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On Marczewski-Burstin representations of
certain algebras of sets

Abstract

We show that the Generalized Continuum Hypothesis GCH (its ap-
propriate part) implies that many natural algebras on R, including the
algebra B of Borel sets and the interval algebra X, are outer Marczewski-
Burstin representable by families of non-Borel sets. Also we construct,
assuming again an appropriate part of GCH, that there are algebras on
R which are not MB-representable. We prove that some algebras (in-
cluding B and X) are not inner MB-representable. We give examples of
algebras which are inner and outer MB-representable, or are inner but
not outer MB-representable.

1 Introduction

Our set theoretic notation is standard and follows that from [Ci].
For a fixed non-empty set X and a family F C P(X)\ {0} define, following
the idea of Burstin and Marczewski,

S(F)={ACX: (VT € FYAW € F)(W CTNAor W CTn A°)}
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and
So(F)={ACX: (VT e F)(IW € F)Y(W Cc TN A%)}.

Then S(F) constitutes an algebra of sets and Sp(F) is an ideal of subsets
of X. (See [BBRW].) We will always assume that the whole space X is in an
algebra; usually such a family is called a field of sets. Burstin in [Bu] proved
that the o-algebra of Lebesgue measurable subsets of R is of the form S(F) for
F being the family of perfect subsets of R of positive measure. It can be also
shown that, for the same F, the family Sp(F) consists of Lebesgue null sets.
(See [Re] or [BET].) On the other hand, if F is the family of all perfect subsets
of R then S(F) and Sp(F) constitute a quite different pair of a o-algebra and
a o-ideal on R which were introduced by Marczewski in [Ma].

If a given algebra A (an ideal Z, respectively) on a set X can be represented
as S(F) (respectively, as So(F)) for some family F C P(X)\ {0}, we say that
it is Marczewski-Burstin representable (or, briefly, MB-representable) by F. If
additionally, F C A (respectively, F N A = (}), we say that A is inner (outer)
MB-representable by F. Similarly, for Z C A we say that the pair (A,7) is
MB-representable if A = S(F) and Z = Sy(F) for the same family F. This
notion is most often considered when 7 is the ideal

HA) ={ACX: (VBC A)(Be A)}

of sets which hereditarily belong to A.

Systematic studies of MB-representations of algebras and ideals were ini-
tiated in [Re], [BET], and [BBRW]. For instance, in [BET] it is proved that
the algebra of sets in R with the Baire property is inner MB-representable by
a family of Borel sets, and in [BBRW] it is shown that the interval algebra ¥
generated by intervals [a,b) with a < b, is MB-representable by a family of
Borel sets. Some necessary conditions for MB-representability of a pair (A, Z)
by a family of Borel sets are given in [BET] and [ET]. Until now, however, the
following basic questions about MB-representability (see [BBRW]) were with-
out an answer: Is every algebra of sets MB-representable? What about some
basic algebras, like the algebra B of Borel subsets of R? Is it MB-representable,
and if so, is it inner (outer) MB-representable?

In this note we show that, assuming appropriate set theoretical assump-
tions (which follow from the Generalized Continuum Hypothesis GCH), there
are algebras (on R and other infinite sets) which are not MB-representable.
We also show, under similar set theoretical assumptions, that many “natural”
algebras, including the algebras B and X, are outer MB-representable in some
strong manner. It has to be pointed out here that our representation families
F C P(X), unlike those studied in the earlier papers, are not nice in a sense
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that they are not connected with the Borel structure of a space. The same is
true for our example of algebras which are not MB-representable. Moreover,
these facts are not proved in ZFC. On the other hand we prove that the alge-
bras B and ¥ are not inner MB-representable. In Section 1 we show a simple
criterion for an inner MB-representable algebra to be outer MB-representable.
We apply it to some classical og-algebras on R.

2 Algebras which are inner and outer MB-representable

Recall that the algebras of Lebesgue measurable sets, of sets with the Baire
property, and of Marczewski s-sets are inner MB-representable. We shall
prove that they are also outer MB-representable. To this end we propose
some general scheme.

We need the following fact which easily results from the definition of S(F)
and So(F). (See [BBRW].)

Fact 1 For Fy, F1 C P(X)\ {0} assume that
(Vi € {0,1})(VA € F;)(3B € F1_;)(B C A).

