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Abstract: We propose a novel efficient seed-based method for the multi-object segmentation of images based
on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the
relations between the image objects, with each node in the tree representing an object. Each tree node may
contain different individual high-level priors of its corresponding object and defines a weighted digraph, named
as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations
of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted
digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations
of HLOIFT, on medical, natural, and synthetic images, indicate promising results comparable to the related
baseline methods that include structural information, but with lower computational complexity. Compared
to the hierarchical segmentation by the min-cut/max-flow algorithm, our approach is less restrictive, leading
to globally optimal results in more general scenarios, and has a better running time.
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1 Introduction

Image segmentation is one of the most fundamental and challenging problems in image processing and com-
puter vision. It is the task of partitioning an input image into objects of interest by assigning distinct labels
to their composing pixels. Hence, image segmentation can be interpreted as a classification problem at the
pixel level. Not surprisingly, machine learning-based methods are among the most prominent solutions to the
segmentation problem, especially after the advent of deep learning techniques [21]. In this context, a state-
of-the-art method in grabcut-style [41] for interactive segmentation with minimal user involvement is Deep
Extreme Cut [28]. It considers extreme points (left-most, right-most, top and bottom pixels at the object
boundary) as 4 clicks for each object, and the CNN produces the segmented masks. This type of user input is
usually a good choice for single-shot algorithms, since from the 4 indicated points we can infer object’s bound-
ing box, and consequently, all points outside the box belong to its background. At first glance, this seems to be
better than other types of user inputs, since arbitrary points do not allow us to draw any further conclusions.
However, it is not possible in general to get a segmentation result with ground truth quality using only a 4
points selection, since considerable residual errors all around the boundary are quite common (Figures 1a and
c). Moreover, user input in grabcut-style is usually not appropriate to perform further corrections, such that
a different type of corrective action is usually employed in approaches like GrabCut [41], resulting in a less
user-friendly interface due to the multiple types of input. On the other hand, deep learning techniques require
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a lot of annotated data for training the network and for many applications the availability of gold standard
is quite limited.

(a) (b)

(c) (d)

Fig. 1: The results of segmentations on two natural images by Deep Extreme Cut and by a particular case of HLOIFT, in
single object setting and with no hight-level priors. (a,c) The results by Deep Extreme Cut with 4 clicks. (b,d) The results
by HLOIFT with arc-weight estimation from [13] using only 3 and 2 clicks, respectively. Notice, that Deep Extreme Cut
has poor boundary adherence in the pepper segmentation while in the flower segmentation it invades the surrounding green
area of the leaves.

In this work, we focus on the interpretation of the image segmentation as a graph partition problem subject
to hard constraints, given by seed pixels selected in the image domain, such that a refined segmentation can
be obtained with an arbitrary level of precision, leading to a high-quality ground-truth data. The intended
methods in graphs are very flexible. Besides being easily extensible for multidimensional images, they allow
several customizations, such as the usage of different image elements as its nodes (e.g., superpixels [24]), the
learning of graph weights by means of machine learning techniques [13] (see Figures 1b and d), or even the
incorporation of learning by deep learning techniques [55, 56]. For the sake of simplicity and space constraints,
here we focus only on the base form of the proposed method at the pixel level, without the use of training
images, and discuss the use of high-level priors that can be easily set based on the application knowledge.

Examples of seed-based methods are watershed [12], random walks [19], fuzzy connectedness [6], graph
cuts (GC) [2], grow cut [25], minimum barrier distance [9], and image foresting transform (IFT) [18, 7].
Some methods, including the min-cut/max-flow algorithm, can provide global optimal solutions according to
a graph-cut measure in graphs and can be described in a unified manner according to a common framework, to
which we refer as Generalized GC (GGC) [5]. Oriented Image Foresting Transform (OIFT) [35] and Oriented
Relative Fuzzy Connectedness (ORFC) [1] are the GGC methods designed for directed weighted graphs, which
have low computational complexity as compared to the min-cut/max-flow algorithm [2].

Global object properties, such as connectedness [54, 29], shape constraints [22, 20, 32, 53], and boundary
polarity [42, 35], are potentially useful high-level priors for object segmentation, allowing the customization
of the segmentation to a given target object.

In the context of multiple object segmentation, each object may present its own distinctive features,
requiring different high-level priors. In order to obtain a good segmentation result, the segmentation method
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must attend all individual object priors and capture the contextual or structural relations between them.
However, many existing methods either do not include any form of structural information or include only the
high-level priors for single object segmentation [54, 20, 29, 35]. Consequently, they may be inappropriate in
the context of multiple objects.

Most of the methods for multi-object segmentation that include structural information are based on graph-
cut optimization and are performed by a min-cut/max-flow algorithm [15, 16, 52]. These methods usually use
priors, based on inclusion or exclusion interactions between objects. However, their globally optimal results are
restricted only to some particular cases and they usually have a high computational cost. The methods based in
LOGISMOS (Layered Optimal Graph Image Segmentation for Multiple Objects and Surfaces) [57, 38] require
an approximated pre-segmentation whenever the objects present complex shapes, in order to get information
about the topological structures of the target objects. Note that the fast segmentation obtained by our
proposed method could also be used as a starting point for LOGISMOS. In the context of segmentation by the
Image Foresting Transform (IFT) framework, in order to incorporate structural information among objects,
Fuzzy Object Models (FOMs) [36, 33, 51, 50, 48, 40, 44, 49, 37, 47] are usually employed. However, these
approaches are based on separate IFT executions per object, that do not incorporate contextual information
and the high-level priors of all objects into a single energy optimization, limiting their potential.

In this work, we circumvent the aforementioned problems, by proposing a hierarchical layered graph-based
approach for multiple object segmentation, named as Hierarchical Layered OIFT (HLOIFT), which performs
a single energy optimization subject to individual and structural high-level priors. A graph used in HLOIFT
for a segmentation of 𝑚 objects is formed with 𝑚 layers, copies of image scene graph, each associated with
an object. The hierarchy considers inclusion and exclusion constraints between objects as in [15], but each
object in the image can also have its own set of high-level priors. Further, we formulate the integration of
individual object constraints and structural priors from layers, within a single energy optimization, overcoming
the mentioned limitations from previous works and conserving the low computational cost of OIFT.

Specifically, our main contributions are as follows. Theoretical: We propose a new seed-based method for
multi-object segmentation allowing high-level priors for image objects and the hierarchical constraints between
them. Generality: Our approach is less restrictive than most methods in use and leads to the globally optimal
results in more general scenarios. Complexity: Our method has low computational complexity as compared
to methods based on min-cut/max-flow.

HLOIFT was first presented in a conference paper [23] and later demonstrated for use in graphs of
superpixels [24]. In this extended work, we provide more details in the presentation of the method, including
a formal definition of the obtained objects, the complete algorithm, a formal mathematical proof of the
correctness of the algorithm, and more experiments, quantitatively comparing with the hierarchical graph cut
algorithm [15, 16], one of the few existing methods that can also use a full hierarchy prior as an input.

Our work is organized as follows: In Section 2, we introduce some required definitions and review the
OIFT method. Our new algorithm HLOIFT is described in Section 3 and the proof of its correctness is given
in Section 4. The experimental evaluation of HLOIFT is presented in Section 5, while our conclusions are
stated in Section 6.

2 Background

An (𝑛-dimensional) image is a pair (ℐ, 𝐼), where ℐ is a finite set of pixels identified with the 𝑛-tuples of
integers (i.e., ℐ ⊂ Z𝑛) and 𝐼 is a mapping that assigns to each pixel 𝑡 ∈ ℐ its intensity 𝐼(𝑡), that is, either a
real number (in case of monochromatic image) or an appropriate vector in R𝑘. An image can be interpreted
as a weighted digraph (i.e., directed graph) 𝐺 = (𝒩 ,𝒜, 𝜔) whose nodes (vertices) are the pixels in the image
domain 𝒩 = ℐ, arcs/edges listed in 𝒜 are the pairs (𝑠, 𝑡) ∈ ℐ2 of pixels (usually, in 2D images, identified with
either 4- or 8-neighborhoods), and the weight map 𝜔 associates to each arc (𝑠, 𝑡) ∈ 𝒜 a value 𝜔(𝑠, 𝑡) ∈ [−∞,∞]
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(usually defined as 𝜔(𝑠, 𝑡) = ‖𝐼(𝑡) − 𝐼(𝑠)‖).1 We use the notations 𝑡 ∈ 𝒜(𝑠) and (𝑠, 𝑡) ∈ 𝒜 to indicate that
𝑡 is adjacent to 𝑠. A digraph 𝐺 is symmetric if for all (𝑠, 𝑡) ∈ 𝒜, the pair (𝑡, 𝑠) is also an arc of 𝐺, that is,
(𝑡, 𝑠) ∈ 𝒜. All digraphs we consider below are symmetric. Notice, however, that in symmetric digraphs we
may still have 𝜔(𝑠, 𝑡) ̸= 𝜔(𝑡, 𝑠).

