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Abstract. Many fundamental problems in image processing and com-
puter vision, such as image filtering, segmentation, registration, and
stereo vision, can naturally be formulated as optimization problems.

We consider binary labeling problems where the objective function is
defined as the max-norm over a set of variables. It is well known that
for a limited subclass of such problems, globally optimal solutions can
be found via watershed cuts, i.e., cuts by optimum spanning forests.
Here, we propose a new algorithm for optimizing a broader class of such
problems. We prove that the proposed algorithm returns a globally opti-
mal labeling, provided that the objective function satisfies certain given
conditions, analogous to the submodularity conditions encountered in
min-cut/max-flow optimization. The proposed method is highly efficient,
with quasi-linear computational complexity.

Keywords: Energy minimization · Pixel labeling · Minimum cut ·
Submodularity

1 Introduction

Many fundamental problems in image processing and computer vision, such as
image filtering, segmentation, registration, and stereo vision, can naturally be
formulated as optimization problems. Often, these optimization problems can be
described as labeling problems, in which we wish to assign to each image element
(pixel, or vertex of an associated graph) v ∈ V an element �(v) from some finite,
K-element, set of labels, usually {0, . . . , K − 1}. The interpretation of these
labels depends on the optimization problem at hand. In image segmentation,
the labels might indicate object categories. In registration and stereo disparity
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problems the labels represent correspondences between images, and in image
reconstruction and filtering the labels represent intensities in the filtered image.

In this paper, we seek binary label assignments � : V → {0, 1} that minimizes
a given objective (energy) function E∞ of the form

E∞(�) := max
{
max
s∈V

φs(�(s)), max
{s,t}∈E

φst(�(s), �(t))
}
. (1)

In this equation, the image domain is identified with an undirected1 graph
G = (V, E), where the set V of vertices of the graph is the set of all pixels of the
image, while E is the set of all its edges, that is, of pairs {s, t} of vertices/pixels
that are adjacent according to some given adjacency relation.

At first glance, the restriction to binary labeling may appear very limiting.
Many successful methods for multi-label optimization, however, rely on itera-
tively minimizing binary labeling problems via move-making strategies [1]. Thus,
the ability to find optimal solutions for problems with two labels has high rele-
vance also for the multi-label case.

The functions φs(·) are referred to as unary terms. Each unary term depends
only on the label �(s) assigned to the pixel s, and they are generally used to
indicate the preference of an individual pixel to be assigned each particular
label, typically based on some prior information.

The functions φst(·, ·) are referred to as pairwise or binary terms. Each such
function depends on the labels assigned to two pixels simultaneously, and thus
introduces a dependency between the labels of different pixels. Typically, this
dependency between pixels is used to express that the desired solution should
have some degree of smoothness, or regularity.

Our main contribution is an algorithm for solving labeling problems of the
form described above. Specifically, the algorithm is guaranteed to produce a
labeling that is globally optimal with respect to the energy function E∞, under
the condition that all pairwise terms φst satisfy the condition

max{φst(0, 0), φst(1, 1)} ≤ max{φst(1, 0), φst(0, 1)}. (2)

The proposed algorithm is very efficient, with an asymptotic time complexity
bound by the time required to sort O(|V | + |E|) values.2

1.1 Background and Related Work

In their seminal work, Kolmogorov and Zabih [5] considered binary labeling
problems where the objective function has the form

E1(�) :=
∑

s∈V

φs(�(s)) +
∑

{s,t}∈E
φst(�(s), �(t)), (3)

1 The energy formula (1) must be expressed in terms of undirected edges. But the
algorithm can be used for directed graphs as well.

2 Here, | · | denotes set cardinality.
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and showed that a globally optimal solution can be computed by solving a max-
flow/min-cut problem on a suitably constructed graph under the condition that
all pairwise terms φst are submodular. A pairwise term φst is said to be submod-
ular if

φst(0, 0) + φst(1, 1) ≤ φst(0, 1) + φst(1, 0). (4)

Looking at the objective functions E1 and E∞, we can view them both as
consisting of two parts:

– A local error measure, in our case defined by the unary and pairwise terms.
– A global error measure, aggregating the local errors into a final score.

