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c+-LINEABILITY OF THE CLASS OF DARBOUX MAPS
WITH THE STRONG CANTOR INTERMEDIATE VALUE

PROPERTY WHICH ARE NOT CONNECTIVITY

GBREL M. ALBKWRE, KRZYSZTOF CHRIS CIESIELSKI,
AND JERZY WOJCIECHOWSKI

Abstract. We prove that, under additional set-theoretic assump-
tion that continuum is a regular cardinal, there exists a subspace
of the vector space RR of dimension c+ whose non-zero elements
are the functions that are everywhere surjective, ES, have strong
Cantor intermediate value property, SCIVP, but are not connec-
tivity, Conn. Since every map in ES is Darboux, D, this mens that
the class SCIVP∩D \Conn is c+-lineable under our set-theoretic
assumption.

1. Introduction

For sets X and Y let Y X be the family of all functions from X to Y
and let |X| denote the cardinality of X.

Let V be a vector space, M ⊆ V , and κ be a cardinal number. We
say that M is κ-lineable if there exists a subspace W of V contained in
M ∪ {0} such that the dimension of W is κ. This notion was motivated
by the result of V. I. Gurarĭı [16], which, in the language of lineability,
says that the set of continuous nowhere differentiable functions from [0, 1]
to R (treated as a subset of the vector space [0, 1]R over R) is ω-lineable.
See [5, 7] for the development in this area and [1,2, 4, 9] for recent results
in this direction of the authors of this note. In what follows c denotes the
cardinality of R.
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Recall that an infinite cardinal number κ is a regular cardinal provided
a union of less than κ-many sets of cardinality less than κ has cardinality
less than κ. The goal of this paper is to show that if c is a regular cardinal,
then the class SCIVP∩D \Conn is c+-lineable, where:

ES is the class of all every surjective functions f ∈ RR, that is, such
that f−1(r) is dense in R for every r ∈ R.

D of all Darboux functions f ∈ RR, that is, such that f [C] is con-
nected (i.e., an interval) for every connected C ⊂ R (or, equiva-
lently, that f has the intermediate value property). This class was
first systematically investigated by Jean-Gaston Darboux (1842–
1917) in his 1875 paper [14].

Conn is the class of all connectivity functions f ∈ RR, that is, such
that the graph of f is a connected subset of R2. This notion can
be traced to a 1956 problem [19] stated by John Forbes Nash
(1928–2015).

SCIVP is the class of all functions f ∈ RR with Strong Cantor Inter-
mediate Value Property, that is, such that for all p, q ∈ R with
f(p) 6= f(q) and for every perfect set K between f(p) and f(q),
there exists a perfect set P between p and q such that f [P ] ⊂ K
and f � P is continuous. This notion was introduced in a 1992
paper [20] of Harvey Rosen, R. Gibson, and F. Roush.

Clearly ES ⊂ D. It is also well known and easy to see that Conn ⊂ D.
The classes D, Conn, and SCIVP are among the eight classes of gen-

eralized continuous maps from R to R known as Darboux-like functions
and extensively studied, see e.g. surveys [8,10,15] and the literature cited
therein. Compare also a recent paper [12], which initiated a systematic
study of the 18 atoms of the algebra of subsets of RR generated by the
eight Darboux-like classes of functions. The class SCIVP∩D \Conn is
one of the above mentioned atoms and the problem of determining its
best possible lineability is a part of a broad study of determining such
lineabilities for all these atoms—the subject of a Ph.D. dissertation of the
first author, written under the supervision of the remaining two authors.

We concentrate here only on the class SCIVP∩D \Conn, since finding
for it the optimal lineability has proved more challenging than for most of
other atoms above discussed and the presented construction is different
from the other technic involved in this endeavor. Nevertheless, we should
point out that the method we use below is a variation of one used in [4].

2. The main result: statement, discussion, a sketch of proof

For a family G of partial functions from R into R let
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SZ(G) be the family of all generalized Sierpiński-Zygmund functions with
respect to G, that is, all maps f ∈ RR such that |f ∩ g| < c for
every g ∈ G, see [11].

Of course, in this language the classical class SZ of Sierpiński-Zygmund
functions is defined as SZ(C), where C is the family of all partial continuous
functions from R into R. Below we will use the class SZ(L), where

L is the family of all non-constant affine functions ` ∈ RR, that is
defined as `(x) = ax+ b for some a, b ∈ R, a 6= 0.

As in [4, section 2], we prove c+-lineability of ES \Conn by actually
showing this for a smaller class of SZ(L)∩ES \Conn. In addition, to make
sure that all constructed maps are also SCIVP, we will find a family P
of pairwise disjoint perfect subsets of R with the properties described in
Lemma 2 and make sure that all constructed functions belong also to the
class

CP of all f ∈ RR such that f is constant on every P ∈ P.
In other words, the c+-lineability of ES∩SCIVP \Conn will be shown by
proving the following theorem.

