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Abstract. A function f : R → R is: almost continuous in the sense of
Stallings, f ∈ AC, if each open set G ⊂ R2 containing the graph of f con-
tains also the graph of a continuous function g : R → R; Sierpiński-Zygmund,
f ∈ SZ (or, more generally, f ∈ SZ(Bor)), provided its restriction f � M is
discontinuous (not Borel, respectively) for any M ⊂ R of cardinality contin-
uum. It is known that an example of a Sierpiński-Zygmund almost continuous
function f : R→ R (i.e., an f ∈ SZ∩AC) cannot be constructed in ZFC; how-
ever, an f ∈ SZ ∩ AC exists under the additional set-theoretical assumption
cov(M) = c, that is, that R cannot be covered by less than c-many meager
sets. The primary purpose of this paper is to show that the existence of an
f ∈ SZ∩AC is also consistent with ZFC plus the negation of cov(M) = c. More
precisely, we show that it is consistent with ZFC+cov(M) < c (follows from the
assumption that non(N ) < cov(N ) = c) that there is an f ∈ SZ(Bor)∩AC and
that such a map may have even stronger properties expressed in the language
of Darboux-like functions.

We also examine, assuming either cov(M) = c or non(N ) < cov(N ) = c,
the lineability and the additivity coefficient of the class of all almost continuous
Sierpiński-Zygmund functions. Several open problems are also stated.

1. Introduction

We use standard notations. In particular, |X| denotes the cardinality of the set
X and Y X is the class of all functions from X to Y . The x-projection of a set
A ⊂ R2 is denoted by dom(A). The symbols C, Bor, and B denote the class of all
continuous functions f : R → R, the class of all Borel functions and the σ-algebra
of all Borel sets in R, respectively.

The symbols N andM denote the ideals on R consisting of all Lebesgue measure
zero (null) sets and all meager sets, respectively. In what follows we will write
I ∈ {M,N} to say that either I = M or I = N . For I ∈ {M,N} the symbol
cov(I) denotes the covering number for I, that is, the first cardinal number κ such
that R can be covered by κ-many sets from I. It is well known that for I ∈ {M,N},
cov(I) = κ implies that no B ∈ B \I can be covered by less than κ-many sets from
I. (For the case of I =M this is a consequence of the fact that every Borel set has
the Baire property; whereas if I = N then it follows from [11, remark after theorem
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4.12], compare also the proof of Lemma 2.2 below.) The coefficient uniformity of
measure, non(N ), is the least cardinal κ such that there exists a set A ⊂ R of
cardinality κ that is not null. For more information about the covering number and
the uniformity, see [7]. In what follows we will extensively use the assumption that
non(N ) < cov(N ) = c, which is consistent with ZFC: it holds in the model of ZFC
obtained by adding ω2 random reals to the model for ZFC+CH, see e.g. see [35]
or [8]. (Compare also [26, theorem 3.19].) Notice that a theorem of F. Rothberger
states that cov(M) ≤ non(N ) (see [11, theorem 7.3] or [26, theorem 2.2]), which
implies that non(N ) < cov(N ) = c contradicts the property cov(M) = c, the other
assumption consistent with ZFC that we will extensively use in this work.

A function f : R → R is Sierpiński-Zygmund, f ∈ SZ, provided its restriction
f � M is discontinuous for any M ⊂ R of cardinality continuum. Often, it is
slightly easier to construct a function f : R → R, denoted as f ∈ SZ(Bor), with a
seemingly stronger property that f � M is not Borel for any M ⊂ R of cardinality
continuum (i.e., such that f ∩ h has cardinality less than continuum for every h ∈
Bor), see [18], [24, 25], or [16]. It is well-known that Sierpiński-Zygmund functions
can be constructed in ZFC, that is, without additional set-theoretic assumptions
[32]. The situation becomes more complicated if we consider Sierpiński-Zygmund
functions f : R → R that have additionally the Darboux (i.e., the intermediate
value) property, f ∈ D. Such functions (i.e., in SZ ∩ D) exist under additional
set-theoretical assumptions. It seems that the first construction of such example
can be found in a 1981 article [10] of J. Ceder, where it was proved that that under
the assumption of the continuum hypothesis, CH, there exists a connectivity (hence
Darboux) SZ function. Next, in a 1992 paper [23] K. Kellum noticed that Ceder’s
function is in fact almost continuous. Finally, in a 1997 paper [4] M. Balcerzak,
K. Ciesielski, and T. Natkaniec showed that such examples (i.e., in SZ ∩AC) exist
also under the weaker assumption cov(M) = c but they (specifically, the maps
in SZ ∩ D) cannot be constructed in ZFC. Since then, the theory of Sierpiński-
Zygmund functions having one of the Darboux properties was always developed
with the assumption cov(M) = c. For more on the history of the subject, see 2019
survey [18] of K.C. Ciesielski and J.B. Seoane-Sepúlveda. The following question is
natural in this context.

Question 1.1. Is the condition cov(M) = c equivalent to the statement “there
exists a Darboux Sierpiński-Zygmund function”?

Ciesielski and Seoane-Sepúlveda constructed in the survey [18] an example of
Darboux Sierpiński-Zygmund function f : R→ R under an additional set-theoretical
cov(N ) = c. Since there are models of ZFC in which cov(N ) = c > cov(M), this
solves Question 1.1 in the negative.

As any almost continuous function is Darboux (i.e., AC ⊂ D, see e.g. [34]) it is
natural to examine also the following variant of Question 1.1:

Question 1.2. Is the condition cov(M) = c equivalent to the statement: “there
exists an almost continuous Sierpiński-Zygmund function”?