(We thus say that Fo,F, are mutually coinitial.) Then S(Fy) = S(F1) and
So(Fo) = So(F1).

Proposition 2 Assume that an algebra A on X is inner MB-representable
by a family F C A with the following properties:

(a) (VF e F)3F,FRe F)(FLUF, CF & Fi N Fy =0);
(b) (3BC X)(VF e F)BNF ¢ A.
Then A is outer MB-representable by the family
Fp={FAU(F>2NB): F1,F» € F & F1 N F, =0},
where B is a set realizing (b).

PrOOF. From (a) and the definition of Fp it follows that F and Fp are
mutually coinitial. So S(F) = S(Fp) by Fact 1. Condition (b) implies that
FpNA=0. O
Corollary 3 The following algebras on R are outer MB-representable:

e the algebra of Lebesgue measurable sets,
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e the algebra of sets with the Baire property, and

e the algebra of Marczewski measurable sets.

PrROOF. We use Proposition 2. For any algebra listed in the assertion, the
role of F is played by: the perfect sets of positive measure, the comeager Gy
sets in nonempty open sets (see [BET]), and by all perfect sets, respectively.
In every case, F satisfies conditions (a) and (b) where B in (b) stands for a
Bernstein set. 0

3 Algebras which are strongly outer MB-representable

Let A be an algebra on X. If, for each family C C P(X) with A C C and
IC] = | AJ, there is an F C P(X) \ C such that A = S(F), we say that A is
strongly outer MB-representable. If additionally, H(A) = Sy(F), we say that
the pair (A, H(A)) is strongly outer MB-representable.

Let X be an infinite set of cardinality k. The following is the main theorem
of this section.

Theorem 4 Let A be an algebra of subsets of X such that [X]<F C A. If
2% = k1 and |A| < 2" then the pair (A, H(A)) is strongly outer MB-represen-
table.

From this theorem we immediately obtain the following corollary.

Corollary 5 If 2¥ = w; and 2“1 = wy then the pair (B, [R]S%) is strongly
outer MB-representable.

In the sequel we will use the following fact which is well known (see e.g.
[Wrl, Lemma 2]). However we provide its easy proof for the reader’s conve-
nience.

Fact 6 For every algebra A on X and Z € P(X)\ A there exists an ultrafilter
Uz in A such that UNZ ¢ A for every U € Uy.

PROOF. Observe that the family G = {E € A: Z\ E € A} is a filter in the
algebra A. Consider an ultrafilter {7 O G in A. Then Uy is as desired. O

PROOF OF THEOREM 4. To construct family F let {Z¢: £ < x*} be an
enumeration of P(X) \ A. For each £ < k1 use Fact 6 to choose an ultrafilter
Us = Uz, in A for which

UNZ: ¢ A for each U € U. (1)
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Fix a family C C P(X) with A C C and |C| = | A|. By induction on § < k* we
construct a sequence (D¢ C X: § < k™) of “very independent sets” in a sense
that

|DeNY| =k =|DiNY] (2)

for each set Y C X of cardinality x which belongs to the algebra IC¢ of sets
generated by the family

{D¢: ¢ <&fu{Z: (< gpuc (3)
Such D¢ can be chosen by an easy diagonal argument (another transfinite
induction) since |IC¢| = k.
F=J{unbD::Ueu}.
E<kt

Note that by (2) and (3) we clearly have F NC = ). The remaining properties
of F will be shown in the following three steps.

Step 1. If Z = Z, € P(X) \ A then Z ¢ S(F).

To see this let T' = D¢. Then T' = X N D¢ € F. We shall prove that
WgTnNnZandW ¢ TNz forall W € F. Thuslet W € F,say W =UND,
for some U € U,, n < k™. Consider three cases:

o If n < { then W ¢ T since, by (2), WNT*= (UnNDy)N Dg #0.

e If n > £ then once again we have W ¢ T since condition (2) implies that
WnT¢=(UnDy,) ND¢=D,N(UNDg)#0.

e If n =& then by (1) we have UNZ ¢ A. So, [UNZ| =|UNZ° = k.
Consequently, by (2), |De N (U N Z)| = |De N (UN Z°| = k. Thus we
have W ¢ T'N Z since

W¢TNZ < UNDe¢ DeNZ < UND:NZ®#0,
and also W ¢ T'N Z€ since
WgTNZ® < UNDe ¢ DeNZ® < UND:NZ#N0.
This completes Step 1.

