
Noname manuscript No.
(will be inserted by the editor)

Optimum Cuts in Graphs by General Fuzzy Connectedness
with Local Band Constraints

Caio de Moraes Braz · Paulo A.V. Miranda · Krzysztof Chris Ciesielski ·
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Abstract The goal of this work is to describe an effi-

cient algorithm for finding a binary segmentation of an

image such that: the indicated object satisfies a novel

high-level prior, called Local Band, LB, constraint; the

returned segmentation is optimal, with respect to an

appropriate graph cut measure, among all segmenta-

tions satisfying the given LB constraint. The new algo-

rithm has two stages: expanding the number of edges

of a standard edge-weighted graph of an image; apply-

ing to this new weighted graph an algorithm known

as an Oriented Image Foresting Transform, OIFT. In

our theoretical investigation, we prove that OIFT al-

gorithm belongs to a class of General Fuzzy Connect-

edness algorithms and so, has several good theoretical

properties, like robustness for seed placement. The ex-

tension of the graph constructed in the first stage en-
sures, as we prove, that the resulted object indeed sat-

isfies the given LB constraint. We also notice that this
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graph construction is flexible enough to allow combin-

ing it with other high-level constraints. Finally, we ex-

perimentally demonstrate that the LB constraint gives

competitive results as compared to Geodesic Star Con-

vexity, Boundary Band, and Hedgehog Shape Prior, all

implemented within OIFT framework and applied to

various scenarios involving natural and medical images.

Keywords boundary band constraint · hedgehog

shape prior · image foresting transform · graph-cut

segmentation

1 Introduction

Image segmentation is one of the most fundamental and

challenging problems in image processing and computer
vision. In many scenarios, the high-level, application-

domain specific knowledge of the user is often required

in the segmentation process because of the presence

of heterogeneous backgrounds, objects with ill-defined

borders, field inhomogeneity, noise, artifacts, partial vol-

ume effects, and their interplay [23]. It may be thought

of as consisting of two related processes – object recog-

nition and delineation [14]. Recognition is the task of

determining an object’s approximate whereabouts in

the image. Delineation completes segmentation by defin-

ing the exact spatial extent of that object. In this work,

we are interested in solving the delineation problem by

fast methods to efficiently deal with large amounts of

data, but which must also be versatile enough to sup-

port the inclusion of high-level constraints from prior

object knowledge.

The segmentation problem can be interpreted as a

graph partition problem subject to hard constraints,

such as seed pixels selected in the image domain for ob-

ject recognition, by modelling neighborhood relations of
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picture elements from digital images. Examples of seed-

based methods are watershed [10], random walks [16],

fuzzy connectedness [6], graph cuts (GC) [2], grow cut [22],

minimum barrier distance [9], and image foresting trans-

form (IFT) [13,7]. Some methods, including the min-

cut/max-flow algorithm, can provide global optimal so-

lutions according to a graph-cut measure in graphs and

can be described in a unified manner according to a

common framework, which we refer to as Generalized

Graph Cut (GGC) [4]. (See also [5].)

Oriented Image Foresting Transform (OIFT) [28]

and Oriented Relative Fuzzy Connectedness (ORFC) [1]

are extensions of some GGC methods for directed weighted

graphs, which have lower computational complexity com-

pared to the min-cut/max-flow algorithm [2]. Also, as

we will show, OIFT belongs to a class of General Fuzzy

Connectedness algorithms described in [8]. OIFT is a

flexible method, which has been extended to support

the processing of global object properties, such as con-

nectedness [25,24], shape constraints [27,11], boundary

polarity [26,1], and hierarchical constraints [20]. These

high-level priors are potentially useful for object seg-

mentation, allowing the customization of the segmen-

tation to a given target object. Shape constraints can

be used to eliminate undesirable intricate forms, im-

proving the segmentation of objects with more regular

contour. Some shape constraints demand more sophisti-

cated algorithms, such as the Boundary Band constraint

(BB) [11]. The OIFT with the BB constraint allows

the segmentation to follow a pre-established template

of shapes, with variances within a range of permitted

deformations around an arbitrary scale, while other ap-

proaches handle scale inefficiently based on brute force,

by computing the graph cut for each level of a gaussian

pyramid [15].

In this work, we propose a novel shape constraint,

named Local Band constraint (LB), to be used for ob-

ject segmentation in the Generalized GC framework

and which, in its limit case, is strongly related to the

Boundary Band constraint [11]. The LB constraint demon-

strates competitive results with higher accuracy when

compared to BB, Hedgehog [19,18], and Geodesic Star

Convexity [17] in various scenarios. It can also be eas-

ily combined with other high-level priors already sup-

ported by OIFT, considerably advancing the targeted

segmentation [21].