In the case of E1, the global error measure is obtained by summing all the
local error measures, and in the case of E∞ the global error measure is taken
to be the maximum of the local error measures. If we assume for a moment
that all the local error measurements are non-negative, then E1 can be seen as
measuring the L1-norm of a vector3 containing all local errors. Similarly, E∞
can be interpreted as measuring the L∞ or max norm of the vector. The L1 and
L∞ norms are both special cases of Lp norms, and in this sense we can view
both E1 and E∞ as special cases of a more general objective function

Ep(�) :=

⎛

⎝
∑

s∈V

φp
s(�s) +

∑

{s,t}∈E
φp

st(�s, �t)

⎞

⎠

1/p

, (5)

where φp
s(·) = (φs(·))p and φp

st(·, ·) = (φst(·, ·))p. The value p can be seen as
a parameter controlling the balance between minimizing the overall cost ver-
sus minimizing the magnitude of the individual terms. For p = 1, the optimal
labeling may contain arbitrarily large individual terms as long as the sum of the
terms is small. As p increases, a larger penalty is assigned to solutions containing
large individual terms. In the limit as p approaches infinity, Ep approaches E∞
and the penalty assigned to a solution is determined by the largest individual
term only.

Labeling problems with objective functions of the form Ep can be solved using
minimal graph cuts, provided that all pairwise terms φp

st are submodular [6]. As
shown by Malmberg and Strand [6], the submodularity of φp

st is guaranteed for
any p ≥ 1 if φst is submodular and satisfies (2).

Additionally, it turns out that in some problem instances the limit case E∞
can be optimized for directly, using efficient greedy algorithms. For example,
consider a labeling problem with objective function E∞, where all pairwise terms
satisfy the restriction φst(1, 0) = φst(0, 1) and φst(0, 0) = φst(1, 1) = 0. In
this simplified case, a globally optimal solution can be found by computing a
cut by optimum spanning forest (MSF cut, or watershed cut) on a suitably
constructed graph [2–4].This interesting result has a high practical value, since
the computation time for finding an MSF cut is substantially lower than the

3 This vector is identified with the function φ� defined in the next section.
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computation time for solving a min-cut/max-flow problem, asymptotically as
well as in practice [3]. An interesting question is therefore whether it is possible
to use similar greedy techniques to optimize the objective function E∞, beyond
the special case outlined above. The results presented in this paper answers this
question affirmatively.

We observe that our proposed algorithm has some structural similarity to
Kruskal’s algorithm for computing minimum spanning trees, and in this sense
the algorithm can be seen as a generalization of the MSF/Watershed cut app-
roach [4].

2 Preliminaries

The exposition of our proposed algorithm relies on the notion of unary and
binary solution atoms, which we introduce in this section. Informally, a unary
atom represents one possible label configuration for a single vertex, and a binary
atom represent a possible label configuration for a pair of adjacent vertices. Thus,
for a binary labeling problem, there are two atoms associated with every vertex
and four atoms for every edge.

Formally, we let V = {{v} : v ∈ V }, put D = V ∪E , and let A be the family of
all binary maps from D ∈ D into {0, 1}. An atom, in this notation, is an element
of A. If we identify, as it is common, maps with their graphs, then each unary
atom associated with a vertex s ∈ V has form {(s, i)}, with i ∈ {0, 1}. Similarly,
each binary atom associated with an edge {s, t} ∈ E has the form {(s, i), (t, j)},
with i, j ∈ {0, 1}.

Notice, that the maps φs and φst used for the unary and binary terms in
(1) can be combined to form a single function Φ : A → [0,∞) defined, for every
A ∈ A, as

Φ(A) :=

{
φs(i) for A = {(s, i)},
φs,t(i, j) for A = {(s, i), (t, j)}.

