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ABSTRACT. We provide an elegant argument showing, in ZFC, that the class
PES \ Conn of all functions from R to R that are perfectly everywhere surjec-
tive (so Darboux) but not connectivity is 2°-lineable, that is, that there exists a
linear subspace of R¥ of dimension 2¢ that is contained in (PES \ Conn) u{0}.
This solves a problem from a 2020 paper of G.M. Albkwre, K.C. Ciesielski,
and J. Wojciechowski. The construction utilizes a transcendental basis of R.

1. INTRODUCTION AND PRELIMINARIES

Over the last two decades a lot of mathematicians have been interested in finding
the largest possible vector spaces that are contained in various families of real
functions, see e.g. survey [4], monograph [3], and the literature cited there. (More
recent work in this direction include [2,5,8].) Specifically, given a cardinal number
Kk, a subset M of a vector space X is said to be k-lineable (in X ) provided there
exists a linear space Y ¢ M u {0} of dimension . This notion was first studied by
Vladimir Gurariy [9], even though he did not use the term lineability. He showed
that the set of continuous nowhere differentiable functions on [0,1], together with
the constant 0 function, contains an infinite-dimensional vector space, that is, it is
w-lineable. In what follows ¢ denotes the cardinality of R.

The goal of this note is to show that the class PES \ Conn is 2°-lineable, where
Conn stands for the class of all connectivity functions in R® (i.e., from R to R),
that is, having connected graphs (as subspaces of R?), while PES is the family of
all perfectly everywhere surjective maps f:R — R, that is, such that f[P] = R for
every non-empty perfect set P c R. Notice that every f e PES is also Darboux.
The c¢*-lineability of PES \ Conn, under the assumption that ¢ is a regular cardinal
number, has been proved in a 2020 paper [1] by G.M. Albkwre, K.C. Ciesielski,
and J. Wojciechowski. In that paper the authors also asked [1, problem 4.1(iii)] if
2¢-lineability of PES \ Conn can be proved in ZFC. Below we give an affirmative
answer to this question.

For an f € R® its support is defined as

supp(f) := {z e R: f(z) # 0}.
Note that we do not take the closure of the set above.
For a family F ¢ R® of non-zero functions with pairwise disjoint supports let
Vi be the collections of all maps f, = ¥ ¢ers(f) - f, where s: F — {0,1}. Notice
that each fs is well defined and that Vz has cardinality 2%, where x = |F|, is the
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cardinality of F. Let W be the linear subspace of R® over R spanned by V. So,
the following remark is obvious.

Remark 1.1. If |F| =c, then Wx has dimension 2°.

Recall (see e.g. [6]) that B c R is a Bernstein set provided PN B + @ # P\ B
for every non-empty perfect set P c R.

For an S c R let Q(S) denote the subfield of R generated by S (i.e., the smallest
smallest subfield of R containing S) and let Q(.S) be the algebraic closure of Q(.S)
in R. Recall that S is algebraically independent provided s ¢ Q(S \ {s}) for every
s € S; and that S is a transcendental basis provided it is a maximal algebraically
independent subset of R. It is well known that there exists a transcendental basis T’
that is also a Bernstein set—it can be constructed by an easy transfinite induction.i
(Compare [6, theorem 7.3.4].)

2. THE CONSTRUCTION
Let id be the identity map from R to R and for F c R let id-F := {id-f: f € F}.

Theorem 2.1. There exists a family F c R® of cardinality ¢ with pairwise disjoint
supports such that Wiq.7 ¢ (PES~ Conn)u{0}. In particular, the class PES \ Conn
is 2-lineable.

