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Abstract. Shape constraints are potentially useful high-level priors for
object segmentation, allowing the customization of the segmentation to
a given target object. In this work, we present a novel shape constraint,
named Local Band constraint (LB), for the generalized graph-cut frame-
work, which in its limit case is strongly related to the Boundary Band
constraint, preventing the generated segmentation to be irregular in rela-
tion to the level sets of a given reference cost map or template of shapes.
The LB constraint is embedded in the graph construction with addi-
tional arcs defined by a translation-variant adjacency relation, making
it easy to combine with other high-level constraints. The LB constraint
demonstrates competitive results as compared to Geodesic Star Con-
vexity, Boundary Band, and Hedgehog Shape Prior in Oriented Image
Foresting Transform (OIFT) for various scenarios involving natural and
medical images, with reduced sensibility to seed positioning.

Keywords: Boundary Band constraint · Hedgehog Shape Prior ·
Image Foresting Transform · Graph-cut segmentation

1 Introduction

Image segmentation is one of the most fundamental and challenging problems
in image processing and computer vision. In many scenarios, the high-level,
application-domain specific knowledge of the user is often required in the seg-
mentation process because of the presence of heterogeneous backgrounds, objects
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with ill-defined borders, field inhomogeneity, noise, artifacts, partial volume
effects, and their interplay [19]. It may be thought of as consisting of two related
processes – object recognition and delineation [10]. Recognition is the task of
determining an object’s approximate whereabouts in the image. Delineation
completes segmentation by defining the exact spatial extent of that object. In
this work, we are interested in solving the delineation problem by fast methods
to efficiently deal with large amounts of data, but which must also be versa-
tile enough to support the inclusion of high-level constraints from prior object
knowledge.

The segmentation problem can be interpreted as a graph partition problem
subject to hard constraints, such as seed pixels selected in the image domain
for object recognition, by modelling neighborhood relations of picture elements
from digital images. Examples of seed-based methods are watershed [8], random
walks [12], fuzzy connectedness [5], graph cuts (GC) [2], grow cut [18], minimum
barrier distance [7], and image foresting transform (IFT) [6,9]. Some methods,
including the min-cut/max-flow algorithm, can provide global optimal solutions
according to a graph-cut measure in graphs and can be described in a unified
manner according to a common framework, which we refer to as Generalized GC
(GGC) [4].

Oriented Image Foresting Transform (OIFT) [24] and Oriented Relative
Fuzzy Connectedness (ORFC) [1] are extensions of some GGC methods for
directed weighted graphs, which have lower computational complexity compared
to the min-cut/max-flow algorithm [2]. OIFT is a flexible method, which has been
extended to support the processing of global object properties, such as connect-
edness [20,21], shape constraints [23,25], boundary polarity [1,22], and hierar-
chical constraints [16]. These high-level priors are potentially useful for object
segmentation, allowing the customization of the segmentation to a given target
object. Shape constraints can be used to eliminate undesirable intricate forms,
improving the segmentation of objects with more regular contour. Some shape
constraints demand more sophisticated algorithms, such as the Boundary Band
constraint (BB) [25]. The OIFT with the BB constraint allows the segmentation
to follow a pre-established template of shapes, with variances within a range of
permitted deformations around an arbitrary scale, while other approaches han-
dle scale inefficiently based on brute force, by computing the graph cut for each
level of a gaussian pyramid [11].

In this work, we propose a novel shape constraint, named Local Band con-
straint (LB), to be used for object segmentation in the Generalized GC frame-
work and which, in its limit case, is strongly related to the Boundary Band
constraint [25]. The LB constraint demonstrates competitive results with higher
accuracy when compared to BB, Hedgehog [14,15], and Geodesic Star Convex-
ity [13] in various scenarios. It can also be easily combined with other high-level
priors already supported by OIFT, considerably advancing the targeted segmen-
tation [17].

