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Abstract

In [9] it is proved that there are subsets M of the complex plane such that for
any two entire functions f and g if f [M ] = g[M ] then f = g. In [3] it was shown
that the continuum hypothesis (CH) implies the existence of a similar set M ⊂ R

for the class Cn(R) of continuous nowhere constant functions from R to R, while it
follows from the results in [5] and [7] that the existence of such a set is not provable
in ZFC. In this paper we will show that for several well-behaved subclasses of C(R),
including the class D1 of differentiable functions and the class AC of absolutely
continuous functions, a set M with the above property can be constructed in ZFC.
We will also prove the existence of a set M ⊂ R with the dual property that for
any f, g ∈ Cn(R) if f−1[M ] = g−1[M ] then f = g.

1 Preliminaries

We use N, R, and C to denote the set of natural numbers, the set of real numbers, and
the set of complex numbers, respectively. We denote by C(X) the set of all continuous
real-valued functions on a topological space X and by Cn(X) the set of all nowhere
constant members of C(X), i.e., the functions which are not constant on any nonempty
open set. “Topological space” means “Tychonoff space”. Const(X) will stand for the
family of all constant functions from X into R. We will write simply Const if X is clear
from the context. The cardinality of a set X will be denoted by |X|. The cardinality of
R, the continuum, will be denoted by c. For set-theoretic notation and terminology in
general see [2] or [6].

The following basic concept was introduced in [3].

Definition 1.1 If X is a topological space then g ∈ C(X) is said to be a truncation of
f ∈ C(X) if g is constant on every connected component of {x ∈ X: f(x) �= g(x)}.

Notice that every function is a truncation of every other function if X is totally
disconnected, making this concept trivial for such an X. We shall be interested in it only
when X is locally connected. (Mainly when X = Rn.) Note also that when X is locally
connected,

if f ∈ C(X), g ∈ Cn(X), and g is a truncation of f then f = g. (1)
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Our interest in truncations derives from the following theorem which is a special case of
Theorem 3.1 below.

Proposition 1.2 (Berarducci, Dikranjan [3, Thm. 8.1]) LetX be a separable topological
space. There exists a setM ⊆ R such that for every g ∈ C(X) and every countable-to-one
f ∈ C(X) if g[M ] ⊆ f [M ] then g is a truncation of f .

Note also that, by (1), if X is locally connected and g ∈ Cn(X) then the conclusion “g
is a truncation of f” in Proposition 1.2 can be replaced by “f = g.”

The main concepts studied in the first part of this paper are given by the following
definition.

Definition 1.3 Let X and Y be sets, and let F be a family of functions from X to Y .
Let M ⊆ X.

(a) M is a set of range uniqueness (SRU) for F provided that for any f, g ∈ F if f [M ] =
g[M ] then f = g;

(b) If X is a topological space and F ⊆ C(X), we will say M is a strong set of range
uniqueness (strong SRU) for F provided that for any open set U ⊆ X and any
f, g ∈ F if f [M ∩ U ] ⊆ g[M ] then f |̀U is a truncation of g |̀U .

We record for future reference the following results from [9] and [3].

Proposition 1.4 (Diamond, Pomerance, Rubel [9])

(a) There are sequences M = {an:n ∈ N} of positive real numbers converging to zero
(e.g., an = 1/n or an = 1/n!) which are SRU’s for the class A of analytic functions
in the complex plane.

(b) There exist sequences M = {an:n ∈ N} of positive real numbers converging to zero
(e.g., an = 1/2n) which are not SRU’s for A.

Proposition 1.5 (Berarducci, Dikranjan [3, Thm. 8.5]) If the continuum hypothesis
holds then for every separable Baire topological space X there exists an SRU for Cn(X).

The notion of a strong SRU was first considered in [5] in a more general setting. The
definition from [5] differs slightly from the one given above, however they agree if X is
locally connected, Baire, and the functions in F are assumed to be nowhere constant.
(The last two assumptions were imposed in [5].) In [5] the authors prove that under CH
(and some weaker assumptions) the class of functions which have the property of Baire
and are not constant on any nonmeager set (resp., the class of Lebesgue measurable
functions which are not constant on any set of positive measure) has an SRU as long
as we weaken the conclusion “f = g” in the definition of an SRU to “f = g except on
a meager set” (resp., “f = g a.e.”). It follows from the results in [5] and [7] that one
cannot prove in ZFC the existence of a set with either of these two properties, nor can
one prove in ZFC the existence of the set from Proposition 1.5 when X = R.

