lemma 3.3 to find V.

Consider the following strategy S for Player II:

$$S(\langle \langle P_n, Q_n \rangle : \eta < \xi \rangle, P_{\varepsilon}) = Q(\{V_n : \eta < \xi\}, P_{\varepsilon}),$$

where sets V_{η} are defined inductively by $V_{\eta} = V(\{V_{\zeta}: \zeta < \eta\}, P_{\eta})$. In other words, Player II remembers (recovers) sets V_{η} associated with the cubes P_{η} played so far, and he uses them (and Lemma 3.3) to get the next answer $Q_{\xi} = Q(\{V_{\eta}: \eta < \xi\}, P_{\xi})$, while remembering (or recovering each time) the set $V_{\xi} = V(\{V_{\eta}: \eta < \xi\}, P_{\xi})$.

 $V(\{V_{\eta}: \eta < \xi\}, P_{\xi})$. By CPA^{game}_{cube} strategy S is not a winning strategy for Player II. So there exists a game $\langle\langle P_{\xi}, Q_{\xi}\rangle: \xi < \omega_{1}\rangle$ played according to S in which and Player II loses, that is, $\mathcal{K} = \bigcup_{\xi < \omega_{1}} Q_{\xi}$. Let $\mathcal{V} = \{V_{\xi}: \xi < \omega_{1}\}$ be a sequence associated with this game, which is strictly \subseteq^* -decreasing, and let $T = \mathcal{V} \cup [\omega]^{<\omega}$. We claim that T is a γ -set.

In the proof we use Lemma 3.2. So, let $f \in \mathcal{K}$ be such that f[T] is centered. There exists an $\alpha < \omega_1$ such that $f \in Q_\alpha$. Since $f[\{V_\xi : \xi < \alpha\} \cup [\omega]^{<\omega}] \subset f[T]$ we must have applied Lemma 3.3 in the choice of Q_α and V_α . Therefore, the family $f[\{V_\xi : \xi < \alpha\} \cup [\omega]^{<\omega} \cup V_\alpha^*]$ has a pseudointersection. So, f[T] has a pseudointersection too, since $T \subset \{V_\xi : \xi < \alpha\} \cup [\omega]^{<\omega} \cup V_\alpha^*$.

Since $\mathcal{P}(\omega)$ embeds into any Polish space, we conclude that, under $\operatorname{CPA}_{\operatorname{cube}}^{\operatorname{game}}$, any Polish space contains an uncountable γ -set. In particular, there exists an uncountable γ -set $T \subset \mathbb{R}$.

4 γ -sets in $\mathbb R$ which are not strongly meager

Recall (see e.g. [1, p. 437]) that a subset X of \mathbb{R} is *strongly meager* provided $X+G\neq\mathbb{R}$ for every measure zero subset G of \mathbb{R} . This is a notion which is dual to a strong measure zero subset of \mathbb{R} , since Galvin, Mycielski, and Solovay proved (see e.g. [1, p. 405]) that: $X\subset\mathbb{R}$ is strong measure zero if and only if $X+M\neq\mathbb{R}$ for every meager subset M of \mathbb{R} .

Now, although every γ -set is strong measure zero, under the Martin's axiom Bartoszyński and Recław [2] constructed a γ -set T in $\mathbb R$ which is not strongly meager. In what follows we will show that the existence of such a set follows also from CPA same are construction is a generalization of that used in the proof of Theorem 3.4.

In the proof we will use the following notation. For $A, B \subset \omega$ we define A+B as the symmetric difference between A and B. Upon identification of a set $A \subset \omega$ with its characteristic function $\chi_A \in 2^\omega$ this definition is motivated by the fact that $\chi_{A+B}(n) = \chi_A(n) +_2 \chi_B(n)$, where $+_2$ is the addition modulo 2. Also, let $\bar{\mathcal{J}} = \{J_n \in [\omega]^{2^n} : n < \omega\}$ be a family of pairwise disjoint sets and let \tilde{G} be the family of all $W \subset \omega$ which are disjoint with infinitely many $J \in \bar{\mathcal{J}}$. Notice that \tilde{G} has measure zero with respect to the standard measure on $\mathcal{P}(\omega)$ induced by the product measure on 2^ω .

