
Noname manuscript No.
(will be inserted by the editor)

Two polynomial time graph labeling algorithms optimizing
max-norm based objective functions

Filip Malmberg · Krzysztof Chris Ciesielski

Received: Draft date: February 17, 2020/ Accepted: date

Abstract Many problems in applied computer science

can be expressed in a graph setting and solved by find-

ing an appropriate vertex labeling of the associated

graph. It is also common to identify the term “appro-

priate labeling” with a labeling that optimizes some ap-

plication motivated objective function. The goal of this

work is to present two algorithms that, for the objective

functions in a general format motivated by image pro-

cessing tasks, find such optimal labelings. Specifically,

we consider a problem of finding an optimal binary la-

beling for the objective function defined as the max-

norm over a set of local costs of a form that naturally

appears in image processing.

It is well known that for a limited subclass of such

problems, globally optimal solutions can be found via

watershed cuts, that is, by the cuts associated with the

optimal spanning forests of a graph. Here, we propose

two new algorithms for optimizing a broader class of

such problems. The first algorithm, that works for all

considered objective functions, returns a globally opti-

mal labeling in quadratic time with respect to the size

of the graph (i.e., the number of its vertices and edges)

or, for an image associated graph, the size of the image.

The second algorithm is more efficient, with quasi-

linear time complexity, and returns a globally optimal

labeling provided that the objective function satisfies

certain given conditions. These conditions are analo-

F. Malmberg
Centre for Image Analysis, Department of Information Tech-
nology, Uppsala University, Sweden
E-mail: filip.malmberg@it.uu.se

K.C. Ciesielski
Department of Mathematics, West Virginia University, Mor-
gantown, WV 26506-6310, USA and Department of Radi-
ology, MIPG, University of Pennsylvania, Philadelphia, PA
19104, USA E-mail: KCies@math.wvu.edu

gous to the submodularity conditions encountered in

max-flow/min-cut optimization, where the objective

function is defined as sum of all local costs.

We will also consider a refinement of the max-norm

measure, defined in terms of the lexicographical order,

and examine the algorithms that could find minimal

labelings with respect to this refined measure.

Keywords Energy Minimization · Pixel labeling ·
Minimum cut · NP-hard

Mathematics Subject Classification (2010)

68Q25 · 68W40 · 68R10

1 Introduction

Many fundamental problems in image processing and

computer vision, such as image filtering, segmentation,

registration, and stereo vision, can naturally be formu-

lated as optimization problems. Often, these optimiza-

tion problems can be described as labeling problems in

which we wish to assign to each image element (pixel,

or vertex of an associated graph) v ∈ V an element

`(v) from some finite K-element set of labels, usually

{0, . . . ,K − 1}. The interpretation of these labels de-

pends on the optimization problem at hand. In image

segmentation, the labels might indicate object cate-

gories. In registration and stereo disparity problems the

labels represent correspondences between images, and

in image reconstruction and filtering the labels repre-

sent intensities in the filtered image.

In what follows an undirected graph G is identified

with a pair 〈V, E〉, where V is its set of vertices and

E is the set of its edges. Each edge connecting vertices

s and t is identified with a pair {s, t}. We make the

assumption that the vertices in V are linearly ordered,

and let Ê := {〈s, t〉 ∈ V 2 : {s, t} ∈ E & s < t}.

2 Filip Malmberg, Krzysztof Chris Ciesielski

Our new algorithms have no restriction on the for-

mat of the graph to which they can be applied. How-

ever, in what follows we will often treat G as associated

with a digital image. In this case V is the set of all

pixels of the image, while E is the set of pairs {s, t}
of vertices/pixels that are adjacent according to some

given adjacency relation.

In this paper, we seek the vertex label assignments

` : V → {0, 1, . . . ,K − 1} of the undirected1 graphs

G = (V, E) that minimize a given objective (energy)

function E∞ of the form

E∞(`) := max
{

max
s∈V

φs(`(s)), max
〈s,t〉∈Ê

φst(`(s), `(t))
}
. (1)

The functions φs(·) are referred to as unary terms.

The value of φs(j) depends explicitly only on the label

j ∈ {0, 1, . . . ,K − 1},
but typically is also based on some prior informa-

tion. These terms are used to indicate a preference for

a vertex/pixel s to be assigned a particular label j.

The functions φst(·, ·) are referred to as pairwise or

binary terms. The value of φst(·, ·) depends simultane-

ously on the labels assigned to the vertices/pixels s and

t, and thus introduces a dependency between the labels

of different pixels. Typically, this dependency between

pixels is used to express an expectation that the de-

sired solution should have some degree of smoothness

or regularity.

The unary and pairwise terms taken together form

the local costs error measures we mentioned in the ab-

stract (and forming the functional Φ defined in Sec-

tion 3). The same local costs are used in the L1-norm

energy E1, that we discuss briefly in the next section.

Finding a labeling that globally minimizes an ob-

jective function of the form E∞ is generally a chal-

lenging computational task—in Section 7 we show that

this problem is in fact NP-hard in the general case, for

K > 2. As we will see, however, there exist restricted

classes of local cost functionals for which efficient algo-

rithms can be formulated.

In the conference version of this paper [16], we intro-

duced an algorithm for finding a binary labeling (i.e.,

with K = 2) and showed that the labeling it returns

is always E∞-optimal as long as all pairwise local cost

1 Actually, the energy formula (1) is expressed in terms

of the directed graph Ĝ = 〈V, Ê〉. But, for any {s, t} ∈ E,
we consider the value of φst(`(s), `(t)) as depending only on
` � {s, t} = {〈s, `(s)〉, 〈t, `(t)〉}—the restriction of ` to the
indirect edge {s, t}. (See Section 3, where we explicitly express
E∞(`) in terms of the numbers Φ(` � {s, t}) = φst(`(s), `(t))
and Φ(` � {s}) = φs(`(s)).) So, the directedness of the graph
is not really used in (1).

terms φst are ∞-submodular, that is, that they satisfy

the condition

max{φst(0, 0), φst(1, 1)} ≤ max{φst(1, 0), φst(0, 1)}. (2)

This algorithm, presented in Section 6, is very effi-

cient, with quasi-linear time complexity.2 An important

question left open in our previous work [16] was whether

it is possible to optimize objective function E∞ in poly-

nomial time without any additional assumptions on the

local cost functional, like that of ∞-submodularity

needed for the algorithm from [16]. Here, we answer

this question affirmatively by presenting in Section 5

an algorithm that produces, in O((|V | + |E|)2) time,

a binary labeling that is globally E∞-optimal for any

local cost functional.

2 Background and related work

2.1 Lp norm objective functions and minimal graph

cuts

While the main focus of this paper is to find efficient

algorithms for the direct optimization of objective func-

tions of the form E∞, we will start by discussing the

more general problems of optimizing Lp norm objective

functions for p ∈ [1,∞].

In their seminal work, Kolmogorov and Zabih [13]

considered binary labeling problems for the L1-norm

based objective function of the form

E1(`) :=
∑
s∈V

φs(`(s)) +
∑
〈s,t〉∈Ê

φst(`(s), `(t)) (3)

and showed that a globally optimal binary labeling can

be found by solving a max-flow/min-cut problem on a

suitably constructed graph under the condition that all

pairwise terms φst are submodular, that is, that they

satisfy the inequality

φst(0, 0) + φst(1, 1) ≤ φst(0, 1) + φst(1, 0). (4)

Looking at the objective functions E1 and E∞, we

can view them both as consisting of two parts:

– The local error measures, in our case expressed by

the unary and pairwise terms.

– A global error measure, aggregating the local errors

into a final score.

2 Formally, the asymptotic time complexity is bounded by
the time required to sortO(|V |+|E|) values. Here, |X| denotes
the cardinality of the set X.

Two polynomial time graph labeling algorithms optimizing max-norm based objective functions 3

In the case of E1, the global error measure is obtained

by summing all local error measures; in the case of E∞
the global error measure is taken to be the maximum

of all local error measures. If we assume for a moment

that all local error measurements are non-negative, then

E1 can be seen as measuring the L1-norm of a vector3

containing all local costs/errors. Similarly, E∞ can be

interpreted as the L∞- (or max-) norm of the same

vector. The L1 and L∞ norms are both the special cases

of Lp norms, with p ∈ [1,∞], which for finite p are

defined as

Ep(`) :=

∑
s∈V

φps(`(s)) +
∑
〈s,t〉∈Ê

φpst(`(s), `(t))

1/p

, (5)

where φps(·) = (φs(·))p and φpst(·, ·) = (φst(·, ·))p. The

value p ∈ [1,∞] can be seen as a parameter controlling

the balance between minimizing the overall cost ver-

sus minimizing the magnitude of the individual terms.