The terminology suggests that strong SRU’s are SRU’s and this is true when X is
both connected and locally connected. To see this note first that for any connected and
locally connected space X

if f, g ∈ C(X) are truncations of each other and f �= g then f, g are both constant. (2)
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Indeed, let x0 ∈ W = {x ∈ R: f(x) �= g(x)} and let U be the component of x0 in W .
Then U is open in X and f and g are both constant on U (with different values). If
U = X we are done. But otherwise, by connectedness of X, there exists a boundary
point x ∈ X \W of U and so f and g assume different values at x, a contradiction.

Note also that for any F ⊆ Const any nonempty M ⊂ R is simultaneously an SRU
and a strong SRU for F. Thus, we will concentrate on the case when F �⊂ Const.

Proposition 1.6 Let X be a connected locally connected topological space and let F ⊆
C(X), F �⊂ Const. Then any strong SRU for F is an SRU for F.

Proof. Let M ⊆ X be a strong SRU for F. We will show that M is an SRU for F.
If |F| ≤ 1 then any set is an SRU for F. So we can assume that |F| > 1. But then

M �= ∅ since otherwise for any f, g ∈ F we would have f [M ] = ∅ = g[M ] which, together
with (2), would imply that F ⊆ Const.

Next, take f, g ∈ F such that f [M ] = g[M ]. Then f and g are truncations of each
other since M is a strong SRU for F. If f = g we are done. But otherwise, by (2), f and
g are different constant functions, which is impossible, since M �= ∅.

2 Sets of range uniqueness for Cn(X) when X is Polish

We begin by analyzing the proof from [7] that in the model M constructed in that paper,
there are no SRU’s for Cn(R). The model M is constructed so that it satisfies the
following statement for X = 2ω.

Φ(X): For every set A ⊆ X of cardinality c there is a continuous function f :X → [0, 1]
such that f [A] = [0, 1].

It is then shown that Φ(2ω) implies Φ(R). This easily implies that there are no SRU’s
for Cn(R) of cardinality c (see [5]). That there are no SRU’s of cardinality < c in M

follows from the fact that sets of reals of cardinality < c are meager in M and from the
theorem in [5] that an SRU for Cn(R) cannot be meager.

Most of this argument will work with R replaced by an arbitrary perfect Polish space.
Consider a perfect Polish space X. In [5] it was shown that an SRU for Cn(X) cannot
be meager. Also, it is well known that if sets of size < c are meager in R, then the
same is true in X. Unfortunately, we do not know whether Φ(2ω) implies Φ(X). We can
however show that Φ(X) holds in M by using additional properties of M established in
[7], namely that in M we have c = ω2 and d = ω1, where

d = min{|F |:F ⊆ ωω, ∀f ∈ ωω ∃g ∈ F ∀n < ω f(n) ≤ g(n)}.

(The equation d = ω1 is not stated explicitly in [7], but it follows from the fact that the
forcing used to get M is ωω-bounding, and this follows easily from [7, Lemma 5.1].)

Proposition 2.1 Every Polish space can be covered by at most d compact zero-dimensional
sets.

Proof. We first prove the statement for the Hilbert cube [0, 1]ω. Identify the irrational
numbers in [0, 1] with ωω and let {rn:n < ω} enumerate the rationals in [0, 1]. For
f ∈ ωω, write Kf = {g ∈ ωω: for all n < ω, g(n) ≤ f(n)} ∪ {ri: i ≤ f(0)}. Kf is a
compact zero-dimensional subset of [0, 1]. For f ∈ ωω, let fi (i < ω) be the functions
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defined by fi(n) = f(2i(2n + 1)) and let Lf be the compact zero-dimensional subset of
[0, 1]ω given by Lf = Πi<ωKfi . Since f ≤ f ′ implies Lf ⊆ Lf ′ , it is clear that the sets
Lf , as f ranges over a dominating family, cover [0, 1]ω.

For the general case, let X be any Polish space. We may assume that X is a subspace
of the Hilbert cube. By considering the intersections of X with each member of a family
of d compact zero-dimensional sets covering the Hilbert cube, we may assume that X
is zero-dimensional. By the Cantor-Bendixson theorem, we may assume that X has no
isolated points. Finally, by deleting a countable dense set, we may assume that X has
no nonvoid compact open sets. But now X is homeomorphic to ωω and the desired
conclusion is standard (and easy).

