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Abstract

In the paper we formulate a Covering Property Axiom CPAS%"®, which
holds in the iterated perfect set model, and show that it implies the ex-
istence of uncountable strong «y-sets in R (which are strongly meager) as
well as uncountable v-sets in R which are not strongly meager. These
sets must be of cardinality wi < ¢, since every ~y-set is universally null,
while CPAS2"® implies that every universally null has cardinality less than
C = Ww2.

We will also show that CPA2%"® implies the existence of a partition of

cube
R into w; null compact sets.

1 Axiom CPA®/"® and other preliminaries

Our set theoretic terminology is standard and follows that of [3]. In particular,
| X| stands for the cardinality of a set X and ¢ = |R|. The Cantor set 2¢ will
be denoted by a symbol €. We use term Polish space for a complete separable
metric space without isolated points. For a Polish space X, the symbol
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Perf(X) will denote the collection of all subsets of X homeomorphic to €. We
will consider Perf(X) as ordered by inclusion.

Axiom CPA®™ was first formulated by Ciesielski and Pawlikowski in [4].
(See also [6].) It is a simpler version of a Covering Property Axiom CPA which
holds in the iterated perfect set model. (See [4] or [6].) In order to formulate
CPAS we need the following terminology and notation. A subset C of a
product € of the Cantor set is said to be a perfect cube if C =[], ., Cn, where
Cp, € Perf(€) for each n. For a fixed Polish space X let Feupe stand for the
family of all continuous injections from a perfect cube C' C €“ onto a set P from
Perf(X). We consider each function f € Feupe from C onto P as a coordinate
system imposed on P. We say that P € Perf(X) is a cube if we consider it with
(implicitly given) witness function f € Feype onto P, and @ is a subcube of a
cube P € Perf(X) provided @ = f[C], where f € Feupe is the witness function
for P and C C dom(f) C €¥ is a perfect cube. Here and in what follows symbol
dom( f) stands for the domain of f.

We say that a family £ C Perf(X) is cube dense in Perf(X) provided every
cube P € Perf(X) contains a subcube @Q € €. More formally, £ C Perf(X) is

cube dense provided
Vf € Feube 39 € Feuve (g C f & range(g) € &). (1)

It is easy to see that the notion of cube density is a generalization of a notion
of density with respect to (Perf(X), C), that is, if £ is cube dense in Perf(X)
then & is dense in Perf(X). On the other hand, the converse implication is not
true, as shown by the following simple example.

Example 1.1 ([5, 6]) Let X = €x € and let £ be the family of all P € Perf(X)
such that either all vertical sections of P are countable, or else all horizontal
sections of P are countable. Then &£ is dense in Perf(X), but it is not cube
dense in Perf(X).

It is also worth to notice that in order to check that £ is cube dense it is
enough to consider in condition (1) only functions f defined on the entire space
¢« that is

Fact 1.2 ([4, 5, 6]) £ C Perf(X) is cube dense if and only if
Vf € Feube, dom(f) = €%, g € Feupe (9 C f & range(g) € &). (2)

Let Perf*(X) stand for the family of all sets P such that either P € Perf(X)
or P is a singleton in X. In what follows we will consider singletons as constant
cubes, that is, with the constant coordinate function from €% onto the singleton.
In particular, a subcube of a constant cube is the same singleton.

Consider the following game GAME upe(X) of length wy. The game has
two players, Player I and Player II. At each stage £ < w; of the game Player I
can play an arbitrary cube P € Perf*(X) and Player II must respond with a
subcube Q¢ of Pe. The game ((Pg,Q¢): £ < wi) is won by Player I provided

U Qe=x;

E<w
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otherwise the game is won by Player II.

By a strategy for Player II we will understand any function S such that
S(((Py,Qu):n < &), P¢) is a subcube of Pe, where ((P,,Qy):n < &) is any
partial game. (We abuse here slightly the notation, since function S depends
also on the implicitly given coordinate functions f,:€“ — P, making each P,
a cube.) A game ((P¢,Q¢):& < wi) is played according to a strategy S for
Player II provided Q¢ = S(((P,, Qn):n < &), P¢) for every £ < w;. A strategy
S for Player II is a winning strategy for Player II provided Player II wins any
game played according to the strategy S.

