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Abstract

In the paper we formulate a Covering Property Axiom CPAgame
cube , which

holds in the iterated perfect set model, and show that it implies the ex-
istence of uncountable strong γ-sets in R (which are strongly meager) as
well as uncountable γ-sets in R which are not strongly meager. These
sets must be of cardinality ω1 < c, since every γ-set is universally null,
while CPAgame

cube implies that every universally null has cardinality less than
c = ω2.

We will also show that CPAgame
cube implies the existence of a partition of

R into ω1 null compact sets.

1 Axiom CPAgame
cube and other preliminaries

Our set theoretic terminology is standard and follows that of [3]. In particular,
|X| stands for the cardinality of a set X and c = |R|. The Cantor set 2ω will
be denoted by a symbol C. We use term Polish space for a complete separable
metric space without isolated points. For a Polish space X, the symbol
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Perf(X) will denote the collection of all subsets of X homeomorphic to C. We
will consider Perf(X) as ordered by inclusion.

Axiom CPAgame
cube was first formulated by Ciesielski and Pawlikowski in [4].

(See also [6].) It is a simpler version of a Covering Property Axiom CPA which
holds in the iterated perfect set model. (See [4] or [6].) In order to formulate
CPAgame

cube we need the following terminology and notation. A subset C of a
product Cω of the Cantor set is said to be a perfect cube if C =

∏
n∈ω Cn, where

Cn ∈ Perf(C) for each n. For a fixed Polish space X let Fcube stand for the
family of all continuous injections from a perfect cube C ⊂ Cω onto a set P from
Perf(X). We consider each function f ∈ Fcube from C onto P as a coordinate
system imposed on P . We say that P ∈ Perf(X) is a cube if we consider it with
(implicitly given) witness function f ∈ Fcube onto P , and Q is a subcube of a
cube P ∈ Perf(X) provided Q = f [C], where f ∈ Fcube is the witness function
for P and C ⊂ dom(f) ⊂ Cω is a perfect cube. Here and in what follows symbol
dom(f) stands for the domain of f .

We say that a family E ⊂ Perf(X) is cube dense in Perf(X) provided every
cube P ∈ Perf(X) contains a subcube Q ∈ E . More formally, E ⊂ Perf(X) is
cube dense provided

∀f ∈ Fcube ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E). (1)

It is easy to see that the notion of cube density is a generalization of a notion
of density with respect to 〈Perf(X),⊆〉, that is, if E is cube dense in Perf(X)
then E is dense in Perf(X). On the other hand, the converse implication is not
true, as shown by the following simple example.

Example 1.1 ([5, 6]) Let X = C×C and let E be the family of all P ∈ Perf(X)
such that either all vertical sections of P are countable, or else all horizontal
sections of P are countable. Then E is dense in Perf(X), but it is not cube
dense in Perf(X).

It is also worth to notice that in order to check that E is cube dense it is
enough to consider in condition (1) only functions f defined on the entire space
Cω, that is

Fact 1.2 ([4, 5, 6]) E ⊂ Perf(X) is cube dense if and only if

∀f ∈ Fcube, dom(f) = Cω, ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E). (2)

Let Perf∗(X) stand for the family of all sets P such that either P ∈ Perf(X)
or P is a singleton in X. In what follows we will consider singletons as constant
cubes, that is, with the constant coordinate function from Cω onto the singleton.
In particular, a subcube of a constant cube is the same singleton.

Consider the following game GAMEcube(X) of length ω1. The game has
two players, Player I and Player II. At each stage ξ < ω1 of the game Player I
can play an arbitrary cube Pξ ∈ Perf∗(X) and Player II must respond with a
subcube Qξ of Pξ. The game 〈〈Pξ, Qξ〉: ξ < ω1〉 is won by Player I provided

⋃
ξ<ω1

Qξ = X;
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otherwise the game is won by Player II.
By a strategy for Player II we will understand any function S such that

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) is a subcube of Pξ, where 〈〈Pη, Qη〉: η < ξ〉 is any
partial game. (We abuse here slightly the notation, since function S depends
also on the implicitly given coordinate functions fη:Cω → Pη making each Pη

a cube.) A game 〈〈Pξ, Qξ〉: ξ < ω1〉 is played according to a strategy S for
Player II provided Qξ = S(〈〈Pη, Qη〉: η < ξ〉, Pξ) for every ξ < ω1. A strategy
S for Player II is a winning strategy for Player II provided Player II wins any
game played according to the strategy S.