2.1 Oriented Image Foresting Transform (OIFT)

Image segmentation can be formulated as a graph partition problem subject to hard constraints. In the case
of binary segmentation whose goal is to separate an object 𝑂1 from its background 𝑂0 = ℐ ∖𝑂1, we consider
two non-empty disjoint seed sets 𝒮0,𝒮1 ⊂ ℐ indicating, respectively, 𝑂0 and 𝑂1 (i.e., aiming for 𝑂1 ⊃ 𝒮1 and
𝑂0 ⊃ 𝒮0). So, we assume that 𝒮1∩𝒮0 = ∅. Actually, the object 𝑂1 is identified with its labeling 𝐿 : ℐ → {0, 1},
which is the indicator (i.e., characteristic) function 𝜒𝑂1

of 𝑂1. (That is, 𝑂1 = {𝑣 ∈ ℐ : 𝐿(𝑣) = 1}.) In
particular, the seeds give us a partial labeling, 𝐿(𝑡) = 1 for all 𝑡 ∈ 𝒮1 and 𝐿(𝑡) = 0 for all 𝑡 ∈ 𝒮0, which is
propagated to all unlabeled pixels during the OIFT algorithm [35].

In the case of directed weighted graphs, there are two important classes of energy formulations within the
Generalized GC framework, the Max-Min2 and Min-Sum optimizers [5]. The OIFT and ORFC algorithms
are Max-Min optimizers while the min-cut/max-flow algorithm is a Min-Sum optimizer. The resulting seg-
mentation by OIFT gives, subject to the seed constraints [35], a global optimum solution by maximizing the
graph-cut measure 𝜀𝑚𝑖𝑛 defined as

𝜀𝑚𝑖𝑛(𝐿) = min{𝜔(𝑠, 𝑡) : (𝑠, 𝑡) ∈ 𝒜 & 𝐿(𝑠) > 𝐿(𝑡) = 0}. (1)

For the sake of simplicity, the OIFT algorithm is being presented here without the explicit forest calcu-
lation, from which its name comes from. We can do this, since the label map 𝐿 without the forest is sufficient
for the segmentation task. The OIFT segmentation, indicated by 𝐿, can be computed by Algorithm 1, in a
connected and symmetric digraph 𝐺, as described in [31].

Algorithm 1. – OIFT Algorithm

Input: Image graph (𝒩 ,𝒜, 𝜔), non-empty disjoint seed sets 𝒮0 and 𝒮1.
Output: The label map 𝐿 : 𝒩 → {0, 1}.
Auxiliary: Priority queue 𝑄, variable 𝑡𝑚𝑝, the cost function 𝑉 : 𝒩 → [−∞,∞], and a status function 𝑆 : 𝒩 →

{0, 1}, where 𝑆(𝑡) = 1 for processed nodes and 𝑆(𝑡) = 0 for unprocessed nodes.

1. For each 𝑡 ∈ 𝒩 , do
2. Set 𝑆(𝑡)← 0 and 𝑉 (𝑡)←∞;
3. If 𝑡 ∈ 𝒮0, then
4. 𝑉 (𝑡)← −∞, 𝐿(𝑡)← 0, and insert 𝑡 in 𝑄;
5. If 𝑡 ∈ 𝒮1 then
6. 𝑉 (𝑡)← −∞, 𝐿(𝑡)← 1, and insert 𝑡 in 𝑄.
7. While 𝑄 ̸= ∅ do
8. Remove 𝑠 from 𝑄 such that 𝑉 (𝑠) is minimum;
9. Set 𝑆(𝑠)← 1;
10. For each (𝑠, 𝑡) ∈ 𝒜 such that 𝑆(𝑡) = 0 do
11. If 𝐿(𝑠) = 1 then 𝑡𝑚𝑝← 𝜔(𝑠, 𝑡)

12. Else 𝑡𝑚𝑝← 𝜔(𝑡, 𝑠);
13. If 𝑡𝑚𝑝 < 𝑉 (𝑡) then
14. Set 𝑉 (𝑡)← 𝑡𝑚𝑝 and 𝐿(𝑡)← 𝐿(𝑠)

15. If 𝑡 /∈ 𝑄 then insert 𝑡 in 𝑄.

1 The symbol ‖ · ‖ denotes the standard Euclidean norm in R𝑘.
2 Min-Max optimizer is a dual equivalent problem.
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Note that in line 12 of Algorithm 1, the arc weight 𝜔(𝑡, 𝑠) of the reversed arc (𝑡, 𝑠) is used (rather than
that of chosen (𝑠, 𝑡) ∈ 𝒜). That is why a symmetric digraph is required. The value 𝑉 (𝑡) assigned in line 14
constitutes a contribution, to the energy 𝜀𝑚𝑖𝑛(𝐿) given by (1), that a consecutive change of labeling 𝐿(𝑡)

from 𝐿(𝑠), already fixed, to 1 − 𝐿(𝑠) would represent. For every node 𝑡 considered in lines 10-15 the value
𝑉 (𝑡) represents the worst (minimum) weight (𝑤0 or 𝑤1, as defined in Remark 1) of the arcs (𝑣, 𝑡) ∈ 𝒜 from
already processed object nodes 𝑣 (i.e., with 𝑆(𝑣) = 1).

Remark 1. Notice, that if we define the weight functions 𝑤0 and 𝑤1 on 𝒜 as 𝑤1(𝑠, 𝑡) = 𝜔(𝑠, 𝑡) and 𝑤0(𝑠, 𝑡) =

𝜔(𝑡, 𝑠), then the execution of lines 11 and 12 in Algorithm 1 is equivalent to the execution of a single line:
“𝑡𝑚𝑝← 𝑤𝐿(𝑠)(𝑠, 𝑡).” Also, if consecutive line 14 is executed, then 𝑉 (𝑡) becomes 𝑤𝐿(𝑠)(𝑠, 𝑡). The use of different
affinities for different objects has a long history in Fuzzy Connectedness algorithms, as described in [8]. In
fact, more recently, it has been proven that OIFT algorithm belongs to a class of General Fuzzy Connectedness
algorithms and so, it has several good theoretical properties, like robustness for seed placement [14]. Algorithm 1
is also equivalent (in a sense defined in [10] and [11]) to a generalized Dijkstra algorithm from [7] used with
an appropriate path cost function, being the map 𝑉 related to the cost of paths [31]. As pointed in [39], OIFT
algorithm is also related to directed connected filters. In particular, the marker based segmentation from [39],
which takes the union of the selected directed connected components, corresponds to a segmentation by Oriented
Relative Fuzzy Connectedness (ORFC) [4, 1]. ORFC is another Max-Min optimizer, whose result is always
contained in the segmentation by OIFT [45, 46].

For a detailed example of the step-by-step execution of Algorithm 1, the reader should refer to [14].
To explore the boundary polarity in monochromatic images, the arcs weights 𝜔(𝑠, 𝑡) are defined as a

combination of an undirected dissimilarity measure 𝜓(𝑠, 𝑡) ≥ 0 between neighboring pixels 𝑠 and 𝑡, multiplied
by an orientation factor, as follows:

𝜔(𝑠, 𝑡) =

⎧⎪⎨⎪⎩
𝜓(𝑠, 𝑡)× (1 + 𝛼) if 𝐼(𝑠) > 𝐼(𝑡),
𝜓(𝑠, 𝑡)× (1− 𝛼) if 𝐼(𝑠) < 𝐼(𝑡),
𝜓(𝑠, 𝑡) otherwise,

(2)

where 𝛼 ∈ [−1, 1] and we usually have 𝜓(𝑠, 𝑡) = |𝐼(𝑡)−𝐼(𝑠)|. Other options for 𝜓(𝑠, 𝑡) are discussed in [13, 10].
Note that, in general, we have 𝜔(𝑠, 𝑡) ̸= 𝜔(𝑡, 𝑠) for 𝛼 ̸= 0. For 𝛼 > 0, the segmentation by OIFT favors
transitions from bright to dark pixels, and 𝛼 < 0 favors the opposite orientation. To understand this, note
that, for a given labeling 𝐿, if 𝐼(𝑠) > 𝐼(𝑡) for all arcs (𝑠, 𝑡) such that 𝐿(𝑠) > 𝐿(𝑡), then increasing 𝛼 will
increase 𝜀𝑚𝑖𝑛(𝐿). On the other hand, if 𝐼(𝑠) < 𝐼(𝑡) for all arcs (𝑠, 𝑡) such that 𝐿(𝑠) > 𝐿(𝑡), then decreasing
𝛼 will increase 𝜀𝑚𝑖𝑛(𝐿). For the case of polarity involving color images, the reader should refer to [31].

Finally, as presented in the next section, for multi-object segmentation we consider multiples 𝛼𝑖 values,
each associated to a different object.