The next section gives the required background on image graphs and GGC.
The proposed Local Band constraint is presented in Sect. 3. In Sect. 4, we
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experimentally evaluate LB, comparing it to previous graph-based works on
shape constraints. Our conclusions are stated in Sect. 5.

2 Background

An image can be interpreted as a directed graph (digraph) G = (I,A) whose
nodes/vertices are the image pixels in its image domain I ⊂ Z

n and whose
arcs/edges, elements of A, are the ordered pixel pairs (s, t) of vertices that are
adjacent, that is, spatially close (e.g., 4-neighborhood, or 8-neighborhood, in
the case of 2D images). We write t ∈ A(s) or (s, t) ∈ A to indicate that t is
adjacent to s. We will usually assume also that our image graph G is edge-
weighted, that is, that each arc (s, t) ∈ A has a fixed weight w(s, t) ∈ [−∞,∞]
(often w(s, t) = ‖I(t) − I(s)‖ for an image with values given by I(t)). An edge
weighted digraph will be denoted as G = (I,A, w). A digraph G is symmetric
if, for all (s, t) ∈ A, the pair (t, s) is also an arc of G. Note that in symmetric
graphs we can have w(s, t) �= w(t, s). In this work, all considered graphs are
symmetric and connected.

Image segmentation can be formulated as a graph partition problem subject
to hard constraints. In the case of binary segmentation (object/background), we
consider two non-empty disjoint seed sets S1 and S0 containing pixels selected
inside the object O and in its exterior, respectively. A label, L(t) = 1 for all
t ∈ S1 and L(t) = 0 for all t ∈ S0, is propagated to all unlabeled pixels during the
execution of seed-based segmentation algorithms, see e.g. [24]. For a label map
L : I → {0, 1} an object identified with it is defined as O := {t ∈ I : L(t) = 1}.

In the case of directed weighted graphs, there are two important classes of
energy formulations within the Generalized GC framework: the Max-Min1 and
Min-Sum optimizers [4]. OIFT and ORFC algorithms are Max-Min optimizers
while the min-cut/max-flow algorithm is a Min-Sum optimizer. The resulting
segmentation by OIFT gives a global optimum solution by maximizing the fol-
lowing graph-cut measure

εmin(L) = min{w(s, t) : (s, t) ∈ A & L(s) > L(t)} (1)

subject to the seed constraints [24].
The segmentation L by OIFT can be computed by Algorithm1, which comes

from [22]. This algorithm, which can also be adapted for multi-object segmen-
tation by computing a related variant in a hierarchical layered digraph [16], will
be a part of our new algorithm. Note that in line 11 of Algorithm1, the weight
w(t, s) of the anti-parallel arc (t, s) is used (rather than that of chosen (s, t) ∈ A).
That is why a symmetric digraph is required.

For the results presented in this work, the most important property of the
OIFT algorithm is the following result, see [24, Theorem 3]:

Proposition 1 [Miranda, Mansilla 2014]. Let G = (I,A, w) be a symmetric
edge weighted image digraph. Let L be a segmentation returned by Algorithm 1
1 Min-Max optimizer is a dual equivalent problem.
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Algorithm 1 . Segmentation by OIFT Algorithm

Input: Symmetric edge weighted image digraph (I, A, w) and non-empty
disjoint seed sets S1 and S0.

Output: The label map L : I → {0, 1}.
Auxiliary: Priority queue Q, variable tmp, and an array of status S : I →

{0, 1}, where S(t) = 1 for processed nodes and S(t) = 0 for unpro-
cessed nodes. The value V (t) represents a potential penalty that a
change of L(t) would contribute to εmin(L).

