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ABSTRACT
We study the problem of automatic delineation of an anatomic object in an image, where the object is solely
identified by its anatomic prior. We form such priors in the form of fuzzy models to facilitate the segmentation of
images acquired via di↵erent imaging modalities (like CT, MRI, or PET), in which the recorded image properties
are usually di↵erent. Our main interest is in delineating di↵erent body organs in medical images for automatic
anatomy recognition (AAR).

The AAR system we are developing consists of three main components: (C1) building body-wide groupwise
fuzzy anatomic models; (C2) recognizing the body organs geographically and then delineating them by employing
the models; (C3) generating quantitative descriptions. This paper focuses on (C2) and presents a unified approach
for model-based segmentation within which several di↵erent strategies can be formulated, ranging from model-
based hard/fuzzy thresholding to model-based graph cut, fuzzy connectedness, and random walker methods and
algorithms. This is an important theoretical advance.

The presented experiments clearly prove, that a fully automatic segmentation system based on the fuzzy
models can indeed provide the reliable segmentations. However, the presented experiments utilize only the
simplest versions of the methodology presented in the theoretical part of the paper. The full experimental
evaluation of the methodology is still a work in progress.

1. INTRODUCTION AND GENERAL SET-UP
1.1. Basic terminology
We identify an image I = hC, fi with its intensity function f : C ! R⌫ , that is, a map from its domain—a subset
C of the 3-dimensional Euclidean space R3—into R⌫ . The value f(c) of f at c represents the image intensity (for
⌫ = 1) and, more generally, a ⌫-dimensional vector of measured quantities at c. Our main interest is in digital

images, that is, in the case when C is a finite subset of Z3, usually of the rectangular form C

1

⇥ · · · ⇥ C

3

with
each C

i

= {1, . . . ,m
i

}; however, as we point out via examples, our general set-up includes also the “continuous”
cases, in which C is an open region in R3.

For the purpose of this paper, a prior (of an object of interest) is used to encode a spatial variability of the
object it describes. Mathematically, it will be represented as a mapping ` : C ! [0, 1], to which we will refer as
labeling, such that the number `(c) represents a degree of membership that c 2 C belongs to the desired object.
We take a fuzzy modeling approach [8]. Other alternatives such as statistical modeling or atlases (see e.g. [10])
will fit well into the hybrid delineation strategy described here as well. We assume that a rough recognition of
the object of interest has been achieved which means that the model is placed fairly “close” to the actual object
in the given image I, implying that the model matches the object roughly in size, position, and orientation.
In fuzzy modeling, multitudes of objects in a body region are considered so as to bring severe constraints on
object placement in I for e↵ective recognition [8]. The objects are arranged in a hierarchy as a tree and the
recognition process proceeds following the hierarchy. As we will see below, the delineation methods presented
simultaneously optimize (fine) recognition and delineation. The general set up allows the process to be used in
di↵erent ways—optimizing delineation only from a given starting recognition result, or performing optimization
for both simultaneously.

1.2. Motivation and some background
In the theoretical considerations, we concentrate on purely geometric priors, to facilitate segmentations of images
acquired via di↵erent imaging modalities (like CT and MRI), as in each modality the recorded image properties
(intensities, resolution, etc) are di↵erent. However, the general problem set-up is not restricted to such restrictive
choice of a prior. (In particular, we use image intensity information in our experiments.) Notice also that the
geometric priors should be considerably more reliable for 3D images, since in such case the object shape is
independent of the plane of view.
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Some of the oldest and best studied image segmentation methods are purely image-based (pI) and focus on
delineating objects based entirely on the information about objects that can be harnessed from the given image.
Although these methods have many advantages, they have also many shortcomings. The shortcoming that we
like to stress here is that they always require some additional parameters (like seeds indicating the object(s)
and, sometimes, background) and, in general, it is almost impossible to run such algorithms without displaying
the segmented image and giving some recognition input by an operator. One of the most important goals of
the prior-based segmentation algorithms should be to make a segmentation task fully automatic, that is, not
requiring human to examine the image prior to invoking the algorithm to get reliable output.

