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Abstract. We provide an example of two 2-periodic everywhere differ-
entiable functions f, g : R→ R whose convolution f ∗ g fails to be differ-
entiable at every point of some perfect (thus, uncountable) set P ⊂ R.
This shows that the convolution operator can actually destroy the differ-
entiability of these maps, rather than introducing additional smoothness
(as it is usually the case). New directions and open problems are also
posed.

1. Introduction

The aim of this note is to present a series of results in the lines of find-
ing “strange examples” ([1, 3]) when studying “differentiability versus non-
differentiability” by using the convolution with two 2-periodic everywhere
differentiable functions. The outcome, as we will see here, might fail to be
differentiable on “large” sets. Therefore the convolution operator can ac-
tually destroy the differentiability of the original maps (which goes against
one’s initial intuition when dealing with this concept).

Let L1[−1, 1] denote the class of all functions f from the real line R into
R that are 2-periodic (i.e., such that f(x + 2) = f(x) for all x ∈ R) and

Lebesgue integrable, in the sense that ‖f‖1 :=
∫ 1
−1 |f(x)| dx <∞. Although

functions in L1[−1, 1] are formally defined on the entire R, we will consider
them only as functions on [−1, 1], where periodicity is used only to determine
their behavior at the points ±1 and also to facilitate an arithmetic on [−1, 1],
especially translation.

For f, g ∈ L1[−1, 1], the convolution f ∗ g of f and g is the function from
R into R formally defined, for every x ∈ R, as

(f ∗ g)(x) :=

∫ 1

−1
f(s)g(x− s) ds.

The maps f and g are referred to as the parent functions of f ∗ g.
It is well-known (and a simple consequence of Fubini’s Theorem) that

f ∗ g is defined a.e. and belongs to L1[−1, 1], see e.g. [10, p. 4]. More
importantly for us, f ∗ g is defined for all x ∈ R when one of the parent
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functions is bounded, which is the only situation that shall be considered in
what follows. Note that f ∗g = g ∗f , as the above definition clearly implies.

The operator f ∗ g consists basically of the “limit of averaging of the area
between f and translations of g,” see [11]. It can be also interpreted as
“moving weighted average” of one parent function with respect to another,
see [4].

One of the most important properties of the convolution operator is that
if one of the parent functions, say f , is smooth, then the “averaging” f ∗ g
of g smoothens g, in a sense of the following well known result, see e.g.
[13, proposition 4, p. 454].

Proposition 1.1. Let f, g ∈ L1[−1, 1] and k ∈ N := {1, 2, 3, . . .}. If f has

a continuous kth derivative dkf
dxk

, then so has f ∗ g. Moreover,

dk

dxk
(f ∗ g) =

(
dkf

dxk
∗ g
)
.

The proof of Proposition 1.1 uses the process of differentiation under the
integral sign, for which certain control of the derivative is needed. Continuity
of the derivatives ensures that this control is satisfied. Actually, for k = 1,
we have the following slightly stronger result.

Proposition 1.2 (“folklore”). If f, g ∈ L1[−1, 1] and f is differentiable with
bounded derivative, then f ∗ g is differentiable and (f ∗ g)′ = f ′ ∗ g.

Proof. In [−1, 1] fix a sequence xn →n x. The map |g(s)|‖f ′‖∞ is integrable
and dominates all functions

hn(s) := g(s)
f(xn − s)− f(x− s)

xn − x
.

Thus, by Lebesgue’s dominated convergence theorem,

g ∗ f(xn)− g ∗ f(x)

xn − x
=

∫ 1

−1
g(s)

f(xn − s)− f(x− s)
xn − x

ds

converges, as n→∞, to

∫ 1

−1
g(s)f ′(x− s) ds = g ∗ f ′(x), as needed. �

The goal of this paper is to construct, in Theorem 2.2, an example for
which the convolution f ∗ g fails to be differentiable on a perfect (i.e., closed
with no isolated points) subset of [−1, 1]. This generalizes the following
recent result [8]. (See, also, [9].)

Theorem 1.3. There exist differentiable functions f, g ∈ L1[−1, 1] such
that f ∗ g is not differentiable on x = 0.