1. For each t ∈ I, do
2. Set S(t) ← 0.
3. If t ∈ S0, then V (t) ← −∞, L(t) ← 0 and insert t in Q.
4. Else If t ∈ S1, then V (t) ← −∞, L(t) ← 1 and insert t in Q.
5. Else V (t) ← ∞.
6. While Q �= ∅ do
7. Remove s from Q such that V (s) is minimum.
8. Set S(s) ← 1.
9. For each (s, t) ∈ A such that S(t) = 0 do
10. If L(s) = 1, then tmp ← w(s, t).
11. Else If L(s) = 0, then tmp ← w(t, s).
12. If tmp < V (t), then
13. Set V (t) ← tmp and L(t) ← L(s).
14. If t /∈ Q, then insert t in Q.
15. Return L.

applied to G and non-empty disjoint seed sets S1 and S0. Then L satisfies the seed
constraints and maximizes the energy εmin, given by (1), among all segmentations
satisfying these constraints.

3 The Local Band Constraint

Let C : I → [0,∞) be a fixed vertex cost function associated with an image
digraph G = (I,A). Usually C(t) is defined as a minimum of all possible path
cost functions for the paths from S1 to t. The path cost can be its geodesic length,
as used in Geodesic Star Convexity, but other path costs are also useful. It can
also be based on templates of shapes discussed in [3], which will be considered
for evaluation in Sect. 4.

To relate Local Band constraint to Boundary Band constraint introduced
in [25], we first introduce the following notion of Local Boundary Band constraint,
LBB. In this definition the symbol ‖ · ‖ denotes the standard Euclidean L2 norm
on I ⊂ Z

2. The boundary of an object O is defined as

bd(O) = {t ∈ O : ∃s ∈ A(t) such that s /∈ O} .

Definition 1 (Local Boundary Band constraint (LBB)). For Δ,R > 0
and a cost map C : I → [0,∞), a pixel t ∈ O is LBBR

Δ (satisfies Local Boundary
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Band Constraint with band size Δ and parameter R) provided C(t) < C(s) + Δ
for all s ∈ bd(O) such that ‖s − t‖ ≤ R. An object O is LBBR

Δ provided every
t ∈ O is LBBR

Δ.

Definition 2 (Boundary Band constraint (BB)). For Δ > 0, an object O
is BBΔ (satisfies Boundary Band constraint with band size Δ) provided it is
LBB∞

Δ , that is, when C(t) < C(s) + Δ for all t ∈ O and s ∈ bd(O). As a
consequence, bd(O) is contained in the band {s ∈ I : C(s) ∈ (m−Δ,m]}, where
m = max{C(t) : t ∈ O}. In particular, |C(s) − C(t)| < Δ for all s, t ∈ bd(O).
Consequently, this regularizes the shape of bd(O), see [25].

The idea of BB is to establish a maximum possible variation of the cost C
between the boundary points bd(O) of the object O to be segmented. This is
expected to prevent the generated segmentation to be irregular in relation to the
C-level sets [25]. During the OIFT computation subject to BB, the band changes
its reference level set, allowing a better adaptation to the image content, while
its width is kept fixed (Fig. 1). Note that this bears some resemblance to narrow
band level set [26] and to the regional context of a level line used in [27].

Fig. 1. Brain segmentation example in MRI exam. (a–b) Segmentation results by OIFT
without and with the BB constraint, respectively. (c–d) The BB fixed size band evolves
from the seeds, adapting to the image contents. Note that the segmentation boundary
achieved in (b) resides within the band area in (d).

In BB, however, local changes in a part of the object can generate constraint
violations in any other part of its boundary, usually resulting in greater sensitiv-
ity to the initialization of the cost map C and to the positioning of internal seeds,
while in LBB its consistency checks are limited locally, leading to a more flexi-
ble solution. Clearly, every BBΔ object is LBBR

Δ, but the converse is not true.
However, for every C and Δ, there exists an R ∈ (0,∞) such that the property
LBBR

Δ implies BBΔ (this certainly holds for any R ≥ max{‖s − t‖ : s, t ∈ I}).
Thus, BBΔ can be considered as a limit, as R → ∞, of LBBR

