
LINEARLY CONTINUOUS MAPS DISCONTINUOUS ON THE
GRAPHS OF TWICE DIFFERENTIABLE FUNCTIONS

KRZYSZTOF CHRIS CIESIELSKI AND DANIEL L. RODRÍGUEZ-VIDANES

Abstract. A function g : Rn → R is linearly continuous provided its restric-
tion g � ` to every straight line ` ⊂ Rn is continuous. It is known that the
set D(g) of points of discontinuity of any linearly continuous g : Rn → R
is a countable union of isometric copies of (the graphs of) f � P , where
f : Rn−1 → R is Lipschitz and P ⊂ Rn−1 is compact nowhere dense. On the
other hand, for every twice continuously differentiable function f : R→ R and
every nowhere dense perfect P ⊂ R there is a linearly continuous g : R2 → R
with D(g) = f � P . The goal of this paper is to show that this last statement
fails, if we do not assume that f ′′ is continuous. More specifically, we show that
this failure occurs for every continuously differentiable function f : R→ R with
nowhere monotone derivative, which includes twice differentiable functions f
with such property. This generalizes a recent result of professor Luděk Zaj́ıček
and fully solves a problem from a 2013 paper of the first author and Timothy
Glatzer.

1. Introduction

A function g : Rn → R is separately continuous if the restriction g � ` is con-
tinuous for any line ` parallel to one of the coordinate axes. A prehistory of
this notion can be traced back at least to 1821 textbook [3, 4] of Cauchy, as
discussed in a survey [8]. The first example of discontinuous separately contin-
uous function, attributed to Heine, can be found in the 1870 calculus text of
J. Thomae [15, pp. 13–16] and was defined as g(y, z) = sin

(
4 arctan y

z

)
for z 6= 0

and g(y, 0) = 0. The best known examples of such maps come from the 1884
treatise on calculus by Genocchi and Peano [10]: one defined as g(x, y) = xy

x2+y2

for 〈x, y〉 6= 〈0, 0〉 and g(0, 0) = 0, the other, which is also linearly continuous, is
given as

g(x, y) =

{
xy2

x2+y4
for 〈x, y〉 6= 〈0, 0〉,

0 for 〈x, y〉 = 〈0, 0〉.
(1)

The first serious studies of separately continuous functions come from the work
of Lebesgue and Baire. Thus, independently Lebesgue, in his very first paper [12]
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of 1898, and Baire, in his Ph.D. thesis [1] defended in 1899, proved that every
separately continuous function g : R2 → R is a pointwise limit of a sequence of
continuous functions or, in the contemporary terminology, it is of Baire class 1.
This result was generalized to functions g : Rn → R of n ≥ 2 variables in 1905 by
Lebesgue [13] where it is shown that such map is of Baire class n − 1, but need
not be of the lower class. On the other hand, answering a question posed in [8],
it was recently proved in papers [16] and [2], that a linearly continuous function
g : Rn → R is Baire class 1 for every n.

The characterization of the sets D(g) of points of discontinuity of separately
continuous functions g : Rn → R was settled in 1943 [11] by Richard B. Kershner
and reads as follows.

Theorem 1.1. (Kershner 1943) S = D(g) for some separately continuous
g : Rn → R if, and only if, S is an Fσ-set and every orthogonal projection of D
onto a coordinate hyperplane is of first category.

The natural question concerning characterization of the family

Dn := {D(g) : g : Rn → R is linearly continuous}
of the sets of points of discontinuity of linearly continuous maps of n variables
was initiated in 1945 by Alexander S. Kronrod and was partially solved in 1976
by Semen G. Slobodnik [14], who gave the following necessary condition for sets
in Dn. (See also [8].)

Theorem 1.2. (Slobodnik 1976) For every n ≥ 2, if D ∈ Dn, then D admits
a representation D =

⋃∞
i=1Di, where each Di is isometric to the graph of a

Lipschitz function fi : Ki → R where Ki ⊂ Rn−1 is compact and nowhere dense.

Let Lip(Rn) be the family of all Lipschitz functions f : Rn → R and Kn be
the collection of all compact nowhere dense sets K ⊂ Rn. Recall also that every
Lipschitz function f : K → R with K ⊂ Rn can be extended to an f̄ ∈ Lip(Rn),
see e.g. [9, p. 80]. Using this notation, the above theorem says that every
D ∈ Dn is a countable union of isometric copies of the sets of the form f � K,
where f ∈ Lip(Rn−1) and K ∈ Kn−1. It is also clear that the family Dn is closed
under isometric images and under countable unions, see e.g. [6]. Therefore, to
turn Theorem 1.2 into full characterization of the family Dn, we must answer the
following question:

(Q) for which pairs 〈f,K〉 ∈ Lip(Rn−1)×Kn−1 is f � K ∈ Dn?

