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Continuous Maps Admitting No Tangent
Lines: A Centennial of Besicovitch Functions

Krzysztof Chris Ciesielski

Abstract. One of the most influential examples in analysis is a Weierstrass function from R
to R that is continuous but differentiable at no point. However this map, as well most of the
others among the myriad similar examples, still admits vertical tangent lines. The examples
of continuous maps that admit no tangent line in any direction are also known; however, all
currently existing presentations of such maps are not easily accessible due to their very com-
plicated descriptions and hard-to-follow proofs of their desired properties. The goal of this
article is to present in an accessible way two such examples. The first—a coordinate of the
classical Peano space-filling curve—is simpler, but admits one-sided vertical tangent lines at
some points. The second is a variation of a function from a 1924 paper of Besicovitch, which
is continuous but admits no one-sided tangent line in any direction. The proofs of nondif-
ferentiability of these two examples will be facilitated by a simple yet general lemma that
also implies nondifferentiability of other similar maps, including those of Takagi and van der
Waerden.

1. BACKGROUND. In 1872 Karl Weierstrass (1815–1897) presented to the Prus-
sian Academy of Sciences an example of a function W : R→ R (compare [20, p. 19]
or [49])

W (x) :=
∑∞

n=0 a
n cos(bnπx), with 0 < a < 1, odd b, and ab > 1 + 3

2
π

which, as he showed, is everywhere continuous but differentiable at no point. The
printed version of this result appeared for the first time only 14 years later, in an 1886
paper [45]. (For its English translation, see [46].) Although the fact of an existence of
this kind of map can be traced back to an 1822 work of Bernard Bolzano (1781–1848),
see [21], and was also hinted at by several other prominent mathematical figures be-
fore 1872 (see [20, p. 2]), the mathematicians of this period commonly believed that a
continuous function must have a derivative at a “significant” set of points. This belief
was certainly fueled by a “proof” of this “fact” presented by the French physicist and
mathematician André-Marie Ampère (1775–1836) in his 1806 paper [1]. Typical of
the standards of mathematical proof of this time, Ampère’s argument was not written
in the rigorous standards we apply nowadays. In fact, the discovery of the Weier-
strass example had a significant impact on the “revolutionary” increase in the rigor of
mathematical proofs that was introduced in the late 19th century and is still currently
practiced. Not all mathematicians contemporary to Weierstrass were happy to see such
drastic changes in the expected standards of mathematical writing. It was probably due
to such misgivings that led to the introduction of the term Weierstrass’s monsters, or
shortly W-monsters, when referring to the continuous nowhere differentiable maps. It
seems that Henri Poincaré (1854–1912) was the first to use term monsters for such
functions; see [20, p. 2].

Of course, in the 150 years of mathematical development since the original intro-
duction of W-monster by Weierstrass, a myriad of similar examples were described.
In this MONTHLY alone there are 14 published articles concerning such maps; see
[2, 3, 6, 7, 9, 22, 26, 28, 29, 34, 37, 41, 47, 48]. An extensive bibliography on this sub-
ject can be found in a 300-page monograph [20] dedicated to W-monsters published in
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2015. In particular, while most of existing proofs of nondifferentiability ofW are quite
involved, the argument is considerably easier for the W-monster T := T1/2,2 described
in a 1903 paper [42] of Teiji Takagi (1875–1960), where for 0 < a < 1 and ab ≥ 1
the map Ta,b : R→ R, known as a Takagi–van der Waerden function, is defined:

Ta,b(x) :=
∑∞

n=0 a
ndist(bnx,Z)

with dist(x,Z) being the distance from x to the set Z := {. . . ,−1, 0, 1, 2, . . .} of all
integers. The map T1/10,10 was also described in the same context in an influential 1930
paper [43] of Bartel Leendert van der Waerden (1903–1996). Our favorite W-monster
is T1/2,8, since the proof of its W-monstrosity is particularly short and elegant; see [10]
and [36, Theorem 7.18]. Functions Ta,b with b ∈ N are examples of self-affine maps,
which have been extensively studied in the context of differentiability (see, e.g., [15])
and, more generally, rectifiability of their graphs.