The next section gives the required background on

image graphs and GGC. In Sections 3 and 4 we show,

respectively, that OIFT can be seen as belonging to the

Generalized Graph Cut and the General Fuzzy Con-

nectedness frameworks. This is the new material, that

has not been presented in the conference version of

the paper [12]. The proposed Local Band constraint

is presented in Section 5. In Section 6, we experimen-

tally evaluate LB, comparing it to previous graph-based

works on shape constraints. Our conclusions are stated

in Section 7.

2 Background

An image can be interpreted as a directed graph (di-

graph) G = 〈N ,A〉 whose nodes/vertices are the im-

age pixels in its image domain N ⊂ Zn and whose

arcs/edges, elements of A, are the ordered pixel pairs

〈s, t〉 of vertices that are adjacent, that is, spatially close

(e.g., 4-neighborhood, or 8-neighborhood, in the case of

2D images). We write t ∈ A(s) or 〈s, t〉 ∈ A to indicate

that t is adjacent to s. We will usually assume also that

our image graph G is edge-weighted, that is, that each

arc 〈s, t〉 ∈ A has a fixed weight ω(s, t) ∈ [−∞,∞] (of-

ten ω(s, t) = ‖I(t) − I(s)‖ for an image with values

given by I(t)). An edge weighted digraph will be de-

noted as G = 〈N ,A, ω〉. A digraph G is symmetric if,

for all 〈s, t〉 ∈ A, the pair 〈t, s〉 is also an arc of G. Note

that in symmetric graphs we can have ω(s, t) 6= ω(t, s).

In this work, all considered graphs are symmetric and

connected.

A path (in G) of length ` ≥ 0 is any sequence

pv = 〈v0, . . . , v`〉 of vertices, with terminus v = v`, such

that 〈vj , vj+1〉 ∈ A for any j < `; it is from S ⊂ N to

v ∈ N when v0 ∈ S and v` = v; if 〈v, w〉 ∈ A, then

pvˆw denotes the path 〈v0, . . . , v`, w〉. Let ΠG be the

family of all paths in G and consider a path-cost func-

tion ψ : ΠG → [−∞,∞].

Image segmentation can be formulated as a graph
partition problem subject to hard constraints. In the

case of binary segmentation (object/background), we

consider two non-empty disjoint seed sets S1 and S0
containing pixels selected inside the object O and in its

exterior, respectively. A label, L(t) = 1 for all t ∈ S1
and L(t) = 0 for all t ∈ S0, is propagated to all un-

labeled pixels during the execution of seed-based seg-

mentation algorithms, see e.g. [28]. For a label map

L : N → {0, 1} the object O identified with it is defined

as the set L−1(1), where L−1(i) := {t ∈ N : L(t) = i}.
In what follows, the key tool for finding optimized

label maps L is the OIFT Algorithm 1, which comes

from [26,28]. The OIFT will be a part of our novel

algorithm. The map L it returns constitutes a global

optimum solution that maximizes the following graph-

cut measure

εmin(L) := min{ω(s, t) : 〈s, t〉 ∈ A & L(s) > L(t)} (1)

subject to the seed constraints [26,28]:
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Proposition 1 [Mansilla, Miranda 2013] Let G =

〈N ,A, ω〉 be a symmetric edge weighted image digraph.

Let L be a segmentation returned by Algorithm 1 ap-

plied to G and non-empty disjoint seed sets S1 and S0.

Then L satisfies the seed constraints and maximizes the

energy εmin, given by (1), among all segmentations sat-

isfying these constraints.

Notice that in line 12 of Algorithm 1 the weight

ω(t, s) of the reversed parallel arc 〈t, s〉 is used (rather

than that of chosen 〈s, t〉 ∈ A). That is why a symmet-

ric digraph is required. The OIFT Algorithm 1 can also

be adapted for multi-object segmentation by computing

a related variant in a hierarchical layered digraph [20].

In the next two sections, we will show that OIFT

belongs to two general algorithmic frameworks: GGC

and GFC.

Algorithm 1 – Segmentation Algorithm OIFT

Input: Symmetric edge weighted image digraph
〈N ,A, ω〉 and non-empty disjoint seed sets
S1 and S0.

Output: The label map L : N → {0, 1}.
Auxiliary: Priority queue Q, variable tmp, and an ar-

ray of status S : N → {0, 1}, where S(t) = 1
for processed nodes and S(t) = 0 for unpro-
cessed nodes. The value V (t) represents a po-
tential penalty that a change of L(t) would
contribute to εmin(L).

1. For each t ∈ N , do
2. Set S(t)← 0 and V (t)←∞;
3. If t ∈ S0, then
4. V (t)← −∞, L(t)← 0, and insert t in Q;
5. If t ∈ S1 then
6. V (t)← −∞, L(t)← 1, and insert t in Q.
7. While Q 6= ∅ do
8. Remove s from Q such that V (s) is minimum.
9. Set S(s)← 1.
10. For each (s, t) ∈ A such that S(t) = 0 do
11. If L(s) = 1, then tmp← ω(s, t).
12. Else tmp← ω(t, s);
13. If tmp < V (t), then
14. Set V (t)← tmp and L(t)← L(s).
15. If t /∈ Q, then insert t in Q.
16. Return L.