For a given labeling �, we define φ� : D → [0,∞), for every D ∈ D, as

φ�(D) := Φ(� � D) =

{
φs(�(s)) for D = {s} ∈ V,
φs,t(�(s), �(t)) for D = {s, t} ∈ E ,

where � � D is the restriction of � to D. With this notation, we may write the
objective function E∞ as

E∞(�) = ‖φ�‖∞ = max
D∈D

φ�(D). (6)

2.1 Global and Local Consistency, Incompatible Atoms

Conceptually, the proposed algorithm works as follows: starting from the set of
all possible unary and binary atoms, the algorithm iteratively removes one atom



210 F. Malmberg et al.

at a time until the remaining atoms define a unique labeling. A key issue in this
process is to ensure that, at all steps of the algorithm, at least one labeling can
be constructed from the set of remaining atoms.

Let � be a binary labeling. We define A(�), the atoms for �, as the family

A(�) = {� � D : D ∈ D}.

Notice that � can be easily recovered from A(�) as its union: � =
⋃ A(�).

Let A′ ⊂ A be a set of atoms. We say that A′ is globally consistent if there
exists at least one labeling � such that A(�) ⊆ A′.

In general, determining whether a given set of atoms is globally consistent
is difficult. Therefore we also introduce a seemingly weaker property of local
consistency, which will be used in Sect. 4 to establish the correctness of our
proposed algorithm. A set of atoms A′ is said to be locally consistent if, for
every vertex s ∈ V and edge {s, t} ∈ E there are i, j ∈ {0, 1} such that the
atoms {(s, i)} and {(s, i), (t, j)} both belong to A′.

Furthermore we introduce the notion of an incompatible atom, which will be
needed for the exposition of the proposed algorithm. For a given set of A′, we
say that an atom A ∈ A′ is incompatible (w.r.t. A′) if either

1. A is a unary atom so that A = {(v, i)} for some vertex v, and there exists
some edge {v, w} adjacent to v such that A′ contains neither {(v, i), (w, 0)}
nor {(v, i), (w, 1)}; or

2. A is a binary atom so that A = {(v, i), (w, j)} for some edge {v, w}, and at
least one of {(v, i)} and {(w, j)} is not in A′.

Note that a locally consistent set of atoms may still contain incompatible atoms.

3 Proposed Algorithm

In this section, we introduce the proposed algorithm for finding a binary label
assignment � : V → {0, 1} that globally minimizes the objective function E∞
given by (1), under the condition that all pairwise terms in the objective function
satisfy (2). Informally, the general outline of the proposed algorithm is as follows:

– Start with a set S consisting of all possible atoms.
– For each atom A, in order of decreasing cost Φ(A):

• If A is still in S, and is not the only remaining atom for that vertex/edge,
remove A from S.

• After the removal of A, S may contain incompatible atoms. Iteratively
remove incompatible atoms until S contains no more incompatible atoms.

Before we formalize this algorithm, we introduce a specific preordering rela-
tion � on the atoms A. For A0, A1 ∈ A we will write A0 � A1 if either
Φ(A0) > Φ(A1), or else Φ(A0) = Φ(A1) and A1 is a binary atom of the form
{(s, i), (t, i)} (equal labeling) while A0 is not in this form.

With these preliminaries in place, we are now ready to introduce the proposed
algorithm, for which pseudocode is given in Algorithm1.



Max-Norm Optimization 211

Algorithm 1. Labeling Algorithm
Data: A graph G = (V, E) and associated Φ : A → [0, ∞) generating energy E∞
Result: A labeling � : V → {0, 1} minimizing energy E∞
Additional Structure: An array A of buckets of atoms, indexed by
D = V ∪ E ; a list H of atoms; a queue K of vertices/edges such that every vertex
in K precedes any edge.