Here is the axiom.

CPAB™"®: ¢ = wy and for any Polish space X Player II has no winning strategy

cube

in the game GAME pe(X).
Notice that

Proposition 1.3 ([4, 6]) Axiom CPA®"® implies

cube

CPA ubet ¢ = wo and for every Polish space X and every cube dense family
E C Perf(X) there is an & C & such that |E| < wy and | X \ U & < wr.
In [4] (see also [6]) it was proved that CPAcupe (so0, also CPAS') implies
that cof(N) = wy and that all perfectly meager sets and all universally null sets
have cardinality at most w;.
In what follows we will also use the following simple fact. Its proof can be
found in [5] and [6].

Claim 1.4 Consider €“ with standard topology and standard product measure.
If G is a Borel subset of €“ which is either of second category or of positive

measure then G contains a perfect cube [],_,, Pi.

2 Disjoint coverings by w; null compacts

Theorem 2.1 Assume that CPAS " holds and let X be a Polish space. If
D C Perf(X) is Feube-dense and it is closed under perfect subsets then there
exists a partition of X into wy disjoint sets from DU {{z}:z € X}.

In the proof we will use the following easy lemma.

Lemma 2.2 Let X be a Polish space and let P = {P;:i < w} C Perf"(X).
For every cube P € Perf(X) there exists a subcube Q) of P such that either
QNU;cp, Pi =0 or Q C P; for some i < w.

PROOF. Let f € Feupe be such that f[€¥] = P.

If PN, Pi is meager in P then, by Claim 1.4, we can find a subcube @
of P such that Q@ C P\ U, P

If PHUKW P; is not meager in P then there exists an ¢ < w such that PN P;
has a non-empty interior in P. Thus, there exists a basic clopen set C in €,
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which is a perfect cube, such that f[C] C P;. So, @ = f[C] is a desired subcube
of P. ]

PrOOF OF THEOREM 2.1. For a cube P € Perf(X) and a countable family
P C Perf*(X) let D(P) € D be a subcube of P and Q(P,P) € D be as in
Lemma 2.2 used with D(P) in place of P. For a singleton P € Perf*(X) we
just put Q(P,P) = P.

Consider the following strategy S for Player II:

S({(Py, Q)i < &), Pe) = Q({Qn:n < &}, Pe).

By CPA®™"° strategy S is not a winning strategy for Player II. So there exists

cube

a game ((Pr, Q¢): & < wi) played according to S in which Player II looses, that
iS7 X = U§<w1 QE'

Notice that for every £ < wy either Q¢ N Un<£ @, = 0 or there is an n < wy
such that Q¢ C @,. Let

F = C?g:f <w & CQ& N L_J C?n =0

n<§
Then F is as desired. [ ]
Since a family of all measure zero perfect subsets of R™ is F.ype-dense we
get the following corollary.
Corollary 2.3 CPA®*"® implies that there exists a partition of R™ into w;

cube
disjoint closed nowhere dense measure zero sets.

Note that the conclusion of Corollary 2.3 does not follow from the fact that
R™ can be covered by w; perfect measure zero subsets. (See [10, thm. 6].)

3 Uncountable v-sets

In this subsection we will prove that CPAS%" implies the existence of an un-
countable v-set. Recall that a subset T of a Polish space X is a -y-set provided
for every open w-cover U of T there is a sequence (U,, € U:n < w) such that
T C UpewMNisp Ui, where U is an w-cover of T' if for every finite set A C T
there a U € U with A C U.

~-sets were introduced by Gerlits and Nagy [8]. They were studied by Galvin
and Miller [7], Reclaw [12], Bartoszyniski, Reclaw [2], and others. It is known
that under the Martin’s axiom there are y-sets of cardinality continuum [7]. On
the other hand, every v-set is strong measure zero [8], so it is consistent with
ZFC that every ~-set is countable. Moreover, CPAE' ™ implies that every ~-set
has cardinality at most w; < ¢, since every strong measure zero is universally
null and under CPAS™™ every universally null has cardinality < w;.