3 OIFT as a Generalized Graph Cut algorithm

The biggest difference between the above version of

OIFT and the algorithms in the GGC framework [4] is

that in the former case we maximize the energy func-

tion, while in the latter case we minimize its analog.

To represent OIFT as a minimization problem it is

enough to reverse in it all inequalities, exchange terms

“∞” with “−∞” and “minimum” with “maximum,”

and replace the weight function ω(s, t) with a function1

1 In fact, we can use h(ω(s, t)) in place of e−ω(s,t) when h
is any strictly decreasing function from R into [0,∞).

ω̄(s, t) := e−ω(s,t). Specifically, we represent OIFT as

OIFT∗ Algorithm 2, for which we have the following

result.

Proposition 2 OIFT Algorithm 1 applied to 〈N ,A, ω〉
and the seed sets S1 and S0 returns the label map L if,

and only if, L is returned by OIFT∗ Algorithm 2 applied

to the same graph, seed sets, and the weight functions

w0 and w1 (on A) defined as w1(s, t) = ω̄(s, t) and

w0(s, t) = ω̄(t, s).

An easy proof of Proposition 2 is left to the reader.

(We introduce in OIFT∗ the functions wi and an ex-

plicit path map π[] to help in our analysis in the next

section.)

Algorithm 2 – OIFT∗ Algorithm

Input: Image graph 〈N ,A〉, weight maps w0 and
w1, seed sets S0 and S1.

Output: The label map L : N → {0, 1} and an array
π[ ] such that if S(t) = 1, then π[t] is a path
from SL(t) to t.

Auxiliary: Priority queueQ, variable tmp, the cost func-
tion V : N → [−∞,∞], and a status function
S : N → {0, 1}, where S(t) = 1 for processed
nodes and S(t) = 0 for unprocessed nodes.

1. For each t ∈ N , do
2. Set S(t)← 0, V (t)← −∞, and π[t]← 〈t〉;
3. If t ∈ S0, then
4. V (t)←∞, L(t)← 0, and insert t in Q;
5. If t ∈ S1 then
6. V (t)←∞, L(t)← 1, and insert t in Q.
7. While Q 6= ∅ do
8. Remove s from Q with V (s) ≥ V (t) for all t ∈ Q;
9. Set S(s)← 1;
10. For each 〈s, t〉 ∈ A such that S(t) = 0 do
11. tmp← wL(s)(s, t);
12. If tmp > V (t) then
13. Set V (t)← tmp, π[t]← π[s]̂ t and

L(t)← L(s).
14. If t /∈ Q then insert t in Q.

Now, let

XL := {〈s, t〉 ∈ A : L(s) > L(t)}

be the (standard) graph cut associated with the parti-

tion 〈L−1(1), L−1(0)〉 and define the functional2 FL : A →
[0,∞) by putting, for every〈s, t〉 ∈ A,

FL(s, t) :=

{
e−ω(s,t) for 〈s, t〉 ∈ XL,

0 otherwise.

Then, OIFT∗ Algorithm 2 minimizes the energy

‖FL‖∞ := max{FL(s, t) : 〈s, t〉 ∈ A},
2 Shortly, FL := ω̄ · χXL

, where χXL
: A → {0, 1} is the

characteristic function of XL.
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that is, the L∞ norm of the functional FL. This

puts OIFT∗, which is equivalent to OIFT, within the

framework of Generalized Graph Cut, GGC, see e.g. [4].

(Recall, that the usual graph cut minimization, asso-

ciated with the max-flow/min-cut theorem, is defined

as L1 norm of the functional FL, defined as ‖FL‖1 :=∑
〈s,t〉∈A FL(s, t).)

4 OIFT within General Fuzzy Connectedness

framework

In the previous section we have seen that OIFT Algo-

rithm 1 belongs to the GGC framework. Here, we will

argue that it can be also viewed as belonging to a class

of General Fuzzy Connectedness, GFC, algorithms [8].

This will allow us to deduce that OIFT has the prop-

erties that all algorithms in GFC are known to have.

In what follows, for a fixed digraph 〈N ,A〉, weight

maps w0 and w1, and the seed sets S0 and S1, define

the path costs:

ψmin(〈v0, . . . , v`〉) := min
1≤j≤`

wL(v0)(vj−1, vj)

ψlast(〈v0, . . . , v`〉) := wL(v0)(v`−1, v`)

for ` > 0 and

ψlast(〈v0〉) := ψmin(〈v0〉) :=

{
∞ for v0 ∈ S0 ∪ S1,
−∞ otherwise.

The map ψmin is the standard FC cost, while ψlast,

explicitly defined in [26] (using symbols fi,ω and fo,ω),

is naturally associated with OIFT. (Compare also [7].)