For p = 1, the optimal labeling may contain arbitrar-

ily large individual terms as long as the sum of the

terms is small. As p increases, a larger penalty is as-

signed to solutions containing large individual terms. In

the limit as p approaches infinity, Ep approaches E∞
and the penalty assigned to a solution is determined by

the largest individual term only. The limit behavior of

Lp norm optimizers as p approaches ∞ has also been

studied in, e.g., [20,8,18]. Abbas and Swoboda [1] con-

sidered optimization of mixed optimization problems,

where the objective function contains both L1 and L∞
terms.

Labeling problems with objective functions of the

form Ep, for p ∈ [1,∞), can be solved using minimal

graph cuts, provided that all pairwise terms φpst are

p-submodular [17]. A binary term φ is said to be p-

submodular if the corresponding term φp is submodular,

which is equivalent to the condition

(φpst(0, 0) +φpst(1, 1))1/p ≤ (φpst(0, 1) +φpst(1, 0))1/p. (6)

In the limit, as p goes to infinity, this inequality becomes

max{φst(0, 0), φst(1, 1)} ≤ max{φst(1, 0), φst(0, 1)},

that is, the∞-submodularity condition (2). As observed

by Malmberg and Strand [17], 1-submodularity does

not neccesarily imply p-submodularity.4 The following

theorem was shown by Malmberg and Strand [17]:

3 Formally, this vector is identified with the function φ`
defined in the next section.
4 As an example, consider the two-label pairwise term φst

given by φst(0, 0) = 3, φst(1, 1) = 0, and φst(0, 1) =
φst(1, 0) = 2. It is easily verified that φst is 1-submodular
but not 2-submodular.

Theorem 1. If a binary term φ is 1-submodular and

∞-submodular, then it is also p-submodular for any real

p ≥ 1.

We note here that Theorem 1 implies also the fol-

lowing seemingly stronger result.

Corollary 1. Let φ be a binary term. Then for every

ρ ∈ [1,∞) the following conditions are equivalent.

(i) φ is ρ-submodular and ∞-submodular.

(ii) φ is p-submodular for every p ∈ [ρ,∞).

Proof. To see that (ii) implies (i) notice that the p-

submodularity inequality (6) can be written as

‖〈φst(0, 0), φst(1, 1)〉‖p ≤ ‖〈φst(0, 1), φst(1, 0)〉‖p.

Since the Lp norm converges to the L∞ norm, as p goes

to infinity, the limit of both sides of the above inequality

becomes

‖〈φst(0, 0), φst(1, 1)〉‖∞ ≤ ‖〈φst(0, 1), φst(1, 0)〉‖∞,

that is, the ∞-submodularity condition (2).

To see that (i) implies (ii) assume that φst satisfies

(i). Then φρst is both 1-submodular (raise both sides of

the inequality (2) with p = ρ to the power ρ) and ∞-

submodular (as the map xρ is increasing on (0,∞)). In

particular, φst satisfies the assumptions of Theorem 1.

Therefore, for every p ∈ [ρ,∞) it is p
ρ -submodular, that

is, satisfies

(φ
ρ pρ
st (0, 0) + φ

ρ pρ
st (1, 1))ρ/p ≤ (φ

ρ pρ
st (0, 1) + φ

ρ pρ
st (1, 0))ρ/p.

But this clearly implies p-submodularity of φst.

2.2 Optimization of E∞ by classical algorithms

In Section 4 we will show that if the binary terms φ

satisfy (i) of Corollary 1, then an optimal labeling for

the associated energy E∞ can be found by solving an

appropriate max-flow/min-cut problem.

Moreover, it turns out that in some problem in-

stances a labeling that is globally optimal with respect

to E∞ can be found using very efficient, greedy algo-

rithms. Specifically, if

(D) all pairwise terms are such that φst(1, 0) = φst(0, 1)

and φst(0, 0) = φst(1, 1) = 0, while all unary terms

have values in {0,∞},

then an optimal labeling for the associated energy E∞
can be found by computing the partitioning induced by

an optimum spanning forest on a suitably constructed

4 Filip Malmberg, Krzysztof Chris Ciesielski

graph using, e.g., Prim’s algorithm [19,7]5. See more on

this in Section 4. This property of optimum spanning

forests has been observed by several authors [2,8,6].

This result has a high practical value since the compu-

tation time for constructing an optimal spanning forest

is substantially lower than the computation time for

solving a max-flow/min-cut problem, asymptotically as

well as in practice [8].

Wolf et al. [23,22,21] recently proposed various ex-

tension of this greedy approach, and also reported state-

of-the-art results on various image segmentation bench-

marks. We note also that the notion of partitioning an

image-induced graph by computing an optimum span-

ning forest is tightly connected to the classic watershed

image segmentation method [9,10].

Based on the above, an interesting question is there-

fore whether it is possible to use similar greedy tech-

niques to optimize the objective function E∞ beyond

the special case when the local costs satisfy property

(D). The results presented in this paper answers this

question affirmatively, and shows that the class of E∞
optimization problems that are solvable by the efficient

greedy algorithms is larger than what was previously

known.

3 Algorithms for direct optimization of E∞:

preliminaries

In Sections 5 and 6, we will introduce two novel algo-

rithms, each finding a binary labeling minimizing E∞.

The exposition of these algorithms relies on the no-

tion of unary and binary solution atoms, which we in-

troduce in this section. Informally, a unary atom repre-

sents one possible label configuration for a single vertex,

and a binary atom represents a possible label configu-

ration for a pair of adjacent vertices. Thus, for a binary

labeling problem, there are two atoms associated with

every vertex and four atoms for every edge. The total

number of atoms for a binary labeling problem is thus

O(|V |+ |E|).
Formally, we let V = {{v} : v ∈ V }, put D = V ∪ E ,

and let A be the family of all binary maps from D ∈ D
into {0, 1}. An atom, in this notation, is an element

of A. If we identify, as it is common, maps with their

graphs then each unary atom associated with a vertex

s ∈ V has form {〈s, i〉}, with i ∈ {0, 1}. Similarly, each

binary atom associated with an edge {s, t} ∈ E has the

form {〈s, i〉, 〈t, j〉}, with i, j ∈ {0, 1}.
Notice, that the maps φs and φst used for the unary

and binary terms in (1) can be combined to form a

5 We note that this algorithm is also sometimes referred
to as the Jarǹık-Prim-Dikstra algorithm, as it was indepen-
dently discovered by these three authors [12,11,19]

single function Φ : A → [0,∞) defined, for every A ∈ A,

as

Φ(A) :=

{
φs(i) for A = {〈s, i〉},
φs,t(i, j) for A = {〈s, i〉, 〈t, j〉}.

For a given labeling `, we define φ` : D → [0,∞), for

every D ∈ D, as φ`(D) := Φ(` � D), that is,

φ`(D) :=

{
φs(`(s)) for D = {s} ∈ V,

φs,t(`(s), `(t)) for D = {s, t} ∈ E ,

where ` � D is the restriction of ` to D. With this

notation, we may write the objective function E∞ as

E∞(`) = ‖φ`‖∞ = max
D∈D

φ`(D). (7)

Similarly, Ep(`) = ‖φ`‖p for any p ∈ [1,∞).

3.1 Consistency

Conceptually, both the proposed algorithms work as fol-

lows: starting from the set of all possible unary and bi-

nary atoms, the algorithm iteratively removes one atom

at a time until the remaining atoms define a unique la-

beling. A key issue in this process is to ensure that, at

all steps of the algorithm, at least one labeling can be

constructed from the set of remaining atoms.

Let ` be a binary labeling. We defineA(`), the atoms

for `, as the family

A(`) := {` � D : D ∈ D}.

Notice that ` can be easily recovered from A(`) as its

union: ` =
⋃
A(`).

Definition 1. Let A′ ⊂ A be a set of atoms. We say

that A′ is consistent if there exists at least one labeling

` such that A(`) ⊆ A′.

We will now derive one of our main results, namely

that the problem of determining whether a given set of

atoms is consistent can be formulated as a 2-satisfiability

problem. The 2-satisfiability problem is a well-studied

problem in computer science, and several efficient algo-

rithms exists for its solution. This result quite directly

leads to Algorithm 1, presented in Section 5, for finding

a labeling minimizing E∞.