Of course, the sufficiency of the condition cov(M) = c was proved in the previ-
ously mentioned article [4]. One of the goals of this article is to answer this question,
in negative, by showing that non(N ) < cov(N ) = c (under which cov(M) < c) also
implies that SZ(Bor) ∩AC 6= ∅. This is proved in Section 2.
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Additionally, we show how other results concerning class SZ ∩AC, often known
under assumption cov(M) = c, can be deduced from the opposite assumption
non(N ) < cov(N ) = c or its strengthening. Specifically, in Section 3 we study the
lineability of SZ(Bor)∩AC, in Section 4 its additivity coefficient, while in Section 5
the existence of functions in different subclasses of SZ(Bor) ∩AC.

2. Maps in SZ(Bor) ∩AC when non(N ) < cov(N ) = c

In what follows any closed set E ⊂ R2 which x-projection is a non-degenerate
interval is called a blocking set. It is well-known that any f : R → R which meets
all blocking sets is almost continuous, see e.g. [28]. (Compare also [17, lemma 5.1]
and related history.)

We start with the following minor modification of [23, lemma 1].

Lemma 2.1. For every blocking set E ⊂ R2 there is a Borel function h : R → R
such that dom(h ∩ E) contains a non-trivial interval. In particular, dom(h ∩ E) 6∈
M ∪N .

Proof. Let En = E ∩ ([−n, n] × [−n, n]) for n ∈ N. Then each En is compact,
hence dom(En) is closed, and dom(E) =

⋃
n∈N dom(En), so for some n ∈ N the set

dom(En) contains a non-degenerate interval J , hence dom(En) 6∈ M ∪ N . Now,
the function ĥ : dom(En) → R defined by ĥ(x) := max{y ∈ [−n, n] : 〈x, y〉 ∈ En}
is Borel (in fact, it is upper semi-continuous) and it is contained in E. Then any
Borel extension h : R→ R of ĥ is as we need. �

To show that non(N ) < cov(N ) = c implies SZ(Bor) ∩ AC 6= ∅ we will also use
the following lemma. The property of the set S constructed there means that S is
dense in the density topology on R. Note that F. Tall (see [35, theorem 4.15]) was
the first who noticed that in the model of ZFC obtained by adding ω2 random reals
to the model for ZFC+CH the density of the density topology is equal to ω1 < c.

Lemma 2.2. There exists a set S ⊂ R of cardinality non(N ) such that B ∩ S 6= ∅
for every B ∈ B \ N . Moreover, if non(N ) < cov(N ), then for every E ⊂ B of
cardinality less than cov(N )

(•) there is a D ⊂ R \
⋃
E of cardinality at most non(N ) such that B ∩D 6= ∅

for every B ∈ B \ N with the property that B ∩ E ∈ N for every E ∈ E.

Proof. To see that the main part of the lemma holds, fix any set A ⊂ R with
|A| = non(N ) and A 6∈ N . Let E ⊂ R be a measurable hull of A. Clearly |E| = c,
so there exists a Borel isomorphism ϕ : R→ E which maps null sets in R onto null
subsets of E, see e.g. [11, remark after theorem 4.12]. One can easily verify that
S := ϕ−1(A) is as needed: clearly |S| = |A| = non(N ) and if B ∈ B \ N , then
ϕ(B) ∩ A 6= ∅ (as ϕ(B) is a subset of E of positive measure and E is a hull of A)
so B ∩ S = ϕ−1(ϕ(B) ∩A) 6= ∅.

To see the additional part of the lemma, fix an E as in the statement. First
notice that (•) holds if we additionally assume that E ⊂ N . Indeed, under such
assumption, there exists an x ∈ R such that (x + S) ∩

⋃
E = ∅ since otherwise

R =
⋃
E∈E(E − S) =

⋃
s∈S,E∈E(E − s) is the union of less than cov(N )-many null

sets, a contradiction. The set D0 := x+ S ⊂ R \
⋃
E satisfies (•).

Finally, if we do not assume that E ⊂ N , let H ∈ B be a measurable hull of
R\
⋃
E . If H ∈ N , then D := ∅ satisfies (•). So, we can assume that H /∈ N . Notice
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that Ē := {E ∩H : E ∈ E} is contained in N and let D0 be as above for the family
Ē . Then D := H ∩D0 satisfies (•) since for every B ∈ B \N such that B ∩E ∈ N
for every E ∈ E we have B ∩H /∈ N so that B ∩D = (B ∩H) ∩D0 6= ∅. �

The following lemma is the main tool of this paper and shows that if F ∈ RR

extends f from the lemma, then F ∈ AC. This result will be used several times
in this paper, when the functions of interest will be constructed by transfinite
induction containing the sequence 〈〈Gα, fα, Dα〉 : α < c〉 satisfying the assumptions
(M), (N), (D), and (F).

For the case when cov(M) = c, Lemma 2.3 is a close variation of [12, lemma 2.5].
We include its proof also for this case to emphasize the similarities and differences
with its proof in the case when non(N ) < cov(N ) = c.
Lemma 2.3. Assume that either cov(M) = c or non(N ) < cov(N ) = c and let
Bor = {hα : α < c}. Assume also that the sequence 〈〈Gα, fα, Dα〉 : α < c〉 satisfies
the following properties for every α < c:

(M) if cov(M) = c, then R \Gα ∈M and hα � Gα is continuous;
(N) if non(N ) < cov(N ) = c, then Gα = R;
(D) Dα is a dense subset of Zα := Gα \

⋃
β<α

(
Dβ ∪ dom(hα ∩ hβ)

)
which in

the case when non(N ) < cov(N ) = c has also the property that B ∩Dα 6= ∅
for every B ∈ B \ N such that B ∩ E ∈ N for every E in the family
Eα := {dom(hα ∩ hβ) : β < α};

(F) fα = hα � Dα.
If f :=

⋃
α<c f

α, then K ∩ f 6= ∅ for every blocking set K.
Before we prove the lemma we like to show how it implies the following theorem,

the main result of this section.
Theorem 2.4. If either cov(M) = c or non(N ) < cov(N ) = c, then there exists
an F ∈ SZ(Bor) ∩AC.
Proof. First notice that the sets Gα as in (M), dense Gδ-sets, exist by a well known
result, see e.g. [27, p. 306]. The sequence 〈〈Gα, fα, Dα〉 : α < c〉 as in Lemma 2.3
can be constructed by an easy transfinite induction on α < c, where

• if cov(M) = c then Dα is countable;
• if non(N ) < cov(N ) = c then |Dα| ≤ non(N ) and the additional property

of the set Dα is ensured by Lemma 2.2 applied to the family
E := Eα ∪ {{x} : x ∈

⋃
β<αD

β}.
So, let f : E → R be as in Lemma 2.3 and g : R → R be any map in SZ(Bor).