Algorithm 3 – MOFS∗ Algorithm

Input: Image graph 〈N ,A〉, affinities w0 and w1,
seed sets S0 and S1.

Output: The label map L : N → {0, 1} and an array
π[ ] such that if S(t) = 1, then π[t] is a path
from SL(t) to t.

Auxiliary: Priority queueQ, variable tmp, the cost func-
tion V : N → [−∞,∞], and a status function
S : N → {0, 1}, where S(t) = 1 for processed
nodes and S(t) = 0 for unprocessed nodes.

1. For each t ∈ N , do
2. Set S(t)← 0, V (t)← −∞, and π[t]← 〈t〉;
3. If t ∈ S0, then
4. V (t)←∞, L(t)← 0, and insert t in Q;
5. If t ∈ S1 then
6. V (t)←∞, L(t)← 1, and insert t in Q.
7. While Q 6= ∅ do
8. Remove from Q an s in

M = {u ∈ Q : ψmin(π[u]) = maxt∈Q ψmin(π[t])}
such that V (s) ≥ V (u) for all u ∈M ;

9. Set S(s)← 1;
10. For each 〈s, t〉 ∈ A such that S(t) = 0 do
11. tmp← wL(s)(s, t);
12. If ψmin(π[s]̂ t) > ψmin(π[t]) or

[ψmin(π[s]̂ t) = ψmin(π[t])

and tmp > V (t)] then
13. Set V (t)← tmp, π[t]← π[s]̂ t and

L(t)← L(s);
14. If t /∈ Q then insert t in Q.

To place OIFT in the GFC framework, we will first

represent OIFT∗ of Algorithm 2 as the MOFS∗ Algo-

rithm 3, which is a version of MOFS algorithm from [8].

The key result here is the following theorem, which is

considerably less clear than Proposition 2, since the

conditions in lines 8 and 12 of the algorithms have dif-

ferent forms.

Theorem 3 (OIFT∗ in GFC format) Any output of

OIFT∗ Algorithm 2 is identical to that of MOFS∗ Al-

gorithm 3. In particular, the algorithms MOFS∗ and

OIFT are equivalent.

We will postpone the proof of Theorem 3 to the end

of this section.

Notice, that although OIFT∗ Algorithm 2 has a for-

mat of the MOFS algorithm from the GFC framework,

it is not precisely of this format. The first difference is

that the main GFC algorithm MOFS, when it removes

a vertex s from the queue, does no have the secondary

condition “V (s) ≥ V (u) for all u ∈ M” as we have in

line 8. But this just means, that in MOFS∗ we are just

a bit more precise, when making such choice.

The bigger difference is that MOFS allows some

overlap of the object and background. Specifically, they

overlap on the tie zone set TZ defined as the set of all

v ∈ N for which MOFS, whose output is unique, pro-

duces the paths of the same strength from the object

and the background. The issue of how to deal with the

set TZ is discussed in details in [8]. In particular, if

w0(s, t) 6= w1(u, v) for all edges 〈s, t〉 and 〈u, v〉, then

TZ is empty and the object returned by MOFS∗ (or

OIFT∗) is identical to that of MOFS output. Other so-

lutions of the “overlapping problem” are also discussed

in [8]. The reader should be warned, however, that a

simple minded removal of TZ from the MOSF object

(with overlap) may create a set with vertices that are

not connected, within the object, to the seeds.

4.1 Proof of Theorem 3

First notice that, during the execution of OIFT∗ Algo-

rithm 2, for any u ∈ Q either u is a seed or π[u] = π[w]̂ u

for some w ∈ N with S(w) = 1.

To prove the theorem, it is enough to show that

during the execution of OIFT∗ Algorithm 2, the condi-

tion from line 8 holds, if and only if, the condition from

line 8 of MOFS∗ Algorithm 3 holds. Similarly, for the

conditions from line 12.
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To see this, we will prove that, at any time of the

execution of OIFT∗ Algorithm 2 past the line 6 of the

code, the following holds for every u, v ∈ N :

(i) if S(u) = 1 and S(v) = 0, then ψmin(π[u]) ≥
ψmin(π[v]);

(ii) if S(u) = S(v) = 0 and V (u) ≥ V (v), then

ψmin(π[u]) ≥ ψmin(π[v]).

Clearly this holds directly after the execution of line

6. Thus, it is enough to show that these properties are

preserved by any consecutive single execution of the

while loop, that is, of lines 8-14.

So, fix u, v ∈ N for which we will be showing preser-

vation of (i) and (ii). If u is a seed, then after the ini-

tialization we have ψmin(π[u]) = V (u) = ∞, so (i) and

(ii) hold. So, we will assume that u is not a seed. Next,

assume that during our execution of lines 8-14 we have

taken s from Q.

