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Abstract

Answering a question of J. Lawson (formulated also earlier, in 1984,
by Kamimura and Tang [16]) we show that every Polish space admits
a bounded complete computational model, as defined below. This re-
sults from our construction, in each Polish space 〈X, τ〉, of a countable
family C of non-empty closed subsets of X such that:

(cp) each subset of C with the finite intersection property has non-
empty intersection;
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(br) if x ∈ T and T ∈ τ then there exists C ∈ C such that x ∈ int(C)
and C ⊂ T , and

(r*) for every C ∈ C and x ∈ X \ C there is a D ∈ C such that
C ⊂ int(D) and x /∈ D.

These conditions assure us that there is another compact topology
τ∗ ⊂ τ on X such that the bitopological space 〈X, τ, τ∗〉, is pairwise
regular. The existence of such a topology is also shown equivalent to
admitting a bounded complete computational model.

1 Background: what is a bounded complete

computational model?

In this section we will introduce the notions coming from theoretical com-
puter science and necessary for understanding the main problem. These
notions are standard in domain theory, but are unknown to many topolo-
gists. Thus, we take extra time and space to explain the motivation behind
these notions.

In the past few decades theoretical computer science has considered the
basic problem: What is the best way to approximate mathematical objects?
One of the most fundamental of such questions is about the representation of
a real number. A common theoretical approach to this problem is to identify
each real number r with a collection of intervals whose intersection is {r}.
In such a representation a smaller interval gives more information about a
number than a bigger interval. So an interval I carries more information than
an interval J , which we represent by writing J ≤ I, provided that J ⊃ I.

An approximation of a number (some knowledge accumulated about it)
is stored in the partially ordered set 〈PR,≤ 〉 whose elements are R, and all
its closed bounded intervals including singletons, and whose partial order,
≤, is reverse set inclusion, ⊃. The numbers themselves are represented by
singletons, denoted here by Max(PR), since they are the maximal elements
of PR. Each element of PR is below a maximal element.

More generally, certain partially ordered sets 〈P,≤ 〉 each of whose ele-
ments is below a maximal element, can be considered as models for approxi-
mating their maximal elements. This idea has been explored by many authors
(see e.g. Scott [19], Edalat [6], Edalat and Heckmann [7], or Lawson [18])
and led to a field known as domain theory. An authoritative reference in this
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area is [2], which has set much of the standard notation in the subject.
To make approximation in a model computationally feasible a poset P

must have several nice properties. The most fundamental is that after we go
through all the work of approximation, we have actually approximated an
object. We see that this is embodied by the following:

Definition 1 A poset 〈P,≤ 〉 is directed complete (abbreviated as dcpo) pro-
vided each directed subset D of P has a supremum

∨
D. It is bounded com-

plete (abbreviated as bcpo) if it is a dcpo and each subset which is bounded
above has a supremum.

The importance of the notion of dcpo is that when increasingly fine ap-
proximations are obtained, they indeed approximate some object; for exam-
ple, this would be false if we used PQ to try to compute rational numbers.

For a dcpo 〈P,≤ 〉, each x ∈ P is below the join (i.e., supremum) of a
maximal chain of elements ≥ x, which is certainly an element of Max(P ).

The definition of dcpo also requires the existence of a bottom element,∨
∅, which in the case of PR is equal to R. Certainly PR is bounded complete

with
∨
D =

⋂
D for any directed or bounded subset of PR.

As we shall see, bounded completeness has important consequences, al-
though its theoretical value is less clear. Note that a dcpo in which pairs
that are bounded above have suprema, is bounded complete (since for any
bounded set, the set of suprema of its finite subsets then is directed, thus
must have a supremum and that is the supremum of the original set).

The next issue is that of “observability;” the idea that we should be able
to see whether r is in one of its supposed approximations. For example, if r
is an endpoint of the interval I, no magnification of the real line would make
it possible to see whether r is actually in I or not. Similarly, for another
interval J ∈ PR, if either the left endpoints of I and J are identical, or their
right endpoints are, it will not be possible under any magnification of the real
line to see whether one of the intervals contains the other. This problem has
an obvious answer involving topology: given two intervals I, J in the poset
〈PR,⊃ 〉, J is observably below I if I is a subset of the interior int(J) of J .
But this can be expressed just in terms of posets:

Definition 2 For a dcpo and x, y ∈ P we say that x is way-below y (written
x � y) if whenever y ≤

∨
D and D is directed, then there is some z ∈ D

such that x ≤ z.
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The compactness of the elements of PR immediately implies that K ∈
PR is way-below M ∈ PR if and only if M ⊂ int(K). The reader should
check that if P is the collection of all compact subsets of a locally compact
topological space X, then 〈P ∪ {X},⊃ 〉 is a dcpo, and M ⊂ int(K) if and
only if K �M .

In any dcpo, the bottom element,
∨
∅, is way-below itself. This is the

only element of PR that is way-below itself, and in what follows we will be
mainly concerned with posets for which x � x only for the bottom ele-
ment. However, there is much interest, both in domain theory and in alge-
bra, in continuous posets in which each element x is the supremum of the set
{y ≤ x: y � y}, and this set is directed. These are called algebraic posets,
and include the algebraic lattices (such as the collection of all ideals of a ring,
ordered by ⊂, and many other examples). See [13] or [2] for further discus-
sion, and [11] for discussion of a topological example of interest in domain
theory (ultrametric separable spaces).

The interpretation of the definition of continuous dcpo which follows, is
that sufficient information needed to compute any object is available in the
objects way-below it.

Definition 3 For A ⊂ P we define ⇑ A = {x ∈ P : a� x for some a ∈ A}
and ⇓ A = {x ∈ P :x � a for some a ∈ A}. For a ∈ P the symbols ⇑ a
and ⇓ a stand for ⇑ {a} and ⇓ {a}, respectively.