For a set A′ ⊆ A of atoms denote by Ā′ the com-

plement of A′ relative to A, that is, Ā′ := A\A′. Then

A′ is consistent if, and only if, there exists a labeling `

such that A(`) ∩ Ā′ = ∅. We will show that the exis-

tence of such labeling ` can be determined by solving a

2-satisfiability problem.

For this, let’s treat any vertex v ∈ V of our graph as

a variable of propositional calculus, that is, a variable

Two polynomial time graph labeling algorithms optimizing max-norm based objective functions 5

that can take two possible values: TRUE, which will

be identified with number 1, and FALSE, which will be

identified with 0. Upon such identification, any labeling

` : V → {0, 1} can be treated as a truth functional.

Now, with any unary atom A = {〈s, i〉}, with i ∈
{0, 1}, we associate a propositional calculus formula in

a very simple format known as literal (i.e., a variable

or its negation):

ψA(s) :=

{
¬s if i = 1,

s if i = 0.

Less formally, but more concisely, ψA(s) := “s 6= i”.

Notice that ` : V → {0, 1} disagrees with A if, and only

if, ψA is satisfied by ` treated as a truth functional.

Similarly, for every binary atom A = {〈s, i〉, 〈t, j〉}
we define

ψA(s, t) := ψ{〈s,i〉}(s) ∨ ψ{〈t,j〉}(t)

or, equivalently, as “(s 6= i) ∨ (t 6= j)”. Once again,

` : V → {0, 1} disagrees with A if, and only if, ψA is

satisfied by ` treated as a truth functional.

Finally, for a set A′ = {A1, A2, . . . , Am} of atoms

define

ψA′ :=

m∧
i=1

ψAi = ψA1 ∧ · · · ∧ ψAm .

Also, ` : V → {0, 1} disagrees with every A ∈ A′ if, and

only if, ψA′ is satisfied by `. Notice also that the formula

ψA′ is in the so called 2-conjunctive normal form, that

is, it is a conjunction of formulas ψAi , each of which is

a disjunction of at most two literals.

The above discussion leads to the following result.

Theorem 2. A set A′ ⊆ A of atoms is consistent if,

and only if, the 2-satisfiability problem for a formula

ψĀ′ has a positive solution.

Proof. This follows from the equivalence of the follow-

ing conditions, each consecutive pair of which was ar-

gued above.

– A′ ⊆ A is consistent.

– A(`) ∩ Ā′ = ∅ for some ` : V → {0, 1}.
– There is an ` : V → {0, 1} which disagrees with ev-

ery A ∈ Ā′.
– There is an ` : V → {0, 1} such that ψĀ′ is satisfied

by `.

– The 2-satisfiability problem for a formula ψĀ′ has a

positive solution.

Recall, that the solution to the 2-satisfiability prob-

lem for a formula in the 2-conjunctive normal form

that is a conjunction of n 2-disjunctions can be found

in O(n) time, using, e.g., the algorithm by Aspvall et

al. [3]. Thus, for any set A′ ⊆ A of atoms, the question

Is A′ consistent?

can be answered in a linear time with respect to the

number n := |Ā′| of elements in Ā′ = A\A′ by deciding

the satisfiability of ψĀ′ .

4 Strict optimality

In this section we will introduce a refinement of the L∞
norm measure. This will help us in the discussion of the

two proposed algorithms, which will be introduced in

the next two sections.

A potential drawback of the L∞-norm is that it does

not distinguish between solutions with high or low er-

rors below the maximum error. To resolve this prob-

lem, Levi and Zorin introduced, in a 2014 paper [15],

the concept of strict minimizers.6 In this framework,

two solutions are compared by ordering all elements (in

our case, binary and unary terms) non-increasingly by

their local error value, and then performing their lexi-

cographical comparison.

Formally, using the notation from Section 3, let `1
and `2 be two labelings. Furthermore, let 〈A1, A2, . . . , Ak〉
and 〈B1, B2, . . . , Bk〉 be the sequences of all atoms in

A(`1) and A(`2), respectively, each ordered by the de-

creasing costs of atoms, that is, with Φ(A1) ≥ · · · ≥
Φ(Ak) and Φ(B1) ≥ · · · ≥ Φ(Bk). We say that `1 pre-

cedes `2 lexicographically, and denote this as `1 ≺ `2,

provided there exists an i ∈ {1, 2, . . . , k} such that

Φ(Ai) 6= Φ(Bi) and for the smallest such i we have

Φ(Ai) < Φ(Bi). Also, we write `1 � `2 provided either

`1 ≺ `2 or Φ(Ai) = Φ(Bi) for all i ∈ {1, 2, . . . , k}.

Definition 2. A labeling ` is said to be strictly minimal

provided ` � `′ for any other labeling `′.

From this definition, it is clear that any strict minimizer

is also an L∞-optimal solution. Thus, the set of all strict

minimizers is a subset of all L∞-norm optimal solutions.

In fact, the limit, as p → ∞, of Lp-norm minimizers

discussed above, is not only an L∞-minimizer but also

a strict minimizer [15]. (For the local cost functions

satisfying the property (D) it was proved earlier, in a

2012 paper [6] of Ciesielski et al.)7

6 See also the 2010 paper by Ciesielski and Udupa [5] where
strict optimization was earlier considered in a similar setting.
7 Specifically, [6, theorem 5.3] states that for q > 0 large

enough we have Pq(S, T) = P̂max(S, T), where parameters S

6 Filip Malmberg, Krzysztof Chris Ciesielski

The above discussion indicates, that it would be

desirable to have an efficient algorithm that not only

finds L∞-minimizers, but also strict minimizers. Unfor-

tunately, in the general setting that we examine here,

the problem of finding strict minimizers is NP-hard.

We will show this at the end of this section. Neverthe-

less, there are two special situations in which efficient

algorithms for finding strict minimizers do exist. The

first case are described in the next subsection. The sec-

ond one, discussed in Section 5.1 and solved by the

algorithm presented there, is when all local terms have

distinct weights.

4.1 When all φst are p-submodular for large enough p

For a finite set Z ⊂ [0,∞) and k ≥ 1 let δkZ := logb k,

where

b := min
{s
r

: 0 < r < s & r, s ∈ Z
}
.

We will use the following result, that identifies the strict

optimality with the optimality with respect to Ep for

p large enough. For the local costs maps satisfying (D)

this was first proved in [6, theorem 5.3].

Proposition 1. Let |V | = k and assume that all local

cost maps φs and φs,t have values in a finite set Z ⊂
[0,∞). If p ≥ δkZ , then a binary labeling ` is strictly

minimal if, and only if, it is minimal with respect to

Ep.

Proof. To see this, notice first that for every p ≥ δkZ

if `1 ≺ `2, then Ep(`1) < Ep(`2). (8)

Indeed, using the notation as in the definition of ≺, let i

be the smallest such that Φ(Ai) < Φ(Bi). If Φ(Ai) = 0,

then Epp(`1) =
∑i−1
j=1 Φ

p(Aj) <
∑k
j=1 Φ

p(Bj) = Epp(`2)

justifying (8). So, assume that Φ(Ai) > 0. Then, for b

defined as above, we have b ≤ Φ(Bi)
Φ(Ai)

and

logb k = δkZ ≤ p ≤ p logb
Φ(Bi)

Φ(Ai)
= logb

Φp(Bi)

Φp(Ai)

so that kΦp(Ai) < Φp(Bi). Therefore,

Epp(`1) ≤
i−1∑
j=1

Φp(Aj)+kΦp(Ai) <

k∑
j=1

Φp(Bj) = Epp(`2),

completing the argument for (8).

and T indicate that the unary local cost maps ensure that for
any optimal label ` we have S ⊂ `−1(1) and T ⊂ `−1(0) (i.e.,
ψs(i) =∞ if, and only if, either i = 0 and s ∈ S or else i = 1
and s ∈ T), Pq(S, T) is the set of all labelings minimizing Eq,

while P̂max(S, T) is the set of all strictly optimal labelings.

To prove the proposition, choose p ≥ δkZ and la-

belings `1 and `2. If `1 is strictly minimal, then either

`1 ≺ `2, in which case (8) implies that Ep(`1) < Ep(`2),

or 〈Φ(A1), . . . , Φ(Ak)〉 = 〈Φ(B1), . . . , Φ(Bk)〉, in which

case clearly Ep(`1) = Ep(`2). Thus, strict minimality of

`1 indeed implied its minimality with respect to Ep.