To see that (ii) is preserved, assume that, after the

execution of lines 8-14, we have S(u) = S(v) = 0. Dur-

ing the execution, the values of either V (v) or π[v] can

change only in line 13, when v = t for t chosen in

line 10 and, during the execution of line 12, we have

wL(s)(s, v) = wL(s)(s, t) = tmp > V (t). Hence, the ex-

ecution of line 13 results with V (v) = V (t) becoming

wL(s)(s, v) and π[v] = π[t] becoming π[s]̂ v = π[s]̂ t so

that

ψmin(π[v]) = min{ψmin(π[s]), wL(s)(s, v)}.

The similar analysis holds when either of the values

V (u) or π[u] are changed during the execution of lines

8-14.

Now, consider 4 cases:

– If none of the values V (v), π[v], V (u), or π[u]

changes during the execution of lines 8-14, then

clearly (ii) is preserved.

– If, during the execution, we applied the changes in

line 13 to both u and v, then V (u) ≥ V (v) implies

that wL(s)(s, u) ≥ wL(s)(s, v) and so,

ψmin(π[u]) = min{ψmin(π[s]), wL(s)(s, u)}
≥ min{ψmin(π[s]), wL(s)(s, v)} = ψmin(π[v])

giving desired (ii).

– If, during the execution, we applied the changes

in line 13 only to u, then ψmin(π[u]) =

min{ψmin(π[s]), wL(s)(s, u)} ≥ ψmin(π[s]) ≥
ψmin(π[v]), where the last inequality is implied by

V (s) ≥ V (v), ensured by the choice of s from Q,

and the recursive assumption (ii). Thus, indeed (ii)

is preserved.

– Finally, if, during the execution, we applied the

changes in line 13 only to v, then Vold(u) =

Vnew(u) ≥ Vnew(v) = wL(s)(s, v). Also, since u is

not a seed, we have π[u] = π[w]̂ u for some w ∈ N
with S(w) = 1. By (i), used just before we have

taken s from Q, we have ψmin(π[w]) ≥ ψmin(π[s]).

Therefore,

ψmin(π[u]) = min{ψmin(π[w]), V (u)}
≥ min{ψmin(π[s]), wL(s)(s, v)}
= ψmin(π[v])

finishing the proof of preservation of (ii).

Next, we will prove preservation of (i). So, assume

that after the execution of lines 8-14, we have S(u) = 1

and S(v) = 0. Then, by (i), used just before we have

taken s from Q, we have ψmin(π[u]) ≥ ψmin(π[s]). Thus,

it is enough to show that, right after the execution of

lines 8-14, we have ψmin(π[s]) ≥ ψmin(π[v]). This clearly

holds if the values V (v) or π[v] were not changed. So,

assume that that have been changed. Then, as before,

we see that

ψmin(π[s]) ≥ min{ψmin(π[s]), wL(s)(s, v)} = ψmin(π[v])

finishing the proof of preservation of (i) and of the the-

orem.

5 The Local Band Constraint

Let C : N → [0,∞) be a fixed vertex cost function as-

sociated with an image digraph G = 〈N ,A〉. Usually

C(t) is defined as a minimum of all possible path cost

functions for the paths from S1 to t. The path cost

can be its geodesic length (i.e., ψsum(〈v0, . . . , v`〉) :=∑
1≤j≤`‖vj−1− vj‖), as used in Geodesic Star Convex-

ity, but other path costs are also useful. It can also be

based on templates of shapes discussed in [3], which will

be considered for evaluation in Section 6.

The goal of this section is to construct an extension

of an edge weighted digraph G = 〈N ,A, ω〉, discussed

above to the edge weighted digraph G′ = (N ,A′, ω′)
so that the application of OIFT (Algorithm 1) to G′

produces an optimized object satisfying the Local Band

constraint defined below.

To relate Local Band constraint to Boundary Band

constraint introduced in [11], we first introduce the fol-

lowing notion of Local Boundary Band constraint, LBB.

In this definition the symbol ‖ · ‖ denotes the standard

Euclidean L2 norm on N ⊂ Z2. The boundary of an

object O is defined as

bd(O) = {t ∈ O : ∃s ∈ A(t) such that s /∈ O} .
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Definition 1 (Local Boundary Band (LBB))

For ∆,R > 0 and a cost map C : N → [0,∞), a

pixel t ∈ O is LBBR∆ (satisfies Local Boundary Band

Constraint with band size ∆ and parameter R) pro-

vided C(t) < C(s) + ∆ for all s ∈ bd(O) such that

‖s − t‖ ≤ R. An object O is LBBR∆ provided every

t ∈ O is LBBR∆.