A continuous dcpo is a dcpo P such that for every x ∈ P , ⇓ x is directed
and x =

∨
(⇓ x).

Clearly for [p, q] ∈ PR we have
∨

(⇓ [p, q]) =
⋂
{[r, s]: r < p ≤ q < s} =

[p, q], so PR is a continuous dcpo.
Let us note that � satisfies a transitivity condition and it is stronger

than ≤:

(str) if x� y then x ≤ y;

(trans) if w ≤ x� y ≤ z then w � z.

(To see the (str) condition take D = {y} in the definition of �.)
The properties (str) and (trans) immediately imply that ⇓ (⇓ x) ⊂⇓ x.

The reverse inclusion is not automatic, however it holds for continuous dcpo’s.

Fact 4 If P is a continuous dcpo then ⇓ (⇓ x) =⇓ x for every x ∈ P .
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Proof. We need only show that ⇓ x ⊂⇓ (⇓ x). So, first note that

⇓ (⇓ x) is directed.

Indeed, if y � y′ � x and z � z′ � x then, since ⇓ x is directed, we can
find a w ∈⇓ x such that y′, z′ ≤ w. Thus, by (trans), y, z � w. Since ⇓ w
is directed, we can find a v � w for which y, z ≤ v. But v ∈⇓ (⇓ x). So
⇓ (⇓ x) is directed.

Next note that if y ∈⇓ x then ⇓ y ⊂⇓ (⇓ x), so y =
∨
⇓ y ≤

∨
⇓ (⇓ x).

Thus x =
∨
⇓ x ≤

∨
⇓ (⇓ x), so by definition of �, if y ∈⇓ x (i.e., y � x),

then y ≤ w for some w ∈⇓ (⇓ x), and so y ∈⇓ (⇓ x).

We restate the conclusion of Fact 4 in a form in which we will use it:

(interpolation) if x� y then there exists a z ∈ P such that x� z � y.

In the case of PR the interpolation property is obvious. Later we will
consider similarly-defined posets for more general topological spaces, and
the interpolation property for these will follow from the normality of the
topology.

Finally, computation requires the existence in P of a nice countable subset
B (called a basis) whose elements may be used to recursively approximate
maximal elements of P . The full information on a maximal element x of P
can be represented as the filter Fx of all elements in B which are above x.
However, we should imagine that at any particular moment of approximating
x we have access only to the elements of Fx but not to the entire Fx. (The
situation is quite similar to that in forcing – a generic number is represented
by a generic filter F , but in the ground model we have access only to elements
of F , but not the entire F .)

Definition 5 Following [13, page 168] we say that a subset D of a dcpo P
is a basis for P provided for every x� y from P there exists a d in D such
that x ≤ d� y. A poset P is ω-continuous provided it is a continuous dcpo
and has a countable basis.

Notice that if D is a basis for a dcpo P then

x =
∨

(D∩ ⇓ x) for every x ∈ P .

It is also easy to see that if P has the interpolation property then D is a
basis for P if and only if D is �-dense in P in the sense that
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if x� y then there exists a d ∈ D such that x� d� y.

Clearly the family of all intervals with rational endpoints form a countable
�-dense subset of PR.

Note, that the property x =
∨

(D∩ ⇓ x) means that x is uniquely de-
termined by F (x) = D∩ ⇓ x which is a filter in D. This means that the
“learning process” about the object x ∈ Max(P ) can be done by coding the
incoming information using the elements from the countable set D. In fact,
we do not need to know the entire structure of P to recover the elements of
Max(P ); we just need to know the full order structure of the set D. More-
over, notice that our knowledge about x is “continuously approaching” full
information, since x is a limit of D∩ ⇓ x. Thus, the bounded ω-continuous
dcpo’s (or, more precisely, their �-dense subsets) are a tool to recover the
information on the structure of Max(P ). That is, the knowledge gathered in
an ω-continuous poset allows us to reconstruct the set Max(P ).

Confronted with the situation described above to compute real numbers,
it is natural to ask when we can find a similar model for a topological space X:
an ω-continuous poset 〈P,≤ 〉 which approximates the elements of X. Can
the structure on P also encode the topological structure on X?

The topological spaces for which such a bounded ω-continuous dcpo can
be found were studied by Lawson in [18], where he calls such spaces maximal
point spaces. To define the notion of a maximal point space precisely we need
to recall that each poset P can be equipped with the information-motivated
Scott topology σ; certainly, it is natural to think of a set, C, as “knowledge-
closed” (= Scott-closed) if, whenever x ≤ y ∈ C, then x ∈ C, and whenever
D ⊂ C is directed, then its supremum

∨
D ∈ C. Of course, then a set T is

Scott-open if, as the complement of a Scott-closed set, whenever y ≥ x ∈ T ,
then y ∈ T , and whenever D is directed and

∨
D ∈ T , then D meets T . For

a poset with the interpolation property, it is easy to check that the collection
of sets ⇑ x with x ∈ P , is a base for the topology σ.

Definition 6 A topological space 〈X, τ〉 is a maximal point space provided
there exists an ω-continuous dcpo P and a bijection i:X → Max(P ) such
that

(i) i is a homeomorphism between 〈X, τ〉 and Max(P ) considered with a
subspace topology of 〈P, σ〉;

(ii) for every x ∈ P the set i−1({y ∈ Max(P ):x ≤ y}) is τ -closed.
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Such a poset P is a computational model for X, and if the poset P is bounded
complete, then P is a bounded complete computational model for X.

It is easy to see that for each locally compact space X the poset P formed
with X and all compact subsets of X, and ordered by the reverse inclusion,
is a bcpo. If further, X is a separable locally compact metrizable space, then
P is a bounded complete computational model for X.

