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Abstract. Graph-cut algorithms have been extensively investigated for
interactive binary segmentation, when the simultaneous delineation of
multiple objects can save considerable user’s time. We present an al-
gorithm (named DRIFT) for 3D multiple object segmentation based on
seed voxels and Differential Image Foresting Transforms (DIFTs) with re-
laxation. DRIFT stands behind efficient implementations of some state-
of-the-art methods. The user can add /remove markers (seed voxels) along
a sequence of executions of the DRIFT algorithm to improve segmenta-
tion. Its first execution takes linear time with the image’s size, while the
subsequent executions for corrections take sublinear time in practice. At
each execution, DRIFT first runs the DIFT algorithm, then it applies dif-
fusion filtering to smooth boundaries between objects (and background)
and, finally, it corrects possible objects’ disconnection occurrences with
respect to their seeds. We evaluate DRIFT in 3D CT-images of the tho-
rax for segmenting the arterial system, esophagus, left pleural cavity,
right pleural cavity, trachea and bronchi, and the venous system.

Keywords: Image segmentation, differential image foresting transform,
boundary smoothing, graph-cut algorithms.

1 Introduction

This work studies the segmentation algorithm which, given an image (3D, medi-
cal) and M > 1 desired objects, returns a label map L from the image domain D
into {0, ..., M}, where the label 0 designates the background and voxels in the
ith object are assigned to label 1 < ¢ < M. Although some algorithms do not
need more input (e.g., those based on the Mumford-Shah model [1]), they are nei-
ther efficient nor accurate. Therefore, we will focus on the algorithms that require
the object location as input, in a format of the seed sets A=1(0),..., A"1(M) (see
e.g. [2-5]), where A is a function from S C D into i € {0,..., M}.

Even with seeds indicating object location, the state-of-the-art segmentation
methods rarely provide satisfactory results in a single execution, asking for the
user’s assistance to add seeds and improve segmentation. These steps can be
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repeated several times until user’s satisfaction is reached. Most algorithms, how-
ever, are limited to binary segmentation, when the simultaneous segmentation
of multiple objects can save the user’s time considerably.

Figure 1 illustrates the interactive 3D segmentation of multiple objects using
Differential Image Foresting Transforms (DIFTs) [6]. Markers (seed sets, repre-
sented by distinct colors) propagate their labels to the most strongly connected
voxels in the image. The image is interpreted as a graph, with arcs given by an
adjacency relation between voxels, and each voxel is conquered by a seed which
offers an optimum path to it. The result is an optimum-path forest with labeled
trees, where each object is the union of the trees painted with the same color (the
label map). The forest is used to correct segmentation, since it connects markers
to their influence zones in the image. This algorithm takes time proportional
to the number of voxels in the first execution, but subsequent segmentation
corrections (marker addition and/or removal) usually take time proportional to
the size of the modified regions (i.e., sublinear time). The label map is also a
graph cut that minimizes the maximum arc-weight along the cut, given seeds
as constraints (i.e., the DIFT is a GCpax algorithm [7]). The DIFT is part of
the Image Foresting Transform (IFT) methodology [8], which accepts as input
either an image or an optimum-path forest resulting from a previous execution.

A crucial requirement in the above procedure is an interactive response time
to the user’s actions (i.e., a few seconds or, preferably, instantaneous response).
The DIFT meets the speed requirement for large medical images and stands
behind efficient implementations of GCi,.x methods, such as Iterative Relative
Fuzzy Connectedness [7] and Watershed Transforms [6]. A negative aspect of

Fig.1. (a) By examining orthogonal slices, the user draws green, yellow and orange
markers (seed voxels) in three bones and white marker in the background. The bottom-
right part displays the 3D rendition of the resulting label map. (b) The user can change
mind, pick any voxel in the influence zone of the green marker to remove the bone
(dark blue indicates marked for removal). At the same time, the user can insert new
markers (cyan for a new bone and white for background) to adjust segmentation. (c)
The algorithm removes the green bone and creates a new result with the other three
selected bones.
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such methods, however, is the lack of regularity of the segmented object bound-
aries (the “leaking problem”). Boundary smoothness can be enforced by post-
processing. In [9], for instance, the IFT results were adjusted by the max-flow
algorithm and in [10], a version of diffusion was used for boundary smoothing,
resulting into the “relaxed IFT algorithm” (RIFT).