The vast majority among the pI methods choose the returned delineated object among those which optimize
some energy (or cost) function. Moreover, the energies that are optimized via these algorithms are more and
more recognized as belonging to the very few groups of energy functionals, with such recognition facilitating
our understanding of the di↵erences and similarities among the pI algorithms. For the prior-based segmentation
algorithms the theory did not reach, as yet, such stage. Thus, the general set-up we describe in this section
will attempt to make a progress towards reaching this stage. In the next section, on the other hand, we will
concentrate on more specific energy functionals and on the algorithms that can optimize them.

1.3. Methods
The energy E we use for the optimization will contain two main components: the image based energy "

i

and
the prior-based energy "

p

. Each of these energy components, "
i

and "

p

, can be defined as any energy used in
the pI algorithms and it associates to an image I = hC, fi and its segmentation x : C ! [0, 1] the energy value,
either "

i

(x, f) or "
p

(x, f). Notice, that x here is a fuzzy set, that is, the value x(c) represents the degree of
membership (or probability) of c belonging to the object of interest. Such objects are used by several algorithms,
e.g., Random Walk [4] or the algorithms discussed in [3] and [6]. However, we will be mainly interested in the
hard segmentations x : C ! {0, 1}, in which case x

�1(1) = {c 2 C : x(c) = 1} is the delineated object.

Now, let G be a group of transformations of R3 used to match prior ` to image I and, for a given prior ` on
C ⇢ R3 let ˆ̀: R3 ! [0, 1] denote an extension of `. It can be assumed that ˆ̀ is an interpolation of `. Then, for
g 2 G and a segmentation x, we define the energy E(x, g) (depending also on f and ˆ̀) as an appropriate average
of "

i

(x, f) and "
p

(x, ˆ̀� g), where ˆ̀� g : C ! [0, 1] is defined as ˆ̀� g(c) = ˆ̀(g(c)), that is,

E(x, g) = w

i

"

i

(x, f) + w

p

"

p

(x, ˆ̀� g) (1)

for some w

i

, w

p

2 [0, 1] with w

i

+ w

p

= 1 or, more generally, as

E

q

(x, g) = khw
i

"

i

(x, f), w
p

"

p

(x, ˆ̀� g)ik
q

, (2)

where k · k
q

is a q-norm for 1  q  1. (More on the q-norms in the next sections.) Notice that E given by (1)
is equal to E

1

, that is, it is obtained by the use of 1-norm.

For a pair hx, gi minimizing E

q

, we will consider x as the desired delineation and a transformation g as the
mapping corresponding to optimal recognition. Note that by changing the weight values assigned to w

i

and
w

p

we can modify the energy function in terms of the importance given to recognition versus delineation. In
particular, if the global recognition method is able to bring the model (prior) su�ciently close to the actual
object in I, then by setting w

p

to 0 we can modify E

q

(x, g) to perform essentially optimal delineation.

In a more restrictive sense, the energy E
2

has been already considered in [2] for a joint segmentation/registration
optimization task. More precisely, it was used in [2] for the continuous images (i.e., with C being an open region
⌦ in R3) and the hard segmentations x : C ! {0, 1}. Both energies, "

i

and "

p

, were equal to the square root
of the active contour model energy from [1]. The prior was simply an image of the same object with a given
segmentation ` : C ! {0, 1}. (Notice, however, that the active contour model energy component "

p

uses the
intensity f of the segmented image, unlike the model given by (2).)

We are not aware of similar optimization results formulated explicitly for the digital images on recognition
and delineation and with adjustable emphasis, the subject of the next section.
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2. q-NORM BASED ENERGY FOR DIGITAL IMAGES
From now on, we assume that the images are digital, defined on a finite scene C with a given adjacency relation.
Fix a q 2 [1,1) (with an emphasis on q = 2 and q = 1).

• To each pair {c, d} of adjacent spels in C we associate its a�nity value w

c,d

. An example is a simple
version of a homogeneity based a�nity: w

c,d

= exp(�kf(c)� f(d)k). (Note that this depends on f .) But
other a�nities (or cost functions), like scale-based or even model-based, can also be used.