Then F := g � (R \E)∪ f is as needed. Indeed, F ∈ AC is ensured by Lemma 2.3.
To see that F ∈ SZ(Bor) fix an h ∈ Bor and choose a β < c such that h = hβ .

By (F) and (D), for any α > β and x ∈ Dα we have f(x) = fα(x) 6= hβ(x) = h(x).
So, dom(f ∩ h) ⊂

⋃
γ≤β D

γ has cardinality less than c. Also, |g ∩ h| < c, giving
desired |F ∩ h| < c. �

Proof of Lemma 2.3. Fix a blocking set K ⊂ R2. It is enough to show that there
exists an x ∈ R such that 〈x, f(x)〉 ∈ K.

To see this let I =M when cov(M) = c and I = N otherwise. By Lemma 2.1,
dom(hξ ∩ K) ∈ B \ I for some ξ < c.1 Let α < c be the first ordinal with this
property. Then

1Recall that one-to-one projection of a Borel set is Borel, see e.g. [33, theorem 4.5.4].
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• dom(hα ∩K) ∈ B \ I and dom(hβ ∩K) ∈ I for each β < α.
The second part of • implies that

(1) dom(hα ∩K) ∩ dom(hα ∩ hβ) ⊂ dom(hβ ∩K) ∈ I for every β < α.

Consider two cases.
non(N ) < cov(N ) = c: By (1) and part of (D) applied to the set B := dom(hα∩K)
there is an x ∈ dom(hα ∩K)∩Dα for which 〈x, f(x)〉 = 〈x, hα(x)〉 ∈ K, as needed.
cov(M) = c: The first part of • implies that there is a non-empty open interval J0
such that dom(hα ∩K)∩J0 is residual in J0, that is, the set J0 \dom(hα ∩K) is in
M. So, by (1) and cov(M) = c, for every non-empty open interval J ⊂ J0 we have

(2) ∅ 6= dom(hα ∩K) ∩ J ∩Gα \
⋃
β<α

(
Dβ ∪ dom(hα ∩ hβ)

)
⊂ J ∩ Zα

so, by (D), there is an x ∈ Dα∩J∩Zα. In particular, by (F), 〈x, f(x)〉 = 〈x, hα(x)〉.
So, to finish the proof it is enough to show that 〈x, hα(x)〉 ∈ K.

This would be obvious if we could ensure that x belongs also to dom(hα ∩K);
however, it is possible that dom(hα ∩K)∩Dα = ∅, what prevents such choice of x.
So, we will use another argument to show that 〈x, hα(x)〉 ∈ K.

To see this, notice that, by the property (2), for every n < ω there exists an xn ∈
dom(hα ∩K)∩ (x− 2−n, x+ 2−n)∩Gα. Such choice and the continuity of hα � Gα

implies that the sequence 〈xn, hα(xn)〉n converges to 〈x, hα(x)〉. At the same time
each 〈xn, hα(xn)〉 belong to the closed set K so 〈x, hα(x)〉 = limn→∞〈xn, hα(xn)〉
also belongs to K, as we needed. �

In the case cov(M) = c, the key property in the proof of Lemma 2.3 is that
the first part of • implies existence of a non-empty open interval J0 for which
J0 \ dom(hα ∩K) ∈ I. Of course, there is no such property for I = N and this is
the main reason why a similar proof does not work in this case.

3. Lineability of the family SZ(Bor) ∩AC

Recall that a family F ⊂ RR is κ-lineable, where κ stands for any finite or
infinite cardinality, if F ∪{0} contains a linear subspace of the space RR (over R) of
dimension κ. The study in lineability, introduced by V. Gurarĭı, has been a rapidly
developing trend in both recent real and functional analysis, see e.g. [3, 2], or [9].

In 2015, K. Płotka, assuming CH, proved that the family AC∩ SZ is c+-lineable
[31]. (Clearly, such a result cannot be proved in ZFC, as it is consistent that
AC∩SZ = ∅.) It was noticed, in a 2017 paper [13] of K. C. Ciesielski, J. L. Gámez-
Merino, L. Mazza, and J. B. Seoane-Sepúlveda (and repeated in a survey [18]), that
the argument from [31] actually works under weaker assumption cov(M) = c. This,
however, was not precise, since (as we will see below) the argument requires also
the assumption that c is regular, which does not follow from cov(M) = c.

The goal of this section is to prove the following theorem, which clarifies the
situation under the assumption of cov(M) = c and shows that the same result
holds also under assumption non(N ) < cov(N ) = c.