3 Hierarchical Layered OIFT

We propose the Hierarchical Layered Oriented Image Foresting Transform (HLOIFT) as a new seed-
based method for multi-object segmentation. Figure 2 shows an overview of our framework. For a given input
image, seeds sets for some objects, and the tree of relations between objects, the HLOIFT method has the
following steps: (1) Each layer is constructed as a weighted digraph representing one object with its own
priors (described in Section 3.2). (2) HLOIFT defines a setup for the inter-layer connections representing the
hierarchical constraints, such as inclusion and exclusion relations (described in Section 3.3). (3) HLOIFT uses
an extension of the OIFT algorithm to compute an optimal cut over the hierarchical layered digraph, giving
as output a labeled image (described in Section 3.4).
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INPUT

. Image: I 

. Set of seeds

. Priors for objects

. Tree of Relations: h

. Parameter of distance:  

1*. Set of object-digraph construction

2*. Hierarchical digraph construction

3*. Energy optimization

HLOIFT OUTPUT

. Labeled image 

1 2

3

4

h

Fig. 2: Overview of our framework. Given the input parameters, a hierarchical weighted digraph of layers (digraphs) is con-
structed using the inclusion (solid line) and exclusion (dashed line) hierarchical constraints between objects, and a graph-
cut measure is optimized by our algorithm. Finally, we have a labeled image as output. (Compare to Figure 9. Notice, that
only three seeds are used.)

3.1 Notations and definitions

Let ℒ = {1, . . . ,𝑚} denote an index set, where each element in ℒ is associated with an object we consider
and 𝑚 is the number of objects to be segmented. The HLOIFT graph associated with ℒ and image (ℐ, 𝐼) will
be defined on the set of nodes 𝒩 = ℒ×ℐ. The HLOIFT resulted segmentation of the image will be identified
with a binary variable 𝑋 : 𝒩 → {0, 1}, where, for 𝑖 ∈ ℒ, the 𝑖th object 𝑂𝑖 and the background 𝑂0 are defined,
respectively, as

𝑂𝑖 = {𝑡 ∈ ℐ : 𝑋(𝑖, 𝑡) = 1} and 𝑂0 = ℐ ∖
⋃︀

𝑖∈ℒ𝑂𝑖. (3)

Each object/background object 𝑂𝑖, 𝑖 ∈ ℒ ∪ {0}, will be identified with a corresponding set 𝒮𝑖 ⊂ ℐ of seeds,
aiming for 𝒮𝑖 ⊆ 𝑂𝑖.

The hierarchy between the objects is understood as a prior knowledge on any pair ⟨𝑂𝑖, 𝑂𝑗⟩ of objects we
consider: either 𝑂𝑖 ∩𝑂𝑗 = ∅, or one of them is properly contained in the other. This prior is represented as a
function ℎ : ℒ → {1, . . . ,𝑚+1}, referred to as a tree, and defined as follows. If 𝑂𝑚+1 = ℐ (the image domain
and the root of the tree), then ℎ(𝑖) = 𝑗 if, and only if, 𝑂𝑗 is the smallest of the objects properly containing
𝑂𝑖. If ℎ(𝑖) = 𝑗, then we will refer to 𝑂𝑗 as the parent of 𝑂𝑖 (or say that the tree node 𝑗 is the parent of 𝑖). See
the left lower part of Figure 2 for a graphical representation of ℎ. We say that the objects 𝑂𝑖 and 𝑂𝑗 (or just
nodes 𝑖 and 𝑗) are siblings, provided 𝑖, 𝑗 ∈ ℒ are distinct and ℎ(𝑖) = ℎ(𝑗). In particular, any sibling objects are
disjoint. Only the seed sets 𝒮𝑖 for the leaves in the tree of relations and background must be non-empty, since
nested boundaries can be discovered by the inclusion relation as will be demonstrated in the experiments.

In addition, we will use the distance parameter 𝜌 ≥ 0, which indicates the minimum distance between
the boundaries of siblings and of the parent-offspring pairs of objects. More specifically, we have the following
consistency condition:
(C) For siblings 𝑂𝑖 and 𝑂𝑗 we will assume that ‖𝑠 − 𝑡‖ > 𝜌 for every 𝑠 ∈ 𝑂𝑖 and 𝑡 ∈ 𝑂𝑗 , while for parent-

offspring pair ⟨𝑂𝑗 , 𝑂𝑖⟩ (i.e., with ℎ(𝑖) = 𝑗) that 𝑡 ∈ 𝑂𝑗 whenever there exists an 𝑠 ∈ 𝑂𝑖 with ‖𝑠− 𝑡‖ ≤ 𝜌.
The hierarchy ℎ, with no parameter 𝜌, is understood as the consistency condition (C) with 𝜌 = 0. For 𝜌 > 0,
we require that the assumptions of ℎ are, in a sense, strongly satisfied.
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3.2 Construction of the layers of our digraph

The first step of HLOIFT is to create a set of 𝑚 layers, where each layer ℋ𝑖, 𝑖 ∈ ℒ, is used to represent a
single corresponding object 𝑂𝑖. A layer ℋ𝑖 = (𝒩𝑖,𝒜𝑖, 𝜔𝑖) is a weighted digraph, where 𝒩𝑖 = {𝑖} × ℐ and
each node 𝑡 = (𝑖, 𝑣) ∈ 𝒩𝑖 corresponds to the image pixel 𝑝(𝑡) = 𝑣. Thus, the node set 𝒩 of HLOIFT digraph
is defined as ℒ × ℐ =

⋃︀
𝑖∈ℒ𝒩𝑖 and 𝑝 : 𝒩 → ℐ is the projection onto the second coordinate. See graphical

representation of layers in Figures 4, 5, and 6. Also, 𝜆 : ℒ × ℐ → ℒ will denote the projection onto the first
coordinate, that is, 𝜆(𝑡) = 𝑖 means that 𝑡 belongs to the 𝑖th layer of the graph.

Let 𝒜ℐ be an affinity defined on the original image graph (with 𝒩 = ℐ) as in the case of OIFT. We
will usually assume that, in the case of 2D images, 𝒜ℐ is the 4- or 8-neighborhood adjacency. We define the
intra-layer adjacency 𝒜𝑖 on 𝒩𝑖 as this 𝒜ℐ , that is, (𝑠, 𝑡) ∈ 𝒜𝑖 if, and only if, (𝑝(𝑠), 𝑝(𝑡)) ∈ 𝒜ℐ . Similarly, if for
an 𝑖th object we already have defined a weight function 𝜔𝑖 on the image (depending on the image intensities
and, in some cases, according to a given higher level prior), then the intra-layer weight function 𝜔𝑖 is defined,
for every (𝑠, 𝑡) ∈ 𝒜𝑖, as 𝜔𝑖(𝑠, 𝑡) = 𝜔𝑖(𝑝(𝑠), 𝑝(𝑡)). For HLOIFT to work properly we need to assume that the
values of these intra-layer weight functions are the finite real numbers (unless they represent hard constraints,
see star convexity constraint next), as opposed to the inter-layer weight, defined below, which will have infinite
values.

Of course, 𝜔𝑖 should highlight the desired boundaries for 𝑂𝑖 as clearly as possible and we would like to
incorporate in its definition the higher level priors whenever it is appropriate. In particular, to utilize the
object-contour orientations, that is, the boundary polarity priors, we use in our experiments the same
scheme that was adopted by the regular OIFT method, defining 𝜔𝑖 via formula (2) with 𝜓(𝑠, 𝑡) = |𝐼(𝑠)−𝐼(𝑡)|.
(For other possible definitions of 𝜓 see, e.g., [13, 10].) In this setting, each object 𝑂𝑖 has its own constant
𝛼𝑖 ∈ [−1, 1] (used in the expression (2)), so that we can favor the segmentation of 𝑂𝑖 with transitions from
bright to dark pixels with 𝛼𝑖 > 0, or the opposite orientation, with 𝛼𝑖 < 0. Note that 𝛼𝑖 = 0 can be used to
indicate that 𝑂𝑖 has no boundary polarity prior.

If the 𝑖th layer is created using the Geodesic Star Convexity prior (GSC), then we will be prioritizing
the segmentation of 𝑂𝑖 with more regular shape. A common shape prior is the star shape prior (SSP) [53],
where a region has a star shape with respect to a given center 𝑐 if for any point 𝑝 inside the region, all points on
the straight line segment between the center 𝑐 and 𝑝 also lie inside the region (Figures 3a-b). The geodesic star
convexity prior (GSC) corresponds to a discrete version of SSP directly in the image domain, by considering
shortest paths in the image graph, returned by IFT with the additive path-cost function (geodesic), as the line
segments (Figure 3c). For each object, it considers all the given foreground seeds as center points, prioritizing
the segmentation of a region with more regular shape. The geodesic star convexity prior for the 𝑖th layer
is obtained by setting the weights 𝜔𝑖 of some arcs in ℋ𝑖 to −∞, according to the scheme proposed in [30]
(Figure 3c). Moreover, it is still possible to simultaneously handle boundary polarity and shape priors [32].