We now show that Φ(X) holds in M for any Polish space X. The following result is
more than we need, but seems to be of independent interest. It applies not only to the
model of [7], but also to the models of [13] and [8] as well.

Corollary 2.2 Suppose d < cf(c) and for every A ⊆ 2ω of cardinality c there is a
continuous function f : 2ω → [0, 1] such that f [A] = [0, 1].

(a) Every separable metric space of cardinality c maps uniformly continuously onto [0, 1].

(b) If c < ℵω, then every metric space of cardinality c maps uniformly continuously onto
[0, 1].

Remark 2.3 In [8] it is pointed out that part (a) holds for subspaces of the real line
by results in [13]. Also, if we drop the word “uniformly,” then both (a) and (b) are
essentially shown in [13].

Proof. If c < ℵω, the nonseparable case reduces to the separable case by reductions
similar to those in [13]. First, if X has density ≥ c, then there is a set D ⊆ X of
cardinality ≥ c such that the distances between distinct points of D are bounded away
from zero. Any map fromD onto [0, 1] is uniformly continuous and extends to a uniformly
continuous map of X onto [0, 1]. Second, if X has uncountable density κ < c, then an
argument in [13, p. 575] shows that X has a subspace of cardinality c which has density
< κ. (Note that since c < ℵω, κ and c are regular.) Iterating this argument reduces us
to the case where X is separable. Hence (b) reduces to (a).

For (a), note that the completion of X is covered by at most d compact zero-
dimensional sets, and one of these, K say, is such that |K ∩ X| = c. By removing
countably many points from K, we may assume K is homeomorphic to 2ω. The conclu-
sion now follows easily from our assumption.

Corollary 2.4 In the model constructed in [7], there is no SRU for Cn(X) for any
perfect Polish space X.

Next consider the following easy proposition.

Proposition 2.5 Suppose X and Y are topological spaces and there is a continuous
function f :X → Y with dense range such that f−1[N ] is nowhere dense in X for each
nowhere dense N ⊆ Y . If A is an SRU for Cn(X), then f [A] is an SRU for Cn(Y ).

Proof. Let g1, g2:Y → R be nowhere constant continuous functions such that g1[f [A]] =
g2[f [A]]. Then g1 ◦ f and g2 ◦ f are nowhere constant and have the same image of A.
Hence g1 ◦ f = g2 ◦ f . Since f has dense range, g1 = g2.
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Thus, in the model M, for any space X which can be mapped densely into [0, 1]
so that the preimages of nowhere dense sets are nowhere dense, there is no SRU for
Cn(Y ). We don’t know precisely which spaces have this property. Here are a few simple
observations. If the property is satisfied by one of the factors in a product ΠαXα, then
the product satisfies it as well. More generally, if there is a continuous open surjection
from X to Y , and Y has the property, then so does X. In particular, if there is a
continuous open surjection from X to [0, 1], then X has the property. Thus, for example,
the Stone space of the regular open algebra of [0, 1] has the property. This idea gives a
possible alternative proof of Corollary 2.4.

Problem 2.6 If X is a perfect Polish space, is there a continuous function f :X → [0, 1]
with dense range and such that f−1[N ] is nowhere dense for each nowhere dense N ⊆
[0, 1]?

Added in proof: The answer is yes for any perfect metric space X. See M.R. Burke,
Continuous functions which take a somewhere dense set of values on every open set, to
appear in Topology Appl.

We have very few results relating the existence of an SRU for Cn(X) to the existence
of an SRU for Cn(Y ) for different spaces X and Y . For example we don’t know the
answer to the following question.

Problem 2.7 If there is an SRU for Cn([0, 1]), is there an SRU for Cn(2ω)?

3 Sets of range uniqueness for special classes of continuous func-
tions

The following theorem is a technical tool used to prove some of the results in this section.

Theorem 3.1 Let X be a separable topological space with a fixed base B of cardinality
≤ c and let N be an ideal of subsets of R such that |V \ N | = c for every N ∈ N and
nonempty open interval V ⊂ R. Then there exists a set M ⊂ X with the following
property. If f, g ∈ C(X),

(a) {y ∈ R: f−1(y) is uncountable} ∈ N,

(b) N ∈ N is an analytic set, U ∈ B, and

(c) g[M ∩ U ] \N ⊆ f [M ]

then g |̀U is a truncation of f |̀U .