Lawson [18] shows that a topological space is a maximal point space
if and only if it is a Polish space. Also, using “formal balls,” Edalat and
Heckmann [7] provide a simple explicit construction of a maximal point space
PX for every Polish space X. Lawson’s characterization and the Edalat-
Heckmann construction are remarkable achievements, but they lack some
desirable properties. In particular, posets PX constructed by them are not
bounded complete. Thus, at the North Bay Summer Conference, Jimmie
Lawson asked whether every Polish space is the maximal point space of a
bounded complete ω-continuous poset. (The same question was also posed
earlier, in 1984, by Kamimura and Tang [16].) The goal of this paper is
to give an affirmative answer for this question. It should be pointed out
that the property of bounded completeness of the representation PX of X
gives advantages that are not present if PX is just directed complete. For
example, given a Scott continuous function from a maximal point space PX

into another, PY , its restriction to Max(X) (identified with X) is a continuous
function from X into Y . It is desirable (cf, Escardó [9]) that every continuous
map X → Y also extends to a Scott continuous function from PX into PY .
This is the case if PX and PY are bounded complete computational models
for X and Y , respectively.1

2 Topological reduction of the problem

The motivation for the definitions stated above came from a situation, which
we now describe in the language of general Hausdorff topological spaces
〈X, τ〉. We considered a family PX of non-empty closed subsets of X whose
interiors formed a base for X. We ordered PX by reverse inclusion, intro-
duced in PX a way-below relation �, and noted that in our particular case

1To see this it is enough to notice that Max(PX) is dense in the Scott topology and
every continuous function defined on a dense subset of a bounded complete ω-continuous
poset P (considered with the Scott topology σ) can be extended continuously to P [13,
Exercise II, 3.19].
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K �M was equivalent to M ⊂ int(K). Then we found a�-dense subfamily
D of PX and identified each x ∈ X with the filter F (x) = D∩ ⇓ x. In the
case we considered, the interiors of sets from D also formed a base for sets
from D, so for each K ∈ D we could also define the following filter in 〈D,⊃ 〉

j(M) = D∩ ⇓M = {K ∈ D:K �M}

and note that j(M) still uniquely determines M , since M =
⋂
j(M). Now,

let P ∗
X(D) (we will write only P ∗

X where D is clear from the context) be the
family of all filters F in 〈D,⊃ 〉 with the property that

for every F ∈ F there exists a K ∈ F such that K ⊂ int(F ).2 (1)

P ∗
X is ordered by the inclusion ⊂.

It is not difficult to see that if X is locally compact and PX is the family
of all compact sets, then P ∗

X is a bounded complete computational model
for X with j (restricted to singletons) being a homeomorphism witnessing
it. The main reason for this is that in this particular situation the mapping
k:P ∗

X → PX , given by k(F ) =
⋂
F , is an order isomorphism between P ∗

X

and PX . If X is a Polish space which is not locally compact the mapping
k will need not even be one-to-one. The next theorem gives (implicitly) the
properties of the families PX and D (denoted there by Γ) which imply that
P ∗

X is a bounded complete computational model for X.
Of course, each family D generates a smallest topology τ ∗ on X such that

all sets in D are closed. Since sets in D are closed in τ , we have τ ∗ ⊂ τ . Note
that even in the case of PR, τ

∗ was strictly smaller than τ . So our notion of
bounded complete computational model carries the bitopological structure
〈X, τ, τ ∗〉. In our next theorem we will show that such a structure is not
just a convenience — a bitopological structure is always associated with a
computational model.

In what follows we will need the following definition (see [17]):

Definition 7 Given a property Q, a bitopological space 〈X, τ, τ ∗〉 is pairwise
Q if both it and its bitopological dual, 〈X, τ ∗, τ〉 are Q.

Let 〈X, τ, τ ∗〉 be a bitopological space. We say it is regular provided that
for each x ∈ U ∈ τ there is a V ∈ τ such that x ∈ V and clτ∗(V ) ⊂ U .

2For D = P(X) filters satisfying (1) are sometimes called round filters (in a topological
space X).
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It is normal provided for every pair of disjoint sets: τ -closed E and τ ∗-
closed F ∗, there exist disjoint sets U∗ ∈ τ ∗ and V ∈ τ such that E ⊂ U∗ and
F ∗ ⊂ V .

In fact, if 〈X, τ, τ ∗〉 is normal, then notice that it is pairwise normal.
Below, we use the terminology “pairwise normal” for this situation, and
“normal” only for topological spaces.

In what follows we will need the following fact.

Fact 8 If a bitopological space 〈X, τ, τ ∗〉 is pairwise regular and X con-
sidered with the join topology τ ∨ τ ∗ is Lindelöf then 〈X, τ, τ ∗〉 is pairwise
normal.

Proof. This can be shown by a small adjustment of the usual proof that a
regular Lindelöf space is normal:

Take disjoint sets E and F ∗ such that E is τ -closed and F ∗ is τ ∗-closed.
By pairwise regularity, and since E and F ∗ are τ ∨ τ ∗-closed, we can find a
family CF ∗ = {Ci: i < ω} of τ ∗-closed sets such that

E ⊂
⋃
i<ω

(X \ Ci) & F ∗ ⊂
⋂
i<ω

intτ (Ci)

and a family BE = {Bi: i < ω} of τ -closed sets such that

F ∗ ⊂
⋃
i<ω

(X \Bi) & E ⊂
⋂
i<ω

intτ∗(Bi).

Now, define the sets U∗ ∈ τ ∗ and V ∈ τ as in the standard proof that every
Lindelöf space is normal:

U∗ =
⋃
n<ω

(
intτ∗(Bn) \

⋂
i≤n

Ci

)
∈ τ ∗ & V =

⋃
n<ω

(
intτ (Cn) \

⋂
i≤n

Bi

)
∈ τ.

But then U∗ ⊃ E and V ⊃ F ∗ are disjoint. So, 〈X, τ, τ ∗〉 is pairwise normal.