Although the examples presented above are nowhere differentiable, they all ad-
mit vertical tangent lines. In fact, this is the case for most (but not all) W-monsters
described in the literature. For the function T = T1/b,b with b ∈ N := {1, 2, . . .},
b ≥ 2, the existence of such tangents is easily seen at any b-nary point k

bn
, k ∈ Z and

n ∈ N, since at these points the unilateral infinite derivatives of T exist—the right
T ′+ equal +∞, the left T ′− equal −∞—as proved in a 1936 paper [3] of Edward
Griffith Begle (1914–1978) and William Leake Ayres (1905–1976); see also [20, the-
orem 9.3.1]. The graph of T near such points, which are called cusps, resembles the
graph of ± 4

√
x2 near 0. Moreover, such T also admits infinite derivatives on a set of

Hausdorff dimension one; see, e.g., [17]. For the function W , the existence of verti-
cal tangents is a bit more difficult to see, but it was already known to Arnaud Denjoy
(1884–1974) in 1915 as indicated in [14, p. 210]. (See also [33].) Specifically, in a
1916 paper [44] (see also [20, Theorem 3.5.5]) Grace Chisholm Young1 (1868–1944)
proved that W admits cusps on a dense set. At the same time, W does not have in-
finite derivatives, a fact known already to Weierstrass; see [20, Theorem 3.5.1]. To
remediate this “weakness” of existing examples of W-monsters Abram Samoilovitch
Besicovitch (1891–1970) constructed, in a 1924 paper [4] (in Russian, for the German
version see [5]) a W-monsterBa : [0, 2a]→ R, a > 0, which admits neither finite nor
infinite unilateral derivative at any point. Of course, such a function admits no tangents
in any direction. Such maps are nowadays often called Besicovitch functions and, for
brevity, we will refer to them in what follows as B-monsters. The different construc-
tions of B-monsters were also given in a 1938 paper [31] of Anthony Perry Morse
(1911–1984) and in the early 1940s by Avadhesh Narayan Singh [39, 40].2 (Singh
announced the existence of his examples already at the 1936 International Congress
of Mathematicians [38].) However, the descriptions of all these B-monsters were quite
complicated, often unclear, and the proofs of their desired properties involved and hard
to follow. In particular, the constructions of Singh and Morse, described in the mono-
graph [20, Chapter 11]), are each over 10 pages long and give no clear indications
what the intuitive reasons are for these examples to have their properties. The actual
construction of Besicovitch is actually not explicitly described in [20]. Already in a
1928 paper [33], Echo Dolores Pepper (1897–1979)3 provided a revised description of
the original Besicovitch function B and gave a proof that it indeed has no one-sided
(finite of infinite) derivatives as “his proof that the function has no derivative is rather

1The first woman who received a doctorate in any field in Germany, degree granted in 1895.
2More specifically, the function from [39] is just a different description of the original Besicovitch function

B1/2.
3One of the pioneering women in American mathematics; see [18].
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complicated.” Unfortunately, the description of the function B given in [33] is still
quite hard to uniquely interpret.4

The goal of this article is to provide an accessible description of W-monsters that
admit tangents at no points: the coordinate of the classical Peano space-filling curve,
presented in Section 3, and a version of the original B-monster of Besicovitch, de-
scribed in Section 4. Final remarks on the subject are presented in Section 5.

x-axis

f

x pn mn

cn

qn

`n

dn

Figure 1. Illustration of the quantities used in the quotient cn
dn

= f(mn)−`n(mn)
mn−x

from Lemma 1. The
dashed line `n is passing through 〈pn, f(pn)〉 and 〈qn, f(qn)〉, cn := f(mn)− `n(mn) represents
the displacement of the value of f at mn with respect to the value `n(mn) on the chord ` � [pn, qn],
while dm := mn − x. Notice that the distance qn − pn has no direct influence on the value of cn

dn
.

On the other hand, the proportion cn
dn

of the “linearity displacement” measure cn to the “distance to
the point of tangency” dn must approach to 0, as n→∞, for the right tangent line at x to exist.

2. CONDITION ENSURING NO FINITE DERIVATIVE. The condition, pre-
sented in the following lemma, will considerably simplify our proof that the B-monster
presented in Section 4 does not admit unilateral finite derivatives. However, it can also
be used to deduce similar properties of the other examples of W-monsters, including
maps Ta,b and f from Section 3, as we show below.