Definition 2 (Boundary Band constraint (BB))

For ∆ > 0, an object O is BB∆ (satisfies Bound-

ary Band constraint with band size ∆) provided it

is LBB∞∆ , that is, when C(t) < C(s) + ∆ for all

t ∈ O and s ∈ bd(O). As a consequence, bd(O) is

contained in the band {s ∈ N : C(s) ∈ (m − ∆,m]},
where m = max{C(t) : t ∈ O}. In particular,

|C(s) − C(t)| < ∆ for all s, t ∈ bd(O). Consequently,

this regularizes the shape of bd(O), see [11].

The idea of BB is to establish a maximum possible

variation of the cost C between the boundary points

bd(O) of the object O to be segmented. This is ex-

pected to prevent the generated segmentation to be ir-

regular in relation to the C-level sets [11]. During the

OIFT computation subject to BB, the band changes its

reference level set, allowing a better adaptation to the

image content, while its width is kept fixed (Figure 1).

Note that this bears some resemblance to narrow band

level set [29] and to the regional context of a level line

used in [30].

In BB, however, local changes in a part of the ob-

ject can generate constraint violations in any other part

of its boundary, usually resulting in greater sensitiv-

ity to the initialization of the cost map C and to the

positioning of internal seeds, while in LBB its consis-

tency checks are limited locally, leading to a more flex-

ible solution. Clearly, every BB∆ object is LBBR∆, but

the converse is not true. Nevertheless, for every C and

∆, there exists an R ∈ (0,∞) such that the prop-

erty LBBR∆ implies BB∆ (this certainly holds for any

R ≥ max{‖s − t‖ : s, t ∈ N}). Thus, BB∆ can be con-

sidered as a limit, as R→∞, of LBBR∆.

In order to facilitate the implementation, we con-

sider an approximate alternative definition, named the

Local Band constraint (LB), in order to avoid the con-

tinuous analysis of the dynamic set of boundary pixels

inside the disks of radius R at runtime, but keeping the

main idea of locally restricting the band effects. This

effort resulted in the following similar definition.

Definition 3 (Local Band constraint (LB)) For

∆,R > 0 and a cost map C : N → [0,∞), a pixel t ∈ O
is LBR∆ (satisfies Local Band constraint with band size

∆ and parameter R) provided C(t) < C(s) + ∆ for all

s ∈ N \ O such that ‖s− t‖ ≤ R. An object O is LBR∆
provided every t ∈ O is LBR∆.

In other words, if O is LBR∆, then for any pair of pix-

els s and t such that ‖s− t‖ ≤ R and C(t)−C(s) ≥ ∆,

we have that t ∈ O implies s ∈ O. Note that neither

of the statements “O is LBR∆” and “O is LBBR∆” im-

plies the other. Nevertheless, they are closely related

(Figure 2), as shown by the following result.

Proposition 4 Let r = max〈s,t〉∈A‖s − t‖ and δ =

max〈s,t〉∈A|C(t)− C(s)|. If ∆,R > 0 and O is LBR+r
∆ ,

then O is LBBR∆+δ.

Proof Choose a t ∈ O. Then C(t) < C(s) + ∆ for all

s ∈ N \O such that ‖s− t‖ ≤ R+ r. We need to show

that t is LBBR∆+δ, that is, that C(t) < C(u) + ∆ + δ

for all u ∈ bd(O) such that ‖u− t‖ ≤ R. So, take such

u. Then, there is an s ∈ N \ O with 〈u, s〉 ∈ A. Notice

that ‖s − t‖ ≤ ‖s − u‖ + ‖u − t‖ ≤ r + R. Using this

and the definition of δ, we get C(t) < C(s) + ∆ ≤
C(u) +∆+ |C(s)− C(u)| ≤ C(u) +∆+ δ, as needed.

Since usually numbers δ and r are small, so should

be the difference between the objects with properties

LBR∆, LBR+r
∆ , LBBR∆+δ, or LBBR∆ and, for large R, each

approximates BB∆.

The LB constraint can be implemented, as proposed

in Algorithm 4 for OIFT, by considering a modified

graph G′ with the LB constraint embedded on its arcs.

In general, the worst cost should be ∞ for Min-Sum

optimizers (i.e., min-cut/max-flow algorithm) and −∞
for Max-Min optimizers. In order to maintain a sym-

metric graph, we also create anti-parallel arcs with the

best cutting cost (zero for Min-Sum and ∞ for Max-

Min optimizers) if they do not exist (line 5 in Algo-

rithm 4). Note that in G′ the set of displacement vec-
tors D(s) = {t − s : t ∈ A′(s)} varies for different

positions of s, leading therefore to a translation-variant

adjacency relation.

Algorithm 4 – Segmentation by OIFT subject
to the LB constraint

Input: Symmetric edge weighted image digraphG =
〈N ,A, ω〉, non-empty disjoint seed sets S1
and S0, cost map C : N → [0,∞), and pa-
rameters R > 0 and ∆ > 0.

Output: The label map L : N → {0, 1}.
Auxiliary: Edge weighted digraph G′ = 〈N ,A′, ω′〉

with A ⊂ A′.