Δ.
In order to facilitate the implementation, we consider an approximate alter-

native definition, named the Local Band constraint (LB), in order to avoid the
continuous analysis of the dynamic set of boundary pixels inside the disks of
radius R at runtime, but keeping the main idea of locally restricting the band
effects. This effort resulted in the following similar definition.
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Definition 3 (Local Band constraint (LB)). For Δ,R > 0 and a cost map
C : I → [0,∞), a pixel t ∈ O is LBR

Δ (satisfies Local Band constraint with band
size Δ and parameter R) provided C(t) < C(s) + Δ for all s ∈ I \ O such that
‖s − t‖ ≤ R. An object O is LBR

Δ provided every t ∈ O is LBR
Δ.

In other words, if O is LBR
Δ, then for any pair of pixels s and t such that

‖s − t‖ ≤ R and C(t) − C(s) ≥ Δ, we have that t ∈ O implies s ∈ O. Note
that neither of the statements “O is LBR

Δ” and “O is LBBR
Δ” implies the other.

Nevertheless, they are closely related (Fig. 2), as shown by the following result.

Proposition 2. Let r = max(s,t)∈A‖s − t‖ and δ = max(s,t)∈A|C(t) − C(s)|. If
Δ,R > 0 and O is LBR+r

Δ , then O is LBBR
Δ+δ.

Proof. Choose a t ∈ O. Then C(t) < C(s)+Δ for all s ∈ I\O such that ‖s−t‖ ≤
R + r. We need to show that t is LBBR

Δ+δ, that is, that C(t) < C(u) + Δ + δ for
all u ∈ bd(O) such that ‖u− t‖ ≤ R. So, take such u. Then, there is an s ∈ I \O
with (u, s) ∈ A. Notice that ‖s−t‖ ≤ ‖s−u‖+‖u−t‖ ≤ r+R. Using this and the
definition of δ, we get C(t) < C(s)+Δ ≤ C(u)+Δ+|C(s)−C(u)| ≤ C(u)+Δ+δ,
as needed.

Since usually numbers δ and r are small, so should be the difference between
the objects with properties LBR

Δ, LBR+r
Δ , LBBR

Δ+δ, or LBBR
Δ and, for large R,

each approximates BBΔ.

Fig. 2. Example of Proposition 2, where “t is LBR+r
Δ ” and “t is LBBR

Δ+δ” for R = 2.5,
r = 1.0, Δ = 1 and δ = 1. (a) O, (b) bd(O), and (c) the disks of radii R and R + r.
(Color figure online)

The LB constraint can be implemented, as proposed in Algorithm 2 for OIFT,
by considering a modified graph G′ with the LB constraint embedded on its
arcs. In general, the worst cost should be ∞ for Min-Sum optimizers and −∞
for Max-Min optimizers. In order to maintain a symmetric graph, we also create
anti-parallel arcs with the best cutting cost (zero for Min-Sum and ∞ for Max-
Min optimizers) if they do not exist (line 5 in Algorithm2). Note that in G′

the set of displacement vectors D(s) = {t − s : t ∈ A′(s)} varies for different
positions of s, leading therefore to a translation-variant adjacency relation.

Theorem 3. Let G = (I,A, w) be a symmetric edge weighted image digraph
with w : A → R. Let L be a segmentation returned by Algorithm 2 applied to G,
non-empty disjoint seed sets S1 and S0, cost map C : I → [0,∞), and parameters
R > 0 and Δ > 0. Assume that S1 and S0 are LBR

Δ-consistent, that is, that
(�) there exists a labeling satisfying seeds and LBR

Δ constraints.
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Algorithm 2 . Segmentation by OIFT subject to the LB constraint

Input: Symmetric edge weighted image digraph G = (I, A, w), non-empty
disjoint seed sets S1 and S0, cost map C : I → [0, ∞), and param-
eters R > 0 and Δ > 0.

Output: The label map L : I → {0, 1}.
Auxiliary: Edge weighted digraph G′ = (I, A′, w′) with A ⊂ A′.