(a) (b) (c)

Fig. 3: (a) A star shape object. (b) Violation of the star shape prior: Note that point 𝑞 (in the straight line segment be-
tween the center 𝑐 and 𝑝) is lying outside the object. (c) The geodesic star convexity prior: The line segments are ap-
proximated by geodesic paths from the center point 𝑐, as shown in magenta color, forming a geodesic tree (or a geodesic
forest in case of multiple centers). A GSC constraint violation occurs for the object 𝑂𝑖 when we have an arc (𝑝, 𝑞) such
that 𝑝 ∈ 𝑂𝑖, 𝑞 /∈ 𝑂𝑖 and 𝑞 is the predecessor of 𝑝 in the geodesic forest. To implement the GSC constraint, we must set
𝜔𝑖(𝑝, 𝑞) = −∞ for such arcs, where 𝑞 is the predecessor of 𝑝 in the geodesic forest.
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3.3 Hierarchical digraph construction (setup of inter-layer connections)

In this step, HLOIFT generates a hierarchical layered weighted digraph ℋ as the union of all layered graphs
ℋ𝑖, 𝑖 = 1, . . . ,𝑚, with additional inter-layer arcs connecting only some of the distinct layers. The choice of
these arcs, as well as their weights chosen among −∞ and ∞, is subjugated to a sole requirement of ensuring
the agreement of a resulted segmentation with assumed hierarchical priors ℎ and its related parameter 𝜌.

Specifically, the vertices 𝑠 ∈ 𝒩𝑖 and 𝑡 ∈ 𝒩𝑗 , with distinct 𝑖, 𝑗 ∈ ℒ, form an inter-layer arc whenever,
according to the hierarchy consistency condition (C), a decision whether one of them belongs (or not) to the
object in question may force such decision for the other vertex. Formally, this means that a pair ⟨𝑠, 𝑡⟩ is an
inter-layer arc in ℋ (i.e., ⟨𝑠, 𝑡⟩ belongs to 𝒜 of ℋ) if, and only if, ‖𝑝(𝑠)− 𝑝(𝑡)‖ ≤ 𝜌 and either 𝑂𝑖 and 𝑂𝑗 are
siblings, or one of them is the parent of the other. The set of all inter-layer arcs coming from the siblings is
denoted by 𝒜𝑠, while 𝒜𝑝 will stand for those associated with a parent/offspring pair. The weights of these
inter-layer arcs ⟨𝑠, 𝑡⟩, with 𝑠 ∈ 𝒩𝑖 and 𝑡 ∈ 𝒩𝑗 (or, equivalently, with 𝜆(𝑠) = 𝑖 and 𝜆(𝑡) = 𝑗), are defined as
follows.
– Inclusion. If 𝑂𝑗 is the parent of 𝑂𝑖 (i.e., ℎ(𝑖) = 𝑗), then we define 𝜔(𝑡, 𝑠) =∞ and 𝜔(𝑠, 𝑡) = −∞. Figure 4

shows, in this case, the inter-layer arcs and their weights, with parameter 𝜌 = 1, while the intra-layer arcs
are formed according to a 4-neighborhood adjacency.

Layer  j

Layer  i

-∞

∞
ρ=1

Fig. 4: Illustration of inter-layer arc construction, involving two objects 𝑂𝑖 and 𝑂𝑗 , for the inclusion case (𝑂𝑗 is the parent
of 𝑂𝑖, i.e., ℎ(𝑖) = 𝑗), where 𝜔(𝑠, 𝑡) = −∞ and 𝜔(𝑡, 𝑠) =∞ for 𝜆(𝑠) = 𝑖 and 𝜆(𝑡) = 𝑗.

– Exclusion. If the objects 𝑂𝑖 and 𝑂𝑗 are siblings, then we put 𝜔(𝑠, 𝑡) = 𝜔(𝑡, 𝑠) = −∞. See Figure 5.

Layer  i

Layer  j

-∞
-∞ρ=1

Fig. 5: Illustration of inter-layer arc construction, involving two objects 𝑂𝑖 and 𝑂𝑗 , for the exclusion case (𝑂𝑖 and 𝑂𝑗 are
siblings), where 𝜔(𝑠, 𝑡) = −∞ for all inter-layer arcs (𝑠, 𝑡).

Notice that, in the inclusion case, the pair ⟨𝑠, 𝑡⟩ contradicts the consistency requirement (C) if, and only
if, the associated cost of the arc in the cut has value −∞. This will be used in the specific formulation of
our algorithm HLOIFT (especially extra condition in line 13) and in the proof of our correctness theorem.
Basically, the weight −∞ enforces that the vertex connected to one just processed will be examined with the
highest possible priority, to ensure satisfaction of the consistency requirement (C).

In Figure 6, we give an example of the hierarchical layered digraph construction for a case that cannot
be optimized under the graph cut framework [15]. This case combines the inclusion and exclusion hierarchical
constraints, such that we have two mutually exclusive objects 𝑂𝑖 and 𝑂𝑗 , both contained within another
object 𝑂𝑘. Globally optimal segmentation in this case cannot be modeled with graph cuts, because it cannot
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be converted to a submodular energy, more details in [15]. The proposed HLOIFT method can compute
globally optimal results in this case and also in other more sophisticated cases, as described below.

ρ=0

-∞

∞

Layer  i

Layer  j

-∞

Layer  k

-∞

-∞

∞

Fig. 6: Illustration of the inter-layer arc construction, involving three objects 𝑂𝑖, 𝑂𝑗 and 𝑂𝑘, where 𝑂𝑘 is the parent of
two sibling objects, 𝑂𝑖 and 𝑂𝑗 , i.e. ℎ(𝑖) = ℎ(𝑗) = 𝑘.

3.4 Energy optimization

In the final step, we execute the HLOIFT algorithm, which constitutes a modified OIFT algorithm from [31,
35]. It is applied to the hierarchical layered graph ℋ constructed above and its output maximizes a single
energy 𝜀ℎ𝑚𝑖𝑛, a modification of energy 𝜀𝑚𝑖𝑛(𝐿) = min{𝜔(𝑠, 𝑡) : (𝑠, 𝑡) ∈ 𝒜 & 𝐿(𝑠) > 𝐿(𝑡) = 0} defined in
(1). This modification of 𝜀𝑚𝑖𝑛 is designed to ensure that the output satisfies also the hierarchical constraints
imposed by ℎ and 𝜌.

Specifically, for a binary map 𝑋 : 𝒩 → {0, 1} described in Section 3.1 the energy 𝜀ℎ𝑚𝑖𝑛 of 𝑋 is defined as

𝜀ℎ𝑚𝑖𝑛(𝑋) = min{𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋), 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋)}, (4)

where
𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋) = min{𝜔(𝑠, 𝑡) : (𝑠, 𝑡) ∈ 𝒜 ∖ 𝒜𝑠 & 𝑋(𝑠) > 𝑋(𝑡)},

𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋) = min{𝜔(𝑠, 𝑡) : (𝑠, 𝑡) ∈ 𝒜𝑠 & 𝑋(𝑠) = 𝑋(𝑡) = 1},

when the set {(𝑠, 𝑡) ∈ 𝒜𝑠 : 𝑋(𝑠) = 𝑋(𝑡) = 1} is empty, 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋) is defined as ∞.
In other words, all arcs in the cut, except for the inter-layer arcs 𝒜𝑠 associated to siblings, are treated

directionally, in the same way as in 𝜀𝑚𝑖𝑛. This part is expressed by the energy 𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛. However, the inter-
layer arcs from 𝒜𝑠 must be treated differently. First of all, there is no directional information between them.
Moreover, the siblings 𝑠 and 𝑡 influence one another, according to (C), only when they both belong to their
respective objects, that is, when 𝑋(𝑠) = 𝑋(𝑡) = 1. This justifies the format of 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛. The formula for the
combined energy 𝜀ℎ𝑚𝑖𝑛 is defined as a minimum of the costs of all relevant arcs in the cut, the same way as in
𝜀𝑚𝑖𝑛 (only the meaning of the term “relevant” being changed).

We say that a sequence ⟨𝒮0, . . . ,𝒮𝑚⟩ of seed sets is consistent with (C) (with respect to ℎ and 𝜌) provided
𝒮𝑖 ̸= ∅ for 𝑖 = 0 and every 𝑖 ∈ ℒ with no offsprings and there exists a sequence ⟨𝑂0, . . . , 𝑂𝑚⟩ satisfying (C)
such that 𝒮𝑖 ⊆ 𝑂𝑖 ⊂ ℐ for every 𝑖 ∈ ℒ ∪ {0}.

Theorem 1 (Cut optimality by HLOIFT). For every image (ℐ, 𝐼), a hierarchy tree ℎ, a distance parameter
𝜌 ≥ 0, and a sequence ⟨𝒮0, . . . ,𝒮𝑚⟩ of seed sets consistent with (C), the binary map 𝑋 : 𝒩 → {0, 1} computed
by Algorithm 2 maximizes the energy 𝜀ℎ𝑚𝑖𝑛(𝑋) given by (4) among all solutions satisfying the seed constraints
and the consistency requirement (C).
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Algorithm 2. – HLOIFT Algorithm

Input: Hierarchical layered digraph ℋ = (𝒩 ,𝒜, 𝜔), builded from an image according to the tree ℎ of hierar-
chical constraints and the distance parameter 𝜌; the seed sets ⟨𝒮0, . . . ,𝒮𝑚⟩ consistent with (C).

Output: The binary map 𝑋 : 𝒩 → {0, 1} identifying segmentation given by (3).
Auxiliary: Priority queue 𝑄, variable 𝑡𝑚𝑝, the cost map 𝑉 : 𝒩 → [−∞,∞], and an array of status 𝑆 : 𝒩 → {0, 1},

where 𝑆(𝑡) = 1 for processed nodes and 𝑆(𝑡) = 0 for unprocessed nodes.