In this paper, we revisit the RIFT algorithm [10] to correct its inconsistency
in segmentation and to propose its differential version with a considerably faster
boundary smoothing process, which applies diffusion while the boundary be-
tween distinct labels is expanded inward the objects (and background) through
a few iterations (e.g., 10). The initial boundary is also found during the DIFT
computation, when wavefronts from distinct labels meet each other. Given that
any post-processing for boundary smoothing might disconnect a part of an ob-
ject from its most strongly connected seed, such inconsistency is corrected as
follows: We find (in a fully automatic way) a modified set of seeds and use the
DIFT algorithm with these seeds to create a new forest, which induces the seg-
mentation closed to the one produced by the smoothing step, while removing
any objects’ disconnection occurrences. This second forest-induced segmentation
is the one that the user examines and either accepts, or continues to improve.

One can use the boundary smoothing and connectivity correction (second
DIFT module) steps after each application of the first DIF'T module or only once,
at the end of the process. In preliminary tests, we found the latter less accurate
in most cases, since it does not give the chance to correct the process. Therefore,
we evaluate the first solution, named Differential and Relaxed IFT (DRIFT), in
comparison with the DIFT [6] and the Dynamic Graph-Cut (DGC) algorithms
[11] for segmenting 3D CT-images of the thorax into: arterial system, esophagus,
left pleural cavity, right pleural cavity, trachea and bronchi, and venous system.
The segmentation of these objects is especially challenging due to their different
shapes and lack of boundary information in several parts.

2 The Details of the Algorithm

The DRIFT Algorithm can be presented as follows.

Algorithm 1 - DRIFT ALGORITHM

INPUT: The image I: D — R™ and seeds’ labeling A: S — {0,..., M}.

OutpuT:  The forest F in the image; labeling L: D — {0,..., M} extending A.

AUXILIARY: Termination variable flag initiated as FALSE, boundary set B C D, and di-
lated boundary set By C D.

Run DIFT with I and X to get the forest F, label map L, and boundary set B.
While flag = FALSE do
Smooth L from B, returning new labeling L' and dilated set By D B.
Run DIFT from By to get new F and associated labeling L consistent with L'.
If User is satisfied with L then
Set flag <~ TRUE.

N oo W

Else
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8. Get correcting labeling N from the user.
9. Run DIFT for N to get new forest F, labeling L, and set B.

In the rest of these section we will explain in more details what stands behind
the lines 1, 3, 4, 8, and 9.

Details on DIFT. We assume that D C Z? and its voxels are the nodes of a
graph G, whose arcs {s,t} C A C D x D satisfy 0 < ||t — 5| < v/3 (adjacency
relation). We also say that A(s) is the set {t € D: 0 < ||t — s|| < v/3}. The
graph G is weighted on the arcs by w(s,t) = Kw(t), where K > 0 is an integer
and w is defined to assign lower values on object boundaries than elsewhere:

w(s) = 1= 4t Sreaw "0 Ty = maxeep [1(5)])

The DIFT algorithm can be run for: any subgraph G’ of G induced by the
vertices D' C D; any set S’ C D’ of seeds such that for each ¢t € D’ there is a
path in G’ from ¢ to S’; any labeling A\: S” — {0,..., M}; and any initial seed-
strength map p: S — [0, K]. Then, DIFT returns a forest F in G’ rooted at S,
that is, a family of paths in G’ such that: any initial segment of a p € F is also
in IF; every p € F contains precisely one seed from S’; and for each ¢t € D’ there
is a p; € F from s; € S’ to t. The paths in [F are indicated by the predecessor
map P: D'\ S" — D', where P(t) is a predecessor of ¢ in p;. Since the map P
uniquely determines I, we will identify F with P, wherever convenient. The forest
F returned by DIFT is optimal in the following sense. For a path © = (to, ..., t,)
from S’ we define its strength as f(7m) = min;<,{p(to), w(t;, ti+1)}. Then for
any path m = (to,...,tm,t) in G’ with (to,...,tm) € F and ¢t ¢ S’, either
£(e) > f(m) ot both f(p,) = f(r) and A(s:) < Alto).