Lemma 4.1 If $\mathcal{J} \in [\bar{\mathcal{J}}]^{\omega}$ and P is a cube in $\mathcal{P}(\omega)$ then there exists a subcube Q of P and a set $V \subset \bigcup \mathcal{J}$ containing infinitely many $J \in \mathcal{J}$ such that $V + Q \subset \tilde{G}$.

PROOF. Let $D = \bigcup \mathcal{J}$ and

$$H = \{ \langle U, W \rangle \in \mathcal{P}(D) \times \mathcal{P}(\omega) \colon (U + W) \cap J = \emptyset \text{ for infinitely many } J \in \mathcal{J} \}$$

$$\subseteq \{ \langle U, W \rangle \in \mathcal{P}(D) \times \mathcal{P}(\omega) \colon U + W \in \tilde{G} \}.$$

Note that H is a G_{δ} subset of $\mathcal{P}(D) \times \mathcal{P}(\omega)$ since $H_J = \{\langle U, W \rangle : (U+W) \cap J = \emptyset\}$ is open for every $J \in \mathcal{J}$. Moreover horizontal sections of H are dense in $\mathcal{P}(D)$. So, $\bar{H} = H \cap (\mathcal{P}(D) \times P)$ is a dense G_{δ} subset of $\mathcal{P}(D) \times P$, as all its horizontal sections are dense. Thus, by Kuratowski-Ulam theorem, there is a dense G_{δ} subset \mathcal{K}_0 of $\mathcal{P}(D)$ such that for every $U \in \mathcal{K}_0$ the vertical section \bar{H}_U of \bar{H} is dense in P. Now, since

$$\mathcal{K}_1 = \{ U \in \mathcal{P}(D) : J \subset U \text{ for infinitely many } J \in \mathcal{J} \}$$

is a dense G_{δ} there is a $V \in \mathcal{K}_0 \cap \mathcal{K}_1$. In particular, V contains infinitely many $J \in \mathcal{J}$ and \bar{H}_V is a dense G_{δ} subset of P. So, by Claim 1.4, there exists a subcube Q of P contained in \bar{H}_V . Thus, $Q \subset \bar{H}_V \subset \{W \in P: V + W \in \tilde{G}\}$ and so $V + Q \subset \tilde{G}$.

Theorem 4.2 CPA^{game} implies that there exists a γ -set $T \subset \mathcal{P}(\omega)$ such that $T + \tilde{G} = \mathcal{P}(\omega)$.

PROOF. We will use CPA_{cube}^{game} for the space $X = \mathcal{K} \cup \mathcal{P}(\omega)$, a direct sum of \mathcal{K} and $\mathcal{P}(\omega)$.

For $\alpha < \omega_1$ and an \subseteq *-decreasing sequence $\mathcal{V} = \{V_{\xi} \in [\omega]^{\omega} : \xi < \alpha\}$ such that each V_{ξ} contains infinitely many $J \in \bar{\mathcal{J}}$ let $W(\mathcal{V}) \in [\omega]^{\omega}$ be such that $\mathcal{J} = \{J \in \bar{\mathcal{J}} : J \subset W(\mathcal{V})\}$ is infinite and $W(\mathcal{V}) \subsetneq^* V_{\xi}$ for all $\xi < \alpha$. For a cube $P \in \operatorname{Perf}^*(\mathcal{K})$ we define a subcube $Q = Q(\mathcal{V}, P)$ of P and an infinite subset $V = V(\mathcal{V}, P)$ of $W = W(\mathcal{V})$ as follows. By Claim 1.4 we can find subcube P' of P such that either $P' \subset \mathcal{K}$ or $P' \subset \mathcal{P}(\omega)$.

If $P' \subset \mathcal{K}$ we proceed as in the proof of Theorem 3.4. We put $Y = \mathcal{V} \cup [\omega]^{<\omega}$ and we use Claim 1.4 to find a subcube Q of P' such that either $Q \cap \mathcal{K}_Y = \emptyset$ or $Q \subset \mathcal{K}_Y$. If $Q \cap \mathcal{K}_Y = \emptyset$ we put V = W. Otherwise we apply Lemma 3.3 to find V. If $P' \subset \mathcal{P}(\omega)$ we use Lemma 4.1 to find Q and V.

