Covering Property Axiom CPA_{cube} and its consequences

Krzysztof Ciesielski*

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

e-mail: K_Cies@math.wvu.edu; web page: http://www.math.wvu.edu/~kcies

Janusz Pawlikowski[†]

Department of Mathematics, University of Wrocław,

pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland; e-mail: pawlikow@math.uni.wroc.pl

Abstract

In the paper we formulate a Covering Property Axiom CPA_{cube} , which holds in the iterated perfect set model, and show that it implies easily the following facts.

- (a) For every $S \subset \mathbb{R}$ of cardinality continuum there exists a uniformly continuous function $g: \mathbb{R} \to \mathbb{R}$ with g[S] = [0, 1].
- (b) If $S \subset \mathbb{R}$ is either perfectly meager or universally null then S has cardinality less than \mathfrak{c} .
- (c) $cof(\mathcal{N}) = \omega_1 < \mathfrak{c}$, i.e., the cofinality of the measure ideal \mathcal{N} is ω_1 .
- (d) For every uniformly bounded sequence $\langle f_n \in \mathbb{R}^{\mathbb{R}} \rangle_{n < \omega}$ of Borel functions there are the sequences: $\langle P_{\xi} \subset \mathbb{R} : \xi < \omega_1 \rangle$ of compact sets and $\langle W_{\xi} \in [\omega]^{\omega} : \xi < \omega_1 \rangle$ such that $\mathbb{R} = \bigcup_{\xi < \omega_1} P_{\xi}$ and for every $\xi < \omega_1$:
 - $\langle f_n \upharpoonright P_\xi \rangle_{n \in W_\xi}$ is a monotone uniformly convergent sequence of uniformly continuous functions.
- (e) Total failure of Martin's Axiom: $\mathfrak{c} > \omega_1$ and for every non-trivial ccc forcing \mathbb{P} there exists ω_1 -many dense sets in \mathbb{P} such that no filter intersects all of them.

^{*}AMS classification numbers: Primary 03E35; Secondary 03E17, 26A03.

Key words and phrases: continuous images, perfectly meager, universally null, cofinality of null ideal, uniform convergence, Martin's axiom.

The work of the first author was partially supported by NATO Grant PST.CLG.977652. † The second author wishes to thank West Virginia University for its hospitality during 1998–2001, where the results presented here were obtained.

1 Axiom CPA_{cube} and other preliminaries

Our set theoretic terminology is standard and follows that of [4]. In particular, |X| stands for the cardinality of a set X and $\mathfrak{c} = |\mathbb{R}|$. A Cantor set 2^{ω} will be denoted by a symbol \mathfrak{C} . We use the term *Polish space* for a complete separable metric space without isolated points.

For a Polish space X, the symbol $\operatorname{Perf}(X)$ will stand for the collection of all subsets of X homeomorphic to a Cantor set \mathfrak{C} . We will consider $\operatorname{Perf}(X)$ as ordered by inclusion. Thus, a family $\mathcal{E} \subset \operatorname{Perf}(X)$ is dense in $\operatorname{Perf}(X)$ provided for every $P \in \operatorname{Perf}(X)$ there exists a $Q \in \mathcal{E}$ such that $Q \subset P$.

Axiom CPA_{cube} is of the form

 $\mathfrak{c} = \omega_2$ and if $\mathcal{E} \subset \operatorname{Perf}(X)$ is appropriately dense in $\operatorname{Perf}(X)$ then $|X \setminus \bigcup \mathcal{E}_0| < \mathfrak{c}$ for some $\mathcal{E}_0 \in [\mathcal{E}]^{\leq \omega_1}$.

If the word "appropriately" in the above is ignored, then it implies the following statement.

Naïve-CPA: If \mathcal{E} is dense in Perf(X) then $|X \setminus \bigcup \mathcal{E}| < \mathfrak{c}$.

It is a very good candidate for our axiom in the sense that it implies all the properties we are interested in. It has, however, one major flaw — it is false! This is the case since $S \subset X \setminus J\mathcal{E}$ for some dense set \mathcal{E} in Perf(X) provided

for each
$$P \in Perf(X)$$
 there is a $Q \in Perf(X)$ such that $Q \subset P \setminus S$.

This means that the family \mathcal{G} of all sets of the form $X \setminus \bigcup \mathcal{E}$, where \mathcal{E} is dense in $\operatorname{Perf}(X)$, coincides with the σ -ideal s_0 of Marczewski's sets, since \mathcal{G} is clearly hereditary. Thus we have

$$s_0 = \left\{ X \setminus \bigcup \mathcal{E} : \mathcal{E} \text{ is dense in } \operatorname{Perf}(X) \right\}.$$
 (1)

However, it is well known (see e.g. [17, thm. 5.10]) that there are s_0 -sets of cardinality \mathfrak{c} . Thus, our Naïve-CPA "axiom" cannot be consistent with ZFC.

In order to formulate the real axiom $\operatorname{CPA_{cube}}$ we need the following terminology and notation. A subset C of a product \mathfrak{C}^{η} of the Cantor set is said to be a perfect cube if $C = \prod_{n \in \eta} C_n$, where $C_n \in \operatorname{Perf}(\mathfrak{C})$ for each n. For a fixed Polish space X let $\mathcal{F}_{\operatorname{cube}}$ stand for the family of all continuous injections from a perfect cube $C \subset \mathfrak{C}^{\omega}$ onto a set P from $\operatorname{Perf}(X)$. We consider each function $f \in \mathcal{F}_{\operatorname{cube}}$ from C onto P as a coordinate system imposed on P. We say that $P \in \operatorname{Perf}(X)$ is a cube if it is determined by an (implicitly given) witness function $f \in \mathcal{F}_{\operatorname{cube}}$ onto P, and Q is a subcube of a cube $P \in \operatorname{Perf}(X)$ provided Q = f[C], where $f \in \mathcal{F}_{\operatorname{cube}}$ is a witness function for P and $C \subset \operatorname{dom}(f) \subset \mathfrak{C}^{\omega}$ is a perfect cube. Here and in what follows the symbol $\operatorname{dom}(f)$ stands for the domain of f.