Proof. Let {bgs:€ < ¢} be an enumeration of a transcendental basis T that is also a
Bernstein set and let {B:r € R,n < ¢} be a partition of T into Bernstein sets such
that for every re R and n<¢:
(a) e Q({be:¢ < &}) for every € < ¢ with be € B,
Such a partition without the property (a) can be found by an easy transfinite
induction. Then, the property (a) can be additionally imposed by removing from
each initially constructed set B}, with 1 < ¢ and r # 0, a set of cardinality less than
¢ and adding each such removed part to B.
For every r e R~ {0} and 7 < ¢ put
D} :=r-B),
and notice that
(b) the sets in {D:r e R\ {0} & n < ¢} are Bernstein and pairwise disjoint.
To see pairwise disjointness, choose distinct {r,n), (', 7’} € (R\{0})xc and numbers
r-be D] and - b € Df,’ We need to show that r-b+ ' -b'. Indeed, b £ b" as they
belong to disjoint sets B) and B:',’, respectively. So, there are distinct &, &’ < ¢ such
that b = b and b' = ber. We can assume that £’ > . Now, if r-b =r"-b" then, by
(a), ber =" = (r")"r-be € Q({be:¢ < €'}), contradicting algebraic independence of
T. To finish the proof of (b) it is enough to notice that D] = r- B}l intersects every
non-empty perfect set P, as "' P is perfect and Bl'n (r'lP) # o.
For every r e R\ {0} and 7 < ¢ define

() r/z if xeD]
(@) {0 it 2 e R~ DY,

et {P::£ < ¢} be an enumeration of all non-empty perfect subsets of R, for every ordinal
€ < ¢ choose be € Q({b¢:¢ < €}). Then {bg:€ < ¢} is algebraically independent, so there is a
transcendental basis T extending it, see e.g. [10]. It is Bernstein, as it and its complement
(containing a shift of 7" by 1) intersect every non-empty perfect set.
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and put
Jn= Z fﬁ

reR\{0}
The functions f;! and f, are well defined since 0 ¢ D] and, by (b), the supports of
the maps f]! are pairwise disjoint. We claim that the family F := {f,:n < ¢} is as
needed.

Indeed, clearly id-F = {id-f: f € F} consists of ¢-many distinct functions with
pairwise disjoint supports. So, by Remark 1.1, Wiq.7 has needed dimension 2°.

It remains to show that every non-zero f € Wiq.x is in PES \ Conn. To see this,
notice that there exist n € {1,2,3,...}, a1,...,a, €R, and fq,,..., fs, € Via.F such
that

TEDTAES] Dt WY 0
i=1 n<c \i=1

where fs, := ¥, . si(n)-id-f, for appropriate s;:¢ - {0,1}. Also, for every r e R\ {0}
and 7 < ¢ we have id-f)’ = rXpn, where Xp is the characteristic function of D, as

(id-fy)(z) =z f](x) = r for every x € D]. In particular,
id-fp= > id-fl= > rXpn. (2)

reR\{0} reR\{0}

Also, there is an 1 < ¢ so that the number ¢, := ¥, a;5;(n) is non-zero, since f is

non-zero. Moreover, since sets Dy, := Urer {0y D) and B = Un<e B{ are Bernstein
and disjoint, (1) and (2) imply that for every non-empty perfect P c R we have

R=c, R=c,((id-f,) | (D, 0B")[P] = (f | (D, B°)[P] < f[P],

proving that f e PES.
To finish the proof, it is enough to show that f ¢ Conn. To see this, notice that

infinite, we can choose an a € B® such that a ¢ Q(C u (R~ B°)). We claim that
f(x) # ax for every z e R\ {0}. (3)

Indeed, f(x) = az # 0 implies that « = rb for some n < ¢, r # 0, and b € B]. But,
by (1) and (2), this means that arb = ax = f(z) = ¢,(id-f)(x) = ¢, -7 and so
a= % eQ(Cu (R~ BY)), contradicting the choice of a.

Finally, since f € PES, its graph is dense, so there exist ¢ > p > 0 such that
f(p) >apand f(q) < aq. But this, together with (3) implies that the three-segment
set ({p} x (-00,ap]) U{(z,ax):z € [p,q]} U ({¢} x [ag,0)) separates the graph
of f. 0

As mentioned above, the class D of all Darbouz functions (i.e, all functions
f:R - R mapping mapping every interval into an interval) obviously contains PES.
In particular, Theorem 2.1 immediately implies that

Corollary 2.2. The class D ~ Conn is 2°-lineable.

The results presented in this paper constitute a starting point of an extensive
study of the maximal lineabilities for all classes in the algebra of Darboux-like
maps on R. This study is expected to lead to several other papers and a Ph.D.
dissertation of Mr. Gbrel Albkwre. For the study of the additivity coefficients for
the same classes of functions see [7].
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