Here is the axiom.

CPAgame
cube : c = ω2 and for any Polish space X Player II has no winning strategy
in the game GAMEcube(X).

Notice that

Proposition 1.3 ([4, 6]) Axiom CPAgame
cube implies

CPAcube: c = ω2 and for every Polish space X and every cube dense family
E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \

⋃
E0| ≤ ω1.

In [4] (see also [6]) it was proved that CPAcube (so, also CPAgame
cube ) implies

that cof(N ) = ω1 and that all perfectly meager sets and all universally null sets
have cardinality at most ω1.

In what follows we will also use the following simple fact. Its proof can be
found in [5] and [6].

Claim 1.4 Consider Cω with standard topology and standard product measure.
If G is a Borel subset of Cω which is either of second category or of positive
measure then G contains a perfect cube

∏
i<ω Pi.

2 Disjoint coverings by ω1 null compacts

Theorem 2.1 Assume that CPAgame
cube holds and let X be a Polish space. If

D ⊂ Perf(X) is Fcube-dense and it is closed under perfect subsets then there
exists a partition of X into ω1 disjoint sets from D ∪ {{x}:x ∈ X}.

In the proof we will use the following easy lemma.

Lemma 2.2 Let X be a Polish space and let P = {Pi: i < ω} ⊂ Perf∗(X).
For every cube P ∈ Perf(X) there exists a subcube Q of P such that either
Q ∩

⋃
i<ω Pi = ∅ or Q ⊂ Pi for some i < ω.

Proof. Let f ∈ Fcube be such that f [Cω] = P .
If P ∩

⋃
i<ω Pi is meager in P then, by Claim 1.4, we can find a subcube Q

of P such that Q ⊂ P \
⋃

i<ω Pi.
If P ∩

⋃
i<ω Pi is not meager in P then there exists an i < ω such that P ∩Pi

has a non-empty interior in P . Thus, there exists a basic clopen set C in Cω,
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which is a perfect cube, such that f [C] ⊂ Pi. So, Q = f [C] is a desired subcube
of P .

Proof of Theorem 2.1. For a cube P ∈ Perf(X) and a countable family
P ⊂ Perf∗(X) let D(P ) ∈ D be a subcube of P and Q(P, P ) ∈ D be as in
Lemma 2.2 used with D(P ) in place of P . For a singleton P ∈ Perf∗(X) we
just put Q(P, P ) = P .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Qη: η < ξ}, Pξ).

By CPAgame
cube strategy S is not a winning strategy for Player II. So there exists

a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which Player II looses, that
is, X =

⋃
ξ<ω1

Qξ.
Notice that for every ξ < ω1 either Qξ ∩

⋃
η<ξ Qη = ∅ or there is an η < ω1

such that Qξ ⊂ Qη. Let

F =


Qξ: ξ < ω1 & Qξ ∩

⋃
η<ξ

Qη = ∅


 .

Then F is as desired.

Since a family of all measure zero perfect subsets of Rn is Fcube-dense we
get the following corollary.

Corollary 2.3 CPAgame
cube implies that there exists a partition of Rn into ω1

disjoint closed nowhere dense measure zero sets.

Note that the conclusion of Corollary 2.3 does not follow from the fact that
Rn can be covered by ω1 perfect measure zero subsets. (See [10, thm. 6].)