Conversely, if `1 is minimal with respect to Ep, then

we must have `1 � `2, since otherwise we would have

`2 ≺ `1 and, by (8), Ep(`2) < Ep(`1), a contradiction.

A number p for which the proposition holds is re-

ferred to by Wolf et al. [21] as a dominant power. Its

existence is proved in that paper; however, no estimate

similar to that of δZ is provided there. The estimate

δZ can be found, in a similar settings, in [6, theorem

5.3]; however, this result does not explicitly relate this

number with the lexicographical order.

The proposition immediately implies the next theo-

rem.

Theorem 3. Let δZ be as in Proposition 1 and assume

that p ∈ [δZ ,∞) is such that all terms φst are submodu-

lar. Then any labeling ` minimizing Ep is a strict min-

imizer. In particular, if there is a ρ ∈ [1,∞) such that

φ is ρ-submodular and ∞-submodular, then there is a

p ∈ [ρ,∞) such that any Ep-optimizing label ` returned

by max-flow/min-cut algorithm is a strict optimizer.

We observe that in practice, the dominant power p

may be large. This may give rise to numerical issues

when solving the max-flow/min-cut problem, as each

local cost is raised to the power p. The novel algorithms

proposed in Sections 5 and 6 do not suffer from his

potential issue.

4.2 NP-hardness of finding strict optimizers

We will now show that, in the general case, the problem

of finding strict optimizers is indeed NP-hard. This is

justified by an example from Kolmogorov and Zabih

[13, Appendix A] that shows that L1-optimality for

nonsubmodular energies is NP-hard.

Recall, that the set U of vertices of a graph G =

〈V, E〉 is independent when it contains no two vertices

connected by an edge. It is known, that the problem

of finding maximal independent set of vertices of an

arbitrary graph is NP-hard [7, chapter 34].

In the example, associate the following local costs:

– for every vertex v of label i, give the cost 1− i;
– for every edge with both vertices of label 1, let the

cost be N := |V |+ 1;

– with any other edge, associate the cost 0.

Two polynomial time graph labeling algorithms optimizing max-norm based objective functions 7

Notice that the max-cost of any labeling ` is < N if,

and only if, the set U := `−1(1) is independent. Among

all labelings ` associated with an independent U , the

max cost is 1. Moreover, the labeling ` is a strict min-

imizer when the number of cost 1 atoms for U , which

is |V | − |U |, is minimal, that is, when the size of U is

maximal.

In other words, if for a graph G we use the local

costs assignments as above, then ` is a strict minimizer

if, and only if, U := `−1(1) is a maximal independent set

of vertices. So, our problem is indeed NP-hard, similarly

as the problem of finding maximal independent set of

vertices.

5 A quadratic time algorithm for direct

optimization of E∞

With these preliminaries in place, we are now ready

to introduce a general method for finding a binary la-

beling that globally optimizes E∞. Pseudocode for this

method is given in Algorithm 1.

Algorithm 1: Labeling Algorithm, general

case
Data: A graph G = 〈V, E〉 and associated

Φ : A → [0,∞) generating energy E∞
Result: A labeling ` : V → {0, 1} minimizing E∞
Additional Structure: A max-priority queue H,
a set L of atoms approximating `.

1 H← A and L← ∅
2 while H 6= ∅ do
3 remove the first atom A from H
4 if H ∪ L is not consistent then insert A to L

5 return `←
⋃

L

If n is the number of elements, atoms, in A, then

Algorithm 1 terminates after O(n2) operations. This is

the case, since the execution of line 1 has complexity

O(n lnn) (as it requires ordering of H) while the loop

2-4 is executed n times and each its execution requires

O(n) operations, as we indicated after Theorem 2.

Theorem 4. An ` returned by Algorithm 1 is a labeling

minimizing energy E∞.

Proof. The main loop 2-4 is executed precisely n-times,

where n := |A|.
For every k ∈ {0, 1, . . . , n} let Hk and Lk be the

states of H and L, respectively, directly after the kth

execution of the loop 2-4. First notice that, for every

k ∈ {0, 1, . . . , n},

(Ck) Hk ∪ Lk is consistent.

Clearly H0 ∪ L0 = A, is consistent. Also, for every

k < n, if Hk ∪ Lk is consistent, then so is Hk+1 ∪ Lk+1.

Indeed, if during the (k + 1)st execution of line 3 an

atom A is removed from Hk, then Hk+1 = Hk \ {A}.
If Hk+1 ∪ Lk is consistent, then Lk+1 = Lk and (Ck+1)

holds. Otherwise, line 4 ensures that Lk+1 = Lk ∪ {A}
and Hk+1 ∪ Lk+1 = Hk ∪ Lk is consistent by (Ck).

The above shows that Hn ∪ Ln = Ln is consistent,

that is, there exists a labeling `′ : V → {0, 1} so that

A(`′) ⊆ Ln. To finish the proof that ` =
⋃

Ln is a

labeling we need to show that A(`′) = Ln.

So see this, first notice that Hk+1 ∪ Lk+1 ⊆ Hk ∪ Lk
for every k < n. So, A(`′) ⊆ Ln ⊆ Hk ∪ Lk. To see that

Ln ⊆ A(`′), assume by way of contradiction that there

is an A ∈ Ln \A(`′). Then, A is removed from H during

some, say kth, execution of line 2. So, A /∈ Hk+1. Also,

if A /∈ A(`′), then Hk+1∪Lk is consistent, as it contains

A(`′). Therefore, Lk+1 = Lk and A /∈ Hk+1∪Lk+1 ⊃ Ln,

a contradiction. This means that A(`′) = Ln.

Finally, by way of contradiction, assume that ` =⋃
Ln does not minimize E∞, that is, that there is a

labeling `′ with c := E∞(`′) < E∞(`). Then, there is

an A ∈ A(`) of cost > c. Let k ≤ n be such that A is

removed from H during the kth execution of line 2. Then

A /∈ Hk+1. Also, by the ordering of H, we have A(`′) ⊂
Hk+1. So, Hk+1 ∪ Lk is consistent and Lk+1 = Lk. In

particular, A /∈ Hk+1∪Lk+1 ⊃ Ln = A(`), contradicting

the fact that A ∈ A(`).

5.1 Atoms with unique weights

We say that the atoms (in A) have unique weights pro-

vided the map Φ : A → [0,∞) is injective, that is, when

Φ(A1) 6= Φ(A2) for every distinct A1, A2 ∈ A. Our main

result here is the following

Theorem 5. If the atoms in A have unique weights,

then the labeling ` returned by Algorithm 1 is the unique

strict optimizer.

First we prove the uniqueness part of the theorem,

in form of the following lemma.

Lemma 1. If the atoms in A have unique weights, then

the strictly optimal labeling is unique.

Proof. Let `1 and `2 be strictly optimal labelings. We

will show that `1 = `2.

To see this, consider the sequences of the atoms in

A(`1) and A(`2), respectively, each ordered by decreas-

ing cost. Then, since both labelings are strictly opti-

mal, the decreasing sequences of the costs of the atoms

in A(`1) and A(`2) must be identical. However, since

every atom has a unique weight, this means that the

sets of atoms in A(`1) and in A(`2) must themselves

8 Filip Malmberg, Krzysztof Chris Ciesielski

be identical. In particular A(`1) = A(`2) and therefore

`1 =
⋃
A(`1) =

⋃
A(`2) = `2, as needed.

Proof of Theorem 5. We will use the same notation as

in the proof of Theorem 4. Let ` and `′ be distinct

labelings such that ` is strictly optimal and, by way of

contradiction, assume that Algorithm 1 returns labeling

`′ rather than `. Fix the sequences 〈A1, A2, . . . , Am〉
and 〈B1, B2, . . . , Bm〉 of all atoms in A(`) and A(`′),

respectively, each ordered by the decreasing costs of

atoms. By Lemma 1 , we have ` ≺ `′. Therefore, there

exists an i ∈ {1, 2, . . . ,m} such that Φ(Ai) < Φ(Bi) and

Φ(Aj) = Φ(Bj) for all j < i.

Let k ≤ n be such that Bi is removed from H during

the kth execution of line 2. Then, {B1, B2, . . . , Bm} =

A(`′) ⊂ Ln ⊂ Hk ∪Lk. In fact, by the ordering principle

of H we have {A1, . . . , Ai−1} = {B1, . . . , Bi−1} ⊂ Hk
and {Ai, . . . , An} ⊂ Lk. In particular, Hk+1 ∪ Lk is

consistent since it contains {A1, A2, . . . , Am} = A(`).