Step 2. If V € A then V € S(F).

Let T € F, say T = U N D¢ where £ < kT and U € Ue. Since U is an
ultrafilter in A, we have either Ve U or V ¢ Ue. f V € U then UNV € U
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and thus for W = (UNV)NDe =T NV we have W € F. If V ¢ U then
V¢ € Ug and thus for W = (UNV)NDe =T NV we have W € F. Hence
in the both cases V € S(F). Step 2 has been completed.

Step 3. So(F) = H(A).

We clearly have
So(F) € H(S(F)) = H(A).

To show that H(A) C So(F) consider V € H(A) and let T = UNDe € F
where £ < kT and U € Ue. Since V € H(A), by (1) we have V ¢ Ue. So
VeelUs and W= (UnNV®)NDe =TNVe belongs to F. Hence V' € Sy(F).
This finishes the proof of Theorem 4. |

Remark. It is worth to point out here that we do not need a full strength of
the assumption 2® = xk* to prove Theorem 4. In fact there are models of ZFC
in which 2% > k™ and we can find sets D satisfying (2) for any family of less
than 2%-many sets of cardinality . In such models the proof presented above
remains valid.

The structural assumptions on A in Theorem 4 were that |A| < 2% and
[X]<* c A. Although the example presented in the next section clearly vi-
olates both of these assumptions, it is worth to mention that the second as-
sumption can be modified with resulting statement still being true. This is
stated in the next theorem.

Theorem 7 Let A be an algebra of subsets of X such that AN [X]|<" = {0}.
If 2% = kT and |A| < 2% then the pair (A, H(A)) = (A, {0}) is strongly outer
MB-representable.

SKETCH OF PROOF. Put A= {AUM: A€ A& M € [X]|<"}, where A is as
above, and notice that the following version of Fact 6 remains true:

For every Z € P(X) \ A there exists an ultrafilter Uz in A such
that UNZ ¢ A for every U € Uy.

Indeed, similarly as in Fact 6, it is enough to show that if V' is a maximal filter
in A such that VN Z ¢ A for each V € V then V is an ultrafilter in A. But if
V is not an ultrafilter in A then there are Vy, Vi € V such that VpnANZ € A
and V1 N A°N Z € A. Hence there are Ay, A; € A and My, M, € [X]<" such
that

VoNnViNANZ=AoUMyece Aand VyNVINA°NZ=AUM; € A
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which implies that VonViNZ = (A4gUA;)U(MoUM,;) € A where VonV; € V,
a contradiction.

Then proceed as in the proof above listing as sets Z¢ only the sets from
P(X) \ A. This will clearly results with FNC = ), A C S(F), and with
(P(X)\ A) NS(F) = 0. To finish the proof it is enough to notice that if
Z € A\ Athen Z¢ ¢ A, as AN [X]|<* = {0}, and so Z¢ ¢ S(F). Thus we
have also Z ¢ S(F). O

It was proved in [BBRW] that the interval algebra ¥ on R is outer repre-
sentable by a family of Borel sets. If we use Theorem 7 with A = X, we obtain
the following

Corollary 8 If 2° = ¢ then the interval algebra ¥ on R is strongly outer
MB-representable. In particular, it is outer MB-representable by a family of
non-Borel sets.

4 Algebras which are not MB-representable

The key step towards constructing an algebra which is not MB-representable
is the following fact.

Proposition 9 Let X be an infinite set of cardinality k and let A be an
algebra on X having the following properties:

(1) ANX]=~ ={0};

(i) for every E € [X]<" and x ¢ E there exists an A € A such that x €
ACX\E;

(iii) for every Z € [X]* and = ¢ Z there exists an A € A\ {0} such that
either |ANZ°| <k orx € A and |[ANZ| < k.

If F c P(X)\ {0} is such that A C S(F) then S(F) contains a singleton. In
particular algebra A is not MB-representable.