We say that a family $\mathcal{E} \subset \operatorname{Perf}(X)$ is *cube dense* in $\operatorname{Perf}(X)$ provided every cube $P \in \operatorname{Perf}(X)$ contains a subcube $Q \in \mathcal{E}$. More formally, $\mathcal{E} \subset \operatorname{Perf}(X)$ is cube dense provided

$$\forall f \in \mathcal{F}_{\text{cube}} \ \exists g \in \mathcal{F}_{\text{cube}} \ (g \subset f \ \& \ \text{range}(g) \in \mathcal{E}). \tag{2}$$

It is easy to see that the notion of cube density is a generalization of the notion of density as defined in the first paragraph of this section:

if
$$\mathcal{E}$$
 is cube dense in $Perf(X)$ then \mathcal{E} is dense in $Perf(X)$. (3)

On the other hand, the converse implication is not true, as shown by the following simple example.

Example 1.1 Let $X = \mathfrak{C} \times \mathfrak{C}$ and let \mathcal{E} be the family of all $P \in Perf(X)$ such that either

- all vertical sections $P_x = \{y \in \mathfrak{C}: \langle x, y \rangle \in P\}$ of P are countable, or
- all horizontal sections $P^y = \{x \in \mathfrak{C}: \langle x, y \rangle \in P\}$ of P are countable.

Then \mathcal{E} is dense in Perf(X), but it is not cube dense in Perf(X).

PROOF. To see that \mathcal{E} is dense in $\operatorname{Perf}(X)$ let $R \in \operatorname{Perf}(X)$. We need to find a $P \subset R$ with $P \in \mathcal{E}$. Clearly at least one of the projections $\pi_0(R)$ or $\pi_1(R)$ is uncountable. Assume that $\pi_0(R)$ is uncountable and let $p \colon \pi_0(R) \to \mathfrak{C}$ be a Borel function. (For example, if p is defined by $p(x) = \min R_x$ then $p \subset R$ is Baire class 1.) So, there is a $Q \in \operatorname{Perf}(\mathfrak{C})$ such that $p \upharpoonright Q$ is continuous. In particular, $p \upharpoonright Q$ (identified with its graph) is a closed subset of $X = \mathfrak{C} \times \mathfrak{C}$. So $P = p \upharpoonright Q \in \mathcal{E}$ is a subset of R.

To see that \mathcal{E} is not $\mathcal{F}_{\text{cube}}$ -dense in Perf(X) it is enough to notice that $P = X = \mathfrak{C} \times \mathfrak{C}$ considered as a cube, where the second coordinate is identified with $\mathfrak{C}^{\omega\setminus\{0\}}$, has no subcube in \mathcal{E} . More formally, let h be a homeomorphism from \mathfrak{C} onto $\mathfrak{C}^{\omega\setminus\{0\}}$, let $g: \mathfrak{C} \times \mathfrak{C} \to \mathfrak{C}^{\omega} = \mathfrak{C} \times \mathfrak{C}^{\omega\setminus\{0\}}$ be given by $g(x,y) = \langle x, h(y) \rangle$, and let $f = g^{-1}: \mathfrak{C}^{\omega} \to \mathfrak{C} \times \mathfrak{C}$ be the coordinate function making $\mathfrak{C} \times \mathfrak{C} = \text{range}(f)$ a cube. Then range(f) does not contain a subcube from \mathcal{E} .

With these notions in hand we are ready to formulate our axiom CPA_{cube}.

CPA_{cube}: $\mathfrak{c} = \omega_2$ and for every Polish space X and every cube dense family $\mathcal{E} \subset \operatorname{Perf}(X)$ there is an $\mathcal{E}_0 \subset \mathcal{E}$ such that $|\mathcal{E}_0| \leq \omega_1$ and $|X \setminus \bigcup \mathcal{E}_0| \leq \omega_1$.

The proof that CPA_{cube} holds in the iterated perfect set model can be found in [6] and [7].

It is also worth noticing that in order to check that \mathcal{E} is cube dense it is enough to consider in condition (2) only functions f defined on the entire space \mathfrak{C}^{ω} , that is

Fact 1.2 $\mathcal{E} \subset \operatorname{Perf}(X)$ is cube dense if and only if

$$\forall f \in \mathcal{F}_{\text{cube}}, \text{ dom}(f) = \mathfrak{C}^{\omega}, \ \exists g \in \mathcal{F}_{\text{cube}} \ (g \subset f \ \& \text{ range}(g) \in \mathcal{E}).$$
 (4)

PROOF. To see this, let Φ be the family of all bijections $h = \langle h_n \rangle_{n < \omega}$ between perfect subcubes $\prod_{n \in \omega} D_n$ and $\prod_{n \in \omega} C_n$ of \mathfrak{C}^{ω} such that each h_n is a homeomorphism between D_n and C_n . Then

$$f \circ h \in \mathcal{F}_{\text{cube}}$$
 for every $f \in \mathcal{F}_{\text{cube}}$ and $h \in \Phi$ with range $(h) \subset \text{dom}(f)$. (5)

Now take an arbitrary $f: C \to X$ from $\mathcal{F}_{\text{cube}}$ and choose an $h \in \Phi$ mapping \mathfrak{C}^{ω} onto C. Then $\hat{f} = f \circ h \in \mathcal{F}_{\text{cube}}$ maps \mathfrak{C}^{ω} into X and, using (4), we can find $\hat{g} \in \mathcal{F}_{\text{cube}}$ such that $\hat{g} \subset \hat{f}$ and range $(\hat{g}) \in \mathcal{E}$. Then $g = f \upharpoonright h[\text{dom}(\hat{g})]$ satisfies condition (2).

Next, let us consider

$$s_0^{\text{cube}} = \left\{ X \setminus \bigcup \mathcal{E} : \mathcal{E} \text{ is cube dense in } \operatorname{Perf}(X) \right\}$$

$$= \left\{ S \subset X : \forall \text{ cube } P \in \operatorname{Perf}(X) \ \exists \text{ subcube } Q \subset P \setminus S \right\}.$$
(6)

Notice that

Fact 1.3 $[X]^{<\mathfrak{c}} \subset s_0^{\text{cube}} \subset s_0$ for every Polish space X.