3 Uncountable γ-sets

In this subsection we will prove that CPAgame
cube implies the existence of an un-

countable γ-set. Recall that a subset T of a Polish space X is a γ-set provided
for every open ω-cover U of T there is a sequence 〈Un ∈ U :n < ω〉 such that
T ⊂

⋃
n<ω

⋂
i>n Ui, where U is an ω-cover of T if for every finite set A ⊂ T

there a U ∈ U with A ⊂ U .
γ-sets were introduced by Gerlits and Nagy [8]. They were studied by Galvin

and Miller [7], RecBlaw [12], Bartoszyński, RecBlaw [2], and others. It is known
that under the Martin’s axiom there are γ-sets of cardinality continuum [7]. On
the other hand, every γ-set is strong measure zero [8], so it is consistent with
ZFC that every γ-set is countable. Moreover, CPAgame

cube implies that every γ-set
has cardinality at most ω1 < c, since every strong measure zero is universally
null and under CPAgame

cube every universally null has cardinality ≤ ω1.
In what follows we will use the characterization of γ-sets due to RecBlaw [12].

To formulate it we need to fix some terminology. Thus, in what follows we
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will consider P(ω) as a Polish space by identifying it with 2ω via characteristic
functions. For A,B ⊂ ω we will write A ⊆∗ B when |A \B| < ω. We say that a
family A ⊂ P(ω) is centered provided

⋂
A0 is infinite for every finite A0 ⊂ A;

and A has a pseudointersection provided there exists a B ∈ [ω]ω such that
B ⊆∗ A for every A ∈ A. In addition for the rest of this section K will stand
for the family of all continuous functions from P(ω) to P(ω) and for A ∈ P(ω)
we put A∗ = {B ∈ P(ω):B ⊆∗ A}.

Proposition 3.1 (Rec�law [12]) For T ⊂ P(ω) the following conditions are
equivalent.

(i) T is a γ-set.

(ii) For every f ∈ K if f [T ] is centered than f [T ] has a pseudointersection.

In the proof that follows we will apply axiom CPAgame
cube to the cubes from the

space K. The fact that the subcubes given by the axiom cover K will allow us
to use the above characterization to conclude that the constructed set is indeed
a γ-set. It is also possible to construct an uncountable γ-set by applying axiom
CPAgame

cube to the space Y of all ω-covers of P(ω),1 similarly as in Section 5.
However, we believe that greater diversification of spaces to which we apply
CPAgame

cube makes the paper more interesting.
In what follows we will need the following two lemmas.

Lemma 3.2 For every countable set Y ⊂ P(ω) the set

KY = {f ∈ K: f [Y ] is centered}

is Borel in K.

Proof. Let Y = {yi: i < ω} and note that

KY =
⋂

n,k<ω

⋃
m≥k

⋂
i<n

{f ∈ K:m ∈ f(yi)}.

So, KY is a Gδ set, since each set {f ∈ K:m ∈ f(yi)} is open in K.

Lemma 3.3 Let Y ⊂ P(ω) be countable and such that [ω]<ω ⊂ Y . For every
W ∈ [ω]ω and a compact set Q ⊂ KY there exist V ∈ [W ]ω and a continuous
function ϕ:Q→ [ω]ω such that ϕ(f) is a pseudointersection of f [Y ] ∪ f [V ∗] for
every f ∈ Q.

Moreover, if J is an infinite family of non-empty pairwise disjoint finite
subsets of W then we can choose V such that it contains infinitely many J ’s
from J .

1More precisely, if B0 is a countable base for P(ω) and B is the collection of all finite unions
of elements from B0 then we can define Y as Bω considered with the product topology, where
B is taken with discrete topology.
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Proof. First notice that there exists a continuous ψ:Q→ [ω]ω such that ψ(f)
is a pseudointersection of f [Y ] for every f ∈ Q.

Indeed, let Y = {yi: i < ω} and for every f ∈ Q let ψ(f) =
{
nf

i : i < ω
}

,

where nf
0 = min f(y0) and nf

i+1 = min
{
n ∈

⋂
j≤i f(yj):n > n

f
i

}
. The set in

the definition of nf
i+1 is non-empty, since f [Y ] is centered, as f ∈ Q ⊂ KY . It

is easy to see that ψ is continuous and that ψ(f) is as desired.
We will define a sequence 〈Ji ∈ J : i < ω〉 such that maxJi < minJi+1 for

every i < ω. We are aiming for V =
⋃

i<ω Ji.
A set J0 ∈ J is chosen arbitrarily. Now, if Ji is already defined for some

i < ω we define Ji+1 as follows. Let wi = 1 + maxJi. Thus Ji ⊂ wi. For every
f ∈ Q define

mf
i = min

(
ψ(f) ∩

⋂
f [P(wi)]

)
.