Question (Q) was studied in a 2013 paper of the first author and T. Glatzer [6]
where the following results have been proved.

Theorem 1.3. (Ciesielski & Glatzer 2013)

(i) If n ≥ 2, f : Rn−1 → R is convex, and K ∈ Kn−1, then f � K ∈ Dn.
(ii) If function f : R → R is twice continuously differentiable and K ∈ K1,

then f � K ∈ D2.
(iii) There exist differentiable f : R→ R and K ∈ K1 with f � K /∈ D2.

The authors also ask [6, problem 5.3] if the property (ii) of Theorem 1.3 holds
either for every continuously differentiable f or for every twice differentiable f
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(with no continuity assumption on f ′′). The goal of this paper is to give a negative
answer to both versions of this question, see Theorem 2.1 and Corollary 2.2.

The proof of Theorem 2.1 borrows from a very recent manuscript [17] of Luděk
Zaj́ıček who constructed (in a very complicated and technical way) a continuously
differentiable function f and nowhere dense compact K ⊂ R with f � K /∈ D2,
thus solving the first part of [6, problem 5.3]. However, the result from [17] does
not (in any clear way) imply either our Theorem 2.1 or Corollary 2.2.

Notice that the results we list above do not provide a complete characterization
of the sets of points of discontinuity of linearly continuous functions, even just
in the case of functions of two variables. (This would require full answer of the
question (Q).) Nevertheless, there exist two characterizations of such sets.

The first one comes from a 2013 paper of the first author and T. Glatzer [7]
and describes sets D(g) for two variable functions in terms of the topology on the
set of all lines in R2. The second comes from the 2020 paper [2] of T. Banakh
and O. Maslyuchenko and reads as follows,1 where a set K ⊂ Rn is `-miserable
provided there exists a closed set L ⊂ Rn containing K with the properties:

(i) L is an `-neighborhood of K: for any line ` in Rn and any point p̄ ∈ `∩K
there is an open interval J in ` such that p̄ ∈ J ⊂ L;

(ii) K ⊂ cl(R2 \ L).

Theorem 1.4. (Banakh & Maslyuchenko 2020)M = D(g) for some linearly
continuous g : Rn → R if, and only if, M is a countable union of closed `-miserable
sets K ⊂ Rn.

Although the characterization from Theorem 1.4 is simpler and more complete
than the one from [7], neither of these characterizations is either simple to apply
or easy to grasp. On the other hand, the full answer to question (Q) could
provide such simple and natural characterization. The main result of this paper
is a considerable step towards this goal.

2. The main result and its proof

In what follows symbol C1(R) stands for the functions f : R → R that are
continuously differentiable, while D2(R) denotes all f ∈ C1(R) that are twice
differentiable. Recall also that f : R→ R is nowhere monotone provided it is not
monotone on any non-empty open interval.

Theorem 2.1. For every f ∈ C1(R) with nowhere monotone derivative f ′ there
exists a nowhere dense perfect P ⊂ R such that every linearly continuous map
g : R2 → R is continuous at some point of f � P .

This theorem immediately implies the following result, which fully solves [6,
problem 5.3].

1Since in the proof of our main result we use only one direction of Theorem 1.4—the necessity
of D(g) being a countable union of closed `-miserable sets—it is perhaps worth to notice that
the argument for it is relatively simple: if g : Rn → R is linearly continuous, {Vn : n ∈ N} is a
basis for R, and En := f−1(Vn) \ int(cl(f−1(Vn))), then D(g) =

⋃
n∈N En, each set En is Fσ,

and any subset of En is `-miserable.
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Corollary 2.2. There exists an f ∈ D2(R) and a nowhere dense perfect P ⊂ R
such that every linearly continuous map g : R2 → R is continuous at some point
of f � P .