Theorem 3.1. Assume that c is a regular cardinal and either cov(M) = c or
non(N ) < cov(N ) = c. Then the family AC ∩ SZ(Bor) is c+-lineable.
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It is worth to mention that the class AC (as well as any of its subclass discussed in
Section 5) is 2c-lineable, see [3] and [1]. However, 2c-lineability for the class SZ(Bor)
is undecidable in ZFC. More precisely, it is not difficult to see that SZ(Bor) is c+-
lineable. Thus, if 2c = c+ (e.g., under GCH), then SZ(Bor) is 2c-lineable. On
the other hand, there are models of ZFC in which SZ is not 2c-lineable see [20] or
[18, section 3]. Even more, the assumptions of Theorem 3.1 also do not decide 2c-
lineability of AC ∩ SZ(Bor). Specifically, either of the set-theoretical assumptions
of the theorem is consistent with 2c = c+: in the model of ZFC obtained by
adding ω2 Cohen reals to a model of ZFC+GCH (where we have cov(M) = c) and,
respectively, in the extension of a model of ZFC+GCH by adding ω2 random reals
(where we have non(N ) < cov(N ) = c, see next section). At the same time, if one
starts with the modelM of ZFC+GCH, extends it by adding ω4 subsets of ω1 using
countable supported functions, then we obtain a modelM1 of ZFC such that in any
ω2-cc generic extension of M1 the family SZ is not c++-lineable, see [18, remark (κ)
in the proof of theorem 3.3]. Hence, if we add to M1 either either ω2 Cohen reals
(to get cov(M) = c) or ω2 random reals (to get non(N ) < cov(N ) = c), then in
such extensions SZ is not 2c-lineable.

The proof of Theorem 3.1 will easily follow from the next lemma, a variant and
consequence of Lemma 2.3. Notice that the assumption G ⊂ SZ(Bor) ∪ {0} in its
statement is crucial, as we prove in Theorem 4.1.

Lemma 3.2. If c is regular and either cov(M) = c or non(N ) < cov(N ) = c, then
for every additive group G ⊂ SZ(Bor)∪{0} of cardinality ≤ c there exists an f from
E ⊂ R into R such that for every g ∈ G:

(i) |(f + g � E) ∩ h| < c for every h ∈ Bor;
(ii) (f + g � E) ∩K 6= ∅ for every blocking set K.

Moreover there is an extension F ∈ RR \ G of f such that F + G ⊂ AC ∩ SZ(Bor).

Proof. Let G = {gβ : β < c} and fix a sequence 〈hα ∈ Bor: α < c〉 in which every
h ∈ Bor appears c many times. For every α < c choose Gα ⊂ R and κ such that

(m) if cov(M) = c, then κ = ω and Gα is residual such that hα � Gα is
continuous;

(n) if non(N ) < cov(N ) = c, then κ = non(N ) and Gα = R.
By double induction on β ≤ α < c we define the sequences 〈Dα

β : β ≤ α < c〉 of
pairwise disjoint subsets of R each of cardinality at most κ and 〈fαβ : β ≤ α < c〉
of partial maps, each with domain Dα

β , aiming for f :=
⋃
β≤α<c f

α
β with domain

E :=
⋃
β≤α<cD

α
β .

For every α < c let

Tα :=
⋃
{dom((hα − hδ) ∩ (gγ − gβ)) : β, γ, δ ≤ α & gβ 6= gγ}

and notice that, by our assumption on G and regularity of c, Tα has a cardinality
less than c. To ensure that such f is as needed, we make sure that the following
inductive conditions are satisfied for every α < c and β ≤ α:

(d) Dα
β is a dense subset of Zαβ := R \Mα

β , where

Mα
β := (R \Gα) ∪

⋃
δ≤γ<α

Dγ
δ ∪

⋃
δ<β

Dα
δ ∪ Tα ∪

⋃
δ<α

dom(hα ∩ hδ),
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which in the case when non(N ) < cov(N ) = c has also the property that
B ∩Dα

β 6= ∅ for every B ∈ B \ N such that B ∩ E ∈ N for every E in the
family Eα := {dom(hα ∩ hδ) : δ < α};

(f) fαβ (x) = hα(x)− gβ(x) for every x ∈ Dα
β .

The possibility of such a construction is obvious unless non(N ) < cov(N ) = c, in
which case the additional property of the set Dα

β can be ensured by Lemma 2.2

applied to the family E := Eα ∪
{
{x} : x ∈

⋃
δ≤γ<αD

γ
δ ∪

⋃
δ<β D

α
δ ∪ Tα

}
.

To see (ii) choose g ∈ G, fix β < c with g = gβ , and notice that the sequence

〈〈Gα, fαβ + (gβ � Dα
β ), Dα

β 〉 : β ≤ α < c〉
satisfies the assumptions of Lemma 2.3, where the properties (M), (N), (D), and (F)
are ensured, respectively, by (m), (n), (d), and (f).2 Thus

⋃
β≤α<c f

α
β + (gβ � Dα

β ),
as well as it superset f + g � E indeed intersects every blocking set.

To see (i) choose g = gβ ∈ G and h = hδ ∈ Bor. It is enough to show that
dom((f + g � E)∩ h) ⊂

⋃
β≤γ≤max{δ,β}D

α
γ as this last set has cardinality less than

c. To see this inclusion, fix α > max{δ, β}, γ ≤ α, and x ∈ Dα
γ . We need to

show that (f + g)(x) = fαγ (x) + gβ(x) = hα(x) − gγ(x) + gβ(x) is not equal to
hδ(x) = h(x).

But for gβ = gγ this means simply that hα(x) 6= hδ(x), what is ensured by the
fact that Dα

γ is disjoint with dom(hα ∩ hδ). So, assume that gβ 6= gγ . Then, by
(d), x /∈ Tα, that is, hα(x) − hδ(x) 6= gγ(x) − gβ(x). This clearly implies that
(f + g)(x) = hα(x)− gγ(x) + gβ(x) 6= hδ(x) = h(x), as required.

Finally, to find indicated extension F , notice that there exists a ψ ∈ RR be such
that ψ + G ⊂ SZ(Bor), see [15, theorem 2.1].3 Then F := f ∪ (ψ � (R \ E)) is a
needed extension. Indeed, the propertied (i), (ii), and the definition of ψ ensures
that F + G ⊂ AC ∩ SZ(Bor). Such F cannot belong to G, since otherwise also
−F ∈ G and F + (−F ) /∈ SZ(Bor). �

Proof of Theorem 3.1. By induction on ξ ≤ c+ construct a sequence 〈Vξ : ξ ≤ c+〉
of linear subspaces of AC ∩ SZ(Bor) ∪ {0} such that |Vξ| ≤ c for every ξ < c+,
Vλ =

⋃
η<λ Vη for every limit ordinal number λ ≤ c+, and Vξ+1 :=

⋃
r∈R(rfξ + Vξ)

for every ξ < c+, where fξ is the function F from Lemma 3.2 used with G = Vξ.
Then Vc+ justifies c+-lineability of AC ∩ SZ(Bor), as needed. �

4. Additivity of the family SZ(Bor) ∩AC

For F ⊂ RR, the additivity coefficient of F is defined as

add(F) = min
(
{|F | : F ⊂ RR & ∀g ∈ RR g + F 6⊂ F} ∪ {(2c)+}

)
.