Lemma 1 resembles a bit one from the paper [47], where the existence of the limit
limn→∞

f(qn)−f(pn)
qn−pn is deduced from the fact that the quotients qn−pn

qn−x are bounded
away from 0. However, this last assumption is too strong for our purposes, as we
use our lemma in the proof of Theorem 4, in which for many points x ∈ R we must
consider cases with qn−pn

qn−x →n 0.
Lemma 1 is especially helpful in proving nondifferentiability of functions that

have some traces of self-similarity5 and are representable as limits f = limn→∞ fn
of piecewise linear functions with f−1n (0) ⊂ f−1n+1(0) for every n ∈ N and with⋃∞

k=1 f
−1
k (0) dense in R. The quantity f(mn)− `n(mn) in the lemma measures the

deviation of f from its linear approximation `n: this deviation must be small relative
to the distance of mn to x for the finite right derivative of f at x to exist.

Lemma 1. Assume that f : R→ R has a finite right derivative at x ∈ R. For every
n ∈ N let x ≤ pn < mn < qn and `n : R→ R be the line that passes through points
〈pn, f(pn)〉 and 〈qn, f(qn)〉, see Figure 1. If qn →n x, then

limn→∞
f(mn)−`n(mn)

mn−x = 0. (1)
4This seems to be a reason for an incorrect interpretation of the function B1 in a 2020 paper [16] of Serge

Dubuc leading to a conclusion that the Besicovitch function B1 admits one-sided infinite derivatives (while
the claim is true only for the function that was understood as function B1).

5However, the function needs not to be affine-similar for the lemma to be useful, as we see in its use in
Section 4.
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Proof. A simple geometric argument shows that `n(mn)−f(x)
mn−x is between f(pn)−f(x)

pn−x

and f(qn)−f(x)
qn−x . Since the last two difference quotients converge to f ′(x), as n→∞,

by the squeeze theorem so does `n(mn)−f(x)
mn−x . In particular,

f(mn)− `n(mn)

mn − x
=
f(mn)− f(x)

mn − x
− `n(mn)− f(x)

mn − x
−→
n→∞

f ′(x)− f ′(x) = 0

as promised.

Corollary 2. Takagi–van der Waerden functions Ta,b, with 0 < a < 1, ab ≥ 1, and
b ∈ N, admit finite unilateral derivatives at no point.

Proof. Since −Ta,b = Ta,b, we need to show only that Ta,b does not admit a finite
right derivative at any x ∈ R. For this, it is enough to find numbers pn < mn < qn as
in Lemma 1 for which (1) fails with f = Ta,b.

For every n ∈ ω := {0, 1, 2, . . .} let Tn(y) := andist(bny,Z), so that Ta,b =∑∞
n=0 Tn. Notice that T−1n (0) = b−nZ and that T−1n (0) ⊂ T−1n+1(0), since b ∈ N.

Let pn be the smallest r ∈ b−nZ with r ≥ x and notice that qn := pn + b−n and
mn := pn + b−(n+1) are the smallest elements of b−nZ and b−(n+1)Z, respectively,
that are greater than pn. These are our desired numbers.

Indeed, clearly pn − b−n < x ≤ pn < mn < qn = pn + b−n, so qn →n x. More-
over, f(mn) =

∑n
k=0 Tk(mn) = Tn(mn) +

∑
k<n Tk(mn) = b−(n+1) + `n(mn),

since both `n and
∑

k<n Tk are linear on [pn, qn] and equal to Ta,b at the endpoints. In

particular, f(mn)−`n(mn)

mn−x = b−(n+1)

mn−x > b−(n+1)

2b−n = 1
2b

, that is, (1) indeed fails.

3. W-MONSTER ADMITTING NO VERTICAL TANGENT LINES. We will
start by describing a W-monster f : R → R as in the section’s title. Then, we will
show that f � [0, 1] is the second coordinate of the classical Peano curve. This fact,
that the graph of the coordinate f � [0, 1] of the Peano curve admits no tangent lines on
(0, 1), was first proved by Eliakim Hastings Moore (1862–1932) in a 1900 paper [30].
However, the proof in [30] is considerably more involved than one presented below.

Define ψ : R→ R by a formula

ψ(k + x) := k + 2 dist
(
3
2
x,Z

)
for every k ∈ Z and x ∈ [0, 1)

(see Figure 2) and, by induction on n ∈ ω, define the functions fn : R→ R so that f0
is the identity function and

fn+1(x) := fn (9−nψ (9nx)) for every x ∈ R;

see Figure 3.