In what follows we will use the characterization of -sets due to Rectaw [12].

To formulate it we need to fix some terminology. Thus, in what follows we
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will consider P(w) as a Polish space by identifying it with 2¢ via characteristic
functions. For A, B C w we will write A C* B when |A\ B| < w. We say that a
family A C P(w) is centered provided (].Ag is infinite for every finite Ay C A;
and A has a pseudointersection provided there exists a B € [w]“ such that
B C* A for every A € A. In addition for the rest of this section K will stand
for the family of all continuous functions from P(w) to P(w) and for A € P(w)
we put A* = {B € P(w): B C* A}.

Proposition 3.1 (Rectaw [12]) For T C P(w) the following conditions are
equivalent.

(i) T is a y-set.
(ii) For every f € K if f[T] is centered than f[T'] has a pseudointersection.

In the proof that follows we will apply axiom CPAZ"" to the cubes from the
space IC. The fact that the subcubes given by the axiom cover K will allow us
to use the above characterization to conclude that the constructed set is indeed
a v-set. It is also possible to construct an uncountable y-set by applying axiom
CPAS™ to the space Y of all w-covers of P(w),! similarly as in Section 5.
However, we believe that greater diversification of spaces to which we apply
CPAE" makes the paper more interesting.

In what follows we will need the following two lemmas.

Lemma 3.2 For every countable set Y C P(w) the set
Ky ={f € K: f[Y] is centered}
is Borel in K.

PRrROOF. Let Y = {y;:9 < w} and note that

Ky= () U N{fekime fu)}

n,k<wm>ki<n

So, Ky is a Gy set, since each set {f € K:m € f(y;)} is open in K. [ |

Lemma 3.3 Let Y C P(w) be countable and such that [w]<* C Y. For every
W € [w]¥ and a compact set Q C Ky there exist V € [W]“ and a continuous
function ¢: Q — [w]¥ such that ¢(f) is a pseudointersection of f[Y|U f[V*] for
every f € Q.

Moreover, if J is an infinite family of non-empty pairwise disjoint finite
subsets of W then we can choose V such that it contains infinitely many J’s
from J.

I More precisely, if By is a countable base for P(w) and B is the collection of all finite unions
of elements from By then we can define ) as B“ considered with the product topology, where
B is taken with discrete topology.
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PROOF. First notice that there exists a continuous ¥: Q — [w]“ such that ¥(f)
is a pseudointersection of f[Y] for every f € Q.

Indeed, let Y = {y;:4 < w} and for every f € Q let ¥(f) = {nfz < w},

where n = min f(y) and ”{4-1 = min {n € Nj<i flys)in> n{c} The set in

the definition of n{_H is non-empty, since f[Y] is centered, as f € Q C Ky. It
is easy to see that v is continuous and that ¢(f) is as desired.

We will define a sequence (J; € J:4 < w) such that max.J; < min J;;; for
every i <w. We are aiming for V' = J,_,, Ji.

A set Jy € J is chosen arbitrarily. Now, if J; is already defined for some
i < w we define J;11 as follows. Let w; =14 max J;. Thus J; C w;. For every
f € Q define

m{ = min (4(£) 0 ) FIP(w)]) -

The set ¥(f) N f[P(w;)] is infinite, since ¥ (f) is a pseudointersection of f[Y]
while P(w;) C Y. Let k/ = min K/, where

Kif: {kai:mf € f(a) for allanwithaﬂkai}.

The fact that Kif # () follows from the continuity of f since mlf € f(a) for all
a C w;. Notice that, by the continuity of ¢ and the assignment of kf , for every
p <wtheset U, ={f € Q: sz < p} is open in Q. Since sets {U,:p < w} form
an increasing cover of ), compactness of @) implies the existence of p; < w such
that Q C Up,. Thus, w; < k;zf < p; for every f € Q. We define J;;41 as an
arbitrary element of J disjoint with p; and notice that

m{ € f(a) for every f € Q and a C w with a Nmin J;41 C w;.