The set ψ(f)∩
⋂
f [P(wi)] is infinite, since ψ(f) is a pseudointersection of f [Y ]

while P(wi) ⊂ Y . Let kf
i = minKf

i , where

Kf
i =

{
k ≥ wi:m

f
i ∈ f(a) for all a ⊂ ω with a ∩ k ⊂ wi

}
.

The fact that Kf
i �= ∅ follows from the continuity of f since mf

i ∈ f(a) for all
a ⊂ wi. Notice that, by the continuity of ψ and the assignment of kf

i , for every
p < ω the set Up = {f ∈ Q: kf

i < p} is open in Q. Since sets {Up: p < ω} form
an increasing cover of Q, compactness of Q implies the existence of pi < ω such
that Q ⊂ Upi . Thus, wi ≤ kf

i < pi for every f ∈ Q. We define Ji+1 as an
arbitrary element of J disjoint with pi and notice that

mf
i ∈ f(a) for every f ∈ Q and a ⊂ ω with a ∩minJi+1 ⊂ wi.

This finishes the inductive construction.
Let V =

⋃
i<ω Ji ⊂ W and ϕ(f) = {mf

i : i < ω}. It is easy to see that ϕ is
continuous (though, we will not use this fact). To finish the proof it is enough
to show that ϕ(f) is a pseudointersection of f [Y ] ∪ f [V ∗] for every f ∈ Q.

So, fix an f ∈ Q. Clearly ϕ(f) ⊂ ψ(f) is a pseudointersection of f [Y ] since
so was ψ(f). To see that ϕ(f) is a pseudointersection of f [V ∗] take an a ⊆∗ V .
Then for almost all i < ω we have a ∩minJi+1 ⊂ wi, so that mf

i ∈ f(a). Thus
ϕ(f) ⊆∗ f(a).

Theorem 3.4 CPAgame
cube implies that there exists an uncountable γ-set in P(ω).

Proof. For α < ω1 and an ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω: ξ < α} let
W (V) ∈ [ω]ω be such that W (V) �∗ Vξ for all ξ < α. Moreover, if P ∈ Perf∗(K)
is a cube then we define a subcube Q = Q(V, P ) of P and an infinite subset
V = V (V, P ) ofW =W (V) as follows. Let Y = V∪ [ω]<ω and choose a subcube
Q of P such that either Q∩KY = ∅ or Q ⊂ KY . This can be done by Claim 1.4
since KY is Borel. If Q∩KY = ∅ we put V =W . Otherwise we apply Lemma 3.3
to find V .
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Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Vη: η < ξ}, Pξ),

where sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). In other
words, Player II remembers (recovers) sets Vη associated with the cubes Pη

played so far, and he uses them (and Lemma 3.3) to get the next answer Qξ =
Q({Vη: η < ξ}, Pξ), while remembering (or recovering each time) the set Vξ =
V ({Vη: η < ξ}, Pξ).

By CPAgame
cube strategy S is not a winning strategy for Player II. So there

exists a game 〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which and Player II
loses, that is, K =

⋃
ξ<ω1

Qξ. Let V = {Vξ: ξ < ω1} be a sequence associated
with this game, which is strictly ⊆∗-decreasing, and let T = V ∪ [ω]<ω. We
claim that T is a γ-set.

In the proof we use Lemma 3.2. So, let f ∈ K be such that f [T ] is centered.
There exists an α < ω1 such that f ∈ Qα. Since f [{Vξ: ξ < α} ∪ [ω]<ω] ⊂ f [T ]
we must have applied Lemma 3.3 in the choice of Qα and Vα. Therefore, the
family f [{Vξ: ξ < α} ∪ [ω]<ω ∪ V ∗

α ] has a pseudointersection. So, f [T ] has a
pseudointersection too, since T ⊂ {Vξ: ξ < α} ∪ [ω]<ω ∪ V ∗

α .