Theorem 3. The function f : R→ R given as f = limn→∞ fn is a well-defined con-
tinuous map that admits finite unilateral derivatives at no point. Also, at no point does
f admit two one-sided infinite derivatives.

Proof. It is easy to see that ψ is continuous and that for every k ∈ Z, i ∈ {0, 1, 2},
j ∈ {0, 2}, and n ∈ ω,

(a) fn+1

(
3k+j
3·9n

)
= fn

(
k
9n

)
, and fn+1

(
3k+j+1
3·9n

)
= fn

(
k+1
9n

)
;

(b) fn maps
[

3k+i
3·9n−1 ,

3k+i+1
3·9n−1

]
linearly onto an interval of length 31−n.
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Figure 2. The graph of f1 = ψ, with dashed
line representing f0.
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Figure 3. The graph of f2, with dashed graph
representing f1.

Indeed, (a) holds since we have fn+1

(
3k+j
3·9n

)
= fn

(
9−nψ

(
3k+j

3

))
= fn

(
k
9n

)
and

fn+1

(
3k+j+1
3·9n

)
= fn

(
9−nψ

(
3k+j+1

3

))
= fn

(
k+1
9n

)
. Part (b) holds for n = 0 since

f0 is the identity function and
[

3k+i
3·90−1 ,

3k+i+1
3·90−1

]
has length 3 = 31−0. The inductive

step preserves (b), since 9−nψ (9nx) maps
[
3k+i
3·9n ,

3k+i+1
3·9n

]
= 9−n

(
k +

[
i
3
, i+1

3

])
lin-

early onto J := 9−n[k, k+ 1] =
[

k/3

3·9n−1 ,
(k+1)/3

3·9n−1

]
on which fn is linear, as J ⊂ I :=[

bk/3c
3·9n−1 ,

bk/3c+1

3·9n−1

]
. Also, by the inductive assumption, fn[I] has length 31−n so, J be-

ing three times shorter than I , fn+1

[
3k+i
3·9n ,

3k+i+1
3·9n

]
= fn[J ] has length 1

3
· 31−n =

31−(n+1), as needed.
By (a) and (b), fn and fn+1 map each interval

[
k

9n−1 ,
k+1
9n−1

]
onto the same inter-

val with the endpoints fn
(

k
9n

)
and fn

(
k+1
9n

)
and of length 31−n. So the sup norm

‖fn+1 − fn‖ of fn+1 − fn is bounded by 2 · 31−n and f is continuous, as a uniform
limit of continuous functions.

The argument that f admits finite right derivative at no x ∈ R uses Lemma 1 sim-
ilarly as in the proof of Corollary 2. So, for every n ∈ ω, let pn := k

9n
= 3k

3·9n , where
k ∈ Z is the smallest for which k

9n
≥ x. Also, let mn := 3k+1

3·9n and qn := 3k+2
3·9n . Then

pn − 1
9n
< x ≤ pn < mn < qn < pn + 1

9n
, so qn →n x. So, it is enough to show

that (1) fails for this choice of pn, mn, and qn. Indeed, by (a), we have f(mn) =
fn+1(mn) and f(qn) = f(pn) = fn(pn), so `n(mn) = fn(pn) = fn+1(pn). Hence,
by (b), |f(mn)−`n(mn)|

mn−x =
|fn+1(mn)−fn+1(pn)|

mn−x = 3−n

mn−x >
3−n

2/9n
= 3n/2, that is, (1)

indeed fails.
f admits finite left derivative at no point, since f = −f and it admits finite right

derivative at no point as we proved above.
Finally, to show that at no point does f admit two one-sided infinite derivatives, it

is enough to show that for every x ∈ R there is y 6= x with f(y) = f(x) and |x− y|
arbitrarily small. Indeed, there is arbitrarily large n ∈ N and a k ∈ Z so that x ∈[

k
9n
, k+1

9n

]
. But every fm with m > n, so also f , maps each of the three intervals[

3k+i
3·9n ,

3k+i+1
3·9n

]
, i ∈ {0, 1, 2}, onto the same interval. So, by the intermediate value

theorem, there is a y ∈
[

k
9n
, k+1

9n

]
not equal x for which f(y) = f(x), finishing the

argument.
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It is perhaps worth noticing that there exist points x ∈ R for which the right-hand
side derivative of f at x is∞. For example, this is the case for x =

∑∞
n=0

2/3

9n
= 3

4
,

which is the largest point x with f(x) = 0.