An easy proof of this Fact 1.3 can be found in [7]. It can be also shown in ZFC that s_0^{cube} forms a σ -ideal. However, neither of these facts will be used in the sequel. On the other hand we will be interested in the following proposition.

Proposition 1.4 If CPA_{cube} holds then $s_0^{cube} = [X]^{\leq \omega_1}$.

PROOF. It is obvious that CPA_{cube} implies $s_0^{cube} \subset [X]^{<\mathfrak{c}}$. We will not be interested in the other inclusion, though it follows immediately from Fact 1.3.

Remark 1.5 $s_0^{\text{cube}} \neq [X]^{\leq \omega_1}$ in a model obtained by adding Sacks numbers side-by-side. In particular CPA_{cube} is false in this model.

PROOF. This follows from the fact that $s_0^{\text{cube}} = [X]^{\leq \omega_1}$ implies the property (A) (see Corollary 2.2) while it is false in the model mentioned above, as noticed by Miller in [16, p. 581]. (In this model the set X of all Sacks generic numbers cannot be mapped continuously onto [0, 1].)

2 Continuous images of sets of cardinality c

An important quality of the ideal s_0^{cube} , and so the power of the assumption $s_0^{\text{cube}} = [X]^{<\mathfrak{c}}$, is well depicted by the following fact.

Proposition 2.1 If X is a Polish space and $S \subset X$ does not belong to s_0^{cube} then there exist a $T \in [S]^{\mathfrak{c}}$ and a uniformly continuous function h from T onto \mathfrak{C} .

PROOF. Take an S as above and let $f: \mathfrak{C}^{\omega} \to X$ be a continuous injection such that $f[C] \cap S \neq \emptyset$ for every perfect cube C. Let $g: \mathfrak{C} \to \mathfrak{C}$ be a continuous function such that $g^{-1}(y)$ is perfect for every $y \in \mathfrak{C}$. Then $h_0 = g \circ \pi_0 \circ f^{-1}: f[\mathfrak{C}^{\omega}] \to \mathfrak{C}$ is uniformly continuous. Moreover, if $T = S \cap f[\mathfrak{C}^{\omega}]$ then $h_0[T] = \mathfrak{C}$ since

$$T \cap h_0^{-1}(y) = T \cap f[\pi_0^{-1}(g^{-1}(y))] = S \cap f[g^{-1}(y) \times \mathfrak{C} \times \mathfrak{C} \times \cdots] \neq \emptyset$$

for every $y \in \mathfrak{C}$.

Corollary 2.2 Assume $s_0^{\text{cube}} = [X]^{<\mathfrak{c}}$ for a Polish space X. If $S \subset X$ has cardinality \mathfrak{c} then there exists a uniformly continuous function $f: X \to [0,1]$ such that f[S] = [0,1].

In particular, CPA_{cube} implies property (a).

PROOF. If S is as above then, by CPA_{cube}, $S \notin s_0^{\text{cube}}$. Thus, by Proposition 2.1 there exists a uniformly continuous function h from a subset of S onto \mathfrak{C} . Consider \mathfrak{C} as a subset of [0,1] and let $\hat{h}: X \to [0,1]$ be a uniformly continuous extension of h. If $g: [0,1] \to [0,1]$ is continuous and such that $g[\mathfrak{C}] = [0,1]$ then $f = g \circ \hat{h}$ is as desired.

The fact that (a) holds in the iterated perfect set model was first proved by A. Miller in [16].

It is worth to note here that the function f in Corollary 2.2 cannot be required to be either monotone or in the class " D^1 " of all functions having finite or infinite derivative at every point. This follows immediately from the following proposition, since each function which is either monotone or " D^1 " belongs to the Banach class

$$(T_2) = \left\{ f \in \mathcal{C}(\mathbb{R}) : \left\{ y \in \mathbb{R} : |f^{-1}(y)| > \omega \right\} \in \mathcal{N} \right\}.$$

(See [10] or [19, p. 278].)

Proposition 2.3 There exists, in ZFC, an $S \in [\mathbb{R}]^{\mathfrak{c}}$ such that $[0,1] \not\subset f[S]$ for every $f \in (T_2)$.

PROOF. Let $\{f_{\xi}: \xi < \mathfrak{c}\}$ be an enumeration of all functions from (T_2) whose range contains [0,1]. Construct by induction a sequence $\langle \langle s_{\xi}, y_{\xi} \rangle : \xi < \mathfrak{c} \rangle$ such that for every $\xi < \mathfrak{c}$

(i)
$$y_{\xi} \in [0, 1] \setminus f_{\xi}[\{s_{\zeta}: \zeta < \xi\}] \text{ and } |f_{\xi}^{-1}(y_{\xi})| \le \omega.$$

(ii)
$$s_{\xi} \in \mathbb{R} \setminus \left(\{ s_{\zeta} : \zeta < \xi \} \cup \bigcup_{\zeta \le \xi} f_{\zeta}^{-1}(y_{\zeta}) \right).$$

Then the set $S = \{s_{\xi}: \xi < \mathfrak{c}\}$ is as required since $y_{\xi} \in [0,1] \setminus f_{\xi}[S]$ for every $\xi < \mathfrak{c}$.

3 Perfectly meager and universally null sets

The fact that (b) holds in the iterated perfect set model was first proved by A. Miller in [16].

Theorem 3.1 If $S \subset \mathbb{R}$ is either perfectly meager or universally null then $S \in s_0^{\text{cube}}$.

In particular, CPA_{cube} implies property (b).

PROOF. Take an $S \subset \mathbb{R}$ which is either perfectly meager or universally null and let $f: \mathfrak{C}^{\omega} \to \mathbb{R}$ be a continuous injection. Then $S \cap f[\mathfrak{C}^{\omega}]$ is either meager or null in $f[\mathfrak{C}^{\omega}]$. Thus $G = \mathfrak{C}^{\omega} \setminus f^{-1}(S)$ is either comeager or of full measure in \mathfrak{C}^{ω} . Hence the theorem follows immediately from the following claim.

Claim 3.2 Consider \mathfrak{C}^{ω} with standard topology and standard product measure. If G is a Borel subset of \mathfrak{C}^{ω} which is either of second category or of positive measure then G contains a perfect cube $\prod_{i<\omega} P_i$.