Line 1. We run DIFT with D’ = D, S’ = S, A provided by the user, and u(s) =
K for all s € 8" and for s € D'\ ', u(s) = —oo. The output labeling L is defined
as L(t) = A(s¢) and the boundary set B is {s € D: 3t € A(s), L(t) # L(s)}.

Line 3. The smoothing is a diffusion filtering on the label map L, starting from
B, that takes a fix number T of iterations (e.g., T = 10). At each iteration, B
generates a dilated set B4 = BU{t € D\ B,t € A(s),s € B}, which turns to be
the set B for the next iteration. The final set By is also returned and it contains
the voxels that might have changed labels during diffusion.

For every s € D, put W(s) = 1+a(11_w(s)) , where a € [0, 1] is a fixed smoothing
factor, and define a normalization factor as N(s) = 3 ,c 45) W(t). (For sake of
efficiency, the maps W and N should be computed only once and used as input).

Put Lo = L and for every t € Bg and | € {0,1,..., M} define puo(l,t) =1
if | = Lo(t) and po(l,t) = 0, otherwise. Then, recursively, for ¢ € {1,...,T}
and s € B, we find p;(l,s) = N%S) DoteA(s), L1 ()=t Hi—1(l,t)W(t). Note that
Zl]\il wi(l,s) =1 for every ¢ € {0,...,T} and s € B. Define the labeling L; by
putting L;(s) = [ when for every I’ € {0,1,..., M} either p;(l,s) > p;(I',s) or
both p;(l,s) = u;(I’,s) and I <1’. At the end, L' = L.
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Line 4. Let Uy = {t € By: L'(t) # L(t)} be the set of voxels that changed
labeling and U be the subtrees of the voxels in Uy. That is, U is the set of all
t € D for which the path p; € F contains a voxel from Uy. The voxels in U were
influenced (w.r.t. F) by the change of labeling and they need to be “reconquered.”
Define the frontier set S” as s € D\ U for which there exists a t € A(s) NU with
L(s) = L'(t). This is the new set of seeds, that will compete for the voxels in U.

For this we put D' = U U S’ and define, for every s € S’, A\(s) = L(s) and
w(s) = f(ps), where ps € F, and for every s € U, u(s) = —oo. Run DIFT with
this setup.

Of course, the forest F’ that is returned is defined only on D’. However, if
P': U — D' is a predecessor map for /| then the new predecessor map defined
as P’ on U, as an old predecessor map on D \ U, determines full predecessor
map on D and the new forest F (for, possibly decreased, set S\ U of seeds).
It is worth to notice that, this new forest need not to be optimal in the sense
discussed above.

Line 8. The correcting labeling A" is a map from W C D into {-1,0,...,M}.
The meaning of a label X (s) € {0,..., M} is straightforward: it means that the
user assigns s as a seed for the ith object (background). (Note that assignment
makes sometimes sense even when we previously had A(s) = i, as this changes the
connectivity strength between s and the seed set.) The assignment A(s) = —1,
on the other hand, is for removing the marker, whose influence zone (its forest)
contains s. Given that the user can make mistakes, marker deletion is a desirable
feature.

Line 9. Let Wy = {s € W: XN(s) = —1} and Wy = W \ Wy. From Wy, the
predecessor map identifies a set Uy with the roots of all trees selected for removal
and, as for line 4, let U be the subtrees of the voxels in Uy.

Define the frontier set F' as those s € D\U for which there exists at € A(s)NU.
Put S’ = W1 UF and D’ = D. Define A and i on S’ as follows. For s € W3 we put
A(s) = N(s) and p(s) = K. For s € F we put A(s) = L(s) and pu(s) = f(p(s)).
For s € U\ W1 we put u(s) = —oo. Then, we run DIFT with this setup to get
a forest ' on D’. We recreate from it the new forest F and label map L, as in
Line 4, and the boundary set B, as in Line 1.