Consider the following strategy S for Player II:

$$S(\langle\langle P_n, Q_n \rangle: \eta < \xi \rangle, P_{\varepsilon}) = Q(\{V_n: \eta < \xi\}, P_{\varepsilon}),$$

where sets V_{η} are defined inductively by $V_{\eta} = V(\{V_{\zeta}: \zeta < \eta\}, P_{\eta})$. By CPA^{game} strategy S is not a winning strategy for Player II. So there exists a game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ played according to S in which and Player II loses, that is, $X = \bigcup_{\xi < \omega_1} Q_{\xi}$. Let $\mathcal{V} = \{V_{\xi}: \xi < \omega_1\}$ be a sequence associated with this game, which is strictly \subseteq *-decreasing, and let $T = \mathcal{V} \cup [\omega]^{<\omega}$. We claim that T is as desired.

The argument that T is a γ -set is the same as in the proof of Theorem 3.4. To see that $\mathcal{P}(\omega) \subset T + \tilde{G}$ notice that for every $A \in \mathcal{P}(\omega)$ there is an $\alpha < \omega_1$ such that $A \in Q_{\alpha}$. But then at step α we used Lemma 4.1 to find Q_{α} and V_{α} . In particular, $V_{\alpha} + Q_{\alpha} \subset \tilde{G}$. So, $A \in Q_{\alpha} \subset V_{\alpha} + \tilde{G} \subset T + \tilde{G}$.

Corollary 4.3 CPA^{game}_{cube} implies that there exists a γ -set $X \subset \mathbb{R}$ which is not strongly meager.

PROOF. This is the argument from [2]. Let T be as in Theorem 4.2 and let $f: \mathcal{P}(\omega) \to [0,1], \ f(A) = \sum_{i < \omega} 2^{-(i+1)} \chi_A(i)$. Then f is continuous, so X = f[T] is a γ -set. Let $H = \bigcap_{m < \omega} \bigcup_{n > m} f[J_n]$. Then H has measure zero and it is easy to see that $[0,1] = f[\mathcal{P}(\omega)] \subset f[T] + H = X + H$. Then $\bar{G} = H + \mathbb{Q}$ has measure zero and $X + \bar{G} = \mathbb{R}$.

5 Uncountable strongly meager γ -sets in \mathbb{R}

Let X be a Polish space with topology τ . We say that $\mathcal{U} \subset \tau$ is a cover of $Z \subset [X]^{<\omega}$ provided for every $A \in Z$ there is a $U \in \mathcal{U}$ with $A \subset U$. Following [7] we say that a subset S of X is a $strong \ \gamma$ -set provided there exists an increasing sequence $\langle k_n < \omega : n < \omega \rangle$ such that for every sequence $\langle J_n \subset \tau : n < \omega \rangle$, where each J_n is a cover of $[X]^{k_n}$, there exists a sequence $\langle D_n \in J_n : n < \omega \rangle$ with $X \subset \bigcup_{n < \omega} \bigcap_{m > n} D_m$. It is proved in [7] that every strong γ -set $X \subset \mathbb{R}$ is strongly meager. The goal of this section is to construct, under $CPA_{\text{cube}}^{\text{game}}$, an uncountable strong γ -set in $\mathcal{P}(\omega)$. So, after identifying $\mathcal{P}(\omega)$ with its homeomorphic copy in \mathbb{R} , this will become an uncountable γ -set in \mathbb{R} which is strongly meager. Under Martin's axiom a strong γ -set in $\mathcal{P}(\omega)$ of cardinality continuum exists, see [7].

Let \mathcal{B}_0 be a countable basis for the topology of $\mathcal{P}(\omega)$ and let \mathcal{B} be the collection of all finite unions of elements from \mathcal{B}_0 . Since every open cover of $[\mathcal{P}(\omega)]^k$, $k < \omega$, contains a refinement from \mathcal{B} , in the definition of strong γ -set it is enough to consider only sequences $\langle J_n : n < \omega \rangle$ with $J_n \subset \mathcal{B}$.

Now, consider \mathcal{B} with the discrete topology. Since \mathcal{B} is countable, the space \mathcal{B}^{ω} , considered with the product topology, is a Polish space and so is $\mathcal{X} = (\mathcal{B}^{\omega})^{\omega}$. For $J \in \mathcal{X}$ we will write J_n in place of J(n). It is easy to see that a subbasis for the topology of \mathcal{X} is given for the clopen sets

$$\{J \in \mathcal{X}: J_n(m) = B\},\$$

where $n, m < \omega$ and $B \in \mathcal{B}$.