• To each fuzzy segmentation x we associate a vector/functional F
i

(x, f) = hw
c,d

|x(c) � x(d)|i
c,d adjacent

.
Note that, for the case of hard segmentations x, |x(c)� x(d)| is 1 for an object boundary edge hc, di and 0
otherwise.

• Define "
i

(x, f) via formula kF
i

(x, f)k
q

=
⇣P

c,d adjacent

(w
c,d

|x(c)� x(d)|)q
⌘
1/q

or, equivalently, as its qth

power: (kF
i

(x, f)k
q

)q =
P

c,d adjacent

(w
c,d

|x(c) � x(d)|)q. For q = 1 this is the standard GC energy; for
q = 2 — the Random Walk, RW, energy.

• Notice that (as we proved recently [6]) the RFC energy is just the1-norm energy: "
i

(x, f) = kF
i

(x, f)k1 =
max

c,d adjacent

w

c,d

|x(c)� x(d)|.

Similarly, for a prior L = ˆ̀� g : C ! [0, 1] and a vector/functional F
p

(x, L) = h|x(c) � L(c)|i
c2C

, the q-norm
based energy "

p

(x, ~p) is defined as

"

p

(x, L) = kF
p

(x, L)k
q

= q

sX

c2C

|x(c)� L(c)|q.

Thus, "
p

(x, ˆ̀� g) = kF
p

(x, ˆ̀� g)k
q

= q

qP
c2C

|x(c)� ˆ̀(g(c))|q. Once again, the 1-norm energy version for

"

p

(x, L) is defined as
"

p

(x, L) = kF
p

(x, L)k1 = max
c2C

|x(c)� L(c)|,

that is, "
p

(x, ˆ̀� g) = kF
p

(x, ˆ̀� g)k1 = max
c2C

|x(c)� ˆ̀(g(c))|.
In summary, for 1  q < 1, we get

E

q

(x, g) =
q

q
[w

i

"

i

(x, f)]q + [w
p

"

p

(x, ˆ̀� g)]q = q

s X

c,d adjacent

[w
i

w

c,d

|x(c)� x(d)|]q +
X

c2C

[w
p

|x(c)� ˆ̀(g(c))|]q

and, for q = 1,

E1(x, g) = max

⇢
max

c,d adjacent

[w
i

w

c,d

|x(c)� x(d)|],max
c2C

[w
p

|x(c)� ˆ̀(g(c))|]
�
. (3)

In what follows, we will restrict our attention to the group G of a�ne transformations of R3. Since in such
case any g 2 G is identified by a 12 parameter vector ~p 2 R12 (referred to as pose), we will often write E

q

(x, ~p)
for E

q

(x, g).

2.1. Cases of q = 1, 2,1
For q = 1, the energy E

q

becomes

E

1

(x, g) =
X

c,d adjacent

w

i

w

c,d

|x(c)� x(d)|+
X

c2C

w

p

|x(c)� ˆ̀(g(c))|.

This is the Graph Cut, GC, type of energy. In fact, with ˆ̀(g(c)) replaced by a (not clearly defined) number x
c

,
this energy was suggested in [3]. However, it was not discussed there in such generality, as the authors discussed
E

1

only with x

i

= 1 and x

p

= 0.
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For q = 2, the square of the energy becomes

(E
2

(x, g))2 =
X

c,d adjacent

[w
i

w

c,d

|x(c)� x(d)|]2 +
X

c2C

[w
p

|x(c)� ˆ̀(g(c))|]2.

This is the Random Walk, RW, type of energy [4]. Once again, in such a form (with ˆ̀(g(c)) replaced by x

c

) it
appears in [3], but was considered only with w

i

= 1 and w

p

= 0.

For q = 1, the energy is given by (3) and it becomes a Relative Fuzzy Connectedness, RFC, type of energy,
as shown in [6].

3. ALGORITHMS FOR FINDING MINIMIZERS OF E

q

We will present here a general iterative procedure that finds a pair hx, ~pi that (approximately) minimizes E
q

(x, ~p).
We will set up the problem for fuzzy segmentations x, which can be turned to hard segmentations by simple
thresholding: the object is defined as {c 2 C : x(c) > 0.5}. The problem of finding optimized hard segmentations
will be discussed for each case of q = 1, 2,1 separately.