(For more information on additivity see, for instance, [22].) The goal of this section
is to study this coefficient for the class SZ(Bor) ∩AC.

There is an interesting relation between add(F) and κ-lineability of F , see e.g.
[19, theorem 2.4] or [14, proposition 2.2]:

if F ⊂ RR is closed under non-zero scalar multiplications and
add(F) > κ ≥ c, then F is κ+-lineable.

2Notice that Mα
β is dense in Zα := Gα \

⋃
β≤δ<α

(
Dδβ ∪ dom(hα ∩ hβ)

)
and that Bor equals

to {hα ∈ Bor: β ≤ α < c}.
3Actually, in [15, theorem 2.1] this fact is proved only for the SZ functions, however the same

idea works also in our more general setting.
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Thus, one may be tempted to provide an alternative proof of Theorem 3.1, that
SZ(Bor) ∩ AC is c+-lineable, by showing that under the same set theoretical as-
sumption we have add(SZ(Bor) ∩ AC) > c. However, this is impossible, as shown
by the following result.

Theorem 4.1. If c is regular, then add(SZ(Bor) ∩AC) ≤ add(SZ ∩D) ≤ c.

Proof. The inequality add(SZ(Bor)∩AC) ≤ add(SZ∩D) follows immediately from
the inclusion SZ(Bor)∩AC ⊂ SZ∩D and an obvious remark that the operator add
is monotone.

The proof of the second inequality is a small variation of the proof of [13, theorem
2.10]. To see this, let {rξ : ξ < c} be an enumeration of R and, for every ξ < c,
define Aξ = {rζ : ζ < ξ}. Let F = {r · χAξ : r ∈ R & ξ < c}, where χA is the
characteristic function of A. Then |F | = c. Fix a g : R→ R. It is enough to prove
that g + F 6⊂ SZ ∩D.

To see this notice that g = g + χ
A0
∈ g + F . If g /∈ SZ ∩ D we are done. So

assume that g ∈ SZ ∩ D. Then g[R] contains a non-trivial interval (c, d). Take a
y ∈ (c, d) and notice that A = g−1(y) has cardinality smaller than c (as g ∈ SZ).
Since c is regular, there is a ξ < c with A ⊂ Aξ. Choose an r ∈ (0,∞) \ (y− g[Aξ]).
It is enough to prove that G := g + r · χAξ ∈ g + F is not Darboux.

To see this, first notice that y /∈ G[R]. Indeed, y /∈ g[R \ Aξ] = G[R \ Aξ],
as g−1(y) = A ⊂ Aξ. Also, y /∈ G[Aξ] since for every x ∈ Aξ we have G(x) =
g(x) + r 6= y, as guaranteed by the choice of r.

On the other hand, there are p ∈ (c, y) and q ∈ (y, d) with g−1({p, q})∩Aξ = ∅.
Thus, p, q ∈ g[R \Aξ] = G[R \Aξ] ⊂ G[R].

This means that G[R] is not connected, so that indeed G /∈ D. �

The main goal of this section is to prove Theorem 4.6, which gives, consistently, a
lower bound for add(SZ(Bor)∩AC) as ω. For this, we will need some preliminaries.

Let I ∈ {M,N}. We use the symbol I<c to denote the ideal of all subsets of
R that are the unions of less than c-many sets from I. We say that S ⊂ R is
everywhere I<c-positive provided B ∩ S /∈ I<c for every B ∈ B \ I. We will be
interested in this notion only under the assumption that cov(I) = c, in which case
no B ∈ B\I belongs to I<c. Notice also that if c is a regular cardinal, then the ideal
I<c is c-additive, that is, a union of less than c-many sets from I<c still belongs
to I<c.

Lemma 4.2. For every set T ⊂ R which is everywhere I<c-positive and for every
g ∈ RR there exist everywhere I<c-positive S ⊂ T , γ ∈ Bor, and G ∈ B (possibly
empty) such that

(a) g = γ on S ∩G; and
(b) dom(g ∩ h) ∩ (S \G) ∈ I<c for every h ∈ Bor.

Proof. Let U be the maximal family of pairwise disjoint sets B ∈ B \ I for which
there exists hB ∈ Bor such that

• dom(g ∩ hB) ∩ T ∩ E 6∈ I<c for every E ∈ B \ I contained in B.
Notice that U is at most countable, since B \ I is ccc. So, G =

⋃
U is Borel. Let γ

be any Borel extension of the partial function
⋃
B∈U hB � B. Define

S := (T \G) ∪
⋃
B∈U

(
dom(g ∩ γ) ∩ T ∩B

)
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and observe that S is everywhere I<c-positive. Indeed, if E ∈ B \ I, then either
E \G 6∈ I, so E ∩ S ⊃ (E \G) ∩ T 6∈ I<c, or E ∩B 6∈ I for some B ∈ U and then
E ∩ S ⊃ dom(g ∩ γ) ∩ T ∩ (E ∩B) 6∈ I<c.