3 Experiments

The experiments evaluate the accuracy and efficiency of the DRIFT (as an IRFC
implementation [7]), DIFT [6], and DGC [11] algorithms running on the same
input graph (nodes are voxels) from 40 3D CT-images of the thorax to segment:
the arterial system (AS), esophagus (E), left pleural cavity (LPS), right pleural
cavity (RPS), trachea and bronchi (TB), and venous system (VS). Since DGC
is constrained to segment object by object, we present the total mean number of
executions and the sum of the mean times spent per execution on each object.
The ground-truth (GT) images were created by several experts, as described
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n [12]. The images were acquired with voxel size 0.5 x 0.5 x 5mm?, so they were
interpolated to 158 x 158 x 116 voxels with 2.5 x 2.5 x 2.5mm? each.

Seeking to reduce costs and biases associated with evaluation by real users,
we used geodesic robot users to generate the seed sets [13]. Given the GT image,
the geodesic robot adds a given number of seeds along the executions in the error
components, until they are too small for new marker selection. The markers were
spheres whose radius varied proportionally with the size of the error components
within [1, 10] voxels. A maximum of 56 makers per execution was used (8 markers
per object plus 8 for the background), the number of smoothing iterations T' =
10, and the smoothing factor o = 0.5.

The error values in Table 1 are in mm and they correspond to the mean error
over the 40 images according to the average symmetric absolute surface distance
between GT and segmentation®.

Table 1. Mean error and standard deviation in mm per object after convergence, using
8 seeds per object (background) and 10 smoothing iterations

Algorithm  AS E LPS RPS TB VS Mean

DRIFT 2.6£2.19 1.340.58 1.0£1.91 0.8£1.36 0.840.33 1.6+0.86 1.4£0.95
DIFT  3.4+£1.43 2.2£2.14 0.74£0.24 0.7£0.24 0.7£0.24 2.1+1.25 1.6+0.52
DGC  4.8£0.95 3.44+0.63 1.24+0.13 1.1£0.15 1.3+0.74 4.24+0.72 2.0+£0.57

For a statistical significance level of 95%, DRIFT is more accurate than DGC
in all cases and than DIFT for AS, E, and VS (sparse objects). On average,
it required less executions for convergence (i.e., it should not affect the user’s

control over segmentation) and its response time was about 4.6s per execution
(Table 2).

Table 2. Mean number of executions and mean time per execution (s) and their
standard deviations

Algorithm # of executions Time per execution (s)
DRIFT  DIFT DGC DRIFT  DIFT DGC
Thorax 13.844.95 15.5£5.0 48.1 + 13.16 4.6 +0.96 2.5+0.61 8.5 & 2.4

Figure 2 also illustrates for the most accurate methods, DIFT and DRIFT,
that irrespective to their accuracy differences, the results with boundary smooth-
ing seem to match better with the users’ expectations. All these aspects involving
real users need to be investigated.

! http://mbi.dkfz-heidelberg.de/grand-challenge2007/sites/eval.htm
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(f) (&)

Fig. 2. RPS and LPS: (a) GT, (b) DIFT, and (c) DRIFT. AS and VS: (d) DIFT and
() DRIFT. E and TB: (f) DIFT and (g) DRIFT.

4 Conclusion

We presented the DRIFT algorithm for interactive segmentation of multiple
3D objects using optimum-path forests and boundary smoothing. DRIFT can
provide better accuracies than the DIFT and DGC algorithms, with interactive
response time to the user’s actions, being much faster and correct with respect to
the RIFT algorithm. DRIFT can be used to devise new segmentation methods,
by choice of other connectivity functions [8], as well as to implement state-of-the-
art methods [7] more efficiently. The algorithm was tested on 40 3D CT-images
of the thorax, presenting accuracy gains and visual results that seem to better
match with the users’ expectations. From Table 2, DRIFT required only about
63s of computational time, on average, to complete segmentation of 6 objects,
considerably outperforming the DGC algorithm in accuracy and speed.

Future research is required to extend DRIFT to supervoxel graphs for further
speed-up gains and assess it on other datasets, possibly involving distinct imag-
ing modalities, with different arc-weight functions, and in practical situations
involving multiple experts.
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