For the reminder of this section fix an increasing sequence $\langle k_n < \omega : n < \omega \rangle$ such that $k_n \ge n \ 2^n + n$ for every $n < \omega$. Then we have the following lemma.

Lemma 5.1 Let $X \in [\omega]^{\omega}$ and let F be a countable subset of $\mathcal{P}(\omega)$ such that $[\omega]^{<\omega} \subset F$. Assume that P is a compact subset of \mathcal{X} such that for every $J \in P$ and $n < \omega$ the family $J_n[\omega] = \{J_n(m): m < \omega\}$ covers $[F]^{k_n}$. Then there exists a set $Y \in [X]^{\omega}$ and for each $J \in P$ a sequence $\langle D_n^J \in J_n: n < \omega \rangle$ such that $F \cup Y^* \subset \bigcup_{n < \omega} \bigcap_{m > n} D_m^J$.

PROOF. Let $\{F_n: n < \omega\}$ be an enumeration of $[\omega]^{<\omega}$ such that $F_n \subset n$ for all $n < \omega$ and let $F = \{f_n: n < \omega\}$. We will construct inductively the sequences $\langle s_n \in X: n < \omega \rangle$ and $\langle \{D_n^J \in J_n[\omega]: J \in P\}: n < \omega \rangle$ such that for every $n < \omega$, $J \in P$, and $A \subset \omega$ we have

(i) $\{f_i : i < n\} \subset D_n^J \text{ and } s_n < s_{n+1};$

(ii) if
$$i < j \le n+1$$
 and $(A \cap s_{n+1}) \setminus \{s_0, \ldots, s_n\} = F_i$ then $A \in D_j^J$.

We chose $s_0 \in X$ and $\{D_n^J \in J_n[\omega]: J \in P\}$ arbitrarily. Then conditions (i) and (ii) are trivially satisfied. Next, assume that the sequence $\{s_i: i \leq n\}$ is already constructed. We will construct s_{n+1} and sets D_{n+1}^J as follows.

Let

$$Q = \{ q \in [\omega]^{<\omega} : q \setminus \{s_0, \dots, s_n\} = F_i \text{ for some } i \le n \}.$$

Then $|Q| \leq (n+1) \ 2^{n+1}$ and $|Q \cup \{f_0, \dots, f_n\}| \leq k_{n+1}$. Fix $J \in P$. Since $J_{n+1}[\omega]$ covers $[F]^{\leq k_{n+1}}$, there exists a $\bar{D}_{n+1}^J \in J_{n+1}[\omega]$ containing $Q \cup \{f_0, \ldots, f_n\}$. Since D_{n+1}^J is open and covers finite set Q, there is an $s_{n+1}^J > s_n$ in X such that for every $q \in Q$

$$\{x \subset \omega : x \cap s_{n+1}^J = q \cap s_{n+1}^J\} \subset \bar{D}_{n+1}^J.$$

Notice that

(*) for every $A \subset \omega$ and $\bar{s}_{n+1} \geq s_{n+1}^J$ condition (ii) holds.

Indeed, assume that $(A \cap \bar{s}_{n+1}) \setminus \{s_0, \dots, s_n\} = F_i$ for some $i < j \le n+1$. If $j \leq n$ then $n \geq 1$ and since $F_i \subset i \subset s_{n-1}$ we have

$$(A \cap s_n) \setminus \{s_0, \dots, s_{n-1}\} = (A \cap \bar{s}_{n+1}) \setminus \{s_0, \dots, s_n\} = F_i.$$

So, by the inductive assumption, $A \in D_i^J$. If j = n + 1 then $q = A \cap \bar{s}_{n+1} \in Q$. So $A \in \{x \subset \omega : x \cap \bar{s}_{n+1} = q \cap \bar{s}_{n+1}\} \subset \{x \subset \omega : x \cap s_{n+1}^J = q \cap s_{n+1}^J\} \subset \bar{D}_{n+1}^J$, finishing the proof of (*).

For each $J \in P$ let $m^J < \omega$ be such that $J_{n+1}(m^J) = \bar{D}_{n+1}^J$ and define $U_J = \{K \in \mathcal{X}: K_{n+1}(m^J) = \bar{D}_{n+1}^J\}$. Then U_J is an open neighborhood of J. In particular, $\{U_J: J \in P\}$ is an open cover of a compact set P, so there exists a finite $P_0 \subset P$ such that $P \subset \bigcup \{U_{\bar{J}}: \bar{J} \in P_0\}$. Choose $s_{n+1} \in X$ such that $s_{n+1} \ge \max\{s_{n+1}^J : \bar{J} \in P_0\}$. Moreover, for every $J \in P$ choose $\bar{J} \in P_0$ such that $J\in U_{\bar{J}}$ and define $D_{n+1}^J=\bar{D}_{n+1}^{\bar{J}}.$ It is easy to see that, by (*), conditions (i) and (ii) are preserved. This completes the inductive construction.