One can easily verify that S, γ, and G satisfy the statement (a). To prove
statement (b), suppose that A := dom(g ∩h)∩ (S \G) 6∈ I<c for some h ∈ Bor and
observe that then there is a B ∈ B \ I such that E ∩A 6∈ I<c for every E ∈ B \ I,
E ⊂ B. Indeed, let C be the maximal family of pairwise disjoint Borel sets C 6∈ I
such that C ∩ A ∈ I<c, and let C0 =

⋃
C. Then C0 ∈ B, C0 ∩ A ∈ I<c, and

B := R \ C0 is as we need. (It is easy to see that B ∈ B but also B /∈ I by the
maximality of C.) But this contradicts the maximality of the family U . �

Lemma 4.3. Assume that cov(I) = c. For every finite family Γ ⊂ RR there exist
everywhere I<c-positive S ⊂ R, {γg : g ∈ Γ} ⊂ Bor, and {Bg : g ∈ Γ} ⊂ B such that
for every g ∈ Γ

(a) g = γg on S ∩Bg; and
(b) dom(g ∩ h) ∩ (S \Bg) ∈ I<c for every h ∈ Bor.

Proof. Fix an enumeration {g1, . . . , gn} of Γ.
Notice that S0 = R is everywhere I<c-positive by our assumption that cov(I) =

c. By applying Lemma 4.2 iteratively we can find functions γgi , sets Bgi , and a
sequence S0 ⊃ S1 ⊃ · · · ⊃ Sn so that the conditions (a) and (b) are satisfied with Si,
Bgi , and γgi in place of S, B, and γ, respectively. Then S := Sn is as needed. �

We will also need the following fact.

Fact 4.4. In the model of ZFC obtained by adding ω2 random reals to the model
for ZFC+CH we have ω1 = non(N ) < cov(N ) = ω2 = c (so c is a regular) and

(d) every Z /∈ N includes a subset of power ω1 with the same outer measure.

Proof. This fact is stated in [35, paragraph above theorem 4.15] and is attributed
to Professor Kenneth Kunen. However, [35] contains neither proof of this fact nor
a reference to a printed source where a proof can be found. Therefore, for reader’s
convenience, we provide here a sketch of its proof.4

Let M be a model of ZFC+CH and for an ordinal α let B(α) be a random
real forcing on 2α, see [7, page 99]. We will show that (d) holds in the model
Mω2 := M [h] which is an extension of M via forcing B(ω2), where h ∈ 2ω2 is
M -generic over B(ω2). Recall that in this setting for every α < ω2 there is an
associated generic extension Mα := M [h � α] of M over B(α) and that

(3) Mω2
is a generic extension of Mα over the random real forcing B(ω2 \ α).

Also Mα ⊂Mβ for every α < β < ω2 and we have CH in Mα.
First we will show that, in Mω2 ,
(∗) for every A ⊂ R with A /∈ N there is a B ⊂ A so that |B| ≤ ω1 and B /∈ N .

Indeed, the assumption on A means that, in Mω2
, there is a map ψ, a subset of

2ω ×R, such that if c ∈ 2ω is a code for a Borel set5 ĉ ∈ B ∩N , then ψ(c) is a real
number in A \ N . Since random real forcing is ccc, every pair in 2ω × R belongs
to Mα for some α < ω2. Therefore, there is a λ < ω2 of cofinality ω1 such that if
Cλ ⊂ 2ω is the set of all Borel codes that are in Mλ, then ψ � Cλ belongs to Mλ.

4We thank Dr Tomek Bartoszynski for helping us with sketching this argument.
5For what such codes are, see e.g. [7, sec 1.2.D].
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But this means that, in Mλ, the set B := A∩Mλ is not in N . Now, (3) and the
following property that can be found in [7, lemmas 6.3.11 and 6.3.12]

• any B ⊂ R not in N is also not in N in any random real extension
imply that B /∈ N also in Mω2

. Since CH holds in Mλ, we have also |B| ≤ ω1, that
is, B is the set that satisfies (∗).

Now, to finish the proof (d), choose a non-null set Z ⊂ R. Without loss of
generality we can assume that it is bounded so that its outer measure m∗(Z) is
finite. Let d := sup{m∗(C) : C ⊂ Z & |C| = ω1} and observe that there is a D ⊂ Z
with |D| = ω1 and m∗(D) = d. We claim that d = m∗(Z), that is, that D satisfies
(d). Indeed, if d < m∗(Z), then there is an E ∈ B disjoint with D and such that
A := E ∩ Z is not in N . Then, by (∗), there is a B ⊂ A so that |B| ≤ ω1 and
B /∈ N . But then C := D ∪B contradicts the maximality of d. �

Lemma 4.5. Assume that c is a regular cardinal and that one of the following two
assumptions holds:

(µ) cov(M) = c;
(ν) non(N ) < cov(N ) = c and (d) from Fact 4.4 holds.

Then for every finite family G = {gi : i < n} ⊂ RR there exists an f from E ⊂ R to
R such that for every i < n

(i) |(f + gi � E) ∩ h| < c for every h ∈ Bor;
(ii) (f + gi � E) ∩K 6= ∅ for every blocking set K.

Proof. Let Bor = {hα : α < c}. For every α < c choose Gα ⊂ R and κ such that
(m) if (µ) holds, then κ = ω and Gα is residual such that hα � Gα is continuous;
(n) if (ν) holds, then κ = non(N ) and Gα = R.

Put Γ := G − G and let S ⊂ R, {γg : g ∈ Γ} ⊂ Bor, and {Bg : g ∈ Γ} ⊂ B be as in
Lemma 4.3.

By induction on α < c define the sequences 〈Dα
i : i < n & α < c〉 of pairwise

disjoint subsets of S each of cardinality at most κ and 〈fα : α < c〉 of partial maps,
each from Dα :=

⋃
i<nD

α
i to R, aiming for f :=

⋃
α<c f

α. To ensure that such f
is as needed, we make sure that the following inductive conditions are satisfied for
every α < c and i < n:

(d) Dα
i is a dense subset of Zαi := S \Mα

i , where

Mα
i := (R \Gα) ∪

⋃
j<iD

α
j

∪
⋃
β<α

(
Dβ ∪ dom(hα ∩ hβ) ∪

⋃
g∈G
(
dom((g − gi) ∩ (hα − hβ)) \Bg−gi

))
which in the case when non(N ) < cov(N ) = c has also the property that
B ∩Dα

i 6= ∅ for every B ∈ B \ N such that B ∩ E ∈ N for every E in the
family Eα := {dom(hα ∩ hβ) : β < α};

(f) fα(x) = hα(x)− gi(x) for every x ∈ Dα
i .