1. Set A′ ← A and w′ ← w.
2. For each (s, t) ∈ {(p, q) ∈ I × I : ‖p − q‖ ≤ R & C(p) ≥ C(q) + Δ} do
3. If (s, t) /∈ A′ then Set A′ ← A′ ∪ {(s, t)} and define w′(s, t) := −∞.
4. Else Redefine w′(s, t) := −∞.
5. If (t, s) /∈ A′ then Set A′ ← A′ ∪ {(t, s)} and define w′(t, s) := ∞.
6. Compute, by Algorithm 1, L : I → {0, 1} for G′ and seed sets S1 and S0.
7. Return L.

Then L satisfies seeds and LBR
Δ constraints and maximizes the energy εmin, given

by (1) w.r.t. G, among all segmentations satisfying these constraints.

Proof. In this proof εG
min and εG′

min denote the energy εmin with respect to G and
G′, respectively. Let L := {(p, q) ∈ I × I : 0 < ‖p − q‖ ≤ R & C(p) ≥ C(q) + Δ}
and M := {(t, s) : (s, t) ∈ L} \ A. It is easy to see that after the execution of
lines 1-5 we have A′ = A ∪ L ∪ M and

w′(s, t) =

⎧
⎪⎨

⎪⎩

−∞ for (s, t) ∈ L,

∞ for (s, t) ∈ M,

w(s, t) otherwise, that is for (s, t) ∈ A \ L.

Also, by Proposition 1, after the execution of line 6 the labeling L satisfies the
seed constraints and maximizes the energy εG′

min among all segmentations satis-
fying seeds constraints. We need to show that L satisfies also LBR

Δ constraints
an that it maximizes εG

min among all segmentations satisfying these constraints.
To see this, let L′ : I → {0, 1} be an arbitrary labeling satisfying seeds and

LBR
Δ constraints. It exists by (�). Then, by the definition of LBR

Δ constraints,
the set T ′ := {(p, q) ∈ A′ : L′(p) > L′(q)} is disjoint with L. In particular,

εG′
min(L) ≥ εG′

min(L
′) = min{w′(s, t) : (s, t) ∈ A′ & L′(s) > L′(t)} > −∞.

Hence
εG′
min(L) = min{w′(s, t) : (s, t) ∈ A′ & L(s) > L(t)} > −∞,

so that the set T := {(p, q) ∈ A′ : L(p) > L(q)} must be also disjoint with L.
This means that L satisfies LBR

Δ constraints. To finish the proof we need to show
that εG

min(L) ≥ εG
min(L

′). For this notice first that

εG′
min(L

′) = εG
min(L

′). (2)
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(a) Circle template (b) No shape priors (c) Star Convexity (d) B. Band Δ = 2

(e) B. Band Δ = 40 (f) Hedgehog θ = 45◦ (g) Local Band Δ = 2

Fig. 3. Pool ball OIFT segmentation with a circle template in a 600 × 338 image.

Indeed, T ′ ∪ T is disjoint with L, so (s, t) ∈ A′ & L′(s) > L′(t) implies that
(s, t) ∈ (A \ L) ∪ M. Thus, since w′ = w on A \ L and w′ = ∞ on M,

εG′
min(L

′) = min{w′(s, t) : (s, t) ∈ A′ & L′(s) > L′(t)}
= min ({w′(s, t) : (s, t) ∈ A \ L & L′(s) > L′(t)} ∪ {∞})
= min ({w(s, t) : (s, t) ∈ A & L′(s) > L′(t)} ∪ {∞}) = εG

min(L
′),

as needed. Finally, using (2) for L and L′, we obtain

εG
min(L) = εG′

min(L) ≥ εG′
min(L

′) = εG
min(L

′),

finishing the proof.

4 Experimental Results

In this section we compare LB with shape constraints commonly employed in
graph-based segmentation: Geodesic Star Convexity [13], Boundary Band [25],
and Hedgehog Shape Prior [14,15]. We opted to compare them using Max-Min
optimizers, because BB is not yet supported by Min-Sum optimizers [25].