Theorem 1. If continuum c is a regular cardinal number, then there
exists a family P of pairwise disjoint perfect subsets of R such that the
class CP ∩ SZ(L) ∩ ES∩SCIVP \Conn is c+-lineable.

Of course, since E := CP ∩ SZ(L) ∩ ES∩SCIVP \Conn is contained
in D∩SCIVP \Conn, the theorem immediately implies that the class
D∩SCIVP \Conn is also c+-lineable as long as c is regular.

The perfect sets in P are chosen small enough so that, from the per-
spective of the proof of Theorem 1, they will behave like singletons. The
precise meaning of this last statement is expressed in the properties (b)
and (c) stated below.

Lemma 2. There exists a family P of pairwise disjoint perfect subsets of
R such that for every non-empty open interval I:

(a) the collection {P ∈ P : P ⊂ I} has cardinality c;
(b) for every P0 ⊂ P of cardinality less than c and for every map
P0 3 P 7→ λP ∈ L the set

⋃
P∈P0

λP [P ] intersects less than c-
many sets in P;

(c) for every P0 ⊂ P and S ⊂ R \ {0}, both of cardinality less than
c, there is a set A ⊂ (0,∞) of cardinality c such that the sets in
the family {a (S ∪

⋃
P0) : a ∈ A} are pairwise disjoint.

We will prove Theorem 1 by recursively constructing a strictly increas-
ing sequence 〈Vξ : ξ < c+〉 of vector spaces contained in E ∪ {0} and of
cardinality at most c. Then we notice that the union

⋃
ξ<c+ Vξ justifies
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c+-lineability of E . The construction of the sequence is facilitated by the
following lemma.

Lemma 3. If c is a regular and P is as in Lemma 2, then for every
additive group V ⊂ CP ∩ SZ(L)∪ {0} of cardinality at most c there exists
an f ∈ RR not in V and such that f + V := {f + g : g ∈ V } is contained
in CP ∩ SZ(L) ∩ ES∩SCIVP \Conn.

In Lemma 3 the assumption that V ⊂ SZ(L) is essential, since there
are groups V of cardinality c so that f + V 6⊂ D \Conn for every f ∈ RR,
see [12, lemma 4.1] in which this is proved with V being the family of all
Borel functions. Also, since Lemma 3 will be used to extend each space
Vξ to the next space Vξ+1 in the sequence, we will need to ensure that
f +Vξ ⊂ SZ(L). It is perhaps also worth to mention that the class SZ(L)
in this argument is chosen carefully and that the lemma, in its generality,
would be false if we state it for the family SZ = SZ(C) in place of SZ(L).
This is the case, since there are models of ZFC in which c = ω2, so c is
regular, and the class SZ∩D is empty, see [6] or [13, section 6.2].

3. The proofs

For an S ⊂ R let Q(S) denote the subfield of R generated by S (i.e.,
the smallest subfield of R containing S) and let Q̄(S) be the algebraic
closure of Q(S) in R. Recall that S is algebraically independent provided
s /∈ Q̄(S \ {s}) for every s ∈ S; and that S is a transcendental basis
provided it is a maximal algebraically independent subset of R. Every
algebraically independent set can be extended to a transcendental basis,
see e.g. [17]. If T ⊂ R is a transcendental basis, then for every x ∈ R
there exists finite Tx ⊂ T such that x ∈ Q̄(Tx).

Proof of Lemma 2. Let B be the family of all non-empty open intervals
with rational endpoints. First notice that

• there exists a family {PI ⊂ I : I ∈ B} of pairwise disjoint perfect
sets such that

⋃
I∈B PI is algebraically independent.

To see this, let K ⊂ R be a compact perfect algebraically independent
set. (See the original construction of such set by John von Neumann in
[21]. Compare also [18, theorem 1] and [13, theorem 5.1.9].) Choose a
family {TI : I ∈ B} of pairwise disjoint perfect subsets of K and for every
I ∈ B choose non-zero pI , qI ∈ Q so that PI := pITI + qI is contained in
I. Notice that these sets satisfy •.

Next, for every I ∈ B let PI be a partition of PI into c-many perfect
sets. Then the family P :=

⋃
I∈B PI is as needed.