The construction of such sequences is obvious, where the additional property of the
set Dα

i in the case when non(N ) < cov(N ) = c can be ensured by Fact 4.4 applied
to the set Zαi , compare proof of Lemma 2.2.

It remains to show that the function f :=
⋃
α<c f

α defined on the set E :=⋃
α<c

⋃
j<nD

α
j indeed has the properties (i)–(ii).

To see (i), for every j < n let Ej :=
⋃
α<cD

α
j . Notice that E =

⋃
j<nEj .

Fix an h ∈ Bor. To see that |(f + gi � E) ∩ h| < c it is enough to show that
|(f + gi � Ej) ∩ h| < c for every j < n. So, fix a j < n.



ON ALMOST CONTINUOUS SIERPIŃSKI-ZYGMUND FUNCTIONS 11

First choose β < c such that h = hβ and notice that, by (f), for every α > β
and x ∈ Dα

j \ Bgj−gi we have (f + gi)(x) = (hα − gj + gi)(x) 6= hβ(x) = h(x),
since the definition of Mα

i ensures that (gj − gi)(x) 6= (hα − hβ)(x). Therefore,
|(f + gi � (Ej \Bgj−gi)) ∩ h| < c as its x-axis projection is contained in

⋃
α≤β D

α
j .

To see that |(f+gi � (Ej∩Bgj−gi))∩h| < c choose β < c such that h = hβ−γgj−gi .
Then, for every α > β and x ∈ Dα

j ∩Bgj−gi we have hα(x) 6= hβ(x) and therefore,

(f + gi)(x) = (hα − gj + gi)(x) = (hα − γgj−gi)(x) 6= (hβ − γgj−gi)(x) = h(x).

Hence |(f + gi � (Ej ∩ Bgj−gi)) ∩ h| < c as its x-axis projection is contained in⋃
α≤β D

α
j .

The property (ii) follows from Lemma 2.3 when we notice that, for every i < n, κ
and the sequence 〈〈Gα, (fα � Dα

i ) + (gi � Dα
i ), Dα

i 〉 : α < c〉 satisfies its assumption,
so the map

⋃
α<c

(
(fα � Dα

i ) + (gi � Dα
i )
)
contained in f intersects every blocking

set K. �

Theorem 4.6. Assume that c is a regular cardinal and that one of the following
two assumptions holds:

(µ) cov(M) = c;
(ν) non(N ) < cov(N ) = c and (d) from Fact 4.4 holds.

Then for every finite G ⊂ RR there is an F ∈ RR such that F +G ⊂ SZ(Bor)∩AC.
In particular, add(SZ(Bor) ∩ AC) ≥ ω, hence every function f : R → R can be
represented as a sum of two functions from the class SZ(Bor) ∩AC.

Proof. Recall that for every family F ⊂ RR with |F| ≤ c there exists a function
g : R → R such that g + F ⊂ SZ(Bor), see the proof of Lemma 3.2. In particular,
there exists a g ∈ RR be so that g+G ⊂ SZ(Bor). Let f : E → R be as in Lemma 4.5.
Then map F := f ∪ (g � (R \ E)) is as needed. �

Problem 4.7. Can either Theorem 4.1 or Theorem 4.6 be proved without the as-
sumption that c is a regular cardinal?

Problem 4.8. Under the assumptions of Theorem 4.6 we have the inequalities
ω ≤ add(SZ(Bor) ∩ AC) ≤ c. Can the lower bound be replaced by ω1? Can the
upper bound be replaced by ω1 if ω1 < c?

5. Subclasses of SZ(Bor) ∩AC when non(N ) < cov(N ) = c

Recently (see e.g. [6, 18, 12]) there has been a considerable interest in the
classes SZ∩F , including subclasses of SZ∩AC, where F is one of the classes in the
algebra generated by Darboux-like families of functions. Recall, that the Darboux-
like families of functions usually include eight classes, of which we are interested
here in AC and the following two classes defined below, see e.g. [21] of [17].6

PR of all functions f : R → R with perfect road, that is, such that for every
x ∈ R there exists a perfect P ⊂ R containing x such that x is a bilateral
limit point of P (i.e., with x being a limit point of (−∞, x) ∩ P and of
(x,∞) ∩ P ) and that f � P is continuous at x.

6Other classes include: D, earlier mentioned class Conn of connectivity functions, SCIVP which
is obviously disjoint with SZ, Ext contained in SCIVP so also disjoint with SZ, and the largest
class, PC, of peripherally continuous functions. It is known that Ext ( AC ( Conn ( D ( PC

and Ext ( SCIVP ( CIVP ( PR ( PC.
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CIVP of all functions f : R → R with Cantor Intermediate Value Property, that
is, such that for all p, q ∈ R with f(p) 6= f(q) and for every perfect set K
between f(p) and f(q), there exists a perfect set P between p and q such
that f [P ] ⊂ K.

Clearly CIVP ⊂ PR. It is known that D∩B1 = AC∩B1 = PR∩B1 = CIVP∩B1,
see e.g. [21].

The main result of this section is as follows.

Theorem 5.1. If either cov(M) = c or non(N ) < cov(N ) = c, then the follow-
ing classes are non-empty: SZ(Bor) ∩ AC \ PR, SZ(Bor) ∩ AC ∩ PR \ CIVP, and
SZ(Bor) ∩AC ∩ CIVP.

Under the assumption that cov(M) = c and for the class SZ in place of SZ(Bor)
this result was previously known, see [12] and the citations included there. However,
nothing was previously known about these classes when non(N ) < cov(N ) = c and
this is where the novelty of Theorem 5.1 lies.