E

q

is a function of two (general) variables: x and ~p. Assuming that we have a way of minimizing it in each
variable separately, we follow the following simple iterative procedure.

1. Start with an initial pose ~p
0

; it can be found by some optimization such as the global methods of recognition
mentioned earlier;

2. Find x

0

= x

~p0 minimizing E

q

(·, ~p
0

);

3. Find ~p
1

= ~p

x0 minimizing E

q

(x
0

, ·);

4. Find x

1

= x

~p1 minimizing E

q

(·, ~p
1

);

5. Repeat steps 3 and 4 to find ~p
n+1

and x

n+1

from ~p

n

and x

n

until the number E
q

(x
n

, ~p

n

)�E

q

(x
n+1

, ~p

n+1

)
does not go below some threshold ✓;

6. Return the last values ~p
n+1

and x

n+1

.

Note that the algorithm always stops, at which time E

q

(p
n+1

, x

n+1

) approximates a local minimum of E
q

.

In what follows we discuss how to find, for a fixed pose ~p, a global minimizer of E
q

(·, ~p) for q = 1, 2,1.
However, the minimizer returned by the above algorithm need not be optimal. Its optimality depends on the
choice of the initial pose ~p

0

.

In the rest of this section we assume that a pose ~p is fixed, g 2 G is associated with ~p, and that x
c

= ˆ̀(g(c))
for every c 2 C.

3.1. Case q = 2: Random Walk
We need to find a minimizer of

"

2

(x) =
X

c,d adjacent

[w
i

w

c,d

|x(c)� x(d)|]2 +
X

c2C

[w
p

(x(c)� x

c

)]2.

Since "
2

(x) is strictly convex, it has a uniquely defined minimizer. Moreover, it is achieved when all partial
derivative of "

2

are zero, that is, when r
x

"

2

(x) = 0. Since r
x

"

2

(x) = 0 constitutes a sparse system of linear
equations, it can be solved by standard linear programing methods.

Notice, however, that the resulting minimizer is fuzzy. The problem of optimizing "

2

(x) over the hard
segmentations x : C ! {0, 1} seems to be intractable.
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3.2. Case q = 1: Graph Cut
We need to find a minimizer of "

1

(x) =
P

c,d adjacent

w

i

w

c,d

|x(c)�x(d)|+
P

c2C

w

p

|x(c)�x

c

|. We consider here
only the case when w

p

> 0, since in the case of w
p

= 0 the information from the prior, the key component of this

discussion, is not used. Then, "
1

(x) = w

p

hP
c,d adjacent

wi wc,d

wp
|x(c)� x(d)|+

P
c2C

|x(c)� x

c

|
i
. In particular,

the minimization of "
1

is equivalent to the minimization of the energy

"̂

1

(x) =
X

c,d adjacent

ŵ

c,d

|x(c)� x(d)|+
X

c2C

|x(c)� x

c

|,

where ŵ

c,d

= wi wc,d

wp
. The energy "̂

1

is optimized over the hard segmentations x : C ! {0, 1}. For this, we will

use the standard GC min cut/max flow algorithm, say as in [7], with the graph on C [ {s, t} (s being a source,
t a sink) having the weights ŵ

c,d

as above and the source and sink weights are defined via

(?) ŵ

t,c

= 1� x

c

and ŵ

s,c

= x

c

for every c 2 C.

It is easy to see the hard segmentation associated with the min cut minimizing the graph with such weight
assignments indeed minimizes the energy "

1

(over the hard segmentations). This is so, since the graph cost
function of the cut associated with x : C ! {0, 1} is equal to "̂

1

(x).