Theorem 9 The following are equivalent for a topological space 〈X, τ〉.

(1) X has a bounded complete computational model.

9



(2) There is a countable family C of nonempty τ -closed subsets of X such
that:

(cp) each subset of C with the finite intersection property has nonempty
intersection,

(br) if x ∈ T and T ∈ τ then there exists C ∈ C such that x ∈ int(C)
and C ⊂ T , and

(r*) if x ∈ X \ C for some C ∈ C then there exists a D ∈ C such that
x �∈ D and C ⊂ int(D).

(3) 〈X, τ〉 is second countable and T1, and there is a compact topology
τ ∗ ⊂ τ on X such that 〈X, τ, τ ∗〉 is pairwise regular.

Proof. (3)⇒(2): By the regularity of 〈X, τ ∗, τ〉, for every τ ∗-closed set F
and x ∈ X\F there exists a τ ∗-open set Tx such that x ∈ Tx and clτTx ⊂
X\F . Since τ = τ∨τ ∗ is second countable, so is its restriction to the subspace
X\F ; thus this restriction is Lindelöf. In particular, there exists a countable
subfamily of {Tx:x ∈ X \ F} which covers X \ F . Let CF be the set of
complements of elements of this countable family. Then CF is countable and

F ⊂ int(C) for every C ∈ CF & F =
⋂
CF . (2)

Let B be a countable base for 〈X, τ〉 and C0 = {clτ∗(B):B ∈ B}. Define
a sequence 〈Cn:n < ω〉 by putting

Cn+1 = Cn ∪
⋃

F∈Cn

CF

for every n < ω. Then each Cn is a countable family of τ ∗-closed sets. Thus
C =

⋃
n<ω Cn is also a countable family of τ ∗-closed sets and it is easy to see

that C is as required.

To show (2) ⇒ (1) first note that, by (br), τ -interiors of the sets from
C form a base for τ . Thus 〈X, τ〉 is second countable. Next, let τ ∗ be the
topology generated by the complements of sets from C. Then condition (cp)
implies that 〈X, τ ∗〉 is compact.

Note also that (br) implies also that 〈X, τ, τ ∗〉 is regular, while the reg-
ularity of 〈X, τ ∗, τ〉 follows from (r*). Thus 〈X, τ, τ ∗〉 is pairwise regular.
Moreover, τ∨τ ∗ = τ is Lindelöf (as second countable) so, by Fact 8, 〈X, τ, τ ∗〉
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is pairwise normal. Thus, for every pair 〈A,B〉 of subsets of X where A is
τ ∗-closed and A ⊂ intτ (B) there exists a τ ∗-closed set c(A,B) such that
A ⊂ int(c(A,B)) and c(A,B) ⊂ int(B).

Let Γ be the closure of C under the binary operations of union ∪, inter-
section ∩, and c defined above. More directly, we put Γ0 = C ∪{X}, for each
k ∈ ω let

Γk+1 =
⋃
{{c(A,B), B∪C,B∩C}:A,B,C ∈ Γk & B∩C �= ∅ & A ⊂ int(B)}

and define Γ as
⋃

k∈ω Γk. Then Γ is a countable family of τ ∗-closed sets
which satisfies conditions (br), (r*), and (cp), while it is closed under finite
intersections, finite unions, and the operation c.

Let P ∗
X = P ∗

X(Γ) be defined as in (1) near the beginning of this section.
We will show that P ∗

X is a bounded complete computational model for X.3

First note that for every A ∈ Γ the filter j(A) = {B ∈ Γ:A ⊂ intτ (B)}
belongs to P ∗

X , since Γ is closed under the operation c.
It should also be clear that if S ⊂ P ∗

X is directed then
⋃

S is a filter,
in which case

⋃
S =

∨
S ∈ P ∗

X . In particular, P ∗
X is a dcpo. It is also

bounded complete: if S ⊂ P ∗
X is bounded by an F ∈ P ∗

X , then u(S) =
{
⋃
F :F a finite subset of

⋃
S} is a directed subset of F , so

∨
S =

⋃
u(S) ∈

P ∗
X .

Next note that for every E ,F ∈ P ∗
X

E � F ⇐⇒ (∃F ∈ F) E ⊂ j(F ). (3)

To see this first assume that there exists an F ∈ F such that E ⊂ j(F ) and
let S ⊂ P ∗

X be a directed set with F ⊂
∨

S =
⋃

S. Then there exists an
F0 ∈ S with F ∈ F0. So, E ⊂ j(F ) ⊂ F0.

To see the other implication assume that E � F and consider the family
S = {j(F ):F ∈ F}. Clearly S is directed and, by (1), F =

⋃
S =

∨
S.

With (3) in hand it is clear that P ∗
X is a continuous dcpo: if F ∈ P ∗

X then
⇓ F = {E ∈ P ∗

X : (∃F ∈ F) E ⊂ j(F )} and so, by (1), F =
⋃
⇓ F .

The above shows also immediately that the family D = {j(A):A ∈ Γ}
forms a basis for P ∗

X . Thus, P ∗
X is a bounded complete ω-continuous dcpo.

To finish the proof it is enough to show that P ∗
X is a complete computational

model for X.

3This construction is closely related to that of rounded ideal completion, which is
discussed in some detail in [2].
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We do this by showing that a homeomorphism i:X → Max(P ∗
X) can be

defined by i(x) = j({x}).
To see the maximality of each i(x), let i(x) ⊂ F ∈ P ∗

X and, by way
of contradiction, assume that there is an A ∈ F \ i(x). Then there is a
D ∈ F ∩ Γ such that D ⊂ int(A); if D ∈ i(x) then A ∈ i(x), contradicting
our assumption. Thus x �∈ D, and so by (br), there is a C ∈ Γ so that
x ∈ int(C) ⊂ C ⊂ X \D, so X \D ∈ i(x) ⊂ F , a contradiction to D ∈ F .
Thus i(x) is maximal.