1 foreach vertex/edge D ∈ D do insert all D-atoms to A[D]
2 create a list H of all atoms A such that A0 precedes A1 in A whenever A0 � A1

3 while H �= ∅ do
4 remove the first atom A from H
5 if D ∈ D is a vertex/edge of A and A[D] has more than one element then
6 remove A from A[D] and insert D to (previously empty) K
7 while K �= ∅ do
8 remove a vertex/edge C from K
9 foreach edge/vertex D adjacent to C do

10 remove from A[D] and H all A incompatible with
⋃

D′∈D A[D′]
11 if any atom was removed from A[D] and H in line 10 then
12 insert to K any vertex/edge C′ adjacent to D: to its top,

when C′ is a vertex and its bottom when C′ is an edge

13 return � =
⋃

D∈D A[D]

4 Analysis of the Algorithm

In this section, we analyze the computational complexity of the proposed algo-
rithm and prove that it is guaranteed to return a globally optimal solution to
the labeling problem given in the introduction.

4.1 Computational Complexity

We now analyze the asymptotic computational complexity of Algorithm1. First,
let η := |A| = 2|V | + 4|E|. In image processing applications the graph G is
commonly sparse, in the sense that O(|V |) = O(|E|). In this case, we have
O(η) = O(|V |).

Creating the list H requires us to sort all atoms in A. The sorting can be
performed in O(η log η) time. In some cases, e.g., if all unary and binary terms
are integer valued, the sorting may be possible to perform in O(η) time using,
e.g., radix or bucket sort.

We make the reasonable assumption that the following operations can all be
performed in O(1) time:

– Remove an atom from H.
– Remove an atom from A(D).
– Remove or insert elements in K.
– Given an atom, find its corresponding edge or vertex.
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– Given a vertex, find all edges incident at that vertex.
– Given an edge, find the vertices spanned by the edge.

The combined number of the executions of the main loop, lines 3–12, and
of the internal loop, lines 7–12, equals to |A|, that is, O(η). This is so, since
any insertion of an atom into K requires its prior removal from the list H. If
the assumptions above are satisfied, it is easily seen that only O(1) operations
are needed between consecutive removals of an atom from H. Therefore, the
amortized cost of the execution of the main loop is O(η).

Thus, the total computational cost of the algorithm is bound by the time
required to sort O(η) elements, i.e., at most O(η log η).

4.2 Example Demonstrating the Need for Condition (2)

In Sect. 4.3 we will prove that if all binary terms satisfy (2), then this is a
sufficient condition for the proposed algorithm to return an optimal labeling.
In this section, we first give an example showing that when this condition is
violated, the algorithm may indeed fail to produce a labeling.

Let G be a complete graph with three vertices V = {a, b, c}. Define φ for
every i ∈ {0, 1} via:

(i) φ(〈a, i〉, 〈b, i〉) = φ(〈a, i〉, 〈c, i〉) = 1;
(ii) φ(〈a, i〉, 〈b, 1 − i〉) = φ(〈a, i〉, 〈c, 1 − i〉) = 9;
(iii) φ(〈b, i〉, 〈c, i〉) = 5;
(iv) φ(〈b, i〉, 〈c, 1 − i〉) = 2;
(v) φ(〈v, i〉) = 0 for all v ∈ V .

Consider the following possible steps in the execution of Algorithm1.

Steps 1–4: Remove 4 atoms with φ(〈a, i〉, 〈b, 1− i〉) = φ(〈a, i〉, 〈c, 1− i〉) = 9.
Steps 5–6: Remove 2 atoms with φ(〈b, 0〉, 〈c, 0〉) = φ(〈b, 1〉, 〈c, 1〉) = 5.

Then, after these 6 steps, the system is inconsistent, since pairs 〈a, b〉 and
〈a, c〉 must have the same labels, while 〈b, c〉 must have different labels. So, this
execution of Algorithm 1 fails to produce a valid labeling.

To motivate the introduction of the specific preordering relation � for H,
consider modifying the labeling problem given above so that

(iv) φ(〈b, i〉, 〈c, 1 − i〉) = 5.