1. Set A′ ← A and ω′ ← ω.
2. For each 〈s, t〉 ∈ {〈p, q〉 ∈ N ×N :

‖p− q‖ ≤ R & C(p) ≥ C(q) +∆} do
3. If 〈s, t〉 /∈ A′ then Set A′ ← A′ ∪ {〈s, t〉} and

define ω′(s, t) := −∞.
4. Else Redefine ω′(s, t) := −∞.
5. If 〈t, s〉 /∈ A′ then Set A′ ← A′ ∪ {〈t, s〉} and

define ω′(t, s) :=∞.
6. Compute, by Algorithm 1, L : N → {0, 1} for G′ and
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(a) (b) (c) (d)

Fig. 1 Brain segmentation example in MRI exam. (a-b) Segmentation results by OIFT without and with the BB constraint,
respectively. (c-d) The BB fixed size band evolves from the seeds, adapting to the image contents. Note that the segmentation
boundary achieved in (b) resides within the band area in (d).
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Fig. 2 Example of Proposition 4, where “t is LBR+r
∆ ” and

“t is LBBR∆+δ” for R = 2.5, r = 1.0, ∆ = 1 and δ = 1. (a)
O, (b) bd(O), and (c) the disks of radii R and R+ r.

seed sets S1 and S0.
7. Return L.

Theorem 5 Let G = 〈N ,A, ω〉 be a symmetric edge

weighted image digraph with ω : A → R. Let L be a seg-

mentation returned by Algorithm 4 applied to G, non-

empty disjoint seed sets S1 and S0, cost map C : N →
[0,∞), and parameters R > 0 and ∆ > 0. Assume that

S1 and S0 are LBR∆-consistent, that is, that

(?) there exists a labeling satisfying seeds and LBR∆ con-

straints.

Then L satisfies seeds and LBR∆ constraints and maxi-

mizes the energy εmin, given by (1) w.r.t. G, among all

segmentations satisfying these constraints.

Proof In this proof εGmin and εG
′

min denote the energy

εmin with respect to G and G′, respectively. Let L :=

{〈p, q〉 ∈ N ×N : 0 < ‖p− q‖ ≤ R & C(p) ≥ C(q) +∆}
and M := {〈s, t〉 : (s, t) ∈ L} \ A. It is easy to see that

after the execution of lines 1-5 we have A′ = A∪L∪M
and

ω′(s, t) =


−∞ for 〈s, t〉 ∈ L,
∞ for 〈s, t〉 ∈ M,

ω(s, t) otherwise, that is for 〈s, t〉 ∈ A \ L.

Also, by Proposition 1, after the execution of line 6

the labeling L satisfies the seed constraints and maxi-

mizes the energy εG
′

min among all segmentations satisfy-

ing seeds constraints. We need to show that L satisfies

also LBR∆ constraints an that it maximizes εGmin among

all segmentations satisfying these constraints.

To see this, let L′ : N → {0, 1} be an arbitrary la-

beling satisfying seeds and LBR∆ constraints. It exists

by (?). Then, by the definition of LBR∆ constraints, the

set T ′ := {〈p, q〉 ∈ A′ : L′(p) > L′(q)} is disjoint with

L. In particular,

εG
′

min(L) ≥ εG′min(L′)

= min{ω′(s, t) : 〈s, t〉 ∈ A′ & L′(s) > L′(t)} > −∞.

Hence

εG
′

min(L) = min{ω′(s, t) : 〈s, t〉 ∈ A′ & L(s) > L(t)} > −∞,

so that the set T := {〈p, q〉 ∈ A′ : L(p) > L(q)} must be

also disjoint with L. This means that L satisfies LBR∆
constraints. To finish the proof we need to show that

εGmin(L) ≥ εGmin(L′). For this notice first that

εG
′

min(L′) = εGmin(L′). (2)

Indeed, T ′ ∪ T is disjoint with L, so 〈s, t〉 ∈
A′ & L′(s) > L′(t) implies that 〈s, t〉 ∈ (A \ L) ∪M.

Thus, since ω′ = ω on A \ L and ω′ =∞ on M,

εG
′

min(L′) = min{ω′(s, t) : 〈s, t〉 ∈ A′ & L′(s) > L′(t)}
= min ({ω′(s, t) : 〈s, t〉 ∈ A \ L & L′(s) > L′(t)} ∪ {∞})

= min ({ω(s, t) : 〈s, t〉 ∈ A & L′(s) > L′(t)} ∪ {∞})
= εGmin(L′),

as needed. Finally, using (2) for L and L′, we obtain

εGmin(L) = εG
′

min(L) ≥ εG
′

min(L′) = εGmin(L′),

finishing the proof.
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6 Experimental results

In this section we compare LB with shape constraints

commonly employed in graph-based segmentation:

Geodesic Star Convexity [17], Boundary Band [11], and

Hedgehog Shape Prior [19,18]. We opted to compare

them using Max-Min optimizers, because BB is not yet

supported by Min-Sum optimizers [11].