Since 〈X, τ〉 is T1, {x} =
⋂
i(x), so i is one-to-one. To see that so i is

onto Max(P ∗
X) take an F ∈ Max(P ∗

X). The compactness of τ ∗ guarantees
that

⋂
F �= ∅. If x ∈

⋂
F and F �= i(x), then F is a proper subset of i(x),

contradicting the maximality of F . Thus F = i(x), so i is onto.
To see that i is a homeomorphism we need to show that the sets

U(F) = {x ∈ X: j({x}) ∈⇑ F} = {x ∈ X:F � j({x})}

with F ∈ P ∗
X form a base for τ . But, by (3),

U(F) = {x ∈ X:∃Dx ∈ j({x}), F ⊂ j(Dx)}.

Thus the U(F) are open: for note that if x ∈ U(F) then x ∈ intτ (Dx) ⊂
U(F). On the other hand, by (br), for every W ∈ τ and x ∈ W there exists
a D ∈ Γ with x ∈ intτ (D) ⊂ W and it is easy to see that x ∈ U(j(D)) ⊂
intτ (D) ⊂ W . Thus, i is a homeomorphism.

Finally we need to show that for every F ∈ P ∗
X the set

K(F) = i−1({E ∈ Max(P ∗
X):F ⊂ E}) = {x ∈ X:F ⊂ j({x})}

is τ -closed. For this it is enough to prove that

K(F) =
⋂
F .

But if x ∈ K(F) and F ∈ F then F ∈ j({x}) implying that x ∈ intτ (F ) ⊂ F .
So, K(F) ⊂

⋂
F .

Conversely, assume that x ∈
⋂
F and let F ∈ F . Then, by (1), there

exists an E ∈ F with E ⊂ intτ (F ). Since x ∈
⋂
F ⊂ E we conclude that

F ∈ j({x}).
(1)⇒(3): Assume 〈P,≤ 〉 is a bounded complete computational model

for 〈X, τ〉 as in Definition 6. We will identify 〈Max(P ), σ〉, with 〈X, τ〉, since

12



they are homeomorphic. Let D be a countable �-dense subset of P . Then,
for every p ∈ P , by interpolation:

(⇑ p) ∩Max(P ) =
⋃
{(⇑ q) ∩Max(P ): p� q & q ∈ D}.

The sets (⇑ q)∩Max(P ), q ∈ D, form a countable base for 〈Max(P ), σ〉. So,
〈X, τ〉 is second countable.

To see that 〈X, τ〉 is T1 take an x ∈ Max(P ) and recall that by the
continuity of P we have x =

∨
(⇓ x), so that

{x} =
⋂
z<≺x

{y ∈ Max(P ): z ≤ y}.

Since the sets {y ∈ Max(P ): z ≤ y} are τ -closed, 〈X, τ〉 is T1.
Now, let C be the family of all sets Cd = {y ∈ Max(P ): d ≤ y} with d ∈ D

and let τ ∗ be the smallest topology for which all sets from C are closed. Thus,
〈X, τ ∗〉 is second countable, since it is generated by the countable subbase
B = {X \ C:C ∈ C}. Since B ⊂ τ , we also have τ ∗ ⊂ τ .

Next we will show that 〈X, τ ∗〉 is compact. For this first note that

the family C satisfies the condition (cp).

Indeed, if D0 ⊂ D is such that C0 = {Cd: d ∈ D0} has the finite intersection
property then the set D0 is directed: for if D1 is a finite subset of D0 and x ∈⋂

d∈D1
Cd then {x} is an upper bound of D1. Since P is a dcpo, the supremum∨

D0 is well defined. Now, let {x} ∈ Max(P ) be such that
∨
D0 ≤ {x}.

Then x ∈
⋂
C0. Now, the Alexander subbasis theorem implies that 〈X, τ ∗〉

is compact.
To see that 〈X, τ, τ ∗〉 is regular, take x ∈ U ∈ τ . Clearly, we can assume

that U∗ is a basic open set, say U = (⇑ p) ∩Max(P ). Therefore p � x and
we can find a d ∈ D with p � d � x. Then V = (⇑ d) ∩ Max(P ) is as
desired, since x ∈ V and clτ∗(V ) ⊂ Cd ⊂ U .

For the regularity of 〈X, τ ∗, τ〉, take x ∈ U∗ ∈ τ ∗. We need to find a
V ∗ ∈ τ ∗ for which x ∈ V ∗ and clτ (V

∗) ⊂ U∗. Clearly it will do to prove this
for every U∗ from the subbase B. So, assume that U∗ = X \ Cd for some
d ∈ D. Thus x /∈ Cd. Since d =

∨
(⇓ d) we have that

Cd =
⋂
z<≺d

{y ∈ Max(P ): z ≤ y}.

13



Thus, there is z � d such that x /∈ {y ∈ Max(P ): z ≤ y}. Take d0, d1 ∈ D
such that z � d0 � d1 � d. Then we have Cd ⊂ (⇑ d1) ∩Max(P ) ∈ τ and
x ∈ X \ Cd0 ∈ τ ∗. So, V ∗ = X \ Cd0 is as desired.

3 Construction of the other topology

By Theorem 9, in order to learn whether each Polish space has a bounded
complete computational model we must determine whether or not it has a
countable family C of τ -closed subsets satisfying (cp), (br) and (r*). Indeed,
it does:

Theorem 10 Every Polish space 〈X, τ〉 has a bounded complete computa-
tional model.

Proof. It is enough to show that for every Polish space X there exists a
countable collection C of closed sets satisfying conditions (cp), (br), and (r*)
from Theorem 9(2).