It should be also mentioned here that there exist continuous nowhere dif-
ferentiable functions whose convolution is differentiable, see e.g. [7]. On
the other hand, V. Jarńık constructed in [6] two continuous functions whose
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convolution is nowhere differentiable. In fact, there are many of such func-
tions, as proved in [7]. However, we still do not know, if f ∗g can be nowhere
differentiable, if both f and g are differentiable.

The constructions used in Theorems 1.3 and 2.2 rely on the following
simple lemma. In what follows Ψ: R→ [0, 1] shall stand for a C∞ “bump”
function having support contained in (0, 1) and being equal to 1 on its middle
half, that is, such that Ψ−1(1) = [1/4, 3/4]. See Figure 1.

Figure 1. A sketch of the function Ψ.

Lemma 1.4. For every non-trivial closed interval I of length ` and every
n ∈ N there exist C∞ functions ϕ,ψ : R → [0, 1] with disjoint supports
contained in I and such that{

s ∈ I : ϕ(s) = ψ

(
s− `

2n

)
= 1

}
has measure `/4.

Proof. Let I = [a, b] and choose a = a0 < · · · < a2n = b equally distributed,
that is, with ai+1−ai = `

2n for all i < 2n. For every i < 2n let Li : R→ R be

the linear map with Li(ai) = 0 and Li(ai+1) = 1 (i.e., Li(x) = 2n
` (x−ai)) and

let Ψi := Ψ ◦ Li. Then, the functions ϕ =
∑

i<n Ψ2i and ψ =
∑

i<n Ψ2i+1,
see Figure 2, are as needed. �

For the sake of completeness we present below a new, shorter, and con-
siderably more elegant proof of Theorem 1.3. This will also help the reader
to follow the construction used in Theorem 2.2, which is an elaboration on
the one presented below.

Proof of Theorem 1.3. For every i ∈ N let ϕi and ψi be the functions from
Lemma 1.4 with I = Ii =

[
2−i, 2−(i−1)

]
and n = ni = 27i−1. So, they have
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Figure 2. A sketch of the functions ϕ and ψ, with solid and
dotted graphs, respectively. We use I = [−2, 0] and n = 3.

disjoint supports contained in Ii. Define f (see Figure 3) and g by letting,
for each x ∈ [−1, 1],

(1.1) f(x) := x2
∞∑
i=1

ϕi(x) and g(x) := x2
∞∑
i=1

ψi(−x).

Notice that the graph of g is almost a reflection of the graph of f with
respect to the y-axis.

Figure 3. A sketch of the function f . Notice that as the
dyadic intervals become smaller, the number of oscillations
increase in an exponential way.
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They are as needed. To see that f and g are differentiable, first notice
that they are C∞ on U = (−1, 0) ∪ (0, 1), since so is each map ϕi(x) and
ψi(−x) and their supports form a locally finite family on U . They are also
2-periodic and C∞ at ±1 by the same reasoning combined with noticing
that f (j)(±1) = g(j)(±1) = 0 for all j < ω.1 Finally, f ′(0) = 0 follows from

the squeeze theorem, since
∣∣∣f(x)−f(0)

x−0

∣∣∣ ≤ ∣∣∣x2−f(0)
x−0

∣∣∣ = |x|. Similarly g′(0) = 0.

To see that f ∗g is not differentiable at x = 0, first notice that (f ∗g)(0) =∫ 1
−1 f(s)g(0− s) ds = 0 since, by (1.1) and Lemma 1.4, the supports of f(s)

and g(−s) are disjoint. Also, if xi = m(Ii)
2ni

= 2−8i, then, by Lemma 1.4,

Ei := {s ∈ Ii : ϕi(s) = ψi(s− xi) = 1} has measure 2−i−2 and

(f ∗ g)(xi) =

∫ 1

−1
f(s)g(xi − s) ds

≥
∫
Ii

s2 ϕi(s) (xi − s)2ψi(−(xi − s)) ds

≥
∫
Ii

2−2iϕi(s)
(
2−8i − 2−i

)2
ψi(s− xi) ds(1.2)

≥
∫
Ii

2−4i−1χEi ds = 2−4i−1m(Ei) = 2−5i−3.