Since P(ω) embeds into any Polish space, we conclude that, under CPAgame
cube ,

any Polish space contains an uncountable γ-set. In particular, there exists an
uncountable γ-set T ⊂ R.

4 γ-sets in R which are not strongly meager

Recall (see e.g. [1, p. 437]) that a subset X of R is strongly meager provided
X + G �= R for every measure zero subset G of R. This is a notion which is
dual to a strong measure zero subset of R, since Galvin, Mycielski, and Solovay
proved (see e.g. [1, p. 405]) that: X ⊂ R is strong measure zero if and only if
X +M �= R for every meager subset M of R.

Now, although every γ-set is strong measure zero, under the Martin’s axiom
Bartoszyński and RecBlaw [2] constructed a γ-set T in R which is not strongly
meager. In what follows we will show that the existence of such a set follows
also from CPAgame

cube . The construction is a generalization of that used in the
proof of Theorem 3.4.

In the proof we will use the following notation. For A,B ⊂ ω we define
A + B as the symmetric difference between A and B. Upon identification of a
set A ⊂ ω with its characteristic function χA ∈ 2ω this definition is motivated
by the fact that χA+B(n) = χA(n)+2

χ
B(n), where +2 is the addition modulo 2.

Also, let J̄ = {Jn ∈ [ω]2
n

:n < ω} be a family of pairwise disjoint sets and let
G̃ be the family of all W ⊂ ω which are disjoint with infinitely many J ∈ J̄ .
Notice that G̃ has measure zero with respect to the standard measure on P(ω)
induced by the product measure on 2ω.

Lemma 4.1 If J ∈ [J̄ ]ω and P is a cube in P(ω) then there exists a subcube Q
of P and a set V ⊂

⋃
J containing infinitely many J ∈ J such that V +Q ⊂ G̃.
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Proof. Let D =
⋃
J and

H = {〈U,W 〉 ∈ P(D)× P(ω): (U +W ) ∩ J = ∅ for infinitely many J ∈ J }
⊆ {〈U,W 〉 ∈ P(D)× P(ω):U +W ∈ G̃}.

Note thatH is aGδ subset of P(D)×P(ω) sinceHJ = {〈U,W 〉: (U+W )∩J = ∅}
is open for every J ∈ J . Moreover horizontal sections of H are dense in P(D).
So, H̄ = H ∩ (P(D)×P ) is a dense Gδ subset of P(D)×P , as all its horizontal
sections are dense. Thus, by Kuratowski-Ulam theorem, there is a dense Gδ

subset K0 of P(D) such that for every U ∈ K0 the vertical section H̄U of H̄ is
dense in P . Now, since

K1 = {U ∈ P(D):J ⊂ U for infinitely many J ∈ J }

is a dense Gδ there is a V ∈ K0 ∩K1. In particular, V contains infinitely many
J ∈ J and H̄V is a dense Gδ subset of P . So, by Claim 1.4, there exists a
subcube Q of P contained in H̄V . Thus, Q ⊂ H̄V ⊂ {W ∈ P :V +W ∈ G̃} and
so V +Q ⊂ G̃.

Theorem 4.2 CPAgame
cube implies that there exists a γ-set T ⊂ P(ω) such that

T + G̃ = P(ω).

Proof. We will use CPAgame
cube for the space X = K ∪ P(ω), a direct sum of K

and P(ω).
For α < ω1 and an ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω: ξ < α} such

that each Vξ contains infinitely many J ∈ J̄ let W (V) ∈ [ω]ω be such that
J = {J ∈ J̄ :J ⊂ W (V)} is infinite and W (V) �∗ Vξ for all ξ < α. For a cube
P ∈ Perf∗(K) we define a subcube Q = Q(V, P ) of P and an infinite subset
V = V (V, P ) of W = W (V) as follows. By Claim 1.4 we can find subcube P ′

of P such that either P ′ ⊂ K or P ′ ⊂ P(ω).
If P ′ ⊂ K we proceed as in the proof of Theorem 3.4. We put Y = V ∪ [ω]<ω

and we use Claim 1.4 to find a subcube Q of P ′ such that either Q ∩ KY = ∅
or Q ⊂ KY . If Q ∩ KY = ∅ we put V = W . Otherwise we apply Lemma 3.3 to
find V . If P ′ ⊂ P(ω) we use Lemma 4.1 to find Q and V .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Vη: η < ξ}, Pξ),

where sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). By CPAgame
cube

strategy S is not a winning strategy for Player II. So there exists a game
〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which and Player II loses, that
is, X =