PrOOF. Let A and F be as in the assumptions. If {z} € S(F) for every
z € X then there is nothing to prove. So assume that there exists an x € X
for which {z} ¢ S(F). This means that there exists a Z € F for which neither
W cZn{z} nor W C Z\ {x} for every W € F. Thus x € Z and

x €W forevery W e FwithW C Z. 4)
Next note that

there is no A € A containing = with |[AN Z| < k. (5)
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Indeed, if there is such an A then, by (ii) used with E = ANZ\ {«} we can
find an A; € A with ANA;NZ = {x}. Since ANA; € A C S(F), there exists a
W € F such that either W C ZN(ANA;) = {z}or W C Z\(ANA4;) = Z\{x}.
But, by (4), the second case is impossible. Thus, {x} = W € F and so
{z} € S(F), contradicting our choice of z.

Note that the condition (5) works also for Z replaced with Z' = Z \ {z},
which implies that |Z’| = k. Thus, applying (iii) to Z’ and our z, we conclude
that there is an A € A\ {0} such that |[AN(Z")¢| < k. For this A we have also
|AN Z¢| < k. Now, using (ii) if necessary to decrease A, we can additionally
assume that AN Z° =0 and = ¢ A. (Indeed, pick an zg € AN Z, z¢ # x, and
let £ = (AN Z°)U{z}. Then zo ¢ E and, by (ii), there exists an A* € A
such that zp € A* ¢ X \ E. Then A = AN A* 3 x is as required.) So
A c Z\ {z}. Thus, by (4), A contains no W € F. Since A € S(F), this
implies that A € So(F). So {a} € S(F) for every a € A. O

Proposition 10 If 2° = skt and |X| = k then there exists an algebra A on
X satistying conditions (i)—(iii) from Proposition 9.

PROOF. Let {(Z¢,x¢): € < KT} be an enumeration of all pairs (Z,z) €
P(X) x X with x ¢ Z. Similarly as in the proof of Theorem 4, by induction
on £ < k', we construct a sequence (De C X: £ < k™) such that

IDeN Al =k = DN Al (6)

for every non-empty set A which belongs to the algebra L¢ of sets generated
by the family {D¢: ¢ < £}. In addition, if there is no A € L¢ \ {0} with
|A\ Z¢| < k then we will additionally require that ze € D¢ C X \ Ze.

Such D¢ can be chosen by an easy diagonal argument since |L¢| < k and
sets D¢ and Dg need to intersect all sets A € L¢ \ {0} and, if additional
requirement is claimed, they need also to intersect all sets A\ Z¢ € [X \ Z¢]”
for A € L\{0}. Let A denote the algebra generated by all sets {Dg: & < kT }.
Then A has all the desired properties.

Indeed, (i) is obvious.

To see (ii) let F € [X]<",z ¢ E, and take an £ < k" with (Z¢, z¢) = (E, ).
Then from |Z¢| < k and (6) it follows that |A\ Z¢| = & for all A € L¢\ {0}.
Sox=2z2:€De CX\Zg=X\FEand A= D¢ € Ais as desired.

To see (iii) let £ € [X]%,z ¢ E, and take a £ < kT such that (Z¢, z¢) =
(Z,x). If there exists an A € L¢ \ {0} such that [ANZ°| = |A\ Z¢| < k then
(iii) holds. Otherwise x = z¢ € D¢ C X\ Ze =X\ Z and A= D, € Ais as
desired since AN Z = . O

Corollary 11 If 2% = k% and | X| =  then there exists an algebra A on X
which is not MB-representable.
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It is also worth to notice that, as in the case of Theorem 4, Corollary 11
remains valid also in some models with 2¢ > xt. However, it is also worth
to note that if A is an example as in Proposition 10 and X C Y, then the
algebra Ay on Y generated by A still is not MB-representable. Thus if X is
such that there exists an infinite x < |X| with 2 = k™ then there exists an
algebra 4 on X which is not MB-representable.

5 Algebras which are not inner MB-representable
Now, we shall prove that the algebras ¥ and B are not inner MB-representable.

Proposition 12 (S. Wroriski [Wr2]) The interval algebra ¥ is not inner MB-
representable.