Put $Y = \{s_n : n < \omega\}$. To see that it satisfies the lemma pick an arbitrary

 $J \in P$. We will show that $F \cup Y^* \subset \bigcup_{n < \omega} \bigcap_{m > n} D_m^J$. Clearly $F \subset \bigcup_{n < \omega} \bigcap_{m > n} D_m^J$ since, by (i), $f_n \in D_m^J$ for every m > n. So, fix an $A \in Y^*$. Then $A \setminus Y = F_i$ for some $i < \omega$. Let $n < \omega$ be such that i < n and $s_n > \max F_i$. Then for every m > n we have $i < m \le m+1$ and $(A \cap s_{m+1}) \setminus \{s_0, \ldots, s_m\} = F_i$. So, by (ii), we have $A \in D_m^J$ for every m > n. Thus, $A \in \bigcap_{m>n} D_m^J$.

Lemma 5.2 If $F \subset \mathcal{P}(\omega)$ is countable then the set

$$\mathcal{X}_F = \{ J \in \mathcal{X} : J_n[\omega] \text{ covers } [F]^{k_n} \text{ for every } n < \omega \}$$

is Borel in \mathcal{X} .

PROOF. This follows from the fact that

$$\mathcal{X}_F = \bigcap_{n < \omega} \bigcap_{A \in [F]^{k_n}} \bigcup_{m < \omega} \bigcup_{A \subset B \in \mathcal{B}} \{J \in \mathcal{X} : J_n(m) = B\}$$

since each set $\{J \in \mathcal{X}: J_n(m) = B\}$ is clopen in \mathcal{X} . Thus, \mathcal{X}_F is a G_δ -set.

Theorem 5.3 CPA^{game}_{cube} implies that there exists an uncountable strong γ -set in $\mathcal{P}(\omega)$.

PROOF. For $\alpha < \omega_1$ and an \subseteq *-decreasing sequence $\mathcal{V} = \{V_{\xi} \in [\omega]^{\omega} : \xi < \alpha\}$ let $W(\mathcal{V}) \in [\omega]^{\omega}$ be such that $W(\mathcal{V}) \subsetneq^* V_{\xi}$ for all $\xi < \alpha$. Moreover, if $P \in \operatorname{Perf}^*(\mathcal{X})$ is a cube then we define a subcube $Q = Q(\mathcal{V}, P)$ of P and an infinite subset $Y = V(\mathcal{V}, P)$ of $X = W(\mathcal{V})$ as follows. Let $F = \mathcal{V} \cup [\omega]^{<\omega}$ and choose a subcube Q of P such that either $Q \cap \mathcal{X}_F = \emptyset$ or $Q \subset \mathcal{X}_F$. This can be done by Claim 1.4 since \mathcal{X}_F is Borel. If $Q \cap \mathcal{X}_F = \emptyset$ we put Y = X. Otherwise we apply Lemma 5.1 to find Y.

Consider the following strategy S for Player II:

$$S(\langle \langle P_n, Q_n \rangle : \eta < \xi \rangle, P_{\varepsilon}) = Q(\{V_n : \eta < \xi\}, P_{\varepsilon}),$$

where sets V_{η} are defined inductively by $V_{\eta} = V(\{V_{\zeta}: \zeta < \eta\}, P_{\eta})$. By CPA^{game} strategy S is not a winning strategy for Player II. So there exists a game $\langle \langle P_{\xi}, Q_{\xi} \rangle : \xi < \omega_1 \rangle$ played according to S in which and Player II loses, that is, $\mathcal{X} = \bigcup_{\xi < \omega_1} Q_{\xi}$. Let $\mathcal{V} = \{V_{\xi}: \xi < \omega_1\}$ be a sequence associated with this game, which is strictly \subseteq *-decreasing, and let $T = \mathcal{V} \cup [\omega]^{<\omega}$. We claim that T is a strong γ -set.

Indeed, let $\langle \mathcal{U}_n \subset \mathcal{B}: n < \omega \rangle$ be such that \mathcal{U}_n covers $[T]^{k_n}$ for every $n < \omega$. Then there is a $J \in \mathcal{X}$ such that $J_n[\omega] = \mathcal{U}_n$ for every $n < \omega$. Let $\alpha < \omega_1$ be such that $J \in Q_\alpha$. Then $J \in \mathcal{X}_{\{V_\eta: \eta < \alpha\} \cup [\omega] < \omega}$, so we must have used Lemma 5.1 to get Q_α . In particular, there is a sequence $\langle D_n^J \in J_n[\omega] = \mathcal{U}_n: n < \omega \rangle$ such that $([\omega]^{<\omega} \cup \{V_\eta: \eta < \alpha\}) \cup (V_\alpha)^* \subset \bigcup_{n < \omega} \bigcap_{m > n} D_m^J$. So, $T \subset \bigcup_{n < \omega} \bigcap_{m > n} D_m^J$, as $\{V_\eta: \alpha \leq \eta < \omega_1\} \subset (V_\alpha)^*$.

Since every homeomorphic image of a strong γ -set is evidently a strong γ -set, we obtain immediately the following conclusion.

Corollary 5.4 CPA^{game}_{cube} implies that there exists an uncountable γ -set in \mathbb{R} which is strongly meager.

It is worth to mention that a construction of an uncountable strong γ -set in $\mathcal{P}(\omega)$ under $\operatorname{CPA}_{\operatorname{cube}}^{\operatorname{game}}$ can be also done in a formalism similar to that used in Section 3. In order to do it, we need the following definitions and facts. For a fixed sequence $\bar{k} = \langle k_n < \omega : n < \omega \rangle$ we say that $\mathcal{A} \subset (\mathcal{P}(\omega))^{\omega}$ is \bar{k} -centered provided for every $n < \omega$ any k_n -many sets from $\{A(n): A \in \mathcal{A}\}$ have a common point; $B \in \omega^{\omega}$ is a quasi-intersection of $\mathcal{A} \subset (\mathcal{P}(\omega))^{\omega}$ provided for every $A \in \mathcal{A}$ there is infinitely many $n < \omega$ with $B(n) \in A(n)$. Now, if \mathcal{K}^* is a family of all continuous functions from $\mathcal{P}(\omega)$ to $(\mathcal{P}(\omega))^{\omega}$ then the following is true:

A set $X \subset \mathcal{P}(\omega)$ is a strong γ -set if and only if there exists an increasing sequence $\bar{k} = \langle k_n < \omega : n < \omega \rangle$ such that for every $f \in \mathcal{K}^*$ if f[X] is \bar{k} -centered then f[X] has a quasi-intersection.

With this characterization in hand we can construct an uncountable strong γ -set in $\mathcal{P}(\omega)$ by applying CPA^{game}_{cube} to the space \mathcal{K}^* .

References

- [1] T. Bartoszyński, H. Judah, Set Theory, A K Peters, 1995.
- [2] T. Bartoszyński, I. Recław, Not every γ -set is strongly meager, Set theory (Boise, ID, 1992–1994), 25–29, Contemp. Math. **192**, Amer. Math. Soc., Providence, RI, 1996.
- [3] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts **39**, Cambridge Univ. Press 1997.
- [4] K. Ciesielski, J. Pawlikowski, Crowded and selective ultrafilters under the Covering Property Axiom, preprint*.²
- [5] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA_{cube} and its consequences, Fund. Math., to appear. (Preprint* available.)
- [6] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA, version of September 2002, work in progress*.
- [7] F. Galvin, A.W. Miller, γ -sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145–155.
- [8] J. Gerlits, Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151–161.
- [9] F. Jordan, Generalizing the Blumberg theorem, Real Anal. Exchange 27(2) (2001–2002), 423–439. (Preprint* available.)
- [10] A. W. Miller, Covering 2^{ω} with ω_1 disjoint closed sets, The Kleene Symposium, North-Holland, Amsterdam, 1980, 415–421.
- [11] A. Nowik, Possibly there is no uniformly completely Ramsey null set of size 2^{ω} , Colloq. Math. **93** (2002), 251–258. (Preprint* available.)
- [12] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43–54.

²Preprints marked by * are available in electronic form from Set Theoretic Analysis Web Page: http://www.math.wvu.edu/~kcies/STA/STA.html