This finishes the inductive construction.

Let V =, Ji CW and o(f) = {mf:i < w}. Tt is easy to see that ¢ is
continuous (though, we will not use this fact). To finish the proof it is enough
to show that ¢(f) is a pseudointersection of f[Y]U f[V*] for every f € Q.

So, fix an f € Q. Clearly ¢(f) C ¥(f) is a pseudointersection of f[Y] since
so was (f). To see that ¢(f) is a pseudointersection of f[V*] take an a C* V.
Then for almost all i < w we have a Nmin J; 11 C w;, so that mif € f(a). Thus

o(f) € f(a). |

Theorem 3.4 CPA%Y implies that there exists an uncountable y-set in P(w).

cube

PrROOF. For a < wy and an C*-decreasing sequence V = {V; € [w]“:{ < a} let
W (V) € [w]“ be such that W (V) C* Vg for all £ < a. Moreover, if P € Perf™(K)
is a cube then we define a subcube @ = Q(V, P) of P and an infinite subset
V=V(V,P)of W =W(V) as follows. Let Y = VU[w]<¥ and choose a subcube
Q of P such that either QN Ky =0 or Q C Ky. This can be done by Claim 1.4
since Ky is Borel. If QNKy = () we put V = W. Otherwise we apply Lemma 3.3
to find V.
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Consider the following strategy S for Player II:

S({((Pyy Qu)in < &), Pe) = Q{Vyin < &}, Pe),

where sets V,, are defined inductively by V,, = V({V::¢ < n}, P,). In other
words, Player II remembers (recovers) sets V,, associated with the cubes P,
played so far, and he uses them (and Lemma 3.3) to get the next answer Q¢ =
Q{Vy:n < &}, Pe), while remembering (or recovering each time) the set Vg =
V({Vyin < €. Pe).

By CPAE [ strategy S is not a winning strategy for Player II. So there
exists a game ((Pe, Q¢): & < wi) played according to S in which and Player II
loses, that is, K = U§<w1 Q. Let V = {Ve:€ < w1} be a sequence associated
with this game, which is strictly C*-decreasing, and let T = V U [w]<¥. We
claim that T is a ~-set.

In the proof we use Lemma 3.2. So, let f € K be such that f[T7] is centered.
There exists an @ < wy such that f € Q. Since f[{Ve:€ < a} U [w]<¥] C f[T]
we must have applied Lemma 3.3 in the choice of @, and V. Therefore, the
family f[{Ve:¢ < a} U [w]<¥ U V}] has a pseudointersection. So, f[T] has a
pseudointersection too, since T' C {V¢: € < a} U [w]<¥ U V. [ |

Since P(w) embeds into any Polish space, we conclude that, under CPAS',

any Polish space contains an uncountable y-set. In particular, there exists an
uncountable v-set T' C R.

4 ~v-sets in R which are not strongly meager

Recall (see e.g. [1, p. 437]) that a subset X of R is strongly meager provided
X + G # R for every measure zero subset G of R. This is a notion which is
dual to a strong measure zero subset of R, since Galvin, Mycielski, and Solovay
proved (see e.g. [1, p. 405]) that: X C R is strong measure zero if and only if
X 4+ M # R for every meager subset M of R.

Now, although every v-set is strong measure zero, under the Martin’s axiom
Bartoszynski and Rectaw [2] constructed a y-set T in R which is not strongly
meager. In what follows we will show that the existence of such a set follows
also from CPAZ). The construction is a generalization of that used in the
proof of Theorem 3.4.

In the proof we will use the following notation. For A, B C w we define
A+ B as the symmetric difference between A and B. Upon identification of a
set A C w with its characteristic function X4 € 2% this definition is motivated
by the fact that X 44 5(n) = Xa(n)+2Xp(n), where +3 is the addition modulo 2.
Also, let J = {J,, € [w]*":n < w} be a family of pairwise disjoint sets and let
G be the family of all W C w which are disjoint with infinitely many J € 7.
Notice that G has measure zero with respect to the standard measure on P(w)
induced by the product measure on 2.