The measure version of the claim is a variant the following theorem:

(m) for every full measure subset H of $[0,1] \times [0,1]$ there are a perfect set $P \subset [0,1]$ and a positive inner measure subset \hat{H} of [0,1] such that $P \times \hat{H} \subset H$

which was proved by Eggleston [9] and, independently, by Brodskii [3]. The category version of the claim is a consequence of the category version of (m):

(c) for every Polish space X and every comeager subset G of $X \times X$ there are a perfect set $P \subset X$ and a comeager subset \hat{G} of X such that $P \times \hat{G} \subset G$.

This well known result can be found in [12, Exercise 19.3]. (Its version for \mathbb{R}^2 is also proved, for example, in [8, condition (\star) , p. 416].) For completeness, we will show here in detail how to deduce the claim from (m) and (c).

We will start the argument with a simple fact, in which we will use the following notations. If X is a Polish space endowed with a Borel measure then $\psi_0(X)$ will stand for the sentence

 $\psi_0(X)$: For every full measure subset H of $X \times X$ there are a perfect set $P \subset X$ and a positive inner measure subset \hat{H} of X such that $P \times \hat{H} \subset H$.

Thus $\psi_0([0,1])$ is is a restatement of (m). We will also use the following seemingly stronger variants of $\psi_0(X)$.

- $\psi_1(X)$: For every full measure subset H of $X \times X$ there are a perfect set $P \subset X$ and a subset \hat{H} of X of full measure such that $P \times \hat{H} \subset H$.
- $\psi_2(X)$: For a subset H of $X \times X$ of positive inner measure there are a perfect set $P \subset X$ and a positive inner measure subset \hat{H} of X such that $P \times \hat{H} \subset H$.

Fact 3.3 Let $n = 1, 2, 3, \dots$

- (i) If $E \subset \mathbb{R}^n$ has a positive Lebesgue measure then $\mathbb{Q}^n + E = \bigcup_{q \in \mathbb{Q}^n} (q + E)$ has a full measure.
- (ii) $\psi_k(X)$ holds for all k < 3 and $X \in \{[0, 1], (0, 1), \mathbb{R}, \mathfrak{C}\}.$

PROOF. (i) Let λ be the Lebesgue measure on \mathbb{R}^n and for $\varepsilon > 0$ and $x \in \mathbb{R}^n$ let $B(x,\varepsilon)$ be an open ball in \mathbb{R}^n of radius ε centered at x. By way of contradiction assume that there exists a positive measure set $A \subset \mathbb{R}^n$ disjoint with $\mathbb{Q}^n + E$. Let $a \in A$ and $x \in E$ be the Lebesgue density points of A and X, respectively. Take

an $\varepsilon > 0$ such that $\lambda(A \cap B(a, \varepsilon)) > (1 - 4^{-n})\lambda(B(a, \varepsilon))$ and $\lambda(E \cap B(x, \varepsilon)) > (1 - 4^{-n})\lambda(B(x, \varepsilon))$. Now, if $q \in \mathbb{Q}^n$ is such that $q + x \in B(a, \varepsilon/2)$ then $A \cap (q + E) \cap B(a, \varepsilon/2) \neq \emptyset$ since $B(a, \varepsilon/2) \subset B(a, \varepsilon) \cap B(q + x, \varepsilon)$ and thus $\lambda(A \cap (q + E) \cap B(a, \varepsilon/2)) > \lambda(B(a, \varepsilon/2)) - 2 \cdot 4^{-n}\lambda(B(a, \varepsilon)) \geq 0$. Hence $A \cap (\mathbb{Q}^n + E) \neq \emptyset$ contradicting the choice of A.

(ii) First note that $\psi_k(\mathbb{R}) \Leftrightarrow \psi_k((0,1)) \Leftrightarrow \psi_k([0,1]) \Leftrightarrow \psi_k(\mathfrak{C})$ for every k < 3. This is justified by the fact that for the mappings $f: (0,1) \to \mathbb{R}$ given by $f(x) = \cot(x\pi)$, the identity mapping $id: (0,1) \to [0,1]$, and $d: \mathfrak{C} \to [0,1]$ given by $d(x) = \sum_{i < \omega} \frac{x(i)}{2^{i+1}}$, the image and the preimage of measure zero set (full measure set) is of measure zero (full measure).

Since, by (m), $\psi_0([0,1])$ is true, we have also that $\psi_0(X)$ holds also for $X \in \{(0,1), \mathbb{R}, \mathfrak{C}\}$. To finish the proof it is enough to show that $\psi_0(\mathbb{R})$ implies $\psi_1(\mathbb{R})$ and $\psi_2(\mathbb{R})$.

To prove $\psi_1(\mathbb{R})$ let H be a full measure subset of $\mathbb{R} \times \mathbb{R}$ and let us define $H_0 = \bigcap_{q \in \mathbb{Q}} (\langle 0, q \rangle + H)$. Then H_0 is still of full measure so, by $\psi_0(\mathbb{R})$, there are perfect set $P \subset \mathbb{R}$ and a positive inner measure subset \hat{H}_0 of \mathbb{R} such that $P \times \hat{H}_0 \subset H_0$. Thus, for every $q \in \mathbb{Q}$ we also have $P \times (q + \hat{H}_0) \subset \langle 0, q \rangle + H_0 = H_0$. Let $\hat{H} = \bigcup_{q \in \mathbb{Q}} (q + \hat{H}_0)$. Then $P \times \hat{H} \subset H_0 \subset H$ and, by (i), \hat{H} has full measure. So, $\psi_1(\mathbb{R})$ is proved.