Remark 3.2 If X is locally connected, then the conclusion holds for all open sets U ,
regardless of whether they are in the fixed base B. To see this, note that if W is a
component of {x ∈ U : f(x) �= g(x)}, then W is covered by the family S of (open)
components W ′ of the sets B ∈ B such that B ⊆ W . If we fix W ′

0 ∈ S, then the
union of the W ′ ∈ S which are joined to W ′

0 by a chain W ′
0,W

′
1, . . . ,W

′
n =W ′ such that

W ′
i ∩W ′

i+1 �= ∅ for all i = 0, 1, . . . , n − 1 is an open connected subset of W and hence
equals W . Since g is constant on each W ′, it is clear that g is constant on W .
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Proof. Let {〈fα, gα, Nα, Uα〉:α < c} be an enumeration of all four-tuples 〈f, g,N,U〉
such that f, g ∈ C(X), the properties (a) and (b) hold, and g |̀U is not a truncation of
f |̀U . Let Wα �= ∅ be a fixed component of {x ∈ Uα: fα(x) �= gα(x)} on which g is not
constant. We will construct, by induction on α < c, a set M = {mα:α < c} such that
mα ∈Wα and gα(mα) �∈ fα[M ] ∪Nα for every α < c. This will finish the proof.

We choose mα so that the following inductive assumptions are satisfied.

(Iα) mα ∈Wα, gα(mα) /∈ Nα.

Note that mα ∈Wα ⊆ Uα implies, in particular, that gα(mα) �= fα(mα).

(IIα) gα(mα) /∈ {fα(mγ): γ < α}.

Finally we need gα(mα) /∈ {fα(mγ): γ > α}, i.e., fα(mγ) �= gα(mα) for every α < γ.
By interchanging α and γ in the last condition we obtain fγ(mα) �= gγ(mγ) for every
γ < α. So, it is enough to choose

(IIIα) gα(mα) /∈ gα
[⋃

γ<α f
−1
γ (gγ(mγ))

]
.

To make such a choice possible, we will also require that

("α) f−1
α (gα(mα)) is countable.

So, assume that for some α < c the sequence 〈mβ :β < α〉 satisfying the above
conditions is already constructed. Note that gα[Wα] is a non-trivial interval since gα is
not constant on Wα and Wα is connected. Let Sα = {y ∈ R: f−1

α (y) is uncountable}.
By conditions (a), (b), and our assumption on N we have that gα[Wα] \ (Sα ∪ Nα) has
cardinality continuum. But the set gα

[⋃
γ<α f

−1
γ (gγ(mγ))

]
has cardinality less than c

by the inductive assumption ("γ) for γ < α. Therefore, we can pick

yα ∈ gα[Wα] \
(
Sα ∪Nα ∪ {fα(mγ): γ < α} ∪ gα

[ ⋃
γ<α

f−1
γ (gγ(mγ))

])
.

Choose
mα ∈Wα ∩ g−1

α (yα).

It is easy to see that it satisfies (Iα), (IIα), (IIIα) and ("α). This finishes the proof.

Corollary 3.3 There is a meager strong SRU for the family

(N) = {f ∈ C(R): f [E] has Lebesgue measure zero for each set E of Lebesgue measure zero}.

Proof. Apply Theorem 3.1 with X = R, B being the family of all open sets in R, and
N being the ideal of Lebesgue measure zero sets. Let M be the set given by the theorem
and let H ⊆ R be a meager Borel set whose complement R \ H has Lebesgue measure
zero. Then M ∩H is the desired strong SRU.

Indeed suppose that f, g ∈ F, U ⊆ R is open, and g[M ∩ H ∩ U ] ⊆ f [M ∩ H].
Assumption (a) of the theorem is satisfied [1] (see also [12]) and in assumption (b) we
take N = g[R \H]. It is easily seen that (c) now holds and the theorem gives the desired
conclusion.
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Corollary 3.4 There exists a meager strong SRU set M for the class D1 ∪AC.

Proof. This follows from Corollary 3.3 and the fact that D1 ∪AC ⊂ (N). (See [12] for
information on the relationship of the family (N) to D1, AC and other familiar families
of functions.)

Corollary 3.4 implies in particular that that there exists a ZFC example of an SRU
set for the family C1 of continuously differentiable functions. This special case is due
partly to Lee Larson.

Remark 3.5 In the spirit of [5], Corollary 3.3 holds for the class of Lebesgue measurable
functions which map sets of measure zero to sets of measure zero and map sets of positive
measure to sets of positive measure. (See [5] for the definition of strong SRU in this
context.) The proof is similar to the proofs of Theorem 3.1 and Corollary 3.3 with [11,
Theorem 4.1] taking the place of the result of Banach used in the proof of Corollary 3.3.