From the IFT [13] perspective, when the cost map

C is the geodesic length (i.e., ψsum(〈v0, . . . , v`〉) :=∑
1≤j≤`‖vj−1 − vj‖), from S1 in G = (N ,A), the pre-

vious constraints are based on different attributes of a

previously computed minimal forest in G rooted at S1:

Geodesic Star Convexity uses the predecessor map [27],

BB and LB constraints exploit the cost map directly,

and Hedgehog uses the gradient of the cost map as vec-

tor field.

Figure 3 shows the segmentation results by OIFT

using different methods, ω(s, t) = ‖I(t) − I(s)‖ and a

circle template, as reference cost map, centered on the

center of mass of the internal seeds. The BB constraint

fails to give good results compared to Local Band, due

to its greater sensitivity to the template positioning.

Figure 4 shows some results of a tile segmentation using

a square template and ω(s, t) = ‖I(t)−I(s)‖. In order

to measure the sensitivity of the most promising meth-

ods for different seed positioning, in Figure 5 we show

the accuracy curves using internal seeds in a circular

brush of radius 5 pixels with horizontal displacements

relative to the object’s center and background seeds

at the image frame. Note that, for the coin segmenta-

tion, LB (R = 3.5 and ∆ = 2) had slightly more stable

results compared to Hedgehog, giving almost perfect

results for 68.2% of the maximum possible horizontal

shift in the coin (radius 44 pixels). BB constraint with

∆ = 10 had significantly lower robustness to seed dis-

placements (11.4% of the maximum shift). For higher

delta values, BB became unstable. It surprisingly had

better results for a left shifted position to avoid false

positives on its right side. For the wall tile segmenta-

tion, LB (R = 3.5 and ∆ = 2) had the most accurate

results, giving good results for 10.3% of the maximum

possible horizontal shift in the wall tile (radius 145 pix-

els). BB constraint with ∆ = 10 had worse robustness

to seed displacements. For higher values of delta, it was

possible to increase its robustness, but at the price of

sacrificing its accuracy.

We also tested the robustness of the methods in re-

lation to different image resolutions by quantitative ex-

periments, to segment archaeological fragments in seven

different resolutions with the geodesic cost. In order to

make the experiment more challenging, the simple arc

weight ω(s, t) = G(s)+G(t) was used, disregarding any

prior color information, where G(t) denotes the magni-

tude of Sobel gradient, such that we have several false

boundaries (Figure 6). Figure 7 shows the mean values

of the Dice coefficient for segmenting ten fragments for

each image resolution, totalizing 70 executions for each

method. The overall best results were obtained by LB

using R = 3.5 and ∆ = 2. Hedgehog for different θ

values and the same radius presented unstable results

(Figure 6d). Further increasing its radius is not recom-

mended, since it drastically increases the computational

cost.

Finally, we conducted experiments with the geodesic

cost to segment the liver in medical images of 40 slices

of thoracic CT studies of size 512 × 512, using regular

weights ω(s, t) = ‖I(t) − I(s)‖ and seed sets progres-

sively obtained by eroding the ground truth and its

background with twice the radius size (Figure 8). Al-

though this scenario is apparently advantageous for the

BB constraint, in view of the well-distributed and cen-

tralized seeds, LB (R = 3.5 and ∆ = 2) demonstrated

good results with the highest accuracy for a large part

of the curve (Figure 9a). We repeated the experiments,

but now with the internal seeds shifted by 5 pixels to

the left (25% of the maximum possible displacement

in the central part of the curves) whenever possible.

In this new scenario, the results clearly show that LB

is more robust than BB in relation to seed positioning

(Figure 9b).

(a) Circle template

(b) Star Convexity (c) B. Band ∆ = 10

(d) Hedgehog θ = 45◦ (e) Local Band ∆ = 2

Fig. 3 Coin segmentation by OIFT with a circle template in
a 250× 185 image.
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(a) Square template

(b) Star Convexity (c) B. Band ∆ = 10

(d) Hedgehog θ = 45◦ (e) Local Band ∆ = 2

Fig. 4 Wall tile segmentation by OIFT with a square tem-
plate in a 576× 881 image.

7 Conclusion

We have proposed the Local Band shape constraint,

which in its limit case (i.e., R→∞) is strongly related

to Boundary Band constraint and is less sensitive to the

seed/template positioning for high accuracy values. We

also demonstrated that OIFT lies in the intersection

of the Generalized Graph Cut and the General Fuzzy

Connectedness frameworks, inheriting their properties.

To the best of our knowledge, we are also the first to

report OIFT with the Hedgehog shape prior. As future

work, we intend to test LB in 3D medical applications.
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Fig. 9 The mean accuracy curves to segment the liver for
seed sets obtained by erosion.
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