To prove $\psi_2(\mathbb{R})$ let $H \subset \mathbb{R} \times \mathbb{R}$ be of positive inner measure. Decreasing H, if necessary, we can assume that H is compact. Let $H_0 = \mathbb{Q}^2 + H$. Then, by (i), H_0 is of full measure so, by $\psi_0(\mathbb{R})$, there are perfect set $P_0 \subset \mathbb{R}$ and a positive inner measure subset \hat{H}_0 of \mathbb{R} such that $P_0 \times \hat{H}_0 \subset H_0$. Once again, decreasing P_0 and \hat{H}_0 if necessary, we can assume that they are homeomorphic to \mathfrak{C} and that no relatively open subset of \hat{H}_0 has measure zero. Since $P_0 \times \hat{H}_0 \subset \bigcup_{q \in \mathbb{Q}^2} (q + H)$ is covered by countably many compact sets $(P_0 \times \hat{H}_0) \cap (q + H)$ with $q \in \mathbb{Q}^2$, there is a $q = \langle q_0, q_1 \rangle \in \mathbb{Q}^2$ such that $(P_0 \times \hat{H}_0) \cap (q + H)$ has a non-empty interior in $P_0 \times \hat{H}_0$. Let U and V be non-empty clopen subsets of P_0 and \hat{H}_0 , respectively, such that $U \times V \subset (P_0 \times \hat{H}_0) \cap (q + H) \subset \langle q_0, q_1 \rangle + H$. Then U and V are perfect and V has positive measure. Let $P = -q_0 + U$ and $\hat{H} = -q_1 + V$. Then $P \times \hat{H} = (-q_0 + U) \times (-q_1 + V) = -\langle q_0, q_1 \rangle + (U \times V) \subset H$, so $\psi_2(\mathbb{R})$ holds.

PROOF OF CLAIM 3.2. Since the natural homeomorphism between \mathfrak{C} and $\mathfrak{C}^{\omega\setminus\{0\}}$ preserves product measure, we can identify $\mathfrak{C}^{\omega} = \mathfrak{C} \times \mathfrak{C}^{\omega\setminus\{0\}}$ with $\mathfrak{C} \times \mathfrak{C}$ considered with its usual topology and its usual product measure. With this identification the result follows easily, by induction on coordinates, from the following fact.

(•) For every Borel subset H of $\mathfrak{C} \times \mathfrak{C}$ which is of second category (of positive measure) there are a perfect set $P \subset \mathfrak{C}$ and a second category (positive measure) subset \hat{H} of \mathfrak{C} such that $P \times \hat{H} \subset H$.

The measure version of (\bullet) is a restatement of $\psi_2(\mathfrak{C})$, which was proved in Fact 3.3(ii). To see the category version of (\bullet) let H be a Borel subset of $\mathfrak{C} \times \mathfrak{C}$ of second category. Then there are clopen subsets U and V of \mathfrak{C} such that $H_0 = H \cap (U \times V)$ is comeager in $U \times V$. Since U and V are homeomorphic to

 \mathfrak{C} , we can apply (c) to H_0 and $U \times V$ we can find a perfect set $P \subset U$ and a comeager Borel subset \hat{H} of V such that $P \times \hat{H} \subset H_0 \subset H$, finishing the proof.

4 $\operatorname{cof}(\mathcal{N}) = \omega_1 < \mathfrak{c}$

Next we show that CPA_{cube} implies that $cof(\mathcal{N}) = \omega_1$. So, under CPA_{cube} , all cardinals from Cichoń's diagram (see e.g. [1]) are equal to ω_1 . The fact that this holds in the iterated perfect set model has been well known.

Let C_H be the family of all subsets $\prod_{n<\omega} T_n$ of ω^{ω} such that $T_n \in [\omega]^{\leq n+1}$ for all $n<\omega$. We will use the following characterization.

Proposition 4.1 (Bartoszyński [1, thm. 2.3.9])

$$\mathrm{cof}(\mathcal{N}) = \min \left\{ |\mathcal{F}| \colon \mathcal{F} \subset \mathcal{C}_H \ \& \ \bigcup \mathcal{F} = \omega^\omega \right\}.$$

Lemma 4.2 The family $C_H^* = \{X \subset \omega^\omega \colon X \subset T \text{ for some } T \in C_H\}$ is $\mathcal{F}_{\text{cube}}$ -dense in $\text{Perf}(\omega^\omega)$.

PROOF. Let $f: \mathfrak{C}^{\omega} \to \omega^{\omega}$ be a continuous function. By (4) it is enough to find a perfect cube C in \mathfrak{C}^{ω} such that $f[C] \in \mathcal{C}_H^*$.

Construct, by induction on $n<\omega$, the families $\{E^i_s\colon s\in 2^n\ \&\ i<\omega\}$ of non-empty clopen subsets of $\mathfrak C$ such that for every $n<\omega$ and $s,t\in 2^n$

- (i) $E_s^i = E_t^i$ for every $n \le i < \omega$;
- (ii) $E_{s \cap 0}^i$ and $E_{s \cap 1}^i$ are disjoint subsets of E_s^i for every i < n+1;
- (iii) for every $\langle s_i \in 2^n : i < \omega \rangle$

$$f(x_0) \upharpoonright 2^{(n+1)^2} = f(x_1) \upharpoonright 2^{(n+1)^2}$$
 for every $x_0, x_1 \in \prod_{i < \omega} E_{s_i}$.

For each $i < \omega$ the fusion of $\{E_s^i : s \in 2^{<\omega}\}$ will give us the *i*-th coordinate set of the desired perfect cube C.

Condition (iii) can be ensured by uniform continuity of f. Indeed, let $\delta > 0$ be such that $f(x_0) \upharpoonright 2^{(n+1)^2} = f(x_1) \upharpoonright 2^{(n+1)^2}$ for every $x_0, x_1 \in \mathfrak{C}^{\omega}$ of distance less than δ . Then it is enough to choose $\{E_s^i : s \in 2^n \& i < \omega\}$ such that (i) and (ii) are satisfied and every set $\prod_{i < \omega} E_{s_i}$ from (iii) has diameter less than δ . This finishes the construction.