If we only require H to be ordered by decreasing Φ, steps 1–6 still represent a
possible execution of Algorithm 1. By instead requiring H to be ordered according
to �, we force the atoms {(b, 0), (c, 1)} and {(b, 1), (c, 0)} to be removed from H
before {(b, 0), (c, 0)} and {(b, 1), (c, 1)}, and the algorithm will in this case return
a valid labeling.
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4.3 Proof of Correctness

Theorem 1. If all binary terms of the map Φ : D → [0,∞) associated with graph
G = (V, E) satisfy the condition (2), then � returned by Algorithm 1 is indeed a
labeling of V minimizing the objective function E∞.

Proof. Let n := |V |+3|E|, the number of removals of an atom from A. For every
D ∈ D and k ∈ {0, . . . , n} let Ak[D] be equal to the value of A[D] directly after
the k-th removal of some atom(s) from A, which can happen only as a result of
execution of either line 6 or of line 10. (For k = 0 we mean, directly after the
execution of line 2.) Let Ak =

⋃
D∈D Ak[D].

Let 1 = k1 < · · · < km be the list of all values of k ∈ {1, . . . , n} such that Ak

is a proper refinement of Ak−1 resulting from the execution of line 6. Note that
it is conceivable that the numbers kj and kj+1 are consecutive—this happens
when the execution of loop 8–12 directly after the execution of line 5 has been
used to create Akj

resulted in removal of no atoms from Akj
.

The key element of this proof is to show, by induction, that the following
properties hold for every k ≤ n.

(P0) For every edge D = {v, w}, if Ak[D] is missing either {(v, 0), (w, 0)}
or {(v, 1), (w, 1)}, then it must be also missing {(v, 1), (w, 0)} or {(v, 0),
(w, 1)}.

(P1) Ak[D] contains at least one atom for every D ∈ D.
(P2) Ak is locally consistent.
(P3) Ak has no incompatible atoms directly before any execution of line 4.

It is enough to prove that if for some κ ≤ n these properties hold for every
k < κ, then they also hold for κ. Clearly, these properties hold immediately after
the execution of line 2, that is, for κ = 0. So, we can assume that κ > 0. We
need to show that (P0)–(P3) are preserved by each operation of the algorithm.
More specifically, by the execution of lines 6 or 10, since the status of each of
these properties can change only when an atom is removed from A during their
execution.

Proof of (P0): Fix an edge D = {v, w} and assume that (P0) holds for this D
and all k < κ. Now, if Aκ−1[D] has less than 4 elements, then by the inductive
assumption it must be already missing either {(v, 1), (w, 0)} or {(v, 0), (w, 1)},
and so the same will be true for Aκ[D], as needed. So, assume that Aκ−1[D]
has still all 4 elements. This means, that these 4 elements are still present in
H and, by (2) and the choice of the ordering of H, the atoms {(v, 1), (w, 0)}
and {(v, 0), (w, 1)} must precede in H any of the atoms {(v, 0), (w, 0)} and
{(v, 1), (w, 1)}. In particular, if κ = kj for some j, then Aκ[D] is obtained as
a result of execution of line 3 and the ordering of H ensures that Aκ[D] still
satisfies (P0). So, assume that κ = kj for no j; that is, that Aκ[D] is obtained
from Aκ−1[D] by the execution of line 10. Since one of the atoms from Aκ−1[D]
was removed as a result of this execution, for one of vertices of D, say v, the
bucket Aκ−1[{v}] must be missing one of its atoms, say {(v, i)}. But this means
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that Aκ−1[D] must have been missing both {(v, i), (w, 0)} and {(v, i), (w, 1)}, so
indeed Aκ[D] satisfies (P0).

Proof of (P1)-(P3): This will be proved by the simultaneous induction on κ.
(P1) must be preserved by the execution of line 10, by the inductive assump-

tion (P2) that Aκ−1 is locally consistent. It also cannot be destroyed by the
execution of line 6, since this is prevented by the condition of line 5. Thus,
Aκ[D] still has the property (P1).