Proof. Let h : R → R be differentiable nowhere monotone, see e.g. [5]. Then
f(x) :=

∫ x
0
h(t) dt is as needed. �

2.1. Lemmas. In what follows we always assume that f ∈ C1(R). For an x ∈ R
let τf,x be the equation of the tangent line to f at x, that is,

τf,x(s) := f(x) + f ′(x)(s− x)

and let
Tf,x := {〈t, τf,x(s)〉 : s ∈ R}

be this tangent line. Also, for X ⊂ R and a ∈ R let

Tf,X :=
⋃
x∈X

Tf,x and T af,X := Tf,X ∩ π−1((a,∞)),

where π : R2 → R is the projection on the first coordinate.

Lemma 2.3. Let f ∈ C1(R) and x1 < x0 be such that

f ′(x1) = max f ′([x1, x0]) > f ′(x0).

Then τf,x1(c) > τf,x0(c) for every c > x0.

Proof. Indeed, if ξ ∈ (x1, x0) is such that f ′(ξ) = f(x0)−f(x1)
x0−x1 then τf,x1(c) > τf,x0(c)

is equivalent to each of the following inequalities.

f(x1) + f ′(x1)(c− x1) > f(x0) + f ′(x0)(c− x0)
f ′(x1)(c− x1)− f ′(x0)(c− x0) > f(x0)− f(x1)

f ′(x1)(c− x0)− f ′(x0)(c− x0) > f(x0)− f(x1)− f ′(x1)(x0 − x1)
(f ′(x1)− f ′(x0))(c− x0) > f ′(ξ)(x0 − x1)− f ′(x1)(x0 − x1)
(f ′(x1)− f ′(x0))(c− x0) > (f ′(ξ)− f ′(x1))(x0 − x1)

But the last inequality holds, since f ′(x1)− f ′(x0) > 0 ≥ f ′(ξ)− f ′(x1). �

The next lemma is proved similarly.

Lemma 2.4. Let f ∈ C1(R) and x2 < x0 be such that

f ′(x2) = min f ′([x2, x0]) < f ′(x0).

Then τf,x2(c) < τf,x0(c) for every c > x0.

We will also need the following consequence of the previous two lemmas.

Lemma 2.5. Let f ∈ C1(R) be such that f ′ is nowhere monotone. If a ∈ R
and Z ⊂ (−∞, a], then for every non-empty (r, s) ⊂ Z there exists a non-empty
(u, v)⊂ (r, s) such that

T af,Z\(u,v) = T af,Z .

In particular, if Z is compact, then there exists a non-empty closed nowhere dense
N ⊂ Z such that

T af,N = T af,Z .



LINEARLY CONTINUOUS FUNCTIONS ON Rn AND D2 MAPS 07/16/2022 5

Proof. To see the first part, choose x0, x1, x2 ∈ (r, s) such that x1, x2 < x0,
f ′(x1) > f ′(x0), and f ′(x2) < f ′(x0). The choice is possible since f ′ is nowhere
monotone. We can also ensure by continuity of f ′ that the assumptions of Lemmas
2.3 and 2.4 are satisfied by replacing each xi, i ∈ {1, 2}, by its prime version
defined as

x′i = sup{x ∈ [xi, x0] : f
′(x) = f ′(xi)}.

Let y < z be such that {y, z} = {x1, x2}.
Since f ′ is continuous, we can choose (u, v) ⊂ (z, s) containing x0 such that

f ′(x) ∈ (f ′(x2), f
′(x1)) for all x ∈ (u, v). Then the interval (u, v) is as needed.

To see this, notice that T af,Z = T af,Z\(u,v) ∪ T af,(u,v). Thus, it is enough to show
that T af,(u,v) ⊂ T af,(y,z), as clearly T af,(y,z) ⊂ T af,Z\(u,v).

But if 〈c, d〉 ∈ T af,(u,v), then there is x ∈ (u, v) with 〈c, d〉 ∈ T af,x, that is,

d = τf,x(c). So, by Lemmas 2.3 and 2.4, we have d ∈ (τf,x2(c), τf,x1(c)). But the
map t 7→ τf,t(c) is continuous. So, by the intermediate value theorem, there is
w ∈ (y, z) with d = τf,w(c). This means, that 〈c, d〉 ∈ T af,w ⊂ T af,(y,z), as needed.

To see the additional part, fix a countable basis {(rn, sn) : n ∈ N} of R and
inductively construct a sequence Z ⊃ Z1 ⊃ Z2 ⊃ · · · of compact sets such that
T af,Z = T af,Zn

and (rn, sn) 6⊂ Zn for every n ∈ N. Then N :=
⋂
n∈N Zn is as needed.