From the IFT [9] perspective, when the cost map C is the geodesic length
from S1 in G = (I,A), the previous constraints are based on different attributes
of a previously computed minimal forest in G rooted at S1: Geodesic Star Con-
vexity uses the predecessor map [23], BB and LB constraints exploit the cost
map directly, and Hedgehog uses the gradient of the cost map as vector field.

Figure 3 shows the segmentation results by OIFT using different methods and
a circle template, as reference cost map, centered on the center of mass of the
internal seeds. The BB constraint fails to give good results compared to Local
Band and Hedgehog, due to its greater sensitivity to the template positioning.
Figure 4 shows some results of a tile segmentation using a square template. In
order to measure the sensitivity of the most promising methods for different
seed positioning, in Fig. 5 we show the accuracy curves using internal seeds in
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(a) Square template (b) No shape priors (c) Star Convexity (d) B. Band Δ = 10

(e) Hedgehog θ = 45◦ (f) Local Band Δ = 1 (g) Local Band Δ = 2

Fig. 4. Wall tile segmentation by OIFT with a square template in a 576 × 881 image.
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Fig. 5. The accuracy curves for different horizontal displacements of the internal seeds.

(a) Sobel gradient (b) No priors (c) B. Band (d) Hedgehog (e) Local Band

Fig. 6. Archaeological fragment segmentation.

a circular brush of radius 3 pixels with horizontal displacements relative to the
object’s center. Note that, in both cases, LB (R = 3.5 and Δ = 2) has the most
accurate and slightly more stable results, giving almost perfect results for 41.4%
and 10.3% of the maximum possible horizontal shift in the pool ball (radius 84
pixels) and wall tile (radius 145 pixels), respectively.
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Fig. 7. (a) The mean accuracy values to segment the archaeological fragments for
different image resolutions. (b) Zoomed results (accuracy ≥ 95%).
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Fig. 8. The mean accuracy curves to segment the liver for seed sets obtained by erosion.

We also tested their robustness in relation to different image resolutions by
quantitative experiments, to segment archaeological fragments in seven different
resolutions with the geodesic cost. In order to make the experiment more chal-
lenging, the simple arc weight w(s, t) = G(s) + G(t) was used, disregarding any
prior color information, where G(t) denotes the magnitude of Sobel gradient,
such that we have several false boundaries (Fig. 6). Figure 7 shows the mean val-
ues of the Dice coefficient for segmenting ten fragments for each image resolution,
totalizing 70 executions for each method. The overall best results were obtained
by LB using R = 3.5 and Δ = 2. Hedgehog for different θ values and the same
radius presented unstable results (Fig. 6d). Further increasing its radius is not
recommended, since it drastically increases the computational cost.

Finally, we conducted experiments with the geodesic cost to segment the
liver in medical images of 40 slices of thoracic CT studies of size 512×512, using
regular weights w(s, t) = ‖I(t) − I(s)‖ and seed sets progressively obtained by
eroding the ground truth and its background with twice the radius size. Although
this scenario is apparently advantageous for the BB constraint, in view of the
well-distributed and centralized seeds, LB (R = 3.5 and Δ = 2) demonstrated
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good results with the highest accuracy for a large part of the curve (Fig. 8a). We
repeated the experiments, but now with the internal seeds shifted by 5 pixels to
the left (25% of the maximum possible displacement in the central part of the
curves) whenever possible. In this new scenario, the results clearly show that LB
is more robust than BB in relation to seed positioning (Fig. 8b).

5 Conclusion

We have proposed the Local Band shape constraint, for the Generalized GC
framework, which in its limit case (i.e., R → ∞) is strongly related to Boundary
Band constraint and is less sensitive to the seed/template positioning. To the
best of our knowledge, we are also the first to report OIFT with the Hedgehog
shape prior. As future work, we intend to test LB in 3D medical applications.
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