To see (P3) we can assume that κ = kj for some j > 0. Clearly (P3) holds
for k = kj−1. Thus, we need only to show that removal of an atom A in line
6 and consecutive execution of loop 7–12 preserves (P3). Indeed, the potential
incompatibility can occur only in relation of the vertices associated with the
atoms removed from

⋃
D∈D A[D]. However, each time such an atom is removed,

all adjacent atoms are inserted into the queue K and the execution of the loop
7–12 does not end until all such potential incompatibilities are taken care off.

The proof of the preservation of (P2) is more involved. Let j be the largest
such that kj ≤ κ. First notice that if κ = kj , then (P2) holds. Indeed, by the
inductive assumptions (P2) and (P3), Aκ−1 is locally consistent and has no
incompatible atoms. Since Aκ �= Aκ−1, the bucket A[D] must have contained
two or more atoms prior to the removal of A in line 6. Since Aκ−1 did not
contain any incompatible atoms, Aκ = Aκ−1 \ {A} must remain locally consis-
tent. So, we can assume that μ := κ − kj is non-zero. We will examine families
Akj

,Akj+1, . . . ,Akj+μ = Aκ.
Let A = A0, . . . , Aμ be the order in which the atoms were removed from

K during of this time execution of loop 8–12. Also, let x0, . . . , xμ be the ver-
tices/edges associated with the atoms A0, . . . , Aμ, respectively. We will show, by
induction on ν ≤ μ, the following property (Iν), which in particular imply that
Akj+ν is locally consistent.

To state (Iν) first notice that if an atom for a vertex v is among x0, . . . , xν−1,
then Akj+ν must contain precisely one of two atoms {(v, 0)} and {(v, 1)}. (Must
contain at least one, by (P1). It cannot contain both, since this would mean
that no v-atom was removed so far and hence Akj+ν could not have been
removed from Akj+ν−1.) In particular, this means that there is an iv ∈ {0, 1}
for which Akj+ν already ensures that the final value of �(v) is iv. This means,
that Akj+ν [{v}] =

{{(v, iv)}}
.

We will prove, by induction on ν ≤ μ, that

(Iν) Akj+ν is locally consistent and if vertices v and w are among x0, . . . , xν ,
then iv = iw.

Of course, this will finish the proof of (P2).
Clearly, (I0) holds, as we already shown that Akj

is locally consistent, and
the other condition is satisfied in void. So, fix ν ∈ {1, . . . , μ} such that (Iξ) holds
for all ξ < ν. We will show that (Iν) holds as well.

For this, assume first that xν is an edge {v, w}. We need to show only that
Akj+ν remains locally consistent, the other part of (Iν) being ensured in this
case by (Iν−1). Since xν = {v, w}, there must exist a j < ν such that xj is a
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vertex and xj ∈ {v, w}. For simplicity we assume that xj = v and that iv = 0,
the other cases being similar.

We need to show that Akj+ν , obtained from Akj+ν−1 by removing from it
atoms {(v, 1), (w, 0)} and {(v, 1), (w, 1)}, cannot be locally inconsistent.

Note that such removal from locally consistent Akj+ν−1 can potentially
influence local consistency of Akj+ν only of {v, w} with respect to the ver-
tices v and w. However, since Akj+ν−1[{v}] =

{{(v, 0)}}, this is also equal to
Akj+ν [{v}]. Also, both Akj+ν−1 and Akj+ν must contain either {(v, 0), (w, 0)} or
{(v, 0), (w, 1)}. Hence, Akj+ν it cannot have local inconsistency of {v, w} with
v. Therefore, we must show only that Akj+ν contains no local inconsistency
between {v, w} and w.

To see this, first notice that there will be no such inconsistency when

Akj−1[{w}] �
{{(w, 0)}, {(w, 1)}}. (7)

Indeed, then Akj−1[{w}] =
{{(w, i)}} for some i ∈ {0, 1} and, by the property

(P3), Akj−1 ⊃ Akj+μ cannot contain atom {(v, 0), (w, 1−i)}. Hence Akj+μ must
contain {(v, 0), (w, i)} and local consistency is preserved.