Lemma 4.1 IfJ € [J]“ and P is a cube in P(w) then there exists a subcube Q
of P and a set V C |J J containing infinitely many J € J such that V+@Q C G.
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ProOOF. Let D =JJ and

H = {UW)eP(D)xPw):(U+W)nJ =0 for infinitely many J € J}
C {(UW)ePD)xPw):U+WeG}

Note that H is a G5 subset of P(D)xP(w) since H; = {{U,W): (U+W)NJ = 0}
is open for every J € J. Moreover horizontal sections of H are dense in P (D).
So, H = HN(P(D) x P) is a dense G subset of P(D) x P, as all its horizontal
sections are dense. Thus, by Kuratowski-Ulam theorem, there is a dense G
subset KCg of P(D) such that for every U € K, the vertical section Hy of H is
dense in P. Now, since

K1 ={U € P(D):J C U for infinitely many J € J}

is a dense G5 thereis a V € Ky N K;. In particular, V' contains infinitely many
J € J and Hy is a dense Gs subset of P. So, by Claim 1.4, there exists a
subcube Q of P contained in Hy. Thus, Q ¢ Hy c {W € P:V +W € G} and
soV+QcCQG. [ ]

Theorem 4.2 CPASY™ implies that there exists a y-set T C P(w) such that
T+G="Pw).

PrOOF. We will use CPA®™ for the space X = KU P(w), a direct sum of K
and P(w).

For a < w; and an C*-decreasing sequence V = {V; € [w]*:{ < a} such
that each Vi contains infinitely many J € J let W(V) € [w]” be such that
J={J e J:JCW(V)} is infinite and W (V) C* V; for all £ < a. For a cube
P € Perf*(K) we define a subcube @ = Q(V, P) of P and an infinite subset
V =V(V,P) of W =W(V) as follows. By Claim 1.4 we can find subcube P’
of P such that either P’ C K or P/ C P(w).

If P’ C K we proceed as in the proof of Theorem 3.4. We put Y = VU [w]<¥
and we use Claim 1.4 to find a subcube @ of P’ such that either Q N Ky = 0
or Q CKy. f QN Ky =0 we put V =W. Otherwise we apply Lemma 3.3 to
find V. If P’ C P(w) we use Lemma 4.1 to find @ and V.

Consider the following strategy S for Player II:

S({(Py, Qn)in < &), Pe) = Q({Viin < &}, Fe),
where sets V;, are defined inductively by V,, = V({V¢:{ < n}, P,). By CPA%

strategy S is not a winning strategy for Player II. So there exists a g(;lrlzlee
((Pe,Qe¢):€ < wi) played according to S in which and Player II loses, that
is, X = Ugcy, Q¢ Let V = {Ve:& < wi} be a sequence associated with this
game, which is strictly C*-decreasing, and let T'=V U [w]<¥. We claim that T
is as desired.

The argument that T is a ~-set is the same as in the proof of Theorem 3.4.
To see that P(w) C T + G notice that for every A € P(w) there is an o < w;
such that A € Q,. But then at step o we used Lemma 4.1 to find Q, and V,.

In particular, V, + Qo C G. So, A€ Q, C Vo +G C T +G. [ |
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Corollary 4.3 CPAS" implies that there exists a y-set X C R which is not
strongly meager.

PROOF. This is the argument from [2]. Let T be as in Theorem 4.2 and let
fiP(w) = [0,1], f(A) =X, ., 27 FDX4(4). Then f is continuous, so X = f[7]
is a y-set. Let H =(,,., Upsm flJn]- Then H has measure zero and it is easy
to see that [0,1] = f[P(w)] C f][T]+H = X+ H. Then G = H +Q has measure
zero and X + G = R. [ ]