The set theoretic and topological terminology and notation used are stan-
dard and follow [3] and [8], respectively. For a subset K of a metric space
〈M,d〉 and a number r > 0, the symbol Br(K) will denote the open ball
centered in K with radius r, that is, Br(K) = {x ∈ M : d(x,K) < r}. For
x ∈M we will write Br(x) for Br({x}).

Since X is Polish, there exists a compact metrizable space 〈M, τd〉 with
metric d such that X is a dense Gδ-subspace of M . Thus there are dense
open subsets W0 ⊃ W1 ⊃ W2 ⊃ · · · of M such that X =

⋂
n<ω Wn. For every

i < ω let Bi be a finite cover of M by open balls of diameter ≤ 2−i and let
{Bn:n < ω} be an enumeration of B =

⋃
i<ω Bi. Note that B is a base for

M and that the sequence 〈diam(Bn):n < ω〉 of diameters of Bn’s converges
to 0. In addition for every n, i < ω define the sets

Ki
n = {x ∈M :B2−i(x) ⊂ Bn ∩Wn} = {x ∈M : d(x,M \ (Bn ∩Wn)) ≥ 2−i}.

Then

each Ki
n is closed, Ki

n ⊂ int(Ki+1
n ), and

⋃
i<ω

Ki
n = Bn ∩Wn. (4)

To begin constructing our family C we need the following notions. Let

14



S =

{
s ∈

∞⋃
n=1

Z
n: s(0) ≥ 0 > s(i) for every i > 0

}
.

Thus, S is the set of finite nonempty sequences of integers, whose first entry
is nonnegative and others are negative. Then S is totally ordered by the
lexicographic order  . For future use note that for any s, t ∈ S if s ⊂ t (i.e.,
t is an extension of s) then s  t; also let ≺ denote the strict order defined
by: s ≺ t when s  t and s �= t. We sometimes denote such sequences as
〈i0, . . . , in−1〉 (simply 〈i〉 if in ω1); if s = 〈i0, . . . , in−1〉 ∈ S and 0 > i ∈ Z

then ŝ i denotes 〈i0, . . . , in−1, i〉.
Of course, if for 0 < n < ω we set

Sn =
n−1⋃
k=0

(
{0, . . . , n− 1} × {−(n− 1), . . . ,−1}k

)
= S ∩ (−n, n)≤n,

then S =
⋃∞

n=1 Sn. Below, we inductively define finite collections Fn, indexed
by {0, . . . , n − 1} × Sn: Fn = {Cs

k: s ∈ Sn, k < n}, and consisting of closed
sets. The sequence 〈Fn:n < ω〉 is to satisfy six properties. Here are the first
three, which are used to show (br) and (r*).

(i) Ki
n ⊂ C

〈i〉
n ⊂ int(Ki+1

n ) for s = 〈i〉 ∈ S.

(ii) If s ∈ S and 0 > i ∈ Z, then Csˆi
n ⊂ B2i(Cs

n).

(iii) For s, t ∈ S if s ≺ t then Cs
n ⊂ int(Ct

n).

With all the Fn’s (so
⋃

n<ω Fn = {Cs
n: s ∈ S & n < ω}) constructed, we

define Cn = {Cs
n: s ∈ S}, Ĉ =

⋃
n<ω Cn, and C = {C ∩X:C ∈ Ĉ}. Then we

have the following:

Lemma 11 If C is defined as above and the conditions (i)–(iii) hold then C
satisfies (br) and (r*).

Proof. For (br) first notice that, by (i) and (iii), Ki
n ⊂ C

〈i〉
n and Cs

n ⊂
C

〈s(0)+1〉
n ⊂ int

(
K

s(0)+1
n

)
for every s ∈ S and n, i < ω. So, by (4),

⋃
{int(C):C ∈ Cn} =

⋃
Cn = Bn ∩Wn (5)
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for each n < ω. If x ∈ T and T is an open subset of X, then let U be an open
subset of M for which T = U ∩X. Since the Bi’s form a base for M , there
exists an n < ω such that x ∈ Bn ⊂ U . So x ∈ Bn∩Wn ⊂ U ∩Wn. Thus, by
(5), there is a C ∈ Cn ⊂ Ĉ for which x ∈ int(C) ⊂ C ⊂ Bn ∩Wn ⊂ U ∩Wn.
In particular, x ∈ intX(C ∩ X) and C ∩ X ⊂ U ∩ X = T , i.e., C ∩ X ∈ C
satisfies (br).

To see (r*), if x ∈ X \ C for some C = Cs
n ∈ Ĉ, there is some negative

integer i such that B2i(x) ⊂ X\C, so x �∈ B2i(C). By (ii) and (iii), D = Csˆi
n

satisfies (r*).

To state properties (iv)–(vi), which are used to show (cp), we need a
definition. Recall that a closed set C is regular closed if C = cl(int(C)). We
will say that the family F of subsets of M is meet-regular provided

⋂
G is

regular closed for every finite subfamily G of F . Moreover for each n < ω we
will choose εn > 0 and make sure that in addition to (i)-(iii), the following
conditions are satisfied.

(iv) Fn is meet-regular.

(v) For every G ⊂ Fn if
⋂
G = ∅ then

⋂
C∈G Bεn(C) = ∅.

(vi) If k < n, t ∈ Sn+1, and s is the largest element of Sn with s ≺ t then
Bεn+1(C

t
k) ⊂ Bεn(Cs

k).

Before we describe the details of the construction we show (cp):

Lemma 12 If C is defined as above and the conditions (i)–(vi) hold, then C
satisfies (cp).