Indeed, (a) is obvious from the construction. In particular, there exists
a transcendental basis T containing

⋃
P.
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To see (b) fix P0 ⊂ P and the map P 7→ λP as in its assumption.
For every P ∈ P0 there is a finite TP ⊂ T such that the two coeffi-
cients of the map λP are in Q̄(TP ). In particular, λP [P ] ⊂ Q̄(P ∪ TP ) so
that

⋃
P∈P0

λP [P ] ⊂ Q̄
(⋃

P∈P0
(P ∪ TP )

)
. But, by the algebraic indepen-

dence, Q̄
(⋃

P∈P0
(P ∪ TP )

)
intersects only less than c-many sets P ∈ P:

those that P ∈ P0 and those for which P ∩
⋃
P∈P0

TP 6= ∅.
To see (c) choose P0 ⊂ P and S ⊂ R \ {0} as in its assumption.

For every s ∈ S choose a finite Ts ⊂ T such that s ∈ Q̄(Ts) and let
TS :=

⋃
s∈S Ts. Then, as in (b), the set TS ∪

⋃
P0 intersects only less

than c-many sets P ∈ P. So, there is a P ∈ P contained in (0,∞)
and disjoint with TS ∪

⋃
P0. Then the set A := P satisfies (c). Indeed,

otherwise there are distinct a, a′ ∈ A and x, y ∈ TS ∪
⋃
P0 with ax = a′y,

contradicting the fact that the set {a, a′}∪TS ∪
⋃
P0 ⊂ T is algebraically

independent. �

Proof of Lemma 3. Let B be the family of all non-empty open intervals
and R = P ∪ {{x} : x ∈ R \

⋃
P}. Fix the following enumerations:

• {〈Iη, yη, gη〉 : η < c} of B × R× V ;
• {Rη : η < c} of R; and
• {`η : η < c} of L.

By induction on η < c we define a sequence 〈〈Dη, fη, aη〉 : η < c〉 with
fη :

⋃
Dη → R and aiming for f :=

⋃
η<c fη being our desired map. To

achieve this, we will ensure that the following inductive conditions are
satisfied for each η < c and every ξ ≤ η:

(i) aη ∈ (0,∞), |Dη| < c; Dξ ⊂ Dη ⊂ R, and Rξ ∈ Dη;
(ii) fξ ⊂ fη and fη is constant on every P ∈ Dη;
(iii) there is a P ∈ Dη ∩ P contained in Iξ with (fη + gξ)[P ] = {yξ};
(iv) (fη + gξ)(x) 6= aξx for every non-zero x ∈

⋃
Dξ;

(v) if α, β < ξ, then the set {x ∈
⋃
Dη : (fη + gα)(x) = `β(x)} is

contained in {0} ∪
⋃
Dξ.

Before we construct such a sequence, first notice that the above condi-
tions (i)–(v) actually ensure that f =

⋃
η<c fη has the desired properties.

Indeed, (i) and (ii) ensure, in particular, that f is a functions from R
into R constant on every P ∈ P, that is, f ∈ CP and also f + g ∈ CP
for every g ∈ V . The property (iii) implies that for such defined f and
any g ∈ V the map f + g is both ES and SCIVP, where the continuous
function f � P in the definition of SCIVP is just a constant map. The
property (iv) justifies that, for every g = gξ ∈ V , the map f + g has
disconnected graph, as (by f + g ∈ ES) there exist q > p > 0 such that
(f + g)(p) > aξp and (f + g)(q) < aξq and so the three-segment closed
set ({p} × (−∞, aξp]) ∪ {(x, aξx) : x ∈ [p, q]} ∪ ({q} × [aξq,∞)) separates
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the graph of f + g. Finally, to see that f + g is in SZ(L) choose an ` ∈ L
and let α, β < c be such that g = gα and ` = `β . Choose any ξ < c with
α, β < ξ. Then, by (v), S := {x ∈ R : (f + g)(x) = `(x)} is contained
in {0} ∪

⋃
Dξ. But, by (ii) and the fact that f + g ∈ CP , we see that

|(f + g)[
⋃
Dξ]| ≤ |Dξ| < c. Therefore, since ` is injective, |S| ≤ |Dξ| < c,

showing that indeed f + g ∈ SZ(L).
By the argument in the above paragraph to finish the proof of the

lemma it is enough to construct a sequence satisfying (i)–(v). So, assume
that for some η < c the sequence 〈〈Dη, fη, aη〉 : η < ζ〉 is already con-
structed and that it satisfies (i)–(v) for every η < ζ. We just need to
construct Dζ , fζ , and aζ so that (i)–(v) are also satisfied by the sequence
〈〈Dη, fη, aη〉 : η < ζ + 1〉.

The family Dζ is defined as {Rζ , P}∪
⋃
η<ζ Dη for appropriately chosen

P ∈ R, so that (iii), (iv), and (v) can be ensured. We define fζ as an
extension of

⋃
η<ζ fη so that (fζ + gζ)[P ] = {yζ} and fζ [Rζ ] = {y} for

appropriately chosen y ∈ R. The construction will be finished with an
appropriate choice of aζ .