3.3. Case q = 1: (Iterative) Relative Fuzzy Connectedness
We should minimize the energy "1(x) = max {max

c,d adjacent

[w
i

w

c,d

|x(c)� x(d)|],max
c2C

[w
p

|x(c)� x

c

|]}. How-
ever, for w

p

> 0 it is not clear how to find the minimizer for such energy. More importantly, in such format
the two energy components, w

i

"

i

(x) and w

p

"

p

(x), compete rather than synergistically strengthen each other.
Therefore, for the “q = 1” case we combine the `1-norm internal energy "

i

(x) = max
c,d adjacent

w

c,d

|x(c)�x(d)|
with the `

1

-norm prior-based energy "
p

=
P

c2C

|x(c) � x̂

c

|, where x̂

c

= 0.5 whenever x

c

2 (0, 1) and x̂

c

= x

c

otherwise. The minimized energy will have the form

"̂1(x) = w

i

"

i

(x) + w

p

"

p

= max
c,d adjacent

w

i

w

c,d

|x(c)� x(d)|+ w

p

X

c2C

|x(c)� x̂

c

|. (4)

We consider the minimization of this energy only over the hard segmentations x : C ! {0, 1}. In addition, we
assume that w

p

< 1 is “considerably” larger than w

i

> 0. (For the argument below it is enough to assume that
2w

i

max
c,d adjacent

w

c,d

< w

p

. Since, for the standard weight choice we have max
c,d adjacent

w

c,d

 1, this leads
to the inequality 2w

i

< w

p

. In such a case, any w

p

2 (2/3, 1) will be good enough.)

Notice, that under such assumptions, any hard segmentation x : C ! {0, 1} minimizing "̂1 must have the
property that

(⇤) x(c) = x̂

c

whenever x̂

c

2 {0, 1}, that is, the object indicated by x contains S = {c 2 C : x̂
c

= 1} and is
disjoint with T = {c 2 C : x̂

c

= 0}.

Therefore, if we treat S and T as the sets of seeds indicating the foreground and the background, respectively,
then any minimizer of "̂1 agrees with such seeds indication. In particular, it is enough to search for the minimizer
of "̂1 within the family P(S, T ) of all hard segmentations x : C ! {0, 1} satisfying (⇤).

Next, notice that for any x from P(S, T ), the value of "
p

(x) =
P

c2C

|x(c)� x̂

c

| is constant, equal to half of
the size of the set C \ (S [ T ) = {c 2 C : x̂

c

= 0.5}. Thus, the minimization of "̂1 over P(S, T ) is the same as
the minimization of the energy "

i

(x) = max
c,d adjacent

w

c,d

|x(c)� x(d)| over P(S, T ).

Finally, notice that the energy "
i

(x) = max
c,d adjacent

w

c,d

|x(c)�x(d)| is identical to the energy "max considered
in [6], where it is proved that its minimizer over P(S, T ) is the Iterative Relative Fuzzy Connectedness, IRFC,
object which is returned, in linear time, by the algorithm GC

max

, a version of the Optimal Spanning Forest
algorithm. This fact is the key theoretical motivation behind the experiments presented in the next section.

4. EXPERIMENTAL RESULTS
This section describes some preliminary results on the optimizations as described above. In particular, the
algorithms used in the experiments utilized a non-iterative version involving only the first two steps described
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at II

in Section 3, rather than the full iterative schema. Moreover, in the experiments we used only the energy
function "̂1, defined via formula (4), where the parameters x̂

c

are slightly modified, as described below. The
full experimental justification of the di↵erent methods presented above is still a work in progress.

The algorithm uses the following general steps, where I is an image:

1. The pose ~p
0

is found according to the recognition optimization method described in [8], as follows. The
recognition method follows the hierarchical approach described in [8, 9] wherein di↵erent methods are
presented which di↵er in only the optimality criterion that is used. For the experiments in this paper,
we used the threshold-based optimality strategy wherein the object to be recognized and delineated is
characterized by a threshold interval J . In this strategy, p

0

corresponds to the pose at which the volume of
the regions corresponding to an exclusive or operation between the thresholded I (for threshold interval J)
and the thresholded prior (for a membership value > 0.5) is minimized.

Let L = ˆ̀� g : C ! [0, 1] be a prior associated with the pose ~p
0

.

2. Find the IRFC segmentation of the image I via algorithm GC
max

used with the object-indicating set S of
seeds defined as

S = {c 2 C : ˆ̀(g(c)) > 0.5 & f(c) 2 J}, J being some interval of typical intensities for the object

Figure 1. Volume renditions of di↵erent combinations of fuzzy models of objects: RS, RS & IMS, LPS & IMS, IMS.