⋃
ξ<ω1

Qξ. Let V = {Vξ: ξ < ω1} be a sequence associated with this
game, which is strictly ⊆∗-decreasing, and let T = V ∪ [ω]<ω. We claim that T
is as desired.

The argument that T is a γ-set is the same as in the proof of Theorem 3.4.
To see that P(ω) ⊂ T + G̃ notice that for every A ∈ P(ω) there is an α < ω1

such that A ∈ Qα. But then at step α we used Lemma 4.1 to find Qα and Vα.
In particular, Vα +Qα ⊂ G̃. So, A ∈ Qα ⊂ Vα + G̃ ⊂ T + G̃.
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Corollary 4.3 CPAgame
cube implies that there exists a γ-set X ⊂ R which is not

strongly meager.

Proof. This is the argument from [2]. Let T be as in Theorem 4.2 and let
f :P(ω) → [0, 1], f(A) =

∑
i<ω 2−(i+1)χ

A(i). Then f is continuous, so X = f [T ]
is a γ-set. Let H =

⋂
m<ω

⋃
n>m f [Jn]. Then H has measure zero and it is easy

to see that [0, 1] = f [P(ω)] ⊂ f [T ]+H = X+H. Then Ḡ = H+Q has measure
zero and X + Ḡ = R.

5 Uncountable strongly meager γ-sets in R

Let X be a Polish space with topology τ . We say that U ⊂ τ is a cover
of Z ⊂ [X]<ω provided for every A ∈ Z there is a U ∈ U with A ⊂ U .
Following [7] we say that a subset S of X is a strong γ-set provided there
exists an increasing sequence 〈kn < ω:n < ω〉 such that for every sequence
〈Jn ⊂ τ :n < ω〉, where each Jn is a cover of [X]kn , there exists a sequence
〈Dn ∈ Jn:n < ω〉 with X ⊂

⋃
n<ω

⋂
m>nDm. It is proved in [7] that every

strong γ-set X ⊂ R is strongly meager. The goal of this section is to construct,
under CPAgame

cube , an uncountable strong γ-set in P(ω). So, after identifying
P(ω) with its homeomorphic copy in R, this will become an uncountable γ-set
in R which is strongly meager. Under Martin’s axiom a strong γ-set in P(ω) of
cardinality continuum exists, see [7].

Let B0 be a countable basis for the topology of P(ω) and let B be the
collection of all finite unions of elements from B0. Since every open cover of
[P(ω)]k, k < ω, contains a refinement from B, in the definition of strong γ-set
it is enough to consider only sequences 〈Jn:n < ω〉 with Jn ⊂ B.

Now, consider B with the discrete topology. Since B is countable, the space
Bω, considered with the product topology, is a Polish space and so is X = (Bω)ω.
For J ∈ X we will write Jn in place of J(n). It is easy to see that a subbasis
for the topology of X is given for the clopen sets

{J ∈ X :Jn(m) = B},

where n,m < ω and B ∈ B.
For the reminder of this section fix an increasing sequence 〈kn < ω:n < ω〉

such that kn ≥ n 2n + n for every n < ω. Then we have the following lemma.

Lemma 5.1 Let X ∈ [ω]ω and let F be a countable subset of P(ω) such that
[ω]<ω ⊂ F . Assume that P is a compact subset of X such that for every J ∈ P
and n < ω the family Jn[ω] = {Jn(m):m < ω} covers [F ]kn . Then there exists
a set Y ∈ [X]ω and for each J ∈ P a sequence 〈DJ

n ∈ Jn:n < ω〉 such that
F ∪ Y ∗ ⊂

⋃
n<ω

⋂
m>nD

J
m.