Thus, Lk+1 = Lk and Bi /∈ Hk+1∪Lk+1 ⊃ Ln = A(`′), a

contradiction that finishes the proof of Theorem 5.

The requirement in Theorem 5 (and the forthcom-

ing Theorem 7) that all atoms in A have unique weights

may appear restrictive, and for real world problems

this condition may or may not hold. We will therefore

now discuss how these theorems may be interpreted

when all atoms weights are not unique. First we ob-

serve that when all atom weights are not unique, it

is straightforward to define a new local cost function

Φ̂ with unique weights and such that, for any atoms

A,A′ ∈ A, Φ(A) < Φ(A′) implies Φ̂(A) < Φ̂(A′). Such

weights may, e.g., be defined by the following simple

procedure:

– Fix, by some method (e.g., a sorting algorithm), an

increasing order of the atoms in A by weight, i.e.,

find a map O : A → Z such that O(A1) 6= O(A2) for

every distinct A1, A2,∈ A and O(A1) < O(A2) ⇒
Φ(A1) ≤ Φ(Aj) for all A1, A2 ∈ A.

– For all A ∈ A, define Φ̂(A) := O(A).

By design, all atoms associated with the local costs

φ̂ have unique weights and thus running Algorithm 1 (or

Algorithm 2 in case of Theorem 7) with these weights

will return a strict optimizer with respect to the local

costs Φ̂.

We observe that if the original atom weights are all

unique, then the ordering O is also unique and running

either of our new algorithms with the new local costs Φ̂

induced by O would yield an identical result as with the

original weights. Furthermore, we observe that the pro-

cedure above is essentially what happens during the ex-

ecution of the algorithms: by ordering the max-priority

queue H, we are establishing a specific (implementation

dependent) ordering of the atoms that is increasing by

weight just like the ordering O defined in the procedure

above. Thus, even when all atoms do not have unique

weights, the algorithms will return labelings that are

strictly optimal with respect to some increasing order

of the atoms by weight. When all atom weights are not

unique, however, this ordering will not be unique but

will depend on the specific implementation of the max-

priority queue H.

6 A quasi-linear time algorithm for direct

optimization of E∞ when all binary terms are

∞-submodular

We now present a more efficient algorithm, previously

reported in the conference version of this manuscript

[16], for the case when all binary terms are∞-submodu-

lar. Superficially, this algorithm is slightly more compli-

cated than Algorithm 1. We emphasize however, that

both algorithms have a very similar structure – start-

ing from the set of all possible atoms, both algorithms

iteratively remove one atom at a time until the remain-

ing atoms define a unique labeling. The main difference

between the algorithms is the steps taken to ensure the

consistency of the set of remaining atoms.

6.1 Local consistency, incompatible atoms

We introduce a property of local consistency, which will

be used to establish the correctness of our second pro-

posed algorithm. A set of atoms A′ is said to be locally

consistent if, for every vertex s ∈ V and edge {s, t} ∈ E
there are i, j ∈ {0, 1} such that the atoms {〈s, i〉} and

{〈s, i〉, 〈t, j〉} both belong to A′ (i.e., that A′ still allows

that s will have some label). Clearly, any consistent set

of atoms is also locally consistent. However, in general,

local consistency does not imply consistency. 8

Furthermore we introduce the notion of an incom-

patible atom, which will be needed for the exposition of

the proposed algorithm. For a given set of A′ of atoms,

we say that an atom A ∈ A′ is (locally) incompatible

(w.r.t. A′) if either

1. A is a unary atom so that A = {〈v, i〉} for some

vertex v, and there exists some edge {v, w} adjacent

to v such that A′ contains neither {〈v, i〉, 〈w, 0〉} nor

{〈v, i〉, 〈w, 1〉}; or

8 For example, if g is a complete graph with three vertices
V = {a, b, c} and A consists of all unary atoms and the bi-
nary atoms {〈a, i〉, 〈b, i〉}, {〈a, i〉, 〈c, i〉}, {〈b, i〉, 〈c, 1 − i〉} for
i ∈ {0, 1}, then A is locally consistent, but not (globally)
consistent.

Two polynomial time graph labeling algorithms optimizing max-norm based objective functions 9

2. A is a binary atom so that A = {〈v, i〉, 〈w, j〉} for

some edge {v, w}, and at least one of {〈v, i〉} and

{〈w, j〉} is not in A′.

Note that a locally consistent set of atoms may still

contain incompatible atoms.

6.2 The second algorithm

We now introduce the proposed algorithm, with quasi-

linear time complexity, for finding a binary label as-

signment ` : V → {0, 1} that globally minimizes the

objective function E∞ given by (1), under the condi-

tion that all pairwise terms in the objective function are

∞-submodular. If, additionally, all atoms have unique

weights then the labeling returned by the algorithm is

also the strict minimizer. Informally, the general outline

of the proposed algorithm is as follows:

– Start with a set S consisting of all possible atoms

and an initially empty set I of atoms identified as in-

compatible. (Recall that the total number of atoms

is O(|V |+ |E|).)
– For each atom A, in order of decreasing cost Φ(A):

– If A is still in S, and is not the only remaining

atom for that vertex/edge, remove A from S.

– After the removal of A, S may contain incompat-

ible atoms. Iteratively remove all such incompat-

ible atoms until S contains no more incompatible

atoms.

Before we formalize this algorithm, we introduce a

specific preordering relation � on the atoms A. For

A0, A1 ∈ A we will write A0 � A1 if either Φ(A0) >

Φ(A1), or else Φ(A0) = Φ(A1) and A1 is a binary atom

of the form {〈s, i〉, 〈t, i〉} (equal labeling) while A0 is

not in this form.

With these preliminaries in place, we are now ready

to introduce the proposed algorithm, for which pseu-

docode is given in Algorithm 2.

6.3 Computational complexity

We now analyze the asymptotic computational com-

plexity of Algorithm 2. First, let η := |A| = 2|V |+4|E|.
In image processing applications the graph G is com-

monly sparse, in the sense that O(|V |) = O(|E|). In

this case, we have O(η) = O(|V |).
Creating the list H requires us to sort all atoms in

A. The sorting can be performed in O(η log η) time.

In some cases, e.g., if all unary and binary terms are

integer valued, the sorting may be possible to perform

in O(η) time using, e.g., radix or bucket sort.

Algorithm 2: Labeling Algorithm, for the∞-

submodular objective functions

Data: A graph G = 〈V, E〉 and associated
Φ : A → [0,∞) generating ∞-submodular
energy E∞

Result: A labeling ` : V → {0, 1} minimizing energy
E∞

Additional Structure: An array A of buckets of
atoms, indexed by D = V ∪ E; a list H of atoms; a
queue K of vertices/edges such that every vertex in K
precedes any edge.

1 foreach vertex/edge D ∈ D do insert all D-atoms to
A[D]

2 create a list H of all atoms A such that A0 precedes
A1 in A whenever A0 � A1

3 while H 6= ∅ do
4 remove the first atom A from H
5 if D ∈ D is a vertex/edge of A and A[D] has

more than one element then
6 remove A from A[D] and insert D to

(previously empty) K
7 while K 6= ∅ do
8 remove a vertex/edge C from K
9 foreach edge/vertex D adjacent to C do

10 remove from A[D] and H all A
incompatible with

⋃
D′∈D A[D′]

11 if any atom was removed from A[D]
and H in line 10 then

12 insert to K any vertex/edge C′

adjacent to D: to its top, when
C′ is a vertex and its bottom
when C′ is an edge

13 return ` =
⋃
D∈D A[D]

We make the reasonable assumption that the fol-

lowing operations can all be performed in O(1) time:

– Remove an atom from H.

– Remove an atom from A(D).

– Remove or insert elements in K.

– Given an atom, find its corresponding edge or ver-

tex.

– Given a vertex, find all edges incident at that vertex.

– Given an edge, find the vertices spanned by the

edge.

The combined number of the executions of the main

loop, lines 3-12, and of the internal loop, lines 7-12,

equals to |A|, that is, O(η). This is so, since any inser-

tion of an atom into K requires its prior removal from

the list H. If the assumptions above are satisfied, it is

easily seen that only O(1) operations are needed be-

tween consecutive removals of an atom from H. There-

fore, the amortized cost of the execution of the main

loop is O(η).