To finish the argument consider the following three cases.

Akj+ν [{w}] =
{{(w, 0)}, {(w, 1)}}: Then Akj+ν is indeed locally consistent, since

it contains either {(v, 0), (w, 0)} or {(v, 0), (w, 1)}.

Akj+ν [{w}] =
{{(w, 1)}}: Then also Akj+ν−1[{w}] =

{{(w, 1)}} and w cannot
be among x0, . . . , xν−1, since this would contradict the second part of (Iν−1). In
particular, (7) holds and so local consistency is preserved.

Akj+ν [{w}] =
{{(w, 0)}}: We can assume that (7) does not hold. Then there

exists p ∈ {0, . . . , ν − 1} such that xj = w. Therefore, Akj+p ⊃ Akj+ν cannot
contain {(v, 0), (w, 1)}. So, Akj+ν must contain {(v, 0), (w, 0)} and local consis-
tency is preserved.

Before we proceed further, notice that for every ν ≤ μ,

(Jν) for every vertex v there is at most one edge D = {v, w} such that Akj+ν [{v}]
contains an atom incompatible with all atoms in Akj+ν [D].

Indeed, by (P3), this clearly holds for ν = 0. Also, if xν is an edge, than the
ordering conditions we imposed on the queue K ensure that the atoms of no other
edge can be added to K and subsequently modified, before each vertex (adjacent
to xν) that can have incompatible atoms with that for xν is added to K and
subsequently modified, so that the potential incompatibilities are removed.

Finally, consider the case when xν is a vertex v. Then we must have had
Akj+ν−1[{v}] =

{{(v, 0)}, {(v, 1)}}. Also, there exists a p ∈ {0, . . . , ν − 1} such
that xp is an edge D = {v, w} and Akj+p[D] � Akj+p−1[D]. Moreover, by (Jν),
such p is unique. Therefore, Akj+ν must be locally consistent, since the only
potential local inconsistency in Akj+ν could be between v and {v, w}. But our
choice of Akj+ν [{v}] ⊂ Akj+ν−1[{v}] =

{{(v, 0)}, {(v, 1)}} ensures that such
inconsistency cannot occur.
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Notice also that the second part of (Iν) holds as well. Indeed, this is satisfied
in void when there is no vertex among x0, . . . , xν−1. So, assume that such vertex
exists. Then, w, the second vertex of the above chosen edge xp = D = {v, w},
must be among such x0, . . . , xν−1. Indeed, if p = 0 then we must have ν = 2 and
x1 = w. Since iw = 0, we must have Akj

[D] ⊂ {{(v, 0), (w, 0)}, {(v, 1), (w, 0)}}.
Also, since Akj+2[{v}] � Akj+1[{v}], the bucket Akj+1[D] = Akj

[D] must con-
tain precisely only one of the atoms {(v, 0), (w, 0)} or {(v, 1), (w, 0)}. However,
Akj

[D] cannot be equal to
{{(v, 1), (w, 0)}}, since, by (P0), this would mean

that Akj−1[D] =
{{(v, 0), (w, 1)}, {(v, 1), (w, 1)}}. But this contradicts (P3). So,

Akj+1[D] =
{{(v, 0), (w, 0)}}, and indeed iv = 0.