Next for every $i, n < \omega$ let $E_n^i = \bigcup \{E_s^i : s \in 2^n\}$ and $E_n = \prod_{i < \omega} E_n^i$. Then $C = \bigcap_{n < \omega} E_n = \prod_{i < \omega} \left(\bigcap_{n < \omega} E_n^i\right)$ is a perfect cube, since $\bigcap_{n < \omega} E_n^i \in \operatorname{Perf}(\mathfrak{C})$ for every $i < \omega$. Thus, to finish the proof it is enough to show that $f[C] \in \mathcal{C}_H^*$. So, for every $k < \omega$ let $n < \omega$ be such that $2^{n^2} \le k + 1 < 2^{(n+1)^2}$, put

$$T_k = \{ f(x)(k) : x \in E_n \} = \left\{ f(x)(k) : x \in \prod_{i \le \omega} E_{s_i} \text{ for some } \langle s_i \in 2^n : i < \omega \rangle \right\},$$

and notice that T_k has at most $2^{n^2} \leq k+1$ elements. Indeed, by (iii), the set $\{f(x)(k): x \in \prod_{i < \omega} E_{s_i}\}$ has precisely one element for every $\langle s_i \in 2^n: i < \omega \rangle$ while (i) implies that $\{\prod_{i < \omega} E_{s_i}: \langle s_i \in 2^n: i < \omega \rangle\}$ has 2^{n^2} elements. Therefore $\prod_{k < \omega} T_k \in \mathcal{C}_H$.

To finish the proof it is enough to notice that $f[C] \subset \prod_{k \leq \omega} T_k$.

Corollary 4.3 If CPA_{cube} holds then $cof(\mathcal{N}) = \omega_1$.

PROOF. By CPA_{cube} and Lemma 4.2 there exists an $\mathcal{F} \in [\mathcal{C}_H]^{\leq \omega_1}$ such that $|\omega^{\omega} \setminus \bigcup \mathcal{F}| \leq \omega_1$. This and Proposition 4.1 imply $\operatorname{cof}(\mathcal{N}) = \omega_1$.

5 Pointwise convergent of subsequences of realvalued functions

A sequence $\langle f_n \rangle_{n < \omega}$ of real-valued functions is uniformly bounded provided there exists an $r \in \mathbb{R}$ such that range $(f_n) \subset [-r, r]$ for every n. In 1932 Mazurkiewicz [15] proved the following variant of Egorov's theorem.

For every uniformly bounded sequence $\langle f_n \rangle_{n < \omega}$ of real-valued continuous functions defined on a Polish space X there exists a subsequence which is uniformly convergent on some perfect set P.

The main result of this section is the following theorem.

Theorem 5.1 If CPA_{cube} holds then

(*) for every Polish space X and uniformly bounded sequence $\langle f_n : X \to \mathbb{R} \rangle_{n < \omega}$ of Borel measurable functions there are the sequences: $\langle P_{\xi} : \xi < \omega_1 \rangle$ of compact subsets of X and $\langle W_{\xi} \in [\omega]^{\omega} : \xi < \omega_1 \rangle$ such that $X = \bigcup_{\xi < \omega_1} P_{\xi}$ and for every $\xi < \omega_1$:

 $\langle f_n \mid P_{\xi} \rangle_{n \in W_{\xi}}$ is a monotone uniformly convergent sequence of uniformly continuous functions.

Theorem 5.1 is a variant of [5, theorem 2] and its corollary, according to which condition (*) for continuous functions f_n can be deduced from the assumptions that $cof(\mathcal{N}) = \omega_1$ and there exists a selective ω_1 -generated ultrafilter on ω .

PROOF. We first note that the family \mathcal{E} of all $P \in \operatorname{Perf}(X)$ for which there exists a $W \in [\omega]^{\omega}$ such that

the sequence $\langle f_n \upharpoonright P \rangle_{n \in W}$ is monotone and uniformly convergent

is $\mathcal{F}_{\text{cube}}$ -dense in Perf(X).

Indeed, let $g \in \mathcal{F}_{\text{cube}}$, $g: \mathfrak{C}^{\omega} \to X$, and consider the functions $h_n = f_n \circ g$. Since $h = \langle h_n : n < \omega \rangle : \mathfrak{C}^{\omega} \to \mathbb{R}^{\omega}$ is Borel measurable, there is a dense G_{δ} subset G of \mathfrak{C}^{ω} such that $h \upharpoonright G$ is continuous. So, we can find a perfect cube $C \subset G \subset \mathfrak{C}^{\omega}$, and for this C function $h \upharpoonright C$ is continuous. Thus, identifying the coordinate spaces of C with \mathfrak{C} , without loss of generality we can assume that $C = \mathfrak{C}^{\omega}$, that is, that each function $h_n : \mathfrak{C}^{\omega} \to \mathbb{R}$ is continuous. Now, by [21, thm. 6.9], there is a perfect cube C in \mathfrak{C}^{ω} and a $W \in [\omega]^{\omega}$ such that the sequence $\langle h_n \upharpoonright C \rangle_{n \in W}$ is monotone and uniformly convergent. So P = g[C] is in \mathcal{E} .

Now, by $\operatorname{CPA}_{\operatorname{cube}}$, there exists an $\mathcal{E}_0 \in [\mathcal{E}]^{\leq \omega_1}$ such that $|X \setminus \bigcup \mathcal{E}_0| \leq \omega_1$. Then $\{P_{\xi} : \xi < \omega_1\} = \mathcal{E}_0 \cup \{\{x\} : x \in X \setminus \bigcup \mathcal{E}_0\}$ is as desired: if $P_{\xi} \in \mathcal{E}_0$ then the existence of an appropriate W_{ξ} follows from the definition of \mathcal{E} . If P_{ξ} is a singleton, then the existence of W_{ξ} follows from the fact that every sequence of reals has a monotone subsequence.

6 Total failure of Martin's Axiom

In this section we prove that CPA_{cube} implies the total failure of Martin's Axiom, that is, the property that

for every non-trivial ccc forcing \mathbb{P} there exists ω_1 -many dense sets in \mathbb{P} such that no filter intersects all of them.

The consistency of this fact with $\mathfrak{c} > \omega_1$ was first proved by Baumgartner [2] in a model obtained by adding Sacks reals side-by-side. The topological and boolean algebraic formulations of the theorem follow immediately from the following proposition.

Proposition 6.1 The following conditions are equivalent.