1. For each 𝑡 ∈ 𝒩 and 𝑖 ∈ ℒ do
2. Set 𝑆(𝑡)← 0 and 𝑉 (𝑡)←∞;
3. If 𝑝(𝑡) ∈ 𝒮0 then
4. 𝑉 (𝑡)← −∞, 𝑋(𝑡)← 0, and insert 𝑡 in 𝑄;
5. If 𝑝(𝑡) ∈ 𝒮𝑖 and 𝜆(𝑡) = 𝑖 then
6. 𝑉 (𝑡)← −∞, 𝑋(𝑡)← 1, and insert 𝑡 in 𝑄.
7. While 𝑄 ̸= ∅ do
8. Remove 𝑠 from 𝑄 such that 𝑉 (𝑠) is minimum;
9. Set 𝑆(𝑠)← 1;
10. For each (𝑠, 𝑡) ∈ 𝒜 such that 𝑆(𝑡) = 0 do
11. If 𝑋(𝑠) = 1 then 𝑡𝑚𝑝← 𝜔(𝑠, 𝑡)

12. Else 𝑡𝑚𝑝← 𝜔(𝑡, 𝑠);
13. If ¬ [(𝑠, 𝑡) ∈ 𝒜𝑠 and 𝑋(𝑠) = 0], then
14. If 𝑡𝑚𝑝 < 𝑉 (𝑡), then
15. Set 𝑉 (𝑡)← 𝑡𝑚𝑝;
16. Set 𝑋(𝑡)← 𝑋(𝑠);
17. If 𝑡 /∈ 𝑄 then insert 𝑡 in 𝑄;
18. If (𝑠, 𝑡) ∈ 𝒜𝑠 and 𝑋(𝑠) = 1 then
19. 𝑋(𝑡)← 0.

In addition to the different input graph (as described in Sections 3.2 and 3.3), the main remaining
differences from Algorithm 2 to Algorithm 1 correspond to lines 18-19 and the extra condition on line 13.
More specifically, if we have only one object (i.e., ℒ = {1}), then 𝑋 = 𝐿 and the condition from line 18 is
never satisfied, so lines 18-19 can be removed. More generally, lines 18-19 and the extra condition on line 13
are redundant when tree ℎ has no siblings. In this case, the optimality of HLOIFT regarding the maximization
of 𝜀ℎ𝑚𝑖𝑛(𝑋) can be deducted from Theorem 2 from [31].

In line 18 the condition is satisfied when 𝑠 and 𝑡 are siblings and 𝑝(𝑠) ∈ 𝑂𝜆(𝑠) as 𝑋(𝑠) = 1. Therefore,
in line 19 we impose 𝑋(𝑡) = 0, to ensure that 𝑝(𝑡) /∈ 𝑂𝜆(𝑡), as required by (C). More specifically, lines 18-19
ensure that for the output 𝑋 we have no (𝑠, 𝑡) ∈ 𝒜𝑠 with 𝑋(𝑠) = 𝑋(𝑡) = 1, that is, 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋) = −∞.

Concerning the computational complexity, HLOIFT is 𝒪(𝑀 +𝑁), where 𝑁 is the number of vertices in
the graph ℋ and 𝑀 is the number of arcs in the graph ℋ, when 𝒬 is implemented using bucket sorting [18] and
𝒪(𝑀+𝑁 log𝑁) (linearithmic time) if 𝒬 is a heap. The Graph cut computational complexity is 𝒪(

√
𝑀 *𝑁2) =

𝑂(𝑁2.5) whenℋ is a sparse graph, which is more than quadratic-time using a push-relabel based on the highest
label node selection rule [3].

As a final note, observe that an interesting variation of Algorithm 2 could be considered. Specifically, in
the case of inclusion relation ℎ(𝑖) = 𝑗, we can additionally require that the seeds in 𝒮𝑗 belong exclusively
to the parent object (i.e., 𝑂𝑖 ∩ 𝒮𝑗 = ∅). In other words, 𝒮𝑗 should be inserted as background seeds on its
children’s layers to additionally impose that the seeds in 𝒮𝑗 do not belong to the offspring objects of 𝑗 (i.e.,
for all pixels 𝑠 ∈ 𝒮𝑗 we must set 𝑋(𝑡) = 0 and must insert 𝑡 in 𝒬 with 𝑉 (𝑡) = −∞, where 𝑡 = (𝑖, 𝑠) ∈ 𝒩𝑖).
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4 Proof of Theorem 1

Since the digraph ℋ is built from an image, it is symmetric and connected. So, it is easy to see that upon its
termination HLOIFT returns 𝑋 defined on the entire set 𝒩 . Therefore, to finish the proof, we need only to
show that such 𝑋 satisfies the seed constrains and the consistency requirements (C) with maximum energy.

All notions considered below are based on the variables from Algorithm 2. In particular, the values of
these variables may change during the execution of the algorithm.

Define 𝐷 = {𝑡 ∈ 𝒩 : 𝑆(𝑡) = 1}. Then, at any time, the partial binary map 𝑋 is already defined on 𝐷

and, for every 𝑡 ∈ 𝐷, the value of 𝑋(𝑡) remains unchanged during the rest of the execution of the algorithm.
(Such change can occur only during the execution of lines 16 or 19, and it can be applied only for 𝑡 for which,
in line 10, we had 𝑆(𝑡) = 0, that is, 𝑡 /∈ 𝐷.)

Notice also that if 𝑡 in 𝑄 is not a seed, then there exists an 𝑠 ∈ 𝐷 such that (𝑠, 𝑡) ∈ 𝒜, 𝑋(𝑡) = 𝑋(𝑠),
and 𝑉 (𝑡) = 𝑤𝑋(𝑠)(𝑠, 𝑡), where we use notation 𝑤𝑖 from Remark 1. In addition, the value 𝑉 (𝑡) represents a
“penalty” (i.e., a contribution to the final energy 𝜀ℎ𝑚𝑖𝑛 cost) of a potential change of the value 𝑋(𝑡) from its
current value 𝑋(𝑠) to 1−𝑋(𝑠).

Directly after the execution of the initialization loop 1-6, the queue 𝑄 will consists precisely of the nodes
from the set 𝒮 = {⟨𝑖, 𝑠⟩ : 𝑖 ∈ ℒ & 𝑠 ∈ 𝒮𝑖} ∪ {⟨𝑖, 𝑠⟩ : 𝑖 ∈ ℒ & 𝑠 ∈ 𝒮0}, that is, seed representations in the
HLOIFT graph 𝒩 . Let 𝑋0 denote the map 𝑋 defined on 𝒮 at this time. Since, at this time, we also have
𝑉 (𝑡) = −∞ for every 𝑡 ∈ 𝒮, these values cannot ever be changed, as the condition in line 14 is never satisfied.
Also, for any 𝑋 : 𝒩 → {0, 1},

𝑋 satisfies the seed constrains if, and only if, 𝑋 extends 𝑋0.

In particular, any 𝑋 : 𝒩 → {0, 1} returned by HLOIFT has this property. Therefore, to finish the proof, it is
enough to show that such 𝑋 also satisfies the consistency requirements (C) with maximum energy.

By consistency of the seeds with (C), the family 𝒳 of all 𝑋 : 𝒩 → {0, 1} satisfying the seed constraints
and the consistency requirement (C) is non-empty. In particular, any 𝑋 ∈ 𝒳 extends 𝑋0 and has energy
𝜀ℎ𝑚𝑖𝑛(𝑋) > −∞ (as, by the choice of inter-layer weights, 𝜀ℎ𝑚𝑖𝑛(𝑋) = −∞ only when 𝑋 fails the consistency
requirement (C)). Let 𝐸 be the maximum of 𝜀ℎ𝑚𝑖𝑛(𝑋) over all 𝑋 ∈ 𝒳 and let 𝒳0 be the family of all 𝑋 ∈ 𝒳
with 𝜀ℎ𝑚𝑖𝑛(𝑋) = 𝐸. Notice that 𝐸 > −∞.

The two key steps of our proof are the following closely related preservation properties (P) and (Q):
The
struc-
ture
and
the
word-
ing
of
the
proof
re-
mains
un-
changed.
I
split
the
proof
into
three
parts
and
ex-
plained,
in
red,
while
(P)
and
(Q),
com-
plete
the
proof.

(P) Assume that, directly before an execution of the line 8, the current 𝑋 (defined on a 𝐷 ⊂ 𝒩 ) is a restriction
of an 𝑋̄ ∈ 𝒳0. If, during the following execution of line 8, we remove 𝑡 from 𝑄 with 𝑉 (𝑡) < 𝐸, then the
extension of 𝑋 to 𝐷 ∪ {𝑡} also agrees with 𝑋̄, that is, 𝑋(𝑡) = 𝑋̄(𝑡).

(Q) Assume that, directly before an execution of the line 8, the current 𝑋 (defined on a 𝐷 ⊂ 𝒩 ) can be
extended to an 𝑋̄ ∈ 𝒳0. If, during the following execution of line 8, we remove 𝑡 from 𝑄 with 𝑉 (𝑡) ≥ 𝐸,
then the extension 𝑋 to 𝐷 ∪ {𝑡} has a further (not necessarily proper) extension to an 𝑋̂ ∈ 𝒳0.