5 Uncountable strongly meager v-sets in R

Let X be a Polish space with topology 7. We say that &Y C 7 is a cover
of Z C [X]|<¥ provided for every A € Z there is a U € U with A C U.
Following [7] we say that a subset S of X is a strong ~y-set provided there
exists an increasing sequence (k, < w:n < w) such that for every sequence
(Jo C T:m < w), where each J, is a cover of [X]*», there exists a sequence
(Dn € Jnin < w) with X C U,co, Nimspn Pm- It is proved in [7] that every
strong v-set X C R is strongly meager. The goal of this section is to construct,
under CPA®7 " an uncountable strong 7-set in P(w). So, after identifying
P(w) with its homeomorphic copy in R, this will become an uncountable ~-set
in R which is strongly meager. Under Martin’s axiom a strong v-set in P(w) of
cardinality continuum exists, see [7].

Let By be a countable basis for the topology of P(w) and let B be the
collection of all finite unions of elements from By. Since every open cover of
[P(w)]¥, k < w, contains a refinement from B, in the definition of strong ~y-set
it is enough to consider only sequences (J,,:n < w) with J,, C B.

Now, consider B with the discrete topology. Since B is countable, the space
B, considered with the product topology, is a Polish space and so is X = (B“)“.
For J € X we will write J,, in place of J(n). It is easy to see that a subbasis
for the topology of X is given for the clopen sets

{J € X:J,(m) = B},

where n,m < w and B € B.
For the reminder of this section fix an increasing sequence (k, < w:n < w)
such that k, > n 2™ + n for every n < w. Then we have the following lemma.

Lemma 5.1 Let X € [w]¥ and let F' be a countable subset of P(w) such that
[w]<¥ C F. Assume that P is a compact subset of X such that for every J € P
and n < w the family J,[w] = {J,,(m):m < w} covers [F|*». Then there exists
aset Y € [X]* and for each J € P a sequence (D; € J,:n < w) such that

FUY* C U, Ninan Dih.

PRrROOF. Let {F,:n < w} be an enumeration of [w]<¥ such that F,, C n for all
n < wandlet F = {f,:n < w}. We will construct inductively the sequences
(sp, € X:n < w) and ({D; € J,[w]:J € P}:n < w) such that for every n < w,
J € P,and A C w we have
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(i) {fizi <n} C D} and s,, < sp11;
(i)ifi<j<mn+1land (ANsnt1)\{S0,..-sn} = F; thenAEDf.

We chose sg € X and {D; € J,[w]: J € P} arbitrarily. Then conditions (i)
and (ii) are trivially satisfied. Next, assume that the sequence {s;:i < n} is
already constructed. We will construct s,+1 and sets D;, ; as follows.

Let

Q={q€w:q\{s0,...,8,} = F; for some i<n}.
Then |Q] < (n+1) 2" and |Q U {fo,..., fa}| < kni1-

Fix J € P. Since J,;1[w] covers [F]SFn+1 there exists a D; | € Jyi1[w]
containing Q U {fo,..., fn}. Since D;{_H is open and covers finite set @), there
is an s;i+1 > s, in X such that for every ¢ € Q

J J AJ
{eCcwaxns, 1 =qNs, 1} CD;yy.
Notice that
(x) for every A C w and 8,41 > s;,; condition (ii) holds.

Indeed, assume that (AN 3S,41) \ {S0,-..,8n} = F; for some i < j <n+ 1.
If j <n then n > 1 and since F; C ¢ C s,—1 we have

(Amsn)\{soa'“asn—l}:(Am§n+1)\{507"~7sn}:Fi~

So, by the inductive assumption, A € Dj-]. Ifj=n+1theng=AN5,41 € Q.
So Ae{z CwaNsyp1 =qNspp1} C{z Cwiznsl y=qNs)} C Dy,
finishing the proof of (x).

For each J € P let m’ < w be such that J,1(m”’) = D, and define
Uy ={K € X:K,41(m’) = DJ_,}. Then Uy is an open neighborhood of .J.
In particular, {U;: J € P} is an open cover of a compact set P, so there exists
a finite Py C P such that P C J{U;:J € Py}. Choose s,41 € X such that
Snt1 > max{s;_ ,:J € Py}. Moreover, for every J € P choose J € P, such that
J € Uz and define D, = D; . It is easy to see that, by (x), conditions (i)
and (ii) are preserved. This completes the inductive construction.