Problem 3.6 Is there a Borel SRU for the differentiable (or C∞) functions?

Problem 3.7 Is there an SRU for the class of differentiable (or C∞) functions on Rn

when n > 1?

Added in proof: The answer is yes. See M.R. Burke, A note on sets of range uniqueness
for differentiable functions, unpublished note, Nov. 24, 1998.

The following observation is essentially contained in [9]. We reproduce it here in a
form suitable to our purposes.

Proposition 3.8 Let F ⊂ C(R) be a family of functions that contains all functions from
R onto R which are the restrictions of entire functions of a complex variable and which
have a positive derivative at every point of R. If M is an SRU for F then M cannot be
countable and dense.

Proof. Suppose M were a countable dense SRU for such a family of functions. By the
main result of [14] there is a function f ∈ F such that f [M ] = Q. Then f [M ] = (−f)[M ]
and hence f is not an SRU, contradiction.

Corollary 3.9 If F ⊂ C(R) contains the family C∞ of infinitely differentiable functions
then an SRU for F cannot be countable.

Proof. It is easy to see that an SRU for any family containing C∞ functions must be
dense. (See e.g. [5].)

In Theorem 3.1, we could have taken C(X) to be the continuous complex-valued
functions on X. The theorem then provides us with various SRU’s and strong SRU’s
for the class A of analytic functions in the complex plane. (The fibers of a nonconstant
analytic function have finite intersection with any compact set, so the theorem easily
applies.) For example, there is a Bernstein subset of C (i.e., a set with the property that
both it and its complement meet every uncountable compact set) which is a strong SRU
for A. And every uncountable compact subset of the plane contains an SRU for A. We
finish this section by strengthening the result from [9] that M = {1/n!:n ∈ N} is an
SRU for A. M cannot be a strong SRU for A since it isn’t dense, but it has a similar
property: f [M ] ⊆ g[M ] implies either f is constant or f = g for entire functions f and
g. Not every SRU for A has this stronger property since, by Proposition 1.4, the set
M ′ = {1/n:n ∈ N} is an SRU for A, while the functions f(z) = z2 and g(z) = z show
that it fails to have the stronger property.
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Proposition 3.10 Let M = {1/n!:n ∈ N}. Then for every f, g ∈ A if f [M ] ⊆ g[M ],
then either f is constant or f = g.

Proof. Assume f is not constant. As in the proof of [9, theorem 2], we may assume
f(0) = g(0) = 0. (They use f [M ] = g[M ] but in a context where f [M ] ⊆ g[M ] is clearly
enough.) We have f(z) ∼ cz	 and g(z) ∼ dzm as z → 0 for some c �= 0 �= d.

Say f(1/n!) = g(1/a(n)!) for all n. From [9, Lemma 1] it follows easily that {a(n)}
is eventually strictly increasing. In particular, a(n) → ∞ as n→ ∞.

We have, as n→ ∞,
c

(n!)	
∼ d

(a(n)!)m

or,

(∗) u(n) =
(n!)	

(a(n)!)m
∼ c
d
�= 0.

We must have v(n) = u(n+1)/u(n) ∼ 1 and hence w(n) = v(n)/v(n−1) ∼ 1. Calculating
gives

w(n) =
(

1 +
1
n

)	 [(a(n− 1) + 1) · · · a(n)]m
[(a(n) + 1) · · · a(n+ 1)]m

∼ [(a(n− 1) + 1) · · · a(n)]m
[(a(n) + 1) · · · a(n+ 1)]m

∼ 1

and hence

(∗∗) (a(n− 1) + 1) · · · a(n)
(a(n) + 1) · · · a(n+ 1)

∼ 1.

Notice that the numbers a(n+ 1)− a(n) eventually stabilize to say k. Indeed, otherwise
there would exist infinitely many numbers n for which the number of factors in the
denominator is greater than the number of factors in the numerator. But since the
numbers in the denominator are larger, we would obtain that for infinitely many n

(a(n− 1) + 1) · · · a(n)
(a(n) + 1) · · · a(n+ 1)

≤ 1
a(n+ 1)

which contradicts (∗∗).
So we have a(n0 + i) = a(n0) + ki for some n0 and all i. Thus

v(n0 + i− 1) =
(n0 + i)	

[(a(n0) + k(i− 1) + 1) · · · (a(n0) + ki)]m
∼ 1.