Indeed, clearly it is compact, nowhere dense, and T af,N ⊂ T af,Z . To see the other
inclusion, choose 〈s, t〉 ∈ T af,Z ⊂

⋂
n∈N T

a
f,Zn

. Then, for every n ∈ N there exists a
zn ∈ Zn such that 〈s, t〉 ∈ T af,zn , and so

t = τf,zn(s) = f(zn) + f ′(zn)(s− zn).

Since Z is compact, there is a subsequence (znk
)k of (zn) that converges to z ∈ Z.

Notice that z ∈ N and that, by the continuity of f and f ′,

t = f(znk
) + f ′(znk

)(s− znk
)→k→∞ f(z) + f ′(z)(s− z) = τf,z(s).

Hence 〈s, t〉 ∈ T af,z ⊂ T af,N . So, indeed T af,N = T af,Z . �

The next simple lemma is a variation of [17, lemma 2.3].

Lemma 2.6. If f ∈ C1(R) is such that f ′ is nowhere monotone, then for every
non-degenerate closed interval [a, b], there exist d ∈ (a, b) and perfect nowhere
dense Nd ⊂ (a, d) such that 〈d, f(d)〉 ∈ int(Tf,Nd

).

Proof. First notice the following simple fact, which comes from [17, lemma 2.3]:

(?) there exist s < d both in (a, b) such that 〈d, f(d)〉 ∈ Tf,s.
Indeed, since f ′ is continuous and nowhere monotone, there exist x0, x1, x2 ∈ (a, b)
that satisfy the assumptions of Lemmas 2.3 and 2.4. Then

f(x0) = f(x1) +

∫ x0

x1

f ′(t) dt < f(x1) + f ′(x1)(x0 − x1) = τf,x1(x0)

and

f(x0) = f(x2) +

∫ x0

x2

f ′(t) dt>f(x2) + f ′(x2)(x0 − x2) = τf,x2(x0).
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Since map x 7→ τf,x(x0) is continuous and τf,x2(x0) < f(x0) < τf,x1(x0), there
exists s between x1 and x2 such that τf,s(x0) = f(x0). Hence, s and d := x0
satisfy (?).

Also, continuity of f and f ′ implies that there exists x′0 ∈ (max{x1, x2}, x0)
so that f ′(x1) = maxf ′([x1, x

′
0]) > f ′(x′0) and f ′(x2) = min f ′([x2, x

′
0]) < f ′(x′0).

In particular, if Z is the closed interval with endpoints x1 and x2, then, by
Lemmas 2.3 and 2.4, 〈d, f(d)〉 is contained in the interior of the set

W := {〈c, y〉 : c > x′0 & τf,x2(c) < y < τf,x1(c)}
and W ⊂ Tf,Z . Hence, by Lemma 2.5, there exists perfect nowhere dense set
Nd ⊂ Z ⊂ (a, d) with 〈d, f(d)〉 ∈ int(Tf,Z) = int(Tf,Nd

). �

2.2. Proof of Theorem 2.1. By induction on the length of binary sequences
s ∈ 2<ω we construct a sequence 〈〈Is, ds, Ns〉 : s ∈ 2<ω〉 subject to the following
inductive conditions.

(An) In = {Is : s ∈ 2n} consists of pairwise disjoint non-trivial closed intervals
such that for every s ∈ 2n the interval Is has length |Is| ≤ (2

3
)n.

(Bn) If s, t ∈ 2≤n and s ⊂ t, then It ⊂ Is and

Nt ∪ {dt} ⊂
⋃
In . (2)

(Cn) For every s ∈ 2n, if Is = [as, bs], then ds ∈ (as, bs), Ns ⊂ (as, ds) is compact
nowhere dense, and

〈ds, f(ds)〉 ∈ int(Tf,Ns).

We start the construction by putting I∅ = [0, 1]. This ensures that the condi-
tions (A0) and (B0) are satisfied, except for (2) when t ∈ 2n, since in such case
Nt and dt are not defined yet.

Also, if for some n < ω, the objects satisfying conditions (An)-(Cn) are already
defined, we construct the intervals in In+1 as follows. For every s ∈ 2n let Ms be
the middle third open subinterval of Is, let Js be a non-empty open interval con-
tained inMs\

⋃
t∈2≤n(Nt∪{dt}), and define two intervals in {Iu : u ∈ 2n+1 & s ⊂ u}

as two connected components of Is \ Js. Notice that, once again, such choice en-
sures that the conditions (An+1) and (Bn+1) are satisfied, except for (2) when
t ∈ 2n+1, since in such case Nt and dt are not defined yet.