10 Filip Malmberg, Krzysztof Chris Ciesielski

Thus, the total computational cost of the algorithm

is bounded by the time required to sort O(η) elements,

i.e., at most O(η log η).

6.4 Proof of correctness

Theorem 6. If all binary terms of the cost function

Φ : D → [0,∞) associated with graph G = 〈V, E〉 are ∞-

submodular, then ` returned by Algorithm 2 is a labeling

of V minimizing the objective function E∞.

Let n := |V | + 3|E|, the number of removals of an

atom from A. For every D ∈ D and k ∈ {0, . . . , n} let

Ak[D] be equal to the value of A[D] directly after the k-

th removal of some atom(s) from A, which can happen

only as a result of execution of either line 6 or line 10.

(For k = 0 we mean, directly after the execution of

line 2.) Let Ak =
⋃
D∈D Ak[D].

Let 1 = k1 < · · · < km be the list of all values

of k ∈ {1, . . . , n} such that Ak is a proper refinement

of Ak−1 resulting from the execution of line 6. Note

that it is conceivable that the numbers kj and kj+1 are

consecutive—this happens when the execution of loop

8-12 directly after the execution of line 5 has been used

to create Akj resulted in removal of no atoms from Akj .
The proof of Theorem 6 is based on the following

Lemma, for which a proof is given in Appendix Section.

Lemma 2. During the execution of Algorithm 2, the

following properties hold for every k ≤ n.

(P0) For every edge D = {v, w}, if Ak[D] is missing

either {〈v, 0〉, 〈w, 0〉} or {〈v, 1〉, 〈w, 1〉}, then it must

be also missing {〈v, 1〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉}.
(P1) Ak[D] contains at least one atom for every D ∈
D.

(P2) Ak is locally consistent.

(P3) Ak has no incompatible atoms directly before any

execution of line 4.

Proof of Theorem 6. Beside Lemma 2, we still need to

argue for two facts. First notice that the algorithm does

not stop until all buckets An[D], D ∈ D, have precisely

one element. Thus, since An is locally consistent, ` =⋃
D∈D A[D] is indeed a function from V into {0, 1}.

To finish the proof, we need to show that ` indeed

minimizes energy E∞. For this, first notice that at any

time of the execution of the algorithm, any atom in

H is also in
⋃
D∈D A[D]. Indeed, these sets are equal

immediately after the initialization and we remove from⋃
D∈D A[D] only those atoms, that have been already

removed from H. Now, let L : V → {0, 1} be a labeling

minimizing E∞. We claim, that the following property

holds any time during the execution of the algorithm:

(P) if Φ(A′) > E∞(L) for some A′ ∈
⋃
D∈D A[D], then

A[L] ⊂
⋃
D∈D A[D].

Indeed, it certainly holds immediately after the ini-

tialization. This cannot be changed during the execu-

tion of line 6 when the assumption is satisfied, since

then A considered there has just been removed from

H ⊃
⋃
D∈D A[D] and

Φ(A) ≥ max
H∈H

Φ(H) ≥ max
H∈

⋃
D∈D A[D]

Φ(H)

≥ Φ(A′) > E∞(L) = max
H∈A[L]

Φ(H),

so A /∈ A[L]. Also, (P) is not affected by an execution

of line 10, since the inclusion A[L] ⊂
⋃
D∈D A[D] is not

affected by it: no atom in A[L] is incompatible with

A[L] so also with
⋃
D∈D A[D]. This concludes the proof

of (P).

Now, by the property (P), after the termination of

the main loop, we have either A[L] ⊂
⋃
D∈D A[D], in

which case ` = L have minimal E∞ energy, or else

E∞(L) ≥ max
H∈

⋃
D∈D A[D]

Φ(H) = max
H∈H
A[`] = E∞(`)

once again ensuring optimality of `.

Theorem 7. If the atoms in A have unique weights,

then the labeling ` returned by Algorithm 2 is the unique

strict optimizer.

Proof. The uniqueness part of the theorem is already

shown in Lemma 1. The rest of the argument is es-

sentially identical to that used in the proof of Theo-

rem 5.

7 NP-hardness of multi-label E∞-optimization

We will now show that, for a number of labels K > 2,

the problem of finding a labeling that minimizes E∞ is

NP-hard in the general case.

Recall that a K-coloring of a graph is a mapping

c : V → {1, 2, . . . ,K} such that c(s) 6= c(t) for every

edge {s, t} ∈ E . The K-coloring problem consists of

determining whether a given undirected graph admits a

K-coloring. Recall also that already 3-coloring problem

is NP-complete [7, chapter 34].

To see that optimization of E∞ is NP-hard for K >

2 labels, consider 3 labelings, where we associate the

costs:

– for every vertex v the cost of any label assignment

is 0;

– for any edge with distinct labeling of its vertices the

cost is 0;

Two polynomial time graph labeling algorithms optimizing max-norm based objective functions 11

– for any edge with the same labeling of its vertices

the cost is 1.

For such assignments, the E∞-energy of a labeling is

≤ 0 if, and only if, the labeling is a 3-coloring. The

same argument can be repeated also for K > 3. Thus,

the problem of E∞-optimization with K > 2 labels is

indeed NP-hard.

8 Conclusions

We have presented two algorithms for finding a binary

vertex labeling of a graph that globally minimizes ob-

jective functions of the form E∞. It is well known that

for a limited subclass of such problems, globally opti-

mal solutions can be found by computing an optimal

spanning forest on a suitably constructed graph. Such

optimal spanning forests can, in turn, be computed us-

ing very efficient, greedy algorithms. Despite the fact

that this optimum spanning forest approach is com-

monly used in many image processing applications, the

potential and limitations of this method in terms of

more general optimization problems is, to the best of

our knowledge, largely unexplored. The exact class of

max-norm optimization problems that can be solved

using efficient greedy algorithms, or even in polynomial

time, has remained unknown. By the introduction of

the two proposed algorithms, we show that the class of

such problems that can be solved in (low order) poly-

nomial time is indeed larger than what was previously

known. In Table 1, we provide a summary of the various

subclasses of the general optimization problem consid-

ered in this paper, and algorithms for solving them.

An important observation here is the following: Op-

timization binary labeling problems with objective func-

tions of the form E1 frequently occur in image pro-

cessing and computer vision applications. The max-

flow/min-cut approach proposed by Kolmogorov and

Zabih [13] still remains one of the primary methods

for solving such problems when all pairwise terms are

submodular. When the local cost functionals include

non-submodular terms, however, the same problem be-

comes NP-hard. As concluded in our discussion in Sec-

tion 2.1, similar submodularity requirements hold also

for the generalized objective functions Ep for any fi-

nite p. Practitioners looking to solve such optimiza-

tion problems must therefore first verify that their local

cost functional satisfies the appropriate submodularity

conditions. If this is not the case, they must resort to

approximate optimization methods that may or may

not produce satistfactory results for a given problem

instance. Here we show, by the introduction of Algo-

rithm 1, that in the limit as p goes to infinity, the

requirement for submodularity of the pairwise terms

disappears. Indeed Algorithm 1 returns, in low order

polynomial time, a E∞-minimal binary labeling for any

local cost functional. Thus, even when the local costs

are such that the problem of minimizing Ep is NP-hard

for some or all finite p, a labeling minimizing E∞ can

be found in low order polynomial time.

The motivation for our work comes from image pro-

cessing applications, and the local cost functionals we

consider naturally occurs in many image processing

problems. The two proposed algorithms, however, are

formulated for general graphs and may thus also have

applications to other applied problems in computer sci-

ence. Structurally, both the proposed algorithms resem-

ble Kruskal’s algorithm [14,7], and in this sense the pro-

posed algorithms can be seen as generalizations of the

optimum spanning forest approach to optimization.

Algorithm 1 has quadratic time complexity, and is

thus less efficient than Algorithm 2. It appears likely,

however, that the time complexity of Algorithm 1 could

be reduced further. Specifically, Algorithm 1 operates

by solving a series of n 2-satisfiability problem. In the

proposed algorithm each such problem is solved in iso-

lation, but we observe that there is a high degree of

similarity between each consecutive problem – each 2-

satisfiability problem differs from the previous one only

by the introduction of one additional disjunction of

two literals. Exploring whether this redundancy can be

utilized to formulate a more efficient version of Algo-

rithm 1 is an interesting direction for future work.