Finally, assume that p > 0. Then w = xq for some q ∈ {0, . . . , p − 1} and
so Akj+q[{w}] =

{{(w, 0)}}. Thus, Akj+p[D] ⊂ {{(v, 0), (w, 0)}, {(v, 1), (w, 0)}}
and Akj+ν−1[D] must contain precisely one of these atoms to ensure that the
inclusion Akj+ν [{v}] � Akj+ν−1[{v}] holds. We need to show that the equal-
ity Akj+p[D] =

{{(v, 1), (w, 0)}} is impossible. Indeed, this would imply that
Akj+q−1[D] ⊂ {{(v, 1), (w, 0)}, {(v, 0), (w, 1)}, {(v, 1), (w, 1)}} and using prop-
erty (P0), that Akj+q−1[D] ⊂ {{(v, 1), (w, 0)}, {(v, 1), (w, 1)}}. But this means
that Akj+q−1 already decided the value of λ(v) as 1. Since the value of λ(w) was
previously decided, the reasoning as for (Jν) shows that v should appear already
in x0, . . . , xq, while q < ν contradicts this. This finishes the proof of (P1)-(P3).

To finish the proof of Theorem1, we still need to argue for two facts. First
notice that the algorithm does not stop until all buckets An[D], D ∈ D, have
precisely one element. Thus, since An is locally consistent � =

⋃
D∈D A[D] is

indeed a function from V into {0, 1}.
Finally we prove that � indeed minimizes energy E∞. For this, first notice

that at any time of the execution of the algorithm, any atom in H is also in⋃
D∈D A[D]. Indeed, these sets are equal immediately after the initialization and

we remove from
⋃

D∈D A[D] only those atoms, that have been already removed
from H. Now, let L : V → {0, 1} be a labeling minimizing E∞. We claim, that
the following property holds any time during the execution of the algorithm:
(P) if Φ(A′) > E∞(L) for some A′ ∈ ⋃

D∈D A[D], then A[L] ⊂ ⋃
D∈D A[D].

Indeed, it certainly holds immediately after the initialization. This cannot be
changed during the execution of line 6 when the assumption is satisfied, since
then A considered there has just been removed from H ⊃ ⋃

D∈D A[D] and

Φ(A) ≥ max
H∈H

Φ(H) ≥ max
H∈⋃

D∈D A[D]
Φ(H) ≥ Φ(A′) > E∞(L) = max

H∈A[L]
Φ(H),

so A /∈ A[L]. Also, (P) is not affected by an execution of line 10, since the inclu-
sion A[L] ⊂ ⋃

D∈D A[D] is not affected by it: no atom in A[L] is incompatible
with A[L] so also with

⋃
D∈D A[D]. This concludes the proof of (P).

Now, by the property (P), after the termination of the main loop, we have
either A[L] ⊂ ⋃

D∈D A[D], in which case � = L have minimal E∞ energy, or else

E∞(L) ≥ max
H∈⋃

D∈D A[D]
Φ(H) = max

H∈H
A[�] = E∞(�)

once again ensuring optimality of �.
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5 Conclusions

We have presented an efficient algorithm for finding optimal solutions of binary
labeling problem with objective functions of the form E∞, related to the L∞
norm. We have showed that the algorithm is guaranteed to find a globally optimal
labeling, under the condition that all binary terms satisfy the condition (2).

As we observed in Sect. 1.1, there is an interesting similarity between our
results and the work by Boykov et al. [1] and Kolmogorov and Zabih [5] on
optimizing binary labeling problem via minimal graph cuts. Specifically, the
condition (2) strongly resembles the submodularity condition required for the
minimal graph cut approach to be applicable. We note that the condition
(2) also appeared in a different context in the recent work by Malmberg and
Strand [6], regarding minimization of Lp norm objective functions by minimal
graph cuts. This connection should be investigated further to determine if the
similarity is only superficial, or the result of a deeper connection between these
problems.

As discussed in Sect. 1.1, special cases of the max norm labeling problems
considered here can be solved by computing a MSF/watershed cut on a suit-
ably constructed graph. The set of problems that are solvable by this approach
appears to be a strict subset of the problems solvable by our proposed algo-
rithm. We note, however, that the extensions to the MSF-cut concept proposed
by Malmberg et al. [7] and Wolf et al. [8] can be used to solve a subclass of
max norm optimization problems where the binary terms do not satisfy (2).
Thus, an interesting direction for future work is to determine the precise class
of max-norm problems that can be solved via efficient greedy algorithms.
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