The above scheme ensures satisfaction of (i) and (ii), where the prop-
erty |Dζ | < c is implied by the inductive assumption and the regularity
of c. Next, we choose a needed P ∈ R \

⋃
η<ζ Dη contained in Iζ so that

the definition of fζ on P required for the satisfaction of (iii):

fζ(x) := yζ − gζ(x) for every x ∈ P (1)

does not contradict (iv), that is,

fζ(x) 6= aξx− gξ(x) for every x ∈ P and ξ < ζ (2)

and (v), that is,

fζ(x) 6= `β(x)− gα(x) for every x ∈ P and α, β ≤ ζ (3)

To avoid conflict between (1) and (2) we need to choose P disjoint with
the sets

Sξ := {x ∈ R : (gξ − gζ)(x) = aξx− yζ} for every ξ < ζ,

while to avoid conflict between (1) and (3) our P needs be disjoint with

Tαβ := {x ∈ R : (gα − gζ)(x) = `β(x)− yζ} for every α, β ≤ ζ.
But each of the sets Sξ and Tαβ has cardinality less than c, as maps aξx−yζ
and `β(x)−yζ are in L, while gξ−gζ , gα−gζ ∈ V ⊂ SZ(L)∪{0}. Therefore,
by the regularity of c, the union T :=

⋃
ξ<ζ Sξ∪

⋃
α,β≤ζ T

α
β has cardinality

less than c so we can choose P ∈ P \
⋃
η<ζ Dη contained in Iζ \ T . Such

a choice ensures that (iv) and (v) are satisfied for every x ∈ P , α, β ≤ ζ,
and ξ < ζ. To ensure that the same is true for x ∈ Rζ , first notice that
this follows from inductive assumption when Rζ ∈ {P} ∪

⋃
η<ζ Dη. So,
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assume that this is not the case. We need to choose y ∈ R so that the
definition

fζ(x) := y for every x ∈ Rζ (4)

does not contradict (2) and (3) considered with P replaced with Rζ . De-
noting the singleton value of gξ[Rζ ] by {zξ}, this last requirement means
that y does not belong to the sets aξRζ − zξ, ξ < ζ, and `β [Rζ ]− zα. But
the existence of such y is obvious when Rζ is a singleton and otherwise
follows from the property of the family P expressed in Lemma 2(b). Such
choice of y ensures that all conditions (i)-(v) are satisfied, except for (iv)
with ξ = ζ, as aζ is still not defined. This condition that we still need is:

(fζ + gζ)(x) 6= aζx for every non-zero x ∈
⋃
Dζ . (5)

But |Dζ | < c and fζ + gζ ∈ CP imply that the set (fζ + gζ)[
⋃
Dζ ] has

cardinality less than c. On the other hand, by Lemma 2(c) used with
P0 := P ∩ Dζ and S :=

⋃
Dζ \ ({0} ∪

⋃
P0), there is a set A ⊂ (0,∞)

of cardinality c such that the sets in {a(
⋃
Dζ) \ {0} : a ∈ A} are pairwise

disjoint. Therefore, there exists an aζ ∈ A with the set aζ(
⋃
Dζ) \ {0}

disjoint with (fζ + gζ)[
⋃
Dζ ]. But this ensures that (5) is satisfied. This

choice finishes the construction and the proof of the lemma. �

Proof of Theorem 1. Let P be as in Lemma 2. By induction on ξ <
c+ construct a sequence 〈Vξ : ξ ≤ c+〉 of linear subspaces of E ∪ {0},
where E = CP ∩ SZ(L) ∩ ES∩SCIVP \Conn, such that |Vξ| ≤ c for
every ξ < c+, Vλ =

⋃
η<λ Vη for every limit ordinal number λ ≤ c+, and

Vξ+1 :=
⋃
r∈R(rfξ +Vξ) for every ξ < c+, where fξ is the function f from

Lemma 3 used with V = Vξ. Then Vc+ justifies c+-lineability of E , as
needed. �

4. Corollaries and open problems

Of course Theorem 1 implies immediately, that

Corollary 4. It is consistent with ZFC, as follows for example from the
generalized continuum hypothesis GCH, that the class D∩SCIVP \Conn
is 2c-lineable.

We have shown in ZFC (see [1] and [2]) that the majority of classes that
constitute the atoms of the algebra of Darboux-like classes of functions
are 2c-lineable. In this light, the following open problem is natural to
state.

Problem 5. Can we prove in ZFC that the class D∩SCIVP \Conn is
c+-lineable? What about its 2c-lineabilty?
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We believe that both these questions have positive answers. Perhaps
this can be proved with the technic developed in [1].

Theorem 1 does not say us anything in ZFC about lineabilty of the
class D∩SCIVP \Conn. However, a relatively easy proof in ZFC of c-
lineability of this class can be found in [3].
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