It it also clear that among all subclasses in the algebra of Darboux-like classes
of maps the only subclasses of AC that can have non-empty intersection with SZ
are those listed in Theorem 5.1.

Our proof of Theorem 5.1 relies on the following simple consequence of Lemma 2.3.

Lemma 5.2. Let M ∈ M ∩ N . If either cov(M) = c or non(N ) < cov(N ) = c,
then there exists an f from E ⊂ R \M into R such that:

(A) K ∩ f 6= ∅ for every blocking set K.
(B) |f ∩ h| < c for every h ∈ Bor;
(C) f is unbounded on P ∩ E for every perfect subset P of R \M ;

Proof. Fix an enumeration {Pα : α < c} of all perfect subsets of R disjoint with M .
Let Bor = {hα : α < c} and let κ and 〈〈Gα, fα, Dα

i 〉 : i < 2 & α < c〉 be defined
such that for every α < c: Dα :=

⋃
i<2D

α
i , fα : Dα → R,

(M) if cov(M) = c, then κ = ω, R \Gα ∈M, and hα � Gα is continuous;
(N) if non(N ) < cov(N ) = c, then κ = non(N ) and Gα = R;

(D0) Dα
0 is a dense subset of Zα := Gα\

⋃
β<α

(
Dβ∪dom(hα∩hβ)

)
of cardinality

≤ κ which in the case when non(N ) < cov(N ) = c has also the property
that B ∩Dα 6= ∅ for every B ∈ B \ N such that B ∩E ∈ N for every E in
the family Eα := {dom(hα ∩ hβ) : β < α};

(F0) fα(x) = hα(x) for every x ∈ Dα
0 ;

(D1) Dα
1 is a countable dense subset of Pα \

(
Dα

0 ∪
⋃
β<αD

β
)
;

(F1) there is an enumeration {xn : n < ω} of Dα
1 such that for every n < ω we

have fα(xn) ∈ (n,∞) \ {hβ(xn) : β < α}.
Such a sequence can be constructed by an easy transfinite induction on α < c, where
the additional property of the set Dα

0 in the case when non(N ) < cov(N ) = c can
be ensured by Lemma 2.2 applied to the family E := Eα ∪ {{x} : x ∈

⋃
β<αD

β}.
We claim that f :=

⋃
α<c f

α is as needed.
Indeed, the sequence 〈〈Gα, fα � Dα

0 , D
α
0 〉 : α < c〉 satisfies the assumptions of

Lemma 2.3, so f0 :=
⋃
α<c f

α � Dα
0 and its extension f satisfy (A).

To see (B) fix an h ∈ Bor, choose β < c such that h = hβ , and notice that
dom(f ∩ h) ⊂

⋃
γ≤β D

γ . The property (C) is ensured by (F1). �
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Proof of Theorem 5.1. Let g : R → R be a function in the class SZ(Bor) and for
an M ∈ M ∩ N let f : E → R be as in Lemma 5.2. Define fM : R \M → R as
fM := g �

(
R \ (E ∪M)

)
∪ f and notice that fM satisfies (A)–(C) from Lemma 5.2.

Then f∅ ∈ SZ(Bor) ∩AC \ PR, where f∅ /∈ PR is justified by (C).
In the remainder of this proof, fix an M ∈ M∩N defined as M :=

⋃
G, where

G := {Pp,q ⊂ (p, q) : p < q & p, q ∈ Q} is a family of pairwise disjoint compact
perfect sets from N . This is the set M̂ defined at the beginning of section 4 in [12].

In [12, lemma 4.1] it is constructed7 a g0 : M → R such that
(R) |g0 ∩ h| < c for every h ∈ Bor;
(S) for every perfect K ⊂ R and a < b there exists a perfect P ⊂ M ∩ (a, b)

such that g0[P ] ⊂ K.
Then F0 := g0 ∪ fM belongs to SZ(Bor) ∩AC ∩ CIVP.

Similarly, for C denoting the classic Cantor ternary set in [0, 1], in [12, lemma 4.3]
it is constructed8 a g1 : M → R such that

(α) |g1 ∩ h| < c for every h ∈ Bor;
(β) g1[M̂ ] ∩ C = ∅;
(γ) for any 〈s, t〉 ∈ R2 there is a perfect set P ⊂M ∪{s} having s as a bilateral

limit point and such that limx→s, x∈P g1(x) = t.
Then F1 := g1 ∪ fM belongs to SZ(Bor) ∩ AC ∩ PR \ CIVP, compare the proof of
[12, theorem 4.4]. �

In [12] it is also shown that, besides classes listed in Theorem 5.1, also the
following classes are nonempty under the assumption that cov(M) = c:
SZ ∩ (D \ Conn) \ PR, SZ ∩ (D \ Conn) ∩ PR \ CIVP, SZ ∩ (D \ Conn) ∩ CIVP,
SZ∩ (Conn \AC) \PR, SZ∩ (Conn \AC)∩PR \CIVP, SZ∩ (Conn \AC)∩CIVP.
In this context the following is a natural question.

Problem 5.3. Does non(N ) < cov(N ) = c imply that that the above six classes
are non-empty? What about when the class SZ is replaced with SZ(Bor)?

It is our believe that the answer to this question, in its both versions, is positive.
The key of proving this result should be to first prove that, under our assumption,
the classes SZ(Bor) ∩ (D \ Conn) and SZ(Bor) ∩ (Conn \AC) are nonempty. Then
technic developed in [12] and used in the proof of Theorem 5.1 should allow to
refine such results to the aforementioned six classes.

It might be also interesting to consider the same problem under a weaker set
theoretical assumption of just cov(N ) = c. A positive answer to this version, for
at least the first three classes, is suggested by the fact that already cov(N ) = c
implies SZ(Bor) ∩D 6= ∅, as shown in [18, theorem 4.4].
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