The above discussion shows that the assumptions of both of these properties are satisfied directly after the
execution of the initialization loop. It is also clear that their satisfaction at algorithm termination ensures
that the conclusion Theorem 1 is satisfied. Indeed, at that time, by (P) and (Q), the “partial” map 𝑋 from
𝐷 into {0, 1} has an extension to an 𝑋̄ ∈ 𝒳0 (which by definition of 𝒳0 satisfies consistency requirement (C)
and, among such maps, maximizes energy 𝜀ℎ𝑚𝑖𝑛) while, as we noticed earlier, the algorithm does not stop until
𝐷 = 𝒩 (implying that 𝑋 = 𝑋̄ ∈ 𝒳0). Therefore, to finish the proof of the theorem it is enough to show that
(P) and (Q) are preserved during the execution of the algorithm.

Proof of preservation of the property (P). Indeed, if 𝑡 ∈ 𝒮, then, as we argued above, 𝑋̄(𝑡) = 𝑋0(𝑡) = 𝑋(𝑡).
Otherwise, there is an 𝑠 ∈ 𝐷 such that (𝑠, 𝑡) ∈ 𝒜 and the current values of 𝑉 (𝑡) and 𝑋(𝑡) were fixed during
the execution of lines 8-19, when our node 𝑠 was removed from 𝑄. This means that we could not have
simultaneously (𝑠, 𝑡) ∈ 𝒜𝑠 and 𝑋(𝑠) = 0.
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If (𝑠, 𝑡) ∈ 𝒜𝑠 and 𝑋(𝑠) = 1, then, during the execution of line 19, we have set 𝑋(𝑡) = 0. At the
same time, we must have 𝑋̄(𝑡) = 0, since otherwise we would have 𝑋̄(𝑡) = 1 = 𝑋(𝑠) = 𝑋̄(𝑠), making
𝜀ℎ𝑚𝑖𝑛(𝑋̄) = 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄) = −∞ ̸= 𝐸, a contradiction. So, indeed, 𝑋(𝑡) = 0 = 𝑋̄(𝑡).

To finish the argument for (P) we can assume that (𝑠, 𝑡) /∈ 𝒜𝑠. Then, the executions of lines 8-19 ensures
that 𝑋(𝑡) = 𝑋(𝑠). At the same time we must have that 𝑋̄(𝑠) = 𝑋̄(𝑡), as otherwise

𝐸 = 𝜀ℎ𝑚𝑖𝑛(𝑋̄) ≤ 𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋̄) ≤ 𝑤𝑋̄(𝑠)(𝑠, 𝑡) = 𝑤𝑋(𝑠)(𝑠, 𝑡) = 𝑉 (𝑡) < 𝐸,

impossibility. Therefore, indeed 𝑋(𝑡) = 𝑋(𝑠) = 𝑋̄(𝑠) = 𝑋̄(𝑡), finishing the argument for (P).

Proof of preservation of the property (Q). We have 𝑉 (𝑡) > −∞, as 𝑉 (𝑡) ≥ 𝐸 > −∞. For the main part of
the argument for (Q) assume that we also have 𝑉 (𝑡) <∞.

As 𝑉 (𝑡) is finite, there must exist an 𝑠 ∈ 𝐷 such that (𝑠, 𝑡) ∈ 𝒜 is an intra-arc and the current values
of 𝑉 (𝑡) and 𝑋(𝑡) were fixed during the execution of lines 8-19, when our node 𝑠 was removed from 𝑄. We
need to show that the extension 𝑋 to 𝐷 ∪ {𝑡} has a further extension to an 𝑋̂ ∈ 𝒳0. For 𝑖 ∈ {0, 1} let
𝑅𝑖 = {𝑑 ∈ 𝐷 : 𝑋(𝑑) = 𝑖}.

If 𝑋(𝑡) = 0, then the indicator (i.e., characteristic) function 𝜒𝑅1
is the desired 𝑋̂ ∈ 𝒳0 extend-

ing 𝑋. Indeed, it certainly extends 𝑋 (which, in turn, extends 𝑋0) and has an energy 𝜀ℎ𝑚𝑖𝑛(𝑋̂) =

min{𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋̂), 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄)} ≥ 𝐸 > −∞, where the equation is justified by 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄) = 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̂), while the
inequality ≥ by 𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋̂) ≥ min{𝑉 (𝑠) : 𝑠 ∈ 𝑄} ≥ 𝑉 (𝑡) ≥ 𝐸 and 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄) ≥ 𝜀ℎ𝑚𝑖𝑛(𝑋̄) = 𝐸. Hence, 𝑋̂ ∈ 𝒳0.

So, assume that 𝑋(𝑡) = 1 and notice that (𝑠, 𝑡) /∈ 𝒜𝑠: for 𝑋(𝑠) = 0 this is ensured by line 13, while
for 𝑋(𝑠) = 1 by line 18. In particular, we also have 𝑋(𝑠) = 1. A first impulse could be to define 𝑋̂ as the
indicator 𝜒𝒩∖𝑅0

. However, 𝜀ℎ𝑚𝑖𝑛(𝜒𝒩∖𝑅0
) ≤ 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝜒𝒩∖𝑅0

) and it is likely that 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝜒𝒩∖𝑅0
) = −∞. So, in

this case, 𝑋̂ needs to be defined more carefully. Specifically, let 𝑖 = 𝜆(𝑡) and let ℒ𝑖 be the set of all ancestors
of 𝑖: all 𝑗 ∈ ℒ such that, according to ℎ, 𝑂𝑖 ⊆ 𝑂𝑗 . Let

𝑅 = 𝑅1 ∪ {𝑡 ∈ 𝒩 ∖𝑅0 : 𝜆(𝑡) ∈ ℒ𝑖}

and put 𝑋̂ = 𝜒𝑅. Then, 𝑋̂ extends 𝑋 which, in turn, extends 𝑋0. So, 𝑋̂ satisfies seeds constrains and, to
show that 𝑋̂ ∈ 𝒳0, it is enough to prove that 𝜀ℎ𝑚𝑖𝑛(𝑋̂) = 𝐸 > −∞.

To see this, first notice that 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̂) =∞. Indeed, otherwise there would exist 𝑢, 𝑣 ∈ 𝑅 with (𝑢, 𝑣) ∈ 𝒜𝑠

and 𝑋̂(𝑢) = 𝑋̂(𝑣) = 1. However, they cannot both belong to 𝑅1, since this would mean that 𝐸 = 𝜀ℎ𝑚𝑖𝑛(𝑋̄) =

−∞. They cannot both belong to 𝑅 ∖𝑅1, since ℒ𝑖 contains no siblings. Finally if one of these nodes belongs
to 𝑅1, say 𝑢 ∈ 𝑅1, then the other cannot be in 𝑅 ∖𝑅1. Indeed, this would mean that 𝑢 ∈ 𝐷 and at the time
when 𝑢 was removed from 𝑄, the value 𝑉 (𝑣) = −∞ was assigned. This 𝑉 (𝑣) = −∞ cannot be ever increased
during execution of HLOIFT. With 𝑣 ∈ 𝑄, this contradicts the minimality 𝑉 (𝑡) ≥ 𝐸, as 𝐸 > −∞ = 𝑉 (𝑣).
So, indeed, 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̂) =∞.

From this, 𝜀ℎ𝑚𝑖𝑛(𝑋̂) = min{𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋̂), 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄)} ≥ 𝐸 > −∞, where the equation is justified by 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̂) =

∞ = 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄), while the inequality ≥ by the facts that 𝜀𝑖𝑛𝑐𝑙𝑚𝑖𝑛(𝑋̂) ≥ min{𝑉 (𝑠) : 𝑠 ∈ 𝑄} = 𝐸 and 𝜀𝑒𝑥𝑐𝑙𝑚𝑖𝑛(𝑋̄) ≥
𝜀ℎ𝑚𝑖𝑛(𝑋̄) = 𝐸. This completes the proof of (Q) in case 𝑉 (𝑡) <∞.

To finish the proof of (Q) it is enough to show that 𝑉 (𝑡) = ∞ is impossible. Indeed, the consistency
of the seeds ensures that either 𝜆(𝑡) or some of its descendants, say 𝑗, contains a seed, say 𝑢. In particular,
𝑠0 = ⟨𝑗, 𝑢⟩ ∈ 𝐷 and 𝑋(𝑠0) = 𝑋0(𝑠0) = 1. Also, ℋ contains a path from 𝑠0 to 𝑠 = ⟨𝜆(𝑡), 𝑢⟩ with each
connecting arc having weight −∞. Therefore, 𝑠 must belong to 𝐷, as otherwise we would have 𝐸 = −∞.
Since 𝑠 ∈ 𝒩𝜆(𝑡) and 𝒩𝜆(𝑡) is connected and symmetric, it contains adjacent 𝑢 and 𝑣 with 𝑢 ∈ 𝐷 and 𝑣 ∈ 𝑄.
Hence, 𝑉 (𝑡) ≤ 𝑉 (𝑣) <∞, finishing the proof of (Q).