PROOF. Suppose that ¥ = S(F) for some F C X. Let G stand for the family
of all intervals [a,b) with a < b. Evidently, ¥ and G are mutually coinitial, so
S(X) = S(G) by Fact 1. Since S(G) contains singletons, we have S(G)\ X # (.
Thus, by Fact 1, G and F cannot be mutually coinitial, and since F C %,
it follows that there is a A € G such that P\ A # 0 for each P € F. Let
A = [a,b). To obtain a contradiction we shall show that {a} € S(F). Let
P c F. If a ¢ P then obviously P C PN {a}°. Let a € P. Since A € S(F)
and since we cannot find a () € F such that Q C PN A, thereisa Q C PN A€,
so Q@ C PN {a}°. Consequently {a} € S(F) C So(F). O

Theorem 13 Let X be an infinite set of cardinality k. Let A be an algebra
on X such that:
(I) H(A) C [X]=";
(II) AN[X]<® C H(A);
(I1) for A* = A\ [X]<" we have S(A*) \ A # 0.
Then A is not inner MB-representable.

PROOF. Suppose that A = S(F) for some F C A. Put F* = F\ [X]|<". First
we shall prove that

(VB € A*)(3F € F*) F C B. (7)

Suppose it is not the case and let B € A* witness that (7) is false. We have
|B| = k and so, B ¢ So(F) since, by (I),

So(F) C H(S(F)) = H(A) C [X]=". (8)
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From B ¢ So(F) it follows that there are sets Q € F, Q@ C B. Since (7) is
false, we have |Q| < k for each set Q € F contained in B. We shall show that
B € H(S(F)) which yields a contradiction since | B| = x and H(S(F)) C [X]<"
by (I). Let Z C B and P € F. We have to find T € F such that either
TCcPNnZ¢orTCPNZ.

Since B € A = S(F), there is a @ € F such that either Q C P N B¢ or
@Q C PNB. If Q € PNBthenT = Q is as desired. So, assume that Q C PNB.
Then |Q| < & by our supposition. Thus, by (II), we have QN Z € A = S(F)
and so, there is a T € F such that either T C QN (QNZ) C PNZ or
TCcN(@NZ) c PnZzec. Consequently, Z € S(F) and thus B € H(S(F))
as desired.

By Fact 1, condition (7) together with an obvious inclusion F* C A* imply
that S(F*) = S(A*).

Next, we shall show that S(F*) C S(F). Assume that B € S(F*). Let
P ¢ F. Consider two cases:

o if P € F* then B € S(F*) implies that we can find a @ € F* (hence
Qe F)withQ CPNnBor@QCPnNB

e if |P| < & then, by (II), PN B € A = S(F), so there is a Q € F with
QCPnNn(PNB)orQCPN(PNB)=PnNB".

Hence B € S(F).
Finally, we have S(A*) = S(F*) C S(F) = A which contradicts (III). O

From the result by Elaloui-Talibi [ET, Thm. 1.1] it follows that there is
no F C B with B = §(F) and [R]=* = Sy(F). We can derive a bit more

Corollary 14 The algebra B is not inner MB-representable.

PrOOF. It suffices to check (III). Here B* is the family of uncountable Borel
sets. Thus B* and the family of perfect sets are mutually coinitial. So, by
Fact 1, S(B*) is exactly the algebra of classical Marczewski (s)-sets. Since
there is a non-Borel (sg)-set [Mi], therefore it belongs to S(B*) \ B. O

Example. Let us observe that the condition (IIT) in Theorem 13 is essential.
It was shown in [BBRW] that if Z is an ideal in P(X) then, for the dual filter
Fr = {E°: E € I} and the algebra A7 = Z U Fr, we have Ar = S(F7)
and Z = Sy(Fz). Hence Az is inner MB-representable. Let us consider a
special case. Assume that A is an infinite cardinal with A < x = | X/, and put
T = [X]<*, A= Az. Then conditions (I) and (II), stated in Theorem 13, are
obviously satisfied. However, A is inner MB-representable, and (III) is false
since A* = F7 and so A = S(Fz) = S(A*). Finally, note that A is not outer
MB-representable. Indeed, suppose that A = S(G) and G N A = (. Thus
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|E| > X\ and |E€| > X for all E € G. Since for each A € F7 thereisan E € G
such that E C A, therefore, by Fact 1, from S(Fr) = A = S(G) it follows
that for each E € G there is an A € F7 such that A C E. This however is
impossible.

Acknowledgements. We would like to thank S. Wronski for a fruitful dis-
cussion. He has allowed us to include Proposition 12 in our paper.
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