Another natural extension of the work presented

here is to consider optimization with more than two

labels. In Section 7 we showed that for more than two

labels, finding a labeling that is optimal according to

E∞ is NP-hard in the general case. Nevertheless, as can

be seen in Table 1, there are special cases of multilabel

max-norm problems that can be solved using Prim’s al-

gorithm. Determining the class of multilabel problems

that can be solved in low order polynomial time is an

interesting direction for future work.

At first glance, the restriction to binary labeling

may appear very limiting. We note, however, that many

successful methods for approximate multi-label opti-

mization rely on iteratively minimizing binary label-

ing problems via move-making strategies [4]. Thus, the

ability to find optimal solutions for problems with two

labels potentially has a high relevance also for the multi-

label case.

Acknowledgements The authors would like to thank Robin
Strand for valuable discussions on the ideas presented in this
manuscript.

12 Filip Malmberg, Krzysztof Chris Ciesielski

Optimization of E∞ 2 labels ≥ 3 labels
general case O(n2), Algorithm 1 NP-hard problem, Sec. 7

∞-submodular binary terms O(n logn), Algorithm 2 -
Local costs satisfy property (D) O(n logn), Prim’s algorithm O(n logn), Prim’s algorithm

Strict optimization 2 labels ≥ 3 labels
general case NP-hard problem, Sec. 4.2 NP-hard problem

unique weights O(n2), Algorithm 1 -
Binary terms satisfy property (i) of Corollary 1 max-flow/min cut algorithm, Sec. 4.1 -

Table 1 Summary of results: subclasses of the general max-norm optimization problem considered here, and algorithms for
solving them. When indicating computational complexity, we let n = |V |+ |E|. Novel results proposed in this paper are marked
in bold.

Appendix: Proof of Lemma 2

In this appendix, we provide a proof of Lemma 2. It is

enough to prove that if for some κ ≤ n the properties

(P0)-(P3) hold for every k < κ, then they also hold

for κ. Clearly, these properties hold immediately after

the execution of line 2, that is, for κ = 0. So, we can

assume that κ > 0. We need to show that (P0)-(P3)

are preserved by each operation of the algorithm. More

specifically, by the execution of lines 6 or 10, since the

status of each of these properties can change only when

an atom is removed from A during their execution.

Proof of (P0): Fix an edge D = {v, w} and assume that

(P0) holds for this D and all k < κ. Now, if Aκ−1[D]

has less than 4 elements, then by the inductive assump-

tion it must be already missing either {〈v, 1〉, 〈w, 0〉} or

{〈v, 0〉, 〈w, 1〉}, and so the same will be true for Aκ[D],

as needed. So, assume that Aκ−1[D] has still all 4 ele-

ments. This means, that these 4 elements are present in

H and, by (2) and the choice of the ordering of H, the

atoms {〈v, 1〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉} must precede in

H any of the atoms {〈v, 0〉, 〈w, 0〉} or {〈v, 1〉, 〈w, 1〉}. In

particular, if κ = kj for some j, then Aκ[D] is obtained

as a result of execution of line 3 and the ordering of H
ensures that Aκ[D] still satisfies (P0). So, assume that

κ = kj for no j; that is, that Aκ[D] is obtained from

Aκ−1[D] by the execution of line 10. Since one of the

atoms from Aκ−1[D] was removed as a result of this

execution, for one of vertices of D, say v, the bucket

Aκ−1[{v}] must be missing one of its atoms, say {〈v, i〉}.
But this means that Aκ−1[D] must have been missing

both {〈v, i〉, 〈w, 0〉} or {〈v, i〉, 〈w, 1〉}, so indeed Aκ[D]

satisfies (P0).

Proof of (P1)-(P3): This will be proved by the simul-

taneous induction on κ.

(P1) must be preserved by the execution of line 10,

by the inductive assumption (P2) that Aκ−1 is locally

consistent. It also cannot be destroyed by the execution

of line 6, since this is prevented by the condition of line

5. Thus, Aκ[D] still has the property (P1).

To see (P3) we can assume that κ = kj for some

j > 0. Clearly (P3) holds for k = kj−1. Thus, we need

only to show that removal of an atom A in line 6 and

consecutive execution of loop 7-12 preserves (P3). In-

deed, the potential incompatibility can occur only in

relation of the vertices associated with the atoms re-

moved from
⋃
D∈D A[D]. However, each time such an

atom is removed, all adjacent atoms are inserted into

the queue K and the execution of the loop 7-12 does not

end until all such potential incompatibilities are taken

care off.

The proof of the preservation of (P2) is more in-

volved. Let j be the largest such that kj ≤ κ. First

notice that if κ = kj , then (P2) holds. Indeed, by

the inductive assumptions (P2) and (P3), Aκ−1 is lo-

cally consistent and has no incompatible atoms. Since

Aκ 6= Aκ−1, the bucket A[D] must have contained two

or more atoms prior to the removal of A in line 6.

Since Aκ−1 did not contain any incompatible atoms,

Aκ = Aκ−1 \ {A} must remain locally consistent. So,

we can assume that µ := κ − kj is non-zero. We will

examine families Akj ,Akj+1, . . . ,Akj+µ = Aκ.

Let A = A0, . . . , Aµ be the order in which the atoms

were removed from K during of this time execution of

loop 8-12. Also, let x0, . . . , xµ be the vertices/edges as-

sociated with the atoms A0, . . . , Aµ, respectively. We

will show, by induction on ν ≤ µ, the following prop-

erty (Iν), which in particular imply thatAkj+ν is locally

consistent.

To state (Iν) first notice that if an atom for a ver-

tex v is among x0, . . . , xν−1, then Akj+ν must con-

tain precisely one of two atoms {〈v, 0〉} and {〈v, 1〉}.
(Must contain at least one, by (P1). It cannot contain

both, since this would mean that no v-atom was re-

moved so far and hence Akj+ν could not have been re-

moved from Akj+ν−1.) In particular, this means that

there is an iv ∈ {0, 1} for which Akj+ν already en-

sures that the final value of `(v) is iv. This means, that

Akj+ν [{v}] =
{
{〈v, iv〉}

}
.

We will prove, by induction on ν ≤ µ, that

(Iν) Akj+ν is locally consistent and if vertices v and w

are among x0, . . . , xν , then iv = iw.

Two polynomial time graph labeling algorithms optimizing max-norm based objective functions 13

Of course, this will finish the proof of (P2).

Clearly, (I0) holds, as we already shown that Akj is

locally consistent, and the other condition is satisfied

in void. So, fix ν ∈ {1, . . . , µ} such that (Iξ) holds for

all ξ < ν. We will show that (Iν) holds as well.

For this, assume first that xν is an edge {v, w}. We

need to show only that Akj+ν remains locally consis-

tent, the other part of (Iν) being ensured in this case

by (Iν−1). Since xν = {v, w}, there must exist a j < ν

such that xj is a vertex and xj ∈ {v, w}. For simplicity

we assume that xj = v and that iv = 0, the other cases

being similar.

We need to show thatAkj+ν , obtained fromAkj+ν−1

by removing from it the atoms {〈v, 1〉, 〈w, 0〉} and

{〈v, 1〉, 〈w, 1〉}, cannot be locally inconsistent.

Note that such removal from locally consistent set

Akj+ν−1 can potentially influence local consistency of

Akj+ν only of {v, w} with respect to the vertices v and

w. However, since Akj+ν−1[{v}] =
{
{〈v, 0〉}

}
, this is

also equal to Akj+ν [{v}]. Also, bothAkj+ν−1 andAkj+ν
must contain either {〈v, 0〉, 〈w, 0〉} or {〈v, 0〉, 〈w, 1〉}.
So, Akj+ν it cannot have local inconsistency of {v, w}
with v. Therefore, we must show only that Akj+ν con-

tains no local inconsistency between {v, w} and w.

To see this, first notice that there will be no such

inconsistency when

Akj−1[{w}] (
{
{〈w, 0〉}, {〈w, 1〉}

}
. (9)

Indeed, then Akj−1[{w}] =
{
{〈w, i〉} for some i ∈ {0, 1}

and, by the property (P3), Akj−1 ⊃ Akj+µ cannot con-

tain atom {〈v, 0〉, 〈w, 1−i〉}. Hence Akj+µ must contain

{〈v, 0〉, 〈w, i〉} and local consistency is preserved.

To finish the argument consider the following three

cases.

Akj+ν [{w}] =
{
{〈w, 0〉}, {〈w, 1〉}: ThenAkj+ν is indeed

locally consistent, since it contains either {〈v, 0〉, 〈w, 0〉}
or {〈v, 0〉, 〈w, 1〉}.