5 Experiments

In this section, an experimental evaluation of HLOIFT is presented. First, we analyze the effects of different
high-level priors on the segmentation results, showing that HLOIFT is a versatile method, which allows us to
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customize the segmentation to some target objects according to their global properties (shape and polarity).
Then, we assess the performance of HLOIFT against the previously existing method for multiple object
segmentation by IFT [34] and the segmentation of multiple objects by the hierarchical min-cut/max-flow
algorithm [15], using medical and natural images. Our code and data are available upon request.

5.1 Setting the high-level priors

The proper configuration of the high-level priors for each object is essential to obtain the desired segmentation
of the target objects. Figure 7 shows a two-object segmentation problem for a synthetic image composed of four
nested boundaries. We present the results using one internal seed for the object 𝑂1, an external seed for the
background, the inclusion relation ℎ(1) = 2, 𝜌 = 1.5 and 𝜔𝑖 defined via formula (2) with 𝜓(𝑠, 𝑡) = |𝐼(𝑠)−𝐼(𝑡)|.
HLOIFT with different priors for each object can provide any desired result, allowing the easy customization
of the segmentation to any particular result.

In Figure 7, the superscript codes bd and db for each object 𝑂𝑖 indicate polarity from bright to dark pixels
(𝛼𝑖 > 0) and polarity from dark to bright pixels (𝛼𝑖 < 0), respectively, while their absences indicate neutral
polarity (𝛼𝑖 = 0). The superscript code g indicate the usage of the geodesic star convexity prior. Figure 7(a)
shows the result when 𝑂1 has boundary polarity setup from bright to dark and 𝑂2 from dark to bright (i.e.,
𝑂𝑏𝑑

1 and 𝑂𝑑𝑏
2 ). Note that in this case the addition of the GSC constraint for 𝑂2 does not affect the result

(i.e., 𝑂𝑏𝑑
1 and 𝑂𝑔+𝑑𝑏

2 ). Figure 7(b) shows the result when we remove or reverse the polarity for 𝑂1, while
Figure 7(c) reverses the polarity for 𝑂2. Figure 7(d) shows the result with reversed polarity for both objects
in relation to Figure 7(a) and without the GSC constraint to get the stronger boundaries. In Figure 7(e), the
GSC constraint is assumed for 𝑂1 and the outermost boundary is assigned to 𝑂2 by exclusion.

 

(a) (b) (c) (d) (e)

2

1

Priors:

- O1   , O2
db 

INPUT

h

OUTPUT

1

2

1

2

1

2

1
2

1

2

- O1
bd  , O2

db - O1
g  ,  O2

 
- O1

bd, O2
bd 

- O1
bd ,  O2

g+bd

- O1
db  , O2

bd

- O1
bd , O2

g+db 
- O1

db , O2
g+db - O1

g+db , O2

3

Fig. 7: Example of two object segmentation by HLOIFT, where 𝑂2 is parent of 𝑂1. Each object has different high-level
priors –db: polarity from dark to bright pixels, bd: polarity from bright to dark pixels and g: geodesic star convexity prior.

Another important parameter is the 𝜌 value, which controls the minimum distance between the object
boundaries. In order to understand its effect on the results, Figure 8 shows HLOIFT with geodesic star
convexity prior to segment an image of archaeological fragments (Figure 8a), with three sibling objects, using
the simplest arc weights 𝜔𝑖(𝑠, 𝑡) = ‖𝐼(𝑡) − 𝐼(𝑠)‖ (Figure 8b). For 𝜌 = 0, we get a bad result with touching
objects (Figure 8c), which can be avoided by using 𝜌 = 2 (Figure 8d).

5.2 Qualitative comparison with the IFT method

In this section, we compare the results obtained by HLOIFT against the IFT method [34] for multi-object
segmentation by seed competition, which encompasses the watershed transform from markers. OIFT is not
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Fig. 8: Example showing how changing the 𝜌 value from 0 to 2 can improve the archaeological fragment segmentation by
HLOIFT, avoiding a result with touching objects.

included here since it is restricted only to binary segmentation [31]. We used for this experiment medical
images, composed of multiple sophisticated objects.

(a) (b)
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(c) (d)

Fig. 9: Knee segmentation composed of three objects in a CT image, including the patella in blue. (a-b) Result by IFT
where the 𝑂1 is mixing bright and dark boundaries. (c-d) An improved result for the central bone is obtained by HLOIFT
with boundary polarity from bright to dark pixels, requiring fewer seeds.

Figure 9 shows an image segmentation task, using 𝜔𝑖 defined via formula (2) with 𝜓(𝑠, 𝑡) = |𝐼(𝑠)− 𝐼(𝑡)|,
where the goal is to segment a gray-scale CT image composed of three objects, 𝑂1 (central bone), 𝑂2 (patella)
and 𝑂3 (knee), which are shown in yellow, blue and red color, respectively. The first row shows the results for
the IFT method by seed competition, with user provided markers for the three objects, plus one additional
external marker for the background. In this example, HLOIFT requires markers only for the two inner objects
and for the background, as shown on the second row. For HLOIFT, we considered 𝜌 = 1.5 and the geodesic
star convexity with boundary polarity from bright to dark (𝑔 + 𝑏𝑑) for all objects (𝛼 = 0.75). In the second
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column, we can observe the differences highlighted in the 𝑂1’s contour. IFT gives a poor result for 𝑂1, mixing
bright and dark boundaries, because it does not support the boundary polarity prior. On the other hand,
HLOIFT can be seen as an extension of OIFT for multiple object segmentation, allowing different priors for
each object, giving better results and requiring fewer seeds.

INPUT OUTPUT

1 2

3
h

Fig. 10: Talus (𝑂1) and calcaneus (𝑂2) segmentation. The two objects are sibling objects. For HLOIFT, we used 𝜌 = 0,
the geodesic star convexity and boundary polarity (𝛼 = −0.75).

Figure 10 shows the segmentation of a MRI slice of a real foot, using 𝜔𝑖 defined via formula (2) with
𝜓(𝑠, 𝑡) = 𝐺(𝑠) + 𝐺(𝑡), where 𝐺(.) denotes the magnitude of the Sobel gradient. The objects of interest are
the two large bones in the peritalar complex, namely, the talus (𝑂1) and the calcaneus (𝑂2). These objects
are modeled as two siblings objects, i.e., both have the same parent (image domain). We used for HLOIFT,
the exclusion relation ℎ(1) = ℎ(2), 𝜌 = 0, the geodesic star convexity and boundary polarity (𝛼 = −0.75).
IFT gives worse results, capturing good part of the background as part of the objects, while HLOIFT gives a
more regular and correct segmentation.

Figure 11 shows a segmentation task of a CT image composed of three objects, liver (𝑂1), aorta (𝑂2) and
the abdominal region (𝑂3), which are shown in yellow, cyan and red color, respectively. The liver (𝑂1) and
aorta (𝑂2) are modeled as two sibling objects contained in the abdomen (𝑂3), as defined by ℎ. We used 𝜔𝑖

defined via formula (2) with 𝜓(𝑠, 𝑡) = 𝐺(𝑠) +𝐺(𝑡), where 𝐺(.) denotes the magnitude of the Sobel gradient.
For the same user provided seeds, the IFT gets unsatisfactory results, while HLOIFT can effectively explore
the inclusion and exclusion relations with 𝜌 = 0, the geodesic star convexity, and the boundary polarity from
bright to dark pixels (𝛼 = 0.75) for the three objects leading to superior results.

In Figure 12, we use an axial cross section of a thoracic-abdominal CT image extracted from an open
database called 3D-IRCADb-02 [43] to segment six objects: right lung (𝑂1), liver (𝑂2), heart (𝑂3), left lung
(𝑂4), aorta (𝑂5) and the thoracic-abdominal region (𝑂6). As input we have the image, the tree of relations
(ℎ) and some user seeds. We used 𝜔𝑖 defined via formula (2) with 𝜓(𝑠, 𝑡) = |𝐼(𝑠) − 𝐼(𝑡)|. For HLOIFT, we
used 𝜌 = 3.5, boundary polarity from dark to bright pixels for 𝑂1 and 𝑂4, shape constraint by geodesic star
convexity for 𝑂2 and 𝑂3, and boundary polarity from bright to dark pixels for 𝑂5 and 𝑂6. It can be seen,
the results obtained by HLOIFT are closer to the ground-truth compared to the IFT results.
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Fig. 11: Liver (𝑂1), aorta (𝑂2) and abdomen (𝑂3) segmentation on a CT slice image. For HLOIFT, we used 𝜌 = 0,
ℎ(1) = ℎ(2) = 3 and the geodesic star convexity shape prior with the bright to dark boundary polarity (𝛼 = 0.75).

Image size Time of Time of
(pixels) HLOIFT (ms) min-cut/max-flow (ms)

380× 320 114.65 323.61
760× 640 488.62 1,798.91

1520× 1280 1,823.55 19,021.71

Tab. 1: The running times for the flower segmentation by HLOIFT and the min-cut/max-flow algorithm in layered graphs
using different image sizes.