Hence,

(f ∗ g)(xi)− (f ∗ g)(0)

xi − 0
≥ 2−5i−3

2−8i

i→∞−→ ∞,

so (f ∗ g)′(0) does not exist. �

With the notation of Theorem 1.3 and given I = (a, b) ⊂ (−1, 1), let us
define two 2-periodic functions fI , gI : R → R, modifications of those from
(1.1), as follows:

Definition 1.5. Given x ∈ [−1, 1], we let

fI(x) := (x− a)2
∞∑

i=nI

ϕi(x− a) and gI(x) := x2
∞∑

i=nI

ψi(−x),

where nI is the smallest number such that 2−nI < m(I)/2. Notice that
this ensures that nI only depends on m(I) and that, for every i ≥ nI , the
supports of ϕi(x − a) and ψi(x − a) are contained in the left half of I. We
then extend such functions to the whole R via 2-periodicity.

2. The example

We will start by defining a nowhere dense perfect set that will serve as a
guideline for our construction.

1Here ω stands for the first infinite ordinal. Thus, j < ω is equivalent to j ∈ {0, 1, 2, . . .}.
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Definition 2.1. Construct the families {Ik : k < ω} of intervals such that
I0 = {[−1/2, 1/2]} and Ik+1 is formed from Ik by replacing each I ∈ Ik by
two closed intervals obtained from I by removing from it its middle half J ;
that is, with m(J) = m(I)/2. Note that each I ∈ Ik has length 2−2k. Our
perfect set is defined as ∆ =

⋂
k<ω

⋃
Ik.

Let J be the family of all connected components of (−1, 1) \∆. Also, let
g be the function constructed in Theorem 1.3 and f̄ =

∑
J∈J fJ , where fJ

are the corresponding 2-periodic functions obtained in Definition 1.5. See
Figures 4 and 5.

Figure 4. A sketch of the function f̄ .

Theorem 2.2. If f̄ and g are as above, then they are 2-periodic, differ-
entiable, and there is a non-empty perfect P ⊂ ∆ such that f̄ ∗ g is not
differentiable at any x ∈ P .
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Figure 5. A detail of the sketch of the function f̄ on the
interval [−0.53,−0.23].

We will need the following lemma in the proof of Theorem 2.2.

Lemma 2.3. For every k ∈ N and every I := [a, b] ∈ Ik there exists an
ib ≥ k (depending only on b) such that for every i ≥ ib we have

|(f̄ ∗ g)(b+ xi)− (f̄ ∗ g)(b)| > 2−5i−4,

where xi =
m(Ii)

2ni
= 2−8i is as in the proof of Theorem 1.3.

Proof. Let J = (b, c) ∈ J and let gJ : R→ R be the corresponding 2-periodic
function constructed in Definition 1.5. Notice that g̃ := g − gJ is C∞, as it
is given as a finite sum g̃(x) := x2

∑nJ−1
i=1 ψi(−x) of C∞ maps. (Recall that

nJ is the minimum natural number for which 2−nJ < m(J)/2.)
Now, as the support of gJ(b− x) = (x− b)2

∑∞
i=nJ

ψi(x− b) is contained
in J , we have that

0 ≤ (f̄ ∗ gJ)(b) =

∫ 1

−1
f̄(s)gJ(b− s) ds

=

∫ 1

−1
χJ f̄(s)gJ(b− s) ds

=

∫
J
fJ(s)gJ(b− s) ds

≤
∫
J
f(s− b)g(−(s− b)) ds = 0
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since the supports of f(s) and g(−s) are disjoint. Also, for any i ≥ nJ ,

(f̄ ∗ gJ)(b+ xi) ≥
∫
b+Ii

fJ(s)gJ(xi + b− s) ds

≥
∫
Ii

s2 ϕi(s) (xi − s)2ψi(−(xi − s)) ds ≥ 2−5i−3,

where the last inequality is justified by (1.2).
Since g̃ is C∞, the derivative of f̄ ∗ g̃ exists. Choose an M ∈ R with

M > |[f̄ ∗ (g − gJ)]′(b)| and notice that for small enough xi > 0 (i.e., big
enough i) we have

|(f̄ ∗ g̃)(b+ xi)− (f̄ ∗ g̃)(b)| < Mxi = M2−8i.