- (a) For every non-trivial ccc forcing \mathbb{P} there exists ω_1 -many dense sets in \mathbb{P} such that no filter intersects all of them.
- (b) Every compact ccc topological space without isolated points is a union of ω_1 nowhere dense sets.
- (c) For every atomless ccc complete Boolean algebra B there exists ω_1 -many dense sets in B such that no filter intersects all of them.
- (d) For every atomless ccc complete Boolean algebra B there exists ω_1 -many maximal antichains in B such that no filter intersects all of them.
- (e) For every countably generated atomless ccc complete Boolean algebra B there exists ω_1 -many maximal antichains in B such that no filter intersects all of them.

¹Actually [21, thm. 6.9] is stated for functions defined on $[0,1]^{\omega}$. However, the proof presented there for works also for functions defined on \mathfrak{C}^{ω} .

PROOF. The equivalence of the conditions (a), (b), (c), and (d) is well known. In particular, equivalence (a)–(c) is explicitly given in [2, thm. 0.1]. Clearly (d) implies (e). The remaining implication, (e) \Longrightarrow (d), is a version of the theorem from [14, p. 158]. However, it is expressed there in a bit different language, so we include here its proof.

So, let $\langle B, \vee, \wedge, \mathbf{0}, \mathbf{1} \rangle$ be an atomless ccc complete Boolean algebra. For every $\sigma \in 2^{<\omega_1}$ define, by induction on the length dom (σ) of a sequence σ , a $b_{\sigma} \in B$ such that the following conditions are satisfied.

- $b_{\emptyset} = \mathbf{1}$.
- b_{σ} is a disjoint union of $b_{\sigma^{\hat{}}0}$ and $b_{\sigma^{\hat{}}1}$.
- If $b_{\sigma} > \mathbf{0}$ then $b_{\sigma \hat{} 0} > \mathbf{0}$ and $b_{\sigma \hat{} 1} > \mathbf{0}$.
- If $\lambda = \text{dom}(\sigma)$ is a limit ordinal then $b_{\sigma} = \bigwedge_{\xi < \lambda} b_{\sigma \upharpoonright \xi}$.

Let $T = \{s \in 2^{<\omega_1} : b_s > \mathbf{0}\}$. Then T is a subtree of $2^{<\omega_1}$; its levels determine antichains in B, so they are countable.

First assume that T has a countable height. Then T itself is countable. Let B_0 be the smallest complete subalgebra of B containing $\{b_{\sigma}: \sigma \in T\}$ and notice that B_0 is atomless. Indeed, if there were an atom a in B_0 then $S = \{\sigma \in T: a \leq b_{\sigma}\}$ would be a branch in T so that $\delta = \bigcup S$ would belong to $2^{<\omega_1}$. Since $b_{\delta} \geq a > 0$, we would also have $\delta \in T$. But then $a \leq b_{\delta} = b_{\delta \cap 0} \vee b_{\delta \cap 1}$ so that either $\delta \cap 0$ or $\delta \cap 1$ belongs to S, which is impossible.

Thus, B_0 is a complete, countably generated, atomless subalgebra of B. So, by (e), there exists a family A of ω_1 -many maximal antichains in B_0 with no filter in B_0 intersecting all of them. But then each $A \in \mathcal{A}$ is also a maximal antichain in B and no filter in B would intersect all of them. So, we have (d).

Next, assume that T has height ω_1 and for every $\alpha < \omega_1$ let

$$T_{\alpha} = \{ \sigma \in T : \operatorname{dom}(\sigma) = \alpha \}$$

be the α -th level of T. Also let $b_{\alpha} = \bigvee_{\sigma \in T_{\alpha}} b_{\sigma}$. Notice that $b_{\alpha} = b_{\alpha+1}$ for every $\alpha < \omega_1$. On the other hand, it may happen that $b_{\lambda} > \bigwedge_{\alpha < \lambda} b_{\alpha}$ for some limit $\lambda < \omega_1$; however, this may happen only countably many times, since B is ccc. Thus, there is an $\alpha < \omega_1$ such that $b_{\beta} = b_{\alpha}$ for every $\alpha < \beta < \omega_1$.

Now, let B_0 be the smallest complete subalgebra of B below $1 \setminus b_{\alpha}$ containing $\{b_{\sigma} \setminus b_{\alpha} : \sigma \in T\}$. Then B_0 is countably generated and, as before, it can be shown that B_0 is atomless. Thus, there exists a family \mathcal{A}_0 of ω_1 -many maximal antichains in B_0 with no filter in B_0 intersecting all of them. Then no filter in B containing $1 \setminus b_{\alpha}$ intersects every $A \in \mathcal{A}_0$. But for every $\alpha < \beta < \omega_1$ the set $A^{\beta} = \{b_{\sigma} : \sigma \in T_{\beta}\}$ is a maximal antichain in B below b_{α} . Therefore, $\mathcal{A}_1 = \{A^{\beta} : \alpha < \beta < \omega_1\}$ is an uncountable family of maximal antichains in B below b_{α} with no filter in B containing b_{α} intersecting every $A \in \mathcal{A}_1$. Then it is easy to see that the family $\mathcal{A} = \{A_0 \cup A_1 : a_0 \in \mathcal{A}_0 \& A_1 \in \mathcal{A}_1\}$ is a family of ω_1 -many maximal antichains in B with no filter in B intersecting all of them. This proves (d).

Theorem 6.2 CPA_{cube} implies the total failure of Martin's Axiom.

PROOF. Let \mathcal{A} be a countably generated atomless ccc complete Boolean algebra and let $\{A_n: n < \omega\}$ generate \mathcal{A} . By Proposition 6.1 it is enough to show that \mathcal{A} contains ω_1 -many maximal antichains such that no filter in \mathcal{A} intersects all of them.

Next let \mathcal{B} be the σ -algebra of Borel subsets of $\mathfrak{C} = 2^{\omega}$. Recall that it is a free countably generated σ -algebra, with free generators $B_i = \{s \in \mathfrak{C}: s(i) = 0\}$. Define $h_0: \{B_n: n < \omega\} \to \{A_n: n < \omega\}$ by $h_0(B_n) = A_n$ for all $n < \omega$. Then h_0 can be uniquely extended to a σ -homomorphism $h: \mathcal{B} \to \mathcal{A}$ between σ -algebras \mathcal{B} and \mathcal{A} . (See e.g. [20, 34.1 p. 117].) Let $\mathcal{I} = \{B \in \mathcal{B}: h[B] = \mathbf{0}\}$. Then \mathcal{I} is a σ -ideal in \mathcal{B} and the quotient algebra \mathcal{B}/\mathcal{I} is isomorphic to \mathcal{A} . (Compare also Loomis-Sikorski theorem in [20, p. 117] or [13].) In particular, \mathcal{I} contains all singletons and is ccc, since \mathcal{A} is atomless and ccc.