The left-hand side is ∼ i	/(ki)km, and this is ∼ 1 if and only if - = km and k = 1.
We now have - = m and thus a(n) = a(n0 + (n− n0)) = a(n0) + n− n0 = n+ k0 for

all large enough n, where k0 = a(n0) − n0.
It follows from (∗) that lim[n!/(n + k0)!] = (c/d)1/m. Since the right-hand side is

nonzero, we must have k0 = 0 which gives a(n) = n for all large enough n. Thus f and
g agree on a tail of the sequence {1/n!} and hence are equal.
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4 Sets of preimage uniqueness

Now consider the following notion “dual” to that of SRU.

Definition 4.1 A set M ⊆ R is a set of preimage uniqueness (SPU) for the family F of
functions from X into R if f, g ∈ F and g−1[M ] = f−1[M ] then f = g.

The existence of an SPU for many classes follows from the next theorem. It gives a set
with the stronger property obtained by replacing “g−1[M ] = f−1[M ]” in the definition
of SPU by “g−1[M ] ⊆ f−1[M ]”.

Theorem 4.2 There is a setM ⊆ R such that for any Polish spaceX the following holds.
For any Borel set Z ⊆ R and any f, g ∈ Cn(X) if g−1(Z) is meager and g−1[M \ Z] ⊆
f−1[M ] then f = g.

In particular, M is an SPU for Cn(X) for any Polish space X.

Proof. Let {〈Xα, fα, gα, Zα〉:α < c} be an enumeration of all quadruples 〈X, f, g, Z〉
such that X is a Polish subspace of the Hilbert cube, f, g ∈ Cn(X), f �= g, and Z is a
Borel subset of R with g−1(Z) being meager. We will construct, by induction on α < c,
a set M = {mα:α < c} such that mα �∈ Zα and g−1

α (mα) �⊂ f−1
α [M ] for every α < c.

This will finish the proof.
We will define mα = gα(xα) for appropriately chosen xα, that is such that xα /∈

f−1
α (M). To obtain this we will choose xα such that the following inductive conditions

are satisfied.

xα /∈ f−1
α (mα) = f−1

α (gα(xα)), i.e., such that

(Iα) xα ∈ Uα, where Uα = {x ∈ R: fα(x) �= gα(x)}.

xα /∈
⋃
{f−1

α (mγ): γ < α}, i.e., such that

(IIα) fα(xα) /∈Mα = {mγ : γ < α}.

xα /∈
⋃
{f−1

α (mγ): γ > α}, i.e., such that fα(xα) �= mγ = gγ(xγ) for every α < γ. By
interchanging α and γ in the last condition we obtain gα(xα) �= fγ(xγ) for every γ < α.
So, it is enough to choose xα such that

(IIIα) gα(xα) /∈ Hα ∪ Zα where Hα = {fγ(xγ): γ < α}.

So assume that for some α < c the sequence 〈xβ :β < α〉 satisfying the above condi-
tions is already constructed. Let E = Uα \ g−1

α (Zα) and let F = 〈fα, gα〉:X → R2. Then
F is continuous and P = F [E] is analytic. We will be done if we show that

S = P \ [(Mα × R) ∪ (R ×Hα)] �= ∅

since any xα ∈ E ∩ F−1[S] will satisfy the inductive requirements.
If S were empty, then P would be covered by less than c many horizontal and vertical

lines, and hence would be covered by countably many such lines [10]. But then it follows
from the definition of P and the fact that fα and gα are nowhere constant that E, and
hence Uα, is covered by countably many nowhere dense sets, contradiction.

The following is an analog of Proposition 3.8.
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Proposition 4.3 Let F ⊂ C(R) be a family of functions which contains all functions
from R onto R which are the restrictions of the entire functions of a complex variable
and which have a positive derivative at every point of R. If M is an SPU for F then M
cannot be countable and dense.

Proof. SupposeM were a countable dense SPU for such a family of functions. Then, by
the main result of [14], there is a strictly increasing function f ∈ F such that f [Q] =M .
Then, for g(x) = f(x− 1) we have g ∈ F, g[Q] =M , and f �= g, contradiction.

Corollary 4.4 If F ⊂ C(R) contains the family C∞ then an SPU for F cannot be
countable.

Proof. It is easy to see that an SPU for any family containing C∞ functions must be
dense.

Problem 4.5 Can an SPU for C∞, or differentiable functions be meager?

We even do not know even whether an SPU for the analytic functions can be count-
able, though the answer is likely affirmative.
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