Akj+ν [{w}] =
{
{〈w, 1〉}

}
: Then also Akj+ν−1[{w}] ={

{〈w, 1〉}
}

and w cannot be among x0, . . . , xν−1, since

this would contradict the second part of (Iν−1). In par-

ticular, (9) holds and so local consistency is preserved.

Akj+ν [{w}] =
{
{〈w, 0〉}

}
: We can assume that (9) does

not hold. Then there exists p ∈ {0, . . . , ν − 1} such

that xj = w. Therefore, Akj+p ⊃ Akj+ν cannot contain

{〈v, 0〉, 〈w, 1〉}. So, Akj+ν must contain {〈v, 0〉, 〈w, 0〉}
and local consistency is preserved.

Before we proceed further, note that for every ν ≤ µ,

(Jν) for every vertex v there is at most one edge D =

{v, w} such that Akj+ν [{v}] contains an atom in-

compatible with all atoms in Akj+ν [D].

Indeed, by (P3), this clearly holds for ν = 0. Also, if

xν is an edge, than the ordering conditions we imposed

on the queue K ensure that the atoms of no other edge

can be added to K and subsequently modified, before

each vertex (adjacent to xν) that can have incompatible

atoms with that for xν is added to K and subsequently

modified, so that the potential incompatibilities are re-

moved.

Finally, consider xν being a vertex v. Then we must

have had Akj+ν−1[{v}] =
{
{〈v, 0〉}, {〈v, 1〉}

}
. Moreover,

Akj+p[D] (Akj+p−1[D]. Also, by (Jν), such p is unique.

Therefore, Akj+ν must be locally consistent, since the

only potential local inconsistency in Akj+ν could be

between v and {v, w}. But our choice of Akj+ν [{v}] ⊂
Akj+ν−1[{v}] =

{
{〈v, 0〉, 〈v, 1〉}

}
ensures that such in-

consistency cannot occur.

Notice also that the second part of (Iν) holds as

well. Indeed, this is satisfied in void when there is no

vertex among x0, . . . , xν−1. So, assume that such ver-

tex exists. Then, w, the second vertex of the above

chosen edge xp = D = {v, w}, must be among such

x0, . . . , xν−1. Indeed, if p = 0 then we must have ν = 2

and x1 = w. Since iw = 0, we must have Akj [D] ⊂{
{〈v, 0〉, 〈w, 0〉}, {〈v, 1〉, 〈w, 0〉}

}
. Also, as Akj+2[{v}] (

Akj+1[{v}], the bucket Akj+1[D] = Akj [D] must con-

tain precisely only one of the atoms {〈v, 0〉, 〈w, 0〉} or

{〈v, 1〉, 〈w, 0〉}. However, Akj [D] cannot be equal to the

set
{
{〈v, 1〉, 〈w, 0〉}

}
, since, by (P0), this would mean

that Akj−1[D] =
{
{〈v, 0〉, 〈w, 1〉}, {〈v, 1〉, 〈w, 1〉}

}
. But

this contradicts (P3). So, Akj+1[D] =
{
{〈v, 0〉, 〈w, 0〉}

}
,

and indeed iv = 0.

Finally, assume that p > 0. Then w = xq for some

q ∈ {0, . . . , p − 1} and so Akj+q[{w}] =
{
{〈w, 0〉}

}
.

Thus, Akj+p[D] ⊂
{
{〈v, 0〉, 〈w, 0〉}, {〈v, 1〉, 〈w, 0〉}

}
and

Akj+ν−1[D] must contain precisely one of these atoms

to ensure that the inclusion Akj+ν [{v}] (Akj+ν−1[{v}]
holds. We need to show that the equality Akj+p[D] ={
{〈v, 1〉, 〈w, 0〉}

}
is impossible. Indeed, this would im-

ply that Akj+q−1[D] ⊂
{
{〈v, 1〉, 〈w, 0〉}, {〈v, 0〉, 〈w, 1〉},

{〈v, 1〉, 〈w, 1〉}}
}

and using the property (P0), also that

Akj+q−1[D] ⊂
{
{〈v, 1〉, 〈w, 0〉}, {〈v, 1〉, 〈w, 1〉}

}
. How-

ever, this means thatAkj+q−1 already decided the value

of λ(v) as 1. Since the value of λ(w) was previously de-

cided, the reasoning as for (Jν) shows that v should

appear already in x0, . . . , xq, while q < ν contradicts

this. This finishes the proof of (P1)-(P3).

References

1. Abbas, A., Swoboda, P.: Bottleneck potentials in markov
random fields. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 3175–3184 (2019)

2. Allène, C., Audibert, J.Y., Couprie, M., Cousty, J.,
Keriven, R., et al.: Some links between min-cuts, optimal

14 Filip Malmberg, Krzysztof Chris Ciesielski

spanning forests and watersheds. Mathematical Morphol-
ogy and its Applications to Image and Signal Processing
pp. 253–264 (2007)

3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algo-
rithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters 8(3), 121–123
(1979)

4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23(11), 1222–
1239 (2001)

5. Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy
connectedness based image segmentation I: Equivalence
of affinities. Computer Vision and Image Understanding
114(1), 146–154 (2010)

6. Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda,
P.A.: Fuzzy connectedness image segmentation in graph
cut formulation: A linear-time algorithm and a compar-
ative analysis. Journal of Mathematical Imaging and Vi-
sion 44(3), 375–398 (2012)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:
Introduction to algorithms. MIT press (2009)

8. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power
watershed: A unifying graph-based optimization frame-
work. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 33(7), 1384–1399 (2011)

9. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Wa-
tershed cuts: Minimum spanning forests and the drop of
water principle. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31(8), 1362–1374 (2009)

10. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Wa-
tershed cuts: Thinnings, shortest path forests, and topo-
logical watersheds. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 32(5), 925–939 (2009)

11. Dijkstra, E.W.: A note on two problems in connexion
with graphs. Numerische mathematik 1(1), 269–271
(1959)

12. Jarǹık, V.: O jistém problému minimáĺım (On a
certain problem of minimization). Práce moravské
př́ırodovědecké společnosti 6(4), 57–63 (1930)

13. Kolmogorov, V., Zabih, R.: What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence 26(2), 147–159 (2004)

14. Kruskal, J.B.: On the shortest spanning subtree of a
graph and the traveling salesman problem. Proceedings
of the American Mathematical society 7(1), 48–50 (1956)

15. Levi, Z., Zorin, D.: Strict minimizers for geometric opti-
mization. ACM Transactions on Graphics (TOG) 33(6),
185 (2014)

16. Malmberg, F., Ciesielski, K.C., Strand, R.: Optimization
of max-norm objective functions in image processing and
computer vision. In: International Conference on Discrete
Geometry for Computer Imagery, pp. 206–218. Springer
(2019)

17. Malmberg, F., Strand, R.: When can lp-norm objective
functions be minimized via graph cuts? In: International
Workshop on Combinatorial Image Analysis. Springer
(2018)

18. Najman, L.: Extending the power watershed framework
thanks to γ-convergence. SIAM Journal on Imaging Sci-
ences 10(4), 2275–2292 (2017)

19. Prim, R.C.: Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal 36(6),
1389–1401 (1957)

20. Sinop, A.K., Grady, L.: A seeded image segmentation
framework unifying graph cuts and random walker which
yields a new algorithm. In: 2007 IEEE 11th International
Conference on Computer Vision, pp. 1–8. IEEE (2007)

21. Wolf, S., Bailoni, A., Pape, C., Rahaman, N., Kreshuk,
A., Köthe, U., Hamprecht, F.A.: The mutex watershed
and its objective: Efficient, parameter-free image parti-
tioning. arXiv preprint arXiv:1904.12654 (2019)

22. Wolf, S., Pape, C., Bailoni, A., Rahaman, N., Kreshuk,
A., Kothe, U., Hamprecht, F.: The mutex watershed: ef-
ficient, parameter-free image partitioning. In: Proceed-
ings of the European Conference on Computer Vision
(ECCV), pp. 546–562 (2018)

23. Wolf, S., Schott, L., Kothe, U., Hamprecht, F.: Learned
watershed: End-to-end learning of seeded segmentation.
In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2011–2019 (2017)

	Introduction
	Background and related work
	Algorithms for direct optimization of E: preliminaries
	Strict optimality
	A quadratic time algorithm for direct optimization of E
	A quasi-linear time algorithm for direct optimization of E when all binary terms are -submodular
	NP-hardness of multi-label E-optimization
	Conclusions