5.3 Comparison with multi-object segmentation by min-cut/max-flow
algorithm

In this section, we compare HLOIFT with the multi-object segmentation by the min-cut/max-flow algorithm
in layered graphs [15]. For the sake of simplicity, we considered only the inclusion relation, since many cases
combining the inclusion and exclusion hierarchical constraints (such as when we have two mutually exclusive
objects 𝑂𝑖 and 𝑂𝑗 , both contained within another object 𝑂𝑘) cannot be converted to a submodular energy
to perform the optimization by the graph-cut framework [15]. We used the max-flow/min-cut code from [3].

Figure 13 shows a flower segmentation using 𝜔𝑖(𝑠, 𝑡) = 𝐺(𝑠) + 𝐺(𝑡), where 𝐺(.) denotes the maximum
magnitude of the Sobel gradient for the three image channels. We used 𝜌 = 1.5 and no region constraints (shape
constraints/boundary polarity). In general the results are similar for both methods. The min-cut/max-flow
algorithm generates results with a smoother contour, but sometimes this can lead to errors in some finer parts
of the object, such as the petals (Figure 13b). Besides being able to compute globally optimal results with
arbitrary hierarchy constraints, the proposed HLOIFT method also has a better running time compared to
the min-cut/max-flow algorithm. Table 1 shows the running times for the flower segmentation using different
image resolutions in a laptop Intel Core i3-5005U CPU 2.00GHz ×4.
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Fig. 12: An axial cross section of a thoracic-abdominal CT image segmentation. We consider the following objects: right
lung (𝑂1), liver (𝑂2), heart (𝑂3), left lung (𝑂4), aorta (𝑂5) and the thoracic-abdominal region (𝑂6). HLOIFT obtained a
result similar to the given ground-truth (manual segmentation), in contrast to the output by IFT.

(a) (b) (c)

Fig. 13: Flower segmentation in two objects, the central part in cyan and the petals in yellow, using the inclusion relation.
(a) The input image. (b) Result by the min-cut/max-flow algorithm in layered graphs. (c) Result by HLOIFT.
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5.4 Quantitative accuracy experiments

For quantitative accuracy results, we compared HLOIFT, with the multi-object segmentation by IFT [34], its
improved version by the relaxation procedure proposed by Malmberg et al. [26], and the hierarchical layered
graph cut [15, 16], denoted as HLGC, using two datasets of medical images.

For fair comparison, only methods with the same type of user input were considered here, in the form
of a partial labeling.3 In order to stress the methods to their limit, in a more challenging situation, we only
consider simple arc weights with 𝜓(𝑠, 𝑡) = |𝐼(𝑠) − 𝐼(𝑡)|, so that no a priori information on the brightness
(or color/texture) distribution was taken into account [13], nor enhancements based on deep learning tech-
niques [55, 56].

For the first dataset, we used 40 slices from thoracic CT studies of size 512 × 512 to segment the liver
and the abdomen as its parent object. The second dataset was composed of 40 real MR images to segment
the talus and calcaneus bones as siblings, taking the foot region as their parent. The same seeds were used
for all the methods, which were progressively obtained by eroding the ground truth objects and background
for different radius sizes (Figure 14a). Figure 14 illustrates an example of the segmentation of the liver and
abdomen for different methods. For the bones we used 𝛼 = −0.5 and 𝜌 = 3 pixels, while for the liver we used
𝛼 = 0.9 and 𝜌 = 5 pixels. HLGC could not exploit the exclusion relation for the bones, since it cannot be
converted to a submodular energy for these sibling objects inside the foot.

(a) Seeds by erosion (b) The result by IFT

(c) The result by HLGC (d) The result by HLOIFT

Fig. 14: (a) Seeds obtained by eroding the ground truth of each object/background with 48 pixels radius. (b) Multi-object
result by IFT. (c) The result by hierarchical layered graph cut (HLGC) mistakenly assigns the aorta as part of the liver. (d)
A better result is obtained by HLOIFT.

In order to disambiguate the benefit coming from the boundary polarity (already present in OIFT) from
the new hierarchical constraints, we also include quantitative experiments to measure which gains come from
oriented boundaries and from hierarchical constraints by ablation analysis. For this purpose, we also include
the results of HLOIFT with 𝛼 set to 0 (no boundary polarity) and the results of considering the m-objects
segmentation problem as multiple independent binary segmentations by OIFT computed separately for each

3 Note that drawing scribbles for a partial labeling with a large brush can be quite effective to quickly mark several
object/background pixels, while accurately selecting extreme boundary points requires more user attention and caution.
Therefore comparing these different types of constraints is quite subjective.



Leissi M.C. Leon, Krzysztof C. Ciesielski, and Paulo A.V. Miranda, Segmentation in Layered Graphs 19

object (taking for each object its internal seeds as foreground and the other seeds as background). In the
experimental curves, we denote this latter approach as OIFTs, since it represents a naive multi-objects OIFT.
Note that, it can also be seen as a degenerate variant of HLOIFT without the inter-layer arcs, since there is
no consistency constraints between the different binary problems. An example of the advantages of having
a complete HLOIFT over these simplified versions (𝛼 = 0 and OIFTs) for the segmentation of the liver and
abdomen is shown in Figure 15.

(a) The result by OIFTs (b) The result by HLOIFT with 𝛼 = 0 (c) The result by HLOIFT with 𝛼 = 0.9

Fig. 15: (a) The result by naive multi-objects OIFT with 𝛼 = 0.9, denoted as OIFTs. (b) HLOIFT with 𝛼 = 0 (no bound-
ary polarity). (c) A better result is obtained by HLOIFT with 𝛼 = 0.9. Note that OIFTs cannot guarantee the requirement
of the minimum distance between the object boundaries as HLOIFT with 𝜌 > 0.

The mean accuracy curves according to the Dice coefficient are shown in Figure 16, being the results in
the left column obtained without shape constraints and the ones in the right with Geodesic Star Convexity
(GSC). The accuracy curves for the parent objects (foot and abdomen) are not shown, since they had almost
perfect results (Dice > 99%). HLOIFT had the best results in most cases. Note also that it could benefit more
from the usage of the shape constraint by GSC for the liver compared to HLGC, since this latter approach
was already producing an object with regular shape and therefore was almost not affected by the inclusion of
GSC.

6 Conclusion

We proposed a new graph-based algorithm, named as HLOIFT, for multi-object segmentation, allowing the
integration of the individual high-level priors of each object and the geometric constraints between them
into a single energy optimization. The HLOIFT algorithm was described in details, including its proof of
correctness. Besides the theoretical contribution in the context of the multi-object segmentation problem, our
experiments show that good segmentation results can be obtained, even when considering a simple measure
of intensity dissimilarity. Besides being faster than hierarchical min-cut/max-flow based approaches, it is also
less restrictive, allowing globally optimal results for arbitrary hierarchies.

As future works, we intend to combine some training information by deep learning approaches in HLOIFT,
similar to what was done in [55, 56], and to incorporate in HLOIFT the relaxation procedure for directed
graphs from [17], in order to circumvent the irregular boundaries from the max-norm energy of HLOIFT. We
also intend to analyze and compare HLOIFT to the polynomial time graph labeling algorithms from [27]. At
last, we would like also to handle relations of partial intersection by using a negative parameter 𝜌.



20 Leissi M.C. Leon, Krzysztof C. Ciesielski, and Paulo A.V. Miranda, Segmentation in Layered Graphs

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  10  20  30  40  50

D
ic

e
 c

o
e

ff
ic

ie
n

t

Erosion radius (pixels)
IFT

Relaxed IFT
HLGC

HLOIFT α=0.9
OIFTs

HLOIFT α=0

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  10  20  30  40  50

D
ic

e
 c

o
e

ff
ic

ie
n

t

Erosion radius (pixels)
IFT

Relaxed IFT
HLGC

HLOIFT α=0.9
OIFTs

HLOIFT α=0

(a) Liver (b) Liver with GSC

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  2  4  6  8  10  12  14  16

D
ic

e
 c

o
e

ff
ic

ie
n

t

Erosion radius (pixels)
IFT

Relaxed IFT
HLGC

HLOIFT α=-0.5
OIFTs

HLOIFT α=0

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  2  4  6  8  10  12  14  16

D
ic

e
 c

o
e

ff
ic

ie
n

t

Erosion radius (pixels)
IFT

Relaxed IFT
HLGC

HLOIFT α=-0.5
OIFTs

HLOIFT α=0

(c) Talus (d) Talus with GSC

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  2  4  6  8  10  12  14  16

D
ic

e
 c

o
e

ff
ic

ie
n

t

Erosion radius (pixels)
IFT

Relaxed IFT
HLGC

HLOIFT α=-0.5
OIFTs

HLOIFT α=0

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  2  4  6  8  10  12  14  16

D
ic

e
 c

o
e

ff
ic

ie
n

t

Erosion radius (pixels)
IFT

Relaxed IFT
HLGC

HLOIFT α=-0.5
OIFTs

HLOIFT α=0

(e) Calcaneus (f) Calcaneus with GSC

Fig. 16: The mean curves of Dice accuracy for different methods.
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