f � [0, 1] is the second coordinate of the classical Peano curve. We have here in
mind the Peano curve P : [0, 1] → [0, 1] × [0, 1] which is the uniform limit of the
piecewise linear paths Pn : [0, 1]→ [0, 1]× [0, 1], n ∈ ω, defined inductively as fol-
lows: P0(x) := 〈x, x〉 and Pn+1 is obtained from Pn by replacing each of its linear
parts with the 9-piece linear path using the basic construction Peano BCP represented
in Figure 4. The graph of P2 is shown in Figure 5. We assume that the parametrization
of curves Pn is uniform with respect to the path length.

a b

d

a b

d

BCP

c c

Figure 4. The basic construction BCP. With a = c = 0 and b = d = 1, the left curve also represents
P0, while the right curve represents P1.

a b

d

c

Figure 5. Construction of P2.

Now, if Pn = 〈pn1 , pn2 〉, so that pn1 and pn2 are, respectively, the first and second
coordinate function ofPn, then it is easy to see that the second coordinate pn2 is equal to
the restrictions fn � [0, 1] of the maps fn defined above. In particular, f � [0, 1] equals
p2, the second coordinate of the Peano curve P := limn→∞ Pn. It is also not difficult
to see that p2(x) = p1(x/3) for every x ∈ [0, 1]. So, f � [0, 1] is also a rescaled
version of p1.

This observation, besides showing a curious connection, also allows us to establish
several other properties of f , since p1 has been studied by several authors. Thus, Jan
Malý showed in a 1980 paper [27] that p1 is density continuous (i.e., continuous when
both domain and range are equipped with the density topology) but it maps some
sets of Lebesgue measure 0 onto sets with positive measure (i.e., p1 does not satisfy
Lusin’s condition (N)). In 1989 [12] the author, Lee Larson, and Krzysztof Ostaszewki
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showed that p1 is nowhere approximately differentiable, while in a 1992 article [11]
the author and Lee Larson proved the category analog of the above mentioned two
results: p1 is I-density continuous and is nowhere I-approximately differentiable. (See
also monograph [13, Section 4.3].) It is also known that p1 is nowhere approximately
differentiable, I-density continuous, and nowhere I-approximately differentiable.

4. BESICOVITCH’S B-MONSTER IN ACCESSIBLE FORMAT. The function
C : R→ R constructed in this section is a modification the original Besicovitch func-
tionBa from the papers [4,5,33] (see also [19,39]) in a sense thatC(x) = B1(x+ 1)
on [−1, 1]. However, as we indicated earlier, the presentation of the function Ba in
these earlier papers makes it hard to recognize this fact.

Let E ⊂ [−1, 1] be the classical Smith–Volterra–Cantor set of Lebesgue mea-
sure |E| = 1 obtained by consecutive removal of middle open intervals of length
4−(n+1) starting separately with intervals [−1, 0] and [0, 1]. More specifically, for
every n ∈ ω we define recursively the families In and Jn of 2n+1 intervals each so
that: I0 = {[−1, 0], [0, 1]}, Jn consists of the open intervals of length 4−(n+1) each
sharing the center with an I ∈ In, and In+1 is the family of connected components
of the sets [0, 1] \

⋃
k≤n

⋃
Jk and [−1, 0] \

⋃
k≤n

⋃
Jk. The set E is defined as

E := [−1, 1] \
⋃∞

k=0

⋃
Jk. Notice also that E is symmetric, in the sense that

−E = E, and uniformly distributed: |E ∩ I| = 1
2n+1 for any I ∈ In.

Let γ : [0, 1]→ [0, 1] be a version of a Cantor devil’s staircase function associated
with E and given for each x ∈ [0, 1] by a formula γ(x) := 2 |E ∩ [0, x]|. Define a
step-triangle map Ψ: R→ [0, 1] as

Ψ(x) := γ(dist(x, [−1, 1]c)) for every x ∈ R,

where Ac := R \ A and dist(x,Ac) is the distance from x to Ac. See Figure 6. No-
tice that the “steps” of Ψ (i.e., the maximal nonempty open intervals on which Ψ is
constant) consists of the elements of the family K =

⋃∞
k=0 Jk.

1

1
2

3
4

1
4

−1 0 5
8

3
8

25
32

5
32

1

Figure 6. The step-triangle map Ψ = c0. Each of its arms is a version of Cantor devil’s staircase
function γ.