Finally, if for some n < ω the intervals in In are already constructed, for every
t ∈ 2n use Lemma 2.6 with [at, bt] = It to find dt ∈ (at, bt) and a perfect nowhere
dense Nt ⊂ (at, dt) that satisfy (Cn). Notice that this choice preserves (2) of
(Bn). This finishes the inductive construction.

The desired nowhere dense perfect set P is defined as

P :=
⋂
n<ω

⋃
In . (3)

Notice also that, by (2), the set D := {ds : s ∈ 2<ω} is contained in P .
To see that P is as needed, assume by way of contradiction that there is a

linearly continuous g : R2 → R such that g is discontinuous at each point of f � P .
Then, by Theorem 1.4, there exists a countable family K of `-miserable closed
subsets of R2 so that f � P ⊂

⋃
K. Therefore, by Baire category theorem used
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in the compact space f � P , there exists a K ∈ K containing a non-empty open
subset of f � P . In particular, there is an s0 ∈ 2<ω such that K0 := f � (P ∩ Is0)
is contained in K. Since K is `-miserable, so is K0. Thus, there exists a closed `-
neighborhood L ⊂ R2 ofK0 such thatK0 is contained in the closure of U := R2\L.
Our contradiction will be obtained by showing that such set L cannot be an `-
neighborhood of K0. More specifically, we will find a point p ∈ P such that the
property (i) of `-miserable set fails for ` := Tf,p and p̄ := 〈p, f(p)〉.

For this, construct by induction the sequence 〈〈sn, cn, εn〉 ∈ 2<ω×U×R : n < ω〉
such that the following inductive conditions are satisfied:

(an) cn ∈ U ∩ int(Tf,Nsn
) and ‖cn − 〈dsn , f(dsn)〉‖ ≤ 2−n;

(bn) εn ∈ (0, 2−n) is such that the open ball B(cn, εn) ⊂ U ∩ int(Tf,Nsn
);

(cn) sn+1 ∈ 2<ω extends sn and Tf,p ∩B(cn, εn) 6= ∅ for every p ∈ Isn+1 .

We start with s0 defined above. If for some n < ω the sequence sn is already
constructed, we can choose cn as in (an) since 〈dsn , f(dsn)〉 belongs to K0 ⊂ cl(U)
and to int(Tf,Nsn

). The number εn can be chosen since U ∩ int(Tf,Nsn
) is open. To

choose sn+1 as in (cn), first choose xn ∈ Nsn ⊂ Isn such that Tf,xn ∩B(cn, εn) 6= ∅.
Since f ∈ C1(R), there exists δ > 0 such that Tf,p ∩ B(cn, εn) 6= ∅ for every
p ∈ (xn − δ, xn + δ). So, it is enough to choose sn+1 extending sn such that
Isn+1 ⊂ (xn − δ, xn + δ). This finishes the inductive construction.

Finally, let p be such that {p} =
⋂
n<ω Isn , put ` := Tf,p and let p̄ := 〈p, f(p)〉.

Then for every n < ω there exists a pn ∈ ` ∩ B(cn, εn) ⊂ ` ∩ U . In particular,
since pn →n p̄, there is no open interval J in ` with p̄ ∈ J ⊂ R2 \ U = L, that is,
indeed the property (i) of `-miserable set is not satisfied.

3. Final remarks

Corollary 2.2 implies that the part (iii) of Theorem 1.3 holds true also for
some twice differentiable functions f . In other words, in the natural hierarchy
of smoothness of functions f : R → R, the part (ii) of Theorem 1.3 is the best
possible. Nevertheless, we still do not know the full answer for the question (Q):

Problem 3.1. Find the description of all pairs 〈f,K〉 ∈ Lip(Rn−1)×Kn−1 with
f � K ∈ Dn, that is, such that D(g) = f � K for some linearly continuous
g : Rn → R.

Of course, the question is of interest only for the functions f ∈ Lip(Rn−1) that
are neither convex nor, for n = 2, twice continuously differentiable. Interestingly,
we also do not know the answer for the following problem, in spite that we believe
that the answer to it is positive.

Problem 3.2. If n > 2, is it true that f � K ∈ Dn for every twice continuously
differentiable f : Rn−1 → R and K ∈ Kn−1?.
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