Figure 2. Seed sets automatically found for LPS, RPS, PC, IMS, and RS, respectively, overlaid on sample slices of test
images. The seed appear as uniform gray (green, in color) region inside the respective objects.
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I) (1

Figure 3. Delineation results for LPS, RPS, PC, IMS, RS, and Skin, respectively. Outlines of objects are shown overlaid
on sample slices.

and the background-indicating set T of seeds defined as T = {c 2 L(c) = 0}. Notice that, as argued in
Section 3.3, the resulting IRFC object minimizes the energy "̂1, where the numbers x̂

c

are defined for each
c 2 C as

x̂

c

=

8
><

>:

1 for c 2 S

0 for c 2 T

0.5 otherwise.

The IRFC algorithm GC
max

, as any pI-based fuzzy connectedness method, is based on the a�nity µ(c, d)
function which consists of the traditional homogeneity-based ( ) and image intensity-based (') components.
Additionally, a third component (⇢) based on the model is incorporated into µ to bring spatial constraints
derived from the model (prior) L into connectedness. That is, µ(c, d) =  (c, d)+'(c, d)+⇢(c, d). The model
component is taken to be ⇢(c, d) = x

c

. Since the weight function is an inverse of a�nity, an appropriate
inverse of µ(c, d) is taken to be w

c,d

.

We use the data sets and the set up of the AAR methodology we developed in [8, 9] for conducting our
experiments. In this paper, we used the 40 CT data sets of the thoracic body region; 20 data sets were used for
model building and the rest for testing.

Figure 1 shows volume renditions of the fuzzy models of some of the objects considered in this body region.
Figure 2 displays object seed sets determined automatically by the global recognition strategy. The seed sets
are overlaid on the slice display of the test images for di↵erent objects. Figure 3 presents delineation results as
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boundary outlines overlaid on the slice display of test images. Table 1 lists the False Positive and True Positive
volume fractions for the di↵erent objects. Average values over the 20 data sets are shown. Object abbreviations
are as follows: RS—Respiratory System which we define as a union of trachea, bronchi, left pleural space (LPS),
and right pleural space (RPS); IMS—Internal Mediastinum defined as a union of pericardium, arterial system,
venous system, and esophagus; PC—Pericardium.

IMS LPS PC RPS RS Skin
FPVF 0.02 0.001 0.01 0.001 0.002 0.004
TPVF 0.87 0.95 0.89 0.94 0.95 0.97

Table 1. Average False Positive Volume Fraction (FPVF) and True Positive Volume Fraction (TPVF) for the delineation
method.

5. CONCLUDING REMARKS
In this paper we demonstrated some preliminary results for the delineation part of our AAR methodology. After
gaining some practical experience with di↵erent body regions, we are beginning to realize the virtue of breaking
up the AAR segmentation task into recognition and delineation. It is of paramount importance to get the global
recognition step to perform well—in the sense of setting all initialization conditions for delineation correctly—
for the delineation method to perform well. This means that, without fail, the seeds should be 100% correctly
indicated implying that the object seeds should be properly inside the object region and background seeds should
be properly outside. Otherwise all seed-based delineation algorithms will perform wrongly. At present we do
not have enough insight into how much the refined recognition process in the iterative optimization steps really
buys in improving performance or even in steering away the solution from the above accurate condition of seed
specification. Some early experiments along the lines presented in the previous section with GC algorithms have
not yielded satisfactory results exactly because of their sensitivity to seed set size and location (unlike IRFC).
Thus the property of robustness of the delineation algorithm to seeds seems to play an influential role in e↵ective
recognition, a concept which we have previously not realized. In other words, the FC algorithms seem to have
an advantage in working e↵ectively in tandem with recognition algorithms because their results are not sensitive
to seed location inside the object and since they do not require large seed sets (unlike the shrinking problem
of GC). The latter robustness property implies that it is much easier to specify a small seed set properly fully
inside an object than to create a seed set su�ciently close to the real boundary to be delineated.

The above observations also imply that sparse objects, such as tubular structures, are a real challenge for
e↵ective recognition in the above sense. Our current e↵orts are focused on this issue and in further improving
the hybrid delineation strategies presented in this paper.
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