For every nonempty bounded open interval J in R, let `J : R→ R be the increasing
linear function mapping J onto (−1, 1). Our B-monster C : R→ R is defined as

C :=
∞∑

n=0

(−1)ncn where cn :=
∑
J∈Kn

√
|J |/2 Ψ ◦ `J ; (2)

K0 := {(2k − 1, 2k + 1): k ∈ Z}, and Kn+1 := {`−1J (K) : J ∈ Kn and K ∈ K}
consist of maximal nonempty open intervals on which maps cn are constant.
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Notice that the alternating series format of the definition of C and the square root
in the coefficient

√
|J |/2 play an essential role in the proof that it does not admit

unilateral infinite derivatives at some x ∈ R; see (B) below. The fact that E used in
the construction has a positive measure is crucial in the proof that C does not admit
unilateral infinite derivatives at all other points; see (C) below.

As (−1, 1) is the support6 of Ψ, the supports of the summands
√
|J |/2 Ψ ◦ `J

of each cn—the intervals J ∈ Kn—are pairwise disjoint, so the maps cn are well-
defined. It is also easy to see that each cn is 2-periodic, that is, cn(x + 2) = cn(x)
for all x ∈ R. Thus, in what follows we will restrict our attention to C on the interval
[−1, 1]. Notice also that C is symmetric (i.e., C(−x) = C(x) for all x ∈ R), as the
symmetry of E implies that the maps Ψ and cn are symmetric.

Let Cn :=
∑n

k=0(−1)kck denote the partial sum of the series (2). The graphs of
maps C0, C1, C2, and C, restricted to [−1, 1], are shown in Figure 7. Notice that
C0 = c0 is formed with the copies of Ψ and Cn+1 is obtained by adding to or sub-
tracting from Cn the rescaled copies of Ψ, one for each J ∈ Kn.
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Figure 7. The graphs of maps C0, C1, C2, and C, restricted to [−1, 1] (generating program courtesy
of Prof. Serge Dubuc).

Theorem 4. The mapC given by (2) is a B-monster, that is, it is continuous and admits
no unilateral, finite or infinite, derivative at any point.

Since C is symmetric, we shall deduce Theorem 4 by noticing the following rela-
tively simple facts, which constitute the sketch of our proof.

6We define the support of an f : X → R as the set f−1(R \ {0}) rather than its closure.
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(A) C is continuous, as each cn is continuous and of sup norm ‖cn‖ ≤ 1
2n

.
(B) C admits no right infinite derivative at any x ∈

⋂∞
n=0

⋃
Kn, since the sequence

〈cn(x)〉n is strictly decreasing and, by the alternating series test, there exists a se-
quence 〈rn > x : n ∈ N〉 converging to x with C(rn) = C(x) for all n ∈ N. This
shows that 0 is the only possible value of the right derivative of C at such x.
(C) C admits no right infinite derivative at any x ∈ R \

⋃
Kn, n ∈ ω, since x is

a right limit point of R \
⋃
Kn+1 and C is Lipschitz on R \

⋃
Kn+1. So, the right

derivative of C at such x, if it exists, would need to be finite.
(D) The fact that C admits no right finite derivative at any x ∈ R is justified by
Lemma 1 in an argument similar to that for Corollary 2.

The detailed arguments follow.

Proof of Theorem 4. By 2-periodicity of C, we can restrict our attention to C on
[−1, 1].

(A): Continuity of C. Each cn is continuous on [−1, 1], since it is a sum of the con-
tinuous maps

√
|J |/2 Ψ ◦ `J with disjoint supports J ∈ Kn contained in [−1, 1],

so for every ε > 0 there are only finitely many such summands with their sup
norms

√
|J |/2 exceeding ε. Also, since |J | ≤ 1

4
for every J ∈ K, an easy induc-

tion argument shows that |J | ≤ 2
8n

for every n ∈ ω and J ∈ Kn. In particular,
‖cn‖ = supJ∈Kn

√
|J |/2 ≤

√
8−n so, by the Weierstrass M test, C is continuous.

In the next steps we will need the following simple property ofC, which holds since
the support of every ck with k ≥ n is contained in

⋃
Kn.

(i) C = Cn−1 on R \
⋃
Kn for every n ∈ N.