Put Y = {s,:n < w}. To see that it satisfies the lemma pick an arbitrary
J € P. We will show that FUY™* C U, <o, Nsn Din-

Clearly F C U, o, Nimsn Dy since, by (i), f, € Dy, for every m > n. So,
fix an A € Y*. Then A\Y = F; for some i < w. Let n < w be such that
i < n and s, > max F;. Then for every m > n we have i < m < m+ 1 and
(AN 8ms1) \ {50s---,8m} = Fi. So, by (ii), we have A € D/, for every m > n.
Thus, A € N Dy [ |

m>n

Lemma 5.2 If F C P(w) is countable then the set
Xp = {J € X: J,[w] covers [F|* for every n < w}

is Borel in X.
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PrRoOOF. This follows from the fact that

Y= N U U (Vex(m) =5}

n<w Ag[F]kn m<w ACBEB

since each set {J € X: J,(m) = B} is clopen in X. Thus, Xp is a Gs-set. W

Theorem 5.3 CPASY™ implies that there exists an uncountable strong y-set
in P(w).

PRrROOF. For a < wy and an C*-decreasing sequence V = {V; € [w]“:{ < a} let
W (V) € [w]“ be such that W (V) C* V¢ for all £ < . Moreover, if P € Perf™(X)
is a cube then we define a subcube @ = Q(V, P) of P and an infinite subset
Y =V(V,P)of X =W(V) as follows. Let F = VU[w]<“ and choose a subcube
Q of P such that either QN Xr = 0 or Q C Xpr. This can be done by Claim 1.4
since X is Borel. If QNXr = ( we put Y = X. Otherwise we apply Lemma 5.1
to find Y.
Consider the following strategy S for Player II:

S(((Py, Qy)in < &), Pe) = QU{Vyin < &}, Fe),
where sets V;, are defined inductively by V,, = V({V¢:{ < n}, P,). By CPA%

strategy S is not a winning strategy for Player II. So there exists a gcz;r];lee
((Pe,Qe¢): € < wi) played according to S in which and Player II loses, that
is, X = Ugy, Qe Let V = {Ver& < wi} be a sequence associated with this
game, which is strictly C*-decreasing, and let T'=V U [w]<¥. We claim that T
is a strong y-set.

Indeed, let (U, C B:n < w) be such that U,, covers [T}k for every n < w.
Then there is a J € X such that J,[w] = U, for every n < w. Let a@ < wy be such

that J € Q4. Then J € X{v, n<a}ulw]<w, SO we must have used Lemma 5.1 to

get Q4. In particular, there is a sequence (D; € J,[w] = U,:n < w) such that
(W= U{Vyin < a}) U (Va)* € Uncw Misn Din- 80, T C Ui Ny Dins a8
{Vira < <wi}C (Vo) n

Since every homeomorphic image of a strong 7-set is evidently a strong ~y-set,
we obtain immediately the following conclusion.

Corollary 5.4 CPAS" implies that there exists an uncountable y-set in R

which is strongly meager.

It is worth to mention that a construction of an uncountable strong v-set in
P(w) under CPAS) can be also done in a formalism similar to that used in
Section 3. In order to do it, we need the following definitions and facts. For
a fixed sequence k = (k, < w:n < w) we say that A C (P(w))* is k-centered
provided for every n < w any k,-many sets from {A(n): A € A} have a common
point; B € w¥ is a quasi-intersection of A C (P(w))“ provided for every A € A
there is infinitely many n < w with B(n) € A(n). Now, if £* is a family of all
continuous functions from P(w) to (P(w))“ then the following is true:
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A set X C P(w) is a strong v-set if and only if there exists an
increasing sequence k = (k,, < w:n < w) such that for every f € K*
if f[X] is k-centered then f[X] has a quasi-intersection.

With this characterization in hand we can construct an uncountable strong ~y-set
in P(w) by applying CPA%° to the space K*.

cube
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