Proof. Let D̂ ⊂ Ĉ be such that D = {C ∩ X:C ∈ D̂} has the finite
intersection property. We have to show that

⋂
D �= ∅. Consider the set

Γ = {n < ω:D ∩ Cn �= ∅}. We will consider two cases:

Case 1: Γ is infinite. Clearly
⋂
D̂ �= ∅, since M is compact. Since (5) holds,⋂

D̂ ⊂ Bn for every n ∈ Γ and the diameters of Bn’s tend to 0, so we conclude
that

⋂
D̂ is a singleton, say

⋂
D̂ = {x}. If x ∈ X then

⋂
D = {x} �= ∅.

So, by way of contradiction assume that x ∈ M \ X. Choose an n ∈ Γ
such that x ∈ M \Wn and let C ∈ D ∩ Cn. Then

⋂
D̂ ⊂ C ⊂ Wn and so,⋂

D̂ =
⋂
D̂ ∩Wn = {x} ∩Wn = ∅, a contradiction.
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Case 2: Γ is finite. Let n < ω be such that for every k ∈ Γ, k < n and
there exists a t ∈ Sn so that Ct

k ∈ D̂. For k ∈ Γ let sk ∈ Sn be a ≺-
maximal element of Sn such that sk  t for each t ∈ S with Ct

k ∈ D̂ (there
is such an element since 0 < n, so Sn is a nonempty, finite set ordered by
 and 〈0〉 ∈ Sn is the ≺-least element of S). Thus, if s̃k is the immediate
≺-successor of sk in Sn then there exists a tk ∈ S such that sk  tk ≺ s̃k and
Ctk

k ∈ D̂. Moreover, if tk ∈ Sm then applying (vi) at most m−n many times

we note that Ctk
k ⊂ Bεn(Csk

k ). By (iii), if Ct
k ∈ D̂, then k ∈ Γ, Csk

k ⊂ Ct
k, so:⋂

k∈Γ

Csk
k ⊂

⋂
D̂ ⊂

⋂
k∈Γ

Ctk
k ⊂

⋂
k∈Γ

Bεn(Csk
k ).

In particular
⋂

k∈Γ Bεn(Csk
k ) is non-empty since,

⋂
D̂ �= ∅. Hence, applying

(v) to G = {Csk
k : k ∈ Γ} ⊂ Cn we conclude that

⋂
k∈Γ C

sk
k �= ∅. So, by

(iv), int
(⋂

k∈Γ C
sk
k

)
�= ∅ and, by the density of X in M we conclude that

∅ �= int
(⋂

k∈Γ C
sk
k

)
∩X ⊂

⋂
D̂ ∩X =

⋂
D.

For the inductive construction we will need two facts. The first is a special
case of [15, lemma 4.3] (this lemma is actually stated for finite families of
open sets, arbitrary unions of which are regular open; we use it on the set of
complements of our closed sets):

Lemma 13 Let F be a meet-regular finite family of closed subsets of a
metric space. For every open set U and closed set D ⊂ U there is a closed
regular set C such that D ⊂ int(C) ⊂ C ⊂ U and F ∪ {C} is meet-regular.

We now show the second:

Lemma 14 For every finite family F of closed subsets of a compact metric
space there exists an ε > 0 such that for every G ⊂ F if

⋂
G = ∅ then⋂

C∈G Bε(C) = ∅.

Proof. Given a compact metric space 〈M,d〉, and a finite family H of sub-
sets of M let dH:M → R be defined by dH(x) =

∑
H∈H d(x,H). Certainly,

if dH(x) > 0 then x /∈
⋂
H. (6)

Moreover, if H is a family of closed sets then⋂
H = ∅ if and only if 0 /∈ dH[M ]. (7)
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Let F be as in the lemma and fix G ⊂ F such that
⋂
G = ∅. Then, by (7)

and the compactness of M , there is an εG > 0 such that [0, εG) ∩ dG[M ] = ∅.
It is also easy to see that if n is the cardinality of F then for every x ∈ M
and ε > 0

d{Bε(G):G∈G}(x) ≥ dG(x)− nε.

In particular, if δG ∈ (0, εG/(n + 1)) then

d{BδG (G):G∈G}(x) ≥ dG(x)− nδG ≥ δG.

So, by (6),
⋂

G∈G BδG(G) = ∅. Let ε = min{δG:G ⊂ F &
⋂
G = ∅} > 0.

Then
⋂

G∈G Bε(G) = ∅ for each G ⊂ F such that
⋂
G = ∅, showing the

lemma.

We start our inductive construction with F0 = ∅. Assume now that we
have Fn = {Cs

k: s ∈ Sn, k < n} and ε0, . . . , εn satisfying (i)–(vi). We will first
construct Fn+1 = {Cs

k: s ∈ Sn+1, k < n+ 1} satisfying (i)–(iv), and then find
an εn+1 > 0 which will guarantee (v) and (vi).

We find it useful to let {〈m0, v0〉, . . . , 〈mp−1, vp−1〉} be the enumeration
of the set {0, . . . , n} × Sn+1 \ {0, . . . , n− 1} × Sn such that if 0 ≤ i < j < p
then:

either mj < mi or mj = mi and vj ≺ vi. (8)

Then for each i = 0, . . . , p, let Ri = ({0, . . . , n− 1}× Sn)∪ {vj: j < i}. Thus
R0 = {0, . . . , n − 1} × Sn and Rp = {0, . . . , n} × Sn+1. We will next show
inductively that for each i ≤ p there is a family E = E(Ri) = {Cs

k: 〈k, s〉 ∈ Ri}
containing Fn and satisfying (i)–(iv).