(B): No infinite right derivative at any x ∈
⋂∞

n=0

⋃
Kn. First notice that, by uni-

form distribution of the measure of E, for any J ∈ Jk with k ∈ ω the constant value
of Ψ on J is at least 1

2k+1 , since it belongs to
{

2i−1
2k+1 : i ∈ {1, . . . , 2k}

}
. In particular,

Ψ � K ≥ 1
2k+1 =

√
|K| for any K ∈ K of length 1

4k+1 .
Next, for every n ∈ ω choose a Jn := (an, bn) ∈ Kn containing x and notice that

Jn+1 = `−1Jn
(Kn) for someKn ∈ K. Hence, |Jn+1| = |Jn|

2
|Kn| as |Jn|

2
is the slope of

`−1Jn
. Using `Jn(x) ∈ Kn, which holds as x ∈ Jn+1 = `−1Jn

(Kn), we get

cn(x) =
√
|Jn|
2

Ψ(`Jn(x)) ≥
√
|Jn|
2

√
|Kn| =

√
|Jn+1| >

√
|Jn+1|/2 ≥ cn+1(x).

In particular, the bounds part of the alternating series test used with the series
C(x) =

∑∞
n=0(−1)ncn(x) implies that C2n−1(x) < C(x) < C2n(x) for every

n ∈ N. At the same time, for every k ∈ N we have Ck−1(x) = Ck−1(bk), as
Ck−1 is constant on [ak, bk] 3 x, and Ck−1(bk) = C(x), which holds by (i), as
bk ∈ R \

⋃
Kk. So, for every n ∈ N,

C(b2n) = C2n−1(b2n) = C2n−1(x) < C(x) < C2n(x) = C2n(b2n+1) = C(b2n+1).

In particular, by the intermediate value theorem, for every n ∈ N there exists an
rn ∈ (b2n+1, b2n) with C(rn) = C(x). Since b2n ↘ x, this implies that the only
possible value of the right derivative of C at x is 0.

In the next steps, we will also need the following two simple properties of C.
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(ii) For every n ∈ ω and J ∈ Kn the partial sum Cn of C is Lipschitz on J .

Indeed, (ii) holds, since the step-triangle map Ψ is Lipschitz with constant 2, as
|γ(y)− γ(x)| = 2|E ∩ [x, y]| ≤ 2|y − x| for every x < y from [0, 1], while Cn on
J is a sum of a constant and (−1)n

√
|J |/2 Ψ ◦ `J , which is Lipschitz.

For every n ∈ ω let Kn :=
⋃
{[a, b) : (a, b) ∈ Kn} and notice that

(iii) every x ∈ R \Kn is a right limit point of R \Kn ⊂ R \
⋃
Kn.

(C): No infinite right derivative at any x /∈
⋂∞

n=0

⋃
Kn. Notice thatKn+1 ⊂

⋃
Kn

for every n ∈ ω. In particular, x /∈
⋂∞

n=0Kn. Also, K0 = R, so there exist n ∈ N
and (a, b) ∈ Kn−1 so that x ∈ [a, b) \Kn. By (ii) the mapCn−1 on [a, b) is Lipschitz
with some constant L ≥ 0, while (iii) implies that x is a right limit point of the set
[a, b) \Kn ⊂ R \

⋃
Kn. Since, by (i), C = Cn−1 on R \

⋃
Kn, it follows that the

only possible value of the right derivative of C at x is in [−L,L].
(D): No finite right derivative at any x ∈ R. Since K0 = R, for every k ∈ ω
we can choose an n ∈ ω with x ∈ Kn such that either x /∈ Kn+1 or n ≥ k. Let
J := (a, b) ∈ Kn be such that x ∈ [a, b). So, `J(x) ∈ [−1, 1). Choose

(•) m ∈ ω, Im := [cm, dm] ∈ Im, and its middle quarter Jm := (am, bm) ∈ Jm

such that `J(x) ∈ [cm, bm) and m+ n ≥ k.

Such choice is clearly possible when x ∈ Kn+1, since then Jm and Im are uniquely
determined, `J(x) ∈ [am, bm) ⊂ [cm, bm), and m+ n ≥ n ≥ k. On the other hand,
if x /∈ Kn+1, then for every m ∈ ω there exist Im := [cm, dm] ∈ Im and its mid-
dle quarter Jm := (am, bm) ∈ Jm such that `J(x) ∈ Im \ Jm. Also, we must have
`J(x) ∈ [cm, bm) for infinitely many m ∈ ω, since otherwise `J(x) would be equal
to one of the numbers dm, which implies that x = `−1J (dm) ∈ Kn+1, a contradiction.
So, there is an m ≥ k for which the intervals Jm and Im are as needed.