In particular, there is an ib ≥ k such that for every i ≥ ib the above two
displayed estimates hold and we also have 2−5i−3 −M2−8i > 2−5i−4. This
implies that

|(f̄ ∗ g)(b+ xi)− (f̄ ∗ g)(b)|
= |f̄ ∗ (gJ + g̃)(b+ xi)− f̄ ∗ (gJ + g̃)(b)|
≥ |f̄ ∗ gJ(b+ xi)− f̄ ∗ gJ(b)| − |f̄ ∗ g̃(b+ xi)− f̄ ∗ g̃(b)|
≥ 2−5i−3 −M2−8i > 2−5i−4,

as needed. �

Proof of Theorem 2.2. First notice that f̄ is differentiable on ∆. In order to
see this, let h : R → R be defined as h(x) = (dist(x,∆))2. Then h′(d) = 0
for every d ∈ ∆, since for every x 6= d,∣∣∣∣h(x)− h(d)

x− d

∣∣∣∣ =
(dist(x,∆))2

|x− d|
≤ (x− d)2

|x− d|
= |x− d| x→d−→ 0.

Using this and the inequality 0 ≤ f̄ ≤ h, the similar estimates show that
f̄ ′(d) = 0 for every d ∈ ∆. Thus, indeed f̄ and g are differentiable.

Next we construct, by induction on j < ω, the families {Jj : j < ω}, each
Jj consisting of 2j intervals from

⋃
k<ω Ik of the same length. We start with

J0 = I0.
If Jj is already constructed let kj < ω be such that Jj ⊂ Ikj . Let us

define Aj to be the set of all right endpoints of intervals J ∈ Jj and define
Nj = max{ib : b ∈ Aj}. We also choose k ≥ kj to be the smallest number

such that 2−2k, the length of each I ∈ Ik, is at most 2−(7Nj−1).
Let J ∗j be the family of all I ∈ Ik that share the right endpoint with

some I ′ ∈ Jj and let Jj+1 be the family of all intervals in Ik+1 contained in
some I ∈ J ∗j . This finished the inductive construction.

Define P =
⋂

j<ω

⋃
Jj . This is clearly a perfect subset of ∆. We claim

that it is as needed. So, let x ∈ P . We need to show that f̄ ∗ g is not
differentiable at x.
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For this, first assume that x = b for some point b considered in Lemma 2.3.

Then, for every j < ω, i ≥ Nj , and xi = m(Ii)
2ni

= 2−8i we have∣∣∣∣(f̄ ∗ g)(b+ xi)− (f̄ ∗ g)(b)

xi

∣∣∣∣ > 2−5i−4

2−8i

i→∞−→ ∞

and indeed f̄ ∗ g is not differentiable at x = b.
Next, assume that x is not in the above form. For every j < ω choose

an interval [aj , bj ] ∈ Jj ⊂ Ikj containing x. Then bj ↘ x. If the sequence〈
(f̄∗g)(bj)−(f̄∗g)(x)

bj−x

〉
j

has no bound, then clearly f̄ ∗ g is not differentiable at

x and we are done. So assume that there exists an M ∈ R such that∣∣∣∣(f̄ ∗ g)(bj)− (f̄ ∗ g)(x)

bj − x

∣∣∣∣ < M for all j.

Let Nj be as in the jth step of the construction of the perfect set P and let

xNj = 2−8Nj be as in Lemma 2.3. Then, clearly, bj + xNj
j→∞−→ x. Thus, to

finish the proof it is enough to show that∣∣∣∣∣(f̄ ∗ g)(bj + xNj )− (f̄ ∗ g)(x)

bj + xNj − x

∣∣∣∣∣ j→∞−→ ∞.
Indeed, for every j < ω, since bj − x < m([aj , bj ]) ≤ 2−(7Nj−1), we have∣∣∣∣∣(f̄ ∗ g)(bj + xNj )− (f̄ ∗ g)(x)

bj + xNj − x

∣∣∣∣∣ ≥
≥

∣