First we notice that for each such Ri, the following fact holds: whenever
〈m, v〉, 〈m, ŝ j〉 ∈ {0, . . . , n} × Sn+1, and s �= ∅,

if v ≺ ŝ j, 〈m, v〉 ∈ Ri, and 〈m, ŝ j〉 /∈ Ri then v  s. (9)

To see (9) we use the traditional identification n = {0, . . . , n − 1}, and
notice that v ≺ ŝ j if and only if there exists a k < dom(ŝ j) such that

v � k = ŝ j � k and either dom(v) = k or v(k) < ŝ j(k). (10)

If either k < dom(s) or k = dom(s) = dom(v) then v  s. The remaining
case is when k = dom(s) < dom(v) in which case

v � k = s and v(k) < j. (11)
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Now, by way of contradiction, suppose that v ≺ ŝ j, 〈m, v〉 ∈ Ri, and
〈m, ŝ j〉 /∈ Ri, while v � s. First note that 〈m, v〉 ∈ R0 is impossible, since
then, by (11) we would have 〈m, s〉 ∈ R0, and so v(k) < ŝ j(k) = j = −n.
Thus, 〈m, v〉, 〈m, ŝ j〉 /∈ R0 and, by (8), ŝ j ≺ v, another contradiction. This
shows (9).

We now show that the assignment E on Ri−1 can be extended to one on
Ri, that is, setting t = vi−1, that there exists a Ct

m such that E ∪ {Ct
m} is

meet-regular and satisfies (i)–(iii).
To do this, we first choose finite families D

t
m and U

t
m of closed sets and

of open sets, respectively, such that D =
⋃

D
t
m ⊂ U =

⋂
U

t
m and then

apply Lemma 13 to E , D, and U letting Ct
m = C. This will guarantee meet-

regularity. To ensure (i)–(iii) we will choose D
t
m and U

t
m as follows. (We

write (i-iii·u) for the upper estimates and (i-iii·d) for the lower estimates;
(iid) is taken care of by (iiid).)

(id) If t = 〈j〉 ∈ S1 then Kj
m ∈ D

t
m.

(iu) If t = 〈j〉 ∈ S1 then int(Kj+1
m ) ∈ U

t
m.

(iiu) If Cs
m ∈ E and t = ŝ j then B2j(Cs

m) ∈ U
t
m.

(iiid) If Cv
m ∈ E and v ≺ t then Cv

m ∈ D
t
m.

(iiiu) If Cu
m ∈ E and t ≺ u then int(Cu

m) ∈ U
t
m.

We now show that D ⊂ U , so this construction is possible, and the family
E∪{Ct

m} is meet-regular. We prove that D ⊂ U by showing that each element
of D

t
m is a subset of each element of U

t
m. There are six cases, three involving

(id) and three involving (iiid):

(id)-(iu): This holds since we already know that Kj
m ⊂ int(Kj+1

m ).

(id)-(iiu): This holds trivially, since it never can occur that 〈j〉 = ŝ k.

(id)-(iiiu): If 〈j〉 = t ≺ u, then j < u(0) or j = u(0) and u �= 〈j〉; we then

have inductively in the first case that Kj
m ⊂ int

(
K

u(0)
m

)
⊂ int(Cu

m) and

in the second that Kj
m ⊂ int

(
C

〈u(0)〉
m

)
⊂ int(Cu

m).

(iiid)-(iu): If v ≺ t = 〈j〉 then v(0) < j so by (i), Cv
m ⊂ K

v(0)+1
m ⊂ int(Kj+1

m ).
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(iiid)-(iiu): If v ≺ t = ŝ j then, by (9), v  s, so by inductive assumption,
Cv

m ⊂ Cs
m ⊂ B2j(Cs

m).

(iiid)-(iiiu): If v ≺ t and t ≺ u, then v ≺ u so inductively Cv
m ⊂ int(Cu

m).

Next, notice that by inductive hypothesis on E , (id) and (iu), E ∪ {Ct
m}

satisfies (i). Similarly, using (iiu), E ∪ {Ct
m} satisfies (ii); using (iiid) and

(iiiu), we conclude E ∪ {Ct
m} satisfies (iii). This contradicts the maximality

of E , showing that Fn can be extended to Fn+1 satisfying (i)–(iv).
We now choose εn+1 so as to ensure (v) and (vi). First apply Lemma 14

to the family Fn+1 to obtain an ε > 0 so that for every G ⊂ Fn+1 if
⋂
G = ∅

then
⋂

C∈G Bε(C) = ∅. For such an ε any εn+1 ≤ ε guarantees (v). Now there
are only finitely many triples 〈k, s, t〉 relevant for (vi) and for each of them we
have Ct

k ⊂ Bεn(Cs
k), so there is an εk,s,t > 0 for which Bεk,s,t

(Ct
k) ⊂ Bεn(Cs

k).
Then choose an εn+1 > 0 less than ε and all relevant εk,s,t. Now (i)–(vi) hold
for Fn+1 and ε0, . . . , εn+1 satisfy (i)–(vi), completing the proof.

4 Final remarks

Note that by Lawson’s ([18]) result that for a topological space X

X has a computational model if and only if X is Polish,

each space with a bounded complete computational model is Polish. Thus
by Theorem 9 we have that

X has a bounded complete computational model if and only if X
is Polish,

and we immediately obtain the following corollary:

Corollary 15 A topological space 〈X, τ〉 is Polish if and only if 〈X, τ〉 is
second countable and T1, and there is a compact topology τ ∗ ⊂ τ on X such
that 〈X, τ, τ ∗〉 is pairwise regular.

There is a second, somewhat older road to this converse. In [1], (1970),
it was shown (in somewhat different terminology) that any metrizable space
〈X, τ〉 is topologically complete if and only if there is a second, compact T1

topology on X, τ ∗ ⊂ τ , such that 〈X, τ, τ ∗〉 is regular. But by 9 each space
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with a bounded complete computational model is second countable and has
such a topology (with the additional property that 〈X, τ ∗, τ〉, is regular).
Thus the space is Polish.

This leads to a question: if a metrizable space 〈X, τ〉 is complete must
there be a second, compact T1 topology τ ∗ on X such that 〈X, τ, τ ∗〉 is
pairwise regular (as we have shown in the separable case)?
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