Proof. Let {Fn:n < ω} be an enumeration of [ω]<ω such that Fn ⊂ n for all
n < ω and let F = {fn:n < ω}. We will construct inductively the sequences
〈sn ∈ X:n < ω〉 and 〈{DJ

n ∈ Jn[ω]:J ∈ P}:n < ω〉 such that for every n < ω,
J ∈ P , and A ⊂ ω we have
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(i) {fi: i < n} ⊂ DJ
n and sn < sn+1;

(ii) if i < j ≤ n+ 1 and (A ∩ sn+1) \ {s0, . . . , sn} = Fi then A ∈ DJ
j .

We chose s0 ∈ X and {DJ
n ∈ Jn[ω]:J ∈ P} arbitrarily. Then conditions (i)

and (ii) are trivially satisfied. Next, assume that the sequence {si: i ≤ n} is
already constructed. We will construct sn+1 and sets DJ

n+1 as follows.
Let

Q = {q ∈ [ω]<ω: q \ {s0, . . . , sn} = Fi for some i ≤ n}.
Then |Q| ≤ (n+ 1) 2n+1 and |Q ∪ {f0, . . . , fn}| ≤ kn+1.

Fix J ∈ P . Since Jn+1[ω] covers [F ]≤kn+1 , there exists a D̄J
n+1 ∈ Jn+1[ω]

containing Q ∪ {f0, . . . , fn}. Since D̄J
n+1 is open and covers finite set Q, there

is an sJn+1 > sn in X such that for every q ∈ Q

{x ⊂ ω:x ∩ sJn+1 = q ∩ sJn+1} ⊂ D̄J
n+1.

Notice that

(∗) for every A ⊂ ω and s̄n+1 ≥ sJn+1 condition (ii) holds.

Indeed, assume that (A ∩ s̄n+1) \ {s0, . . . , sn} = Fi for some i < j ≤ n+ 1.
If j ≤ n then n ≥ 1 and since Fi ⊂ i ⊂ sn−1 we have

(A ∩ sn) \ {s0, . . . , sn−1} = (A ∩ s̄n+1) \ {s0, . . . , sn} = Fi.

So, by the inductive assumption, A ∈ DJ
j . If j = n+ 1 then q = A ∩ s̄n+1 ∈ Q.

So A ∈ {x ⊂ ω:x ∩ s̄n+1 = q ∩ s̄n+1} ⊂ {x ⊂ ω:x ∩ sJn+1 = q ∩ sJn+1} ⊂ D̄J
n+1,

finishing the proof of (∗).
For each J ∈ P let mJ < ω be such that Jn+1(mJ) = D̄J

n+1 and define
UJ = {K ∈ X :Kn+1(mJ) = D̄J

n+1}. Then UJ is an open neighborhood of J .
In particular, {UJ :J ∈ P} is an open cover of a compact set P , so there exists
a finite P0 ⊂ P such that P ⊂

⋃
{UJ̄ : J̄ ∈ P0}. Choose sn+1 ∈ X such that

sn+1 ≥ max{sJ̄n+1: J̄ ∈ P0}. Moreover, for every J ∈ P choose J̄ ∈ P0 such that
J ∈ UJ̄ and define DJ

n+1 = D̄J̄
n+1. It is easy to see that, by (∗), conditions (i)

and (ii) are preserved. This completes the inductive construction.
Put Y = {sn:n < ω}. To see that it satisfies the lemma pick an arbitrary

J ∈ P . We will show that F ∪ Y ∗ ⊂
⋃

n<ω

⋂
m>nD

J
m.

Clearly F ⊂
⋃

n<ω

⋂
m>nD

J
m since, by (i), fn ∈ DJ

m for every m > n. So,
fix an A ∈ Y ∗. Then A \ Y = Fi for some i < ω. Let n < ω be such that
i < n and sn > maxFi. Then for every m > n we have i < m ≤ m + 1 and
(A ∩ sm+1) \ {s0, . . . , sm} = Fi. So, by (ii), we have A ∈ DJ

m for every m > n.
Thus, A ∈

⋂
m>nD

J
m.