It follows that we need only to consider complete Boolean algebras of the form \mathcal{B}/\mathcal{I} , where \mathcal{I} is some ccc σ -ideal of Borel sets containing all singletons. To prove that such an algebra has ω_1 maximal antichains as desired, it is enough to prove that

(*) \mathfrak{C} is a union of ω_1 perfect sets $\{N_{\xi}: \xi < \omega_1\}$ which belong to \mathcal{I} .

Indeed, assume that (*) holds and for every $\xi < \omega_1$ let \mathcal{D}_{ξ}^* be a family of all $B \in \mathcal{B} \setminus \mathcal{I}$ with closures $\operatorname{cl}(B)$ disjoint from N_{ξ} . Then $\mathcal{D}_{\xi} = \{B/\mathcal{I}: B \in \mathcal{D}_{\xi}^*\}$ is dense in \mathcal{B}/\mathcal{I} , since $\mathfrak{C} \setminus N_{\xi}$ is σ -compact and \mathcal{B}/\mathcal{I} is a σ -algebra. Let $\mathcal{A}_{\xi}^* \subset \mathcal{D}_{\xi}^*$ be such that $\mathcal{A}_{\xi} = \{B/\mathcal{I}: B \in \mathcal{A}_{\xi}^*\}$ is a maximal antichain in \mathcal{B}/\mathcal{I} . It is enough to show that no filter intersects all \mathcal{A}_{ξ} 's. But if there were a filter \mathcal{F} in \mathcal{B}/\mathcal{I} intersecting all \mathcal{A}_{ξ} 's then for every $\xi < \omega_1$ there would exist a $B_{\xi} \in \mathcal{A}_{\xi}^*$ with $B_{\xi}/\mathcal{I} \in \mathcal{F} \cap \mathcal{A}_{\xi}$. Thus, the set $\bigcap_{\xi < \omega_1} \operatorname{cl}(B_{\xi})$ would be non-empty, despite the fact that it is disjoint from $\bigcup_{\xi < \omega_1} N_{\xi} = \mathfrak{C}$.

fact that it is disjoint from $\bigcup_{\xi < \omega_1} N_{\xi} = \mathfrak{C}$.

To finish the proof it is enough to show that (*) follows from CPA_{cube}. But this follows immediately from the fact that any cube P in \mathfrak{C} contains a subcube $Q \in \mathcal{I}$ as any cube P can be partitioned into \mathfrak{c} -many disjoint subcubes and, by the ccc property of \mathcal{I} , only countably many of them can be outside \mathcal{I} .

The authors like to thank professor Anastasis Kamburelis for many helpful comments concerning the results presented here. We are especially grateful him for pointing out a gap in an earlier version of the proof of Theorem 6.2.

Other consequences of CPA_{cube} can be found in [6], [11], [18], and in the monograph in preparation [7].

References

- [1] T. Bartoszyński, H. Judah, Set Theory, A K Peters, 1995.
- [2] J. Baumgartner, Sacks forcing and the total failure of Martin's axiom, Topology Appl. 19(3) (1985), 211–225.

- [3] M. L. Brodskii, On some properties of sets of positive measure, Uspehi Matem. Nauk (N.S.) 4, No. 3 (31) (1949), 136–138.
- [4] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts **39**, Cambridge Univ. Press 1997.
- [5] K. Ciesielski, J. Pawlikowski, Small combinatorial cardinal characteristics and theorems of Egorov and Blumberg, Real Anal. Exchange 26(2) (2000– 2001), 905–911. (Preprint* available.)²
- [6] K. Ciesielski, J. Pawlikowski, Crowded and selective ultrafilters under the Covering Property Axiom, preprint*.
- [7] K. Ciesielski, J. Pawlikowski, Covering Property Axiom CPA, version of March 2001, work in progress*.
- [8] K. Ciesielski, J. Wojciechowski, Sums of connectivity functions on \mathbb{R}^n , Proc. London Math. Soc. **76**(2) (1998), 406–426. (Preprint* available.)
- [9] H. G. Eggleston, Two measure properties of Cartesian product sets, Quart.
 J. Math. Oxford (2) 5 (1954), 108–115.
- [10] J. Foran, Continuous functions: a survey, Real Anal. Exchange 2 (1977), 85–103.
- [11] F. Jordan, Generalizing the Blumberg theorem, Real Anal. Exchange, to appear. (Preprint* available.)
- [12] A. S. Kechris, *Classical Descriptive Set Theory*, Springer-Verlag, Berlin 1995.
- [13] L. H. Loomis, On the representation of the σ -complete Boolean algebra, Bull. Amer. Math. Soc. **53** (1947), 757–760.
- [14] D. A. Martin, R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2(2) (1970), 143–178.
- [15] S. Mazurkiewicz, Sur les suites de fonctions continues, Fund. Math. 18 (1932), 114–117.
- [16] A. W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), 575–584.
- [17] A. W. Miller, Special Subsets of the Real Line, in: Handbook of Set-Theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland (1984), 201–233.
- [18] A. Nowik, Possibly there is no uniformly completely Ramsey null set of size 2^{ω} , Colloq. Math., to appear. (Preprint* available.)

 $^{^2}$ Preprints marked by * are available in electronic form from Set Theoretic Analysis Web Page: http://www.math.wvu.edu/~kcies/STA/STA.html

- [19] S. Saks, *Theory of the Integral*, 2nd ed., Monografie Mat., vol. 7, PWN, Warsaw, 1937.
- $[20]\,$ R. Sikorski, $Boolean\ Algebras,$ 3rd ed., Springer-Verlag, New York, 1969.
- [21] S. Todorchevich, I. Farah, Some applications of the method of forcing, Yenisei Series in Pure and Applied Mathematics, Yenisei, Moscow; Lycée, Troitsk, 1995.