Now, let pk < qk be such that Ĵ := `J [(pk, qk)] ∈ Jm+1 is contained in the inter-
val [bm, dm] ∈ Im+1. Let mk be the midpoint of (pk, qk). Then x < pk < mk < qk.
To finish the proof it is enough to show that the assumptions of Lemma 1 are satisfied
for these numbers and f = C, while (1) fails for them.

Indeed, cm ≤ `J(x) < bm < `J(pk) < `J(qk) < dm and, since |Im| ≤ 2−m and
the slope of `−1J equals |J |/2,

qk − x < |`−1J ([cm, dm])| = 1

2
|J ||Im| ≤

1

2

2

8n
2−m ≤ 2−(m+n) ≤ 2−k →k 0, (3)

that is, indeed qk →k x. Finally, since (pk, qk) = `−1J [Ĵ ] ∈ Kn+1 has length
1
2
|J ||Ĵ | = 1

2
|J |4−(m+2) and, by (i), |f(mk) − `n(mk)| = |Cn+1(mk) − Cn(mk)|,

we have

|f(mk)− `n(mk)| = |cn+1(mk)| =
√
|(pk, qk)|/2 = 2−(m+3)

√
|J |.

Moreover, by (3), mk − x ≤ `−1J (dm)− `−1J (cm) = |`−1J ([cm, dm])| = 1
2
|J ||Im|, so

|f(mk)− `k(mk)|
mk − x

≥ 2−(m+3)
√
|J |

1
2
|J ||Im|

=
2−(m+3)

√
|J |

1
2
|J |2−m

=
1

4

1√
|J |
≥ 1

8
,

showing that (1) indeed fails.
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5. FINAL REMARKS.

Typical behavior of W-monsters. It should be mentioned here that W-monsters, even
those that admit no tangent line, such that the coordinates of Peano curves described
in Section 3 are “typical” in the sense that there exists a first category subset M of the
space C([a, b]) of all continuous functions considered with the supremum distance,
such that every f ∈ C([a, b]) that is not in M has such properties. This was first
proved in 1931 paper by Stefan Banach (1892–1945); see [20, Theorem 7.2.1]. On the
other hand, the B-monsters form a first category subset of C([a, b]), as was shown in
1932 by Stanisław Saks (1897–1942); see [20, Theorem 7.5.1].

W-monsters and nowhere monotone maps. The classical theorem of Henri León
Lebesgue (1875–1941), known as Lebesgue’s differentiation theorem, states that every
monotone function defined on an interval J is differentiable at almost all points of J .
This clearly implies that any W-monster must be nowhere monotone, that is, monotone
on no nontrivial interval. The examples we discussed above show that there are bad
(with respect to differentiability) nowhere monotone functions. The related interesting
question is how good continuous nowhere monotone functions could be. In particular,
can such a map be differentiable at every point?

This question goes back to the late 19th century and was answered in the affir-
mative in 1887 by Alfred Köpcke (1852–1932) in [23]. (See also [24, 25].) The ex-
amples of this kind have recently become known as differentiable monsters to stress
their curious relation to W-monsters. (See [10].) The long history of the search for
differentiable monsters is described in detail in the 1983 paper [8] of Andrew Michael
Bruckner (1932–). But unlike in the case of W-monsters, where simple examples
were described soon after their original discovery, the short and elementary construc-
tions of differentiable monsters were in short supply until 2018, when the author no-
ticed that for every differentiable auto-homeomorphism h of R with a dense set of
points having zero derivative there is a residual set of points t ∈ R for which the map
g(x) := h(x− t)− h(x) is a differentiable monster [10]. This makes the construc-
tion easy, since the maps h, known as Pompeiu-like functions, are easily constructed,
as noticed already in the 1907 paper [35] by Dimitrie Pompeiu (1873–1954). Even
more interesting, it was just noticed by Chang-Han Pan in [32] that the differentiable
monsters that are difference of two Pompeiu-like maps are canonical in the sense for
every differentiable monster has a restriction that can be expressed in that way.
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[14] Denjoy, A. (1915). Mémoire sur les nombres dérivés des fonctions continues. J. Math. 1(2): 105–240.
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