Lemma 5.2 If F ⊂ P(ω) is countable then the set

XF = {J ∈ X :Jn[ω] covers [F ]kn for every n < ω}

is Borel in X .
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Proof. This follows from the fact that

XF =
⋂

n<ω

⋂
A∈[F ]kn

⋃
m<ω

⋃
A⊂B∈B

{J ∈ X :Jn(m) = B}

since each set {J ∈ X :Jn(m) = B} is clopen in X . Thus, XF is a Gδ-set.

Theorem 5.3 CPAgame
cube implies that there exists an uncountable strong γ-set

in P(ω).

Proof. For α < ω1 and an ⊆∗-decreasing sequence V = {Vξ ∈ [ω]ω: ξ < α} let
W (V) ∈ [ω]ω be such thatW (V) �∗ Vξ for all ξ < α. Moreover, if P ∈ Perf∗(X )
is a cube then we define a subcube Q = Q(V, P ) of P and an infinite subset
Y = V (V, P ) of X =W (V) as follows. Let F = V ∪ [ω]<ω and choose a subcube
Q of P such that either Q∩XF = ∅ or Q ⊂ XF . This can be done by Claim 1.4
since XF is Borel. If Q∩XF = ∅ we put Y = X. Otherwise we apply Lemma 5.1
to find Y .

Consider the following strategy S for Player II:

S(〈〈Pη, Qη〉: η < ξ〉, Pξ) = Q({Vη: η < ξ}, Pξ),

where sets Vη are defined inductively by Vη = V ({Vζ : ζ < η}, Pη). By CPAgame
cube

strategy S is not a winning strategy for Player II. So there exists a game
〈〈Pξ, Qξ〉: ξ < ω1〉 played according to S in which and Player II loses, that
is, X =

⋃
ξ<ω1

Qξ. Let V = {Vξ: ξ < ω1} be a sequence associated with this
game, which is strictly ⊆∗-decreasing, and let T = V ∪ [ω]<ω. We claim that T
is a strong γ-set.

Indeed, let 〈Un ⊂ B:n < ω〉 be such that Un covers [T ]kn for every n < ω.
Then there is a J ∈ X such that Jn[ω] = Un for every n < ω. Let α < ω1 be such
that J ∈ Qα. Then J ∈ X{Vη:η<α}∪[ω]<ω , so we must have used Lemma 5.1 to
get Qα. In particular, there is a sequence 〈DJ

n ∈ Jn[ω] = Un:n < ω〉 such that
([ω]<ω ∪ {Vη: η < α}) ∪ (Vα)∗ ⊂

⋃
n<ω

⋂
m>nD

J
m. So, T ⊂

⋃
n<ω

⋂
m>nD

J
m, as

{Vη:α ≤ η < ω1} ⊂ (Vα)∗.

Since every homeomorphic image of a strong γ-set is evidently a strong γ-set,
we obtain immediately the following conclusion.

Corollary 5.4 CPAgame
cube implies that there exists an uncountable γ-set in R

which is strongly meager.

It is worth to mention that a construction of an uncountable strong γ-set in
P(ω) under CPAgame

cube can be also done in a formalism similar to that used in
Section 3. In order to do it, we need the following definitions and facts. For
a fixed sequence k̄ = 〈kn < ω:n < ω〉 we say that A ⊂ (P(ω))ω is k̄-centered
provided for every n < ω any kn-many sets from {A(n):A ∈ A} have a common
point; B ∈ ωω is a quasi-intersection of A ⊂ (P(ω))ω provided for every A ∈ A
there is infinitely many n < ω with B(n) ∈ A(n). Now, if K∗ is a family of all
continuous functions from P(ω) to (P(ω))ω then the following is true:
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A set X ⊂ P(ω) is a strong γ-set if and only if there exists an
increasing sequence k̄ = 〈kn < ω:n < ω〉 such that for every f ∈ K∗

if f [X] is k̄-centered then f [X] has a quasi-intersection.

With this characterization in hand we can construct an uncountable strong γ-set
in P(ω) by applying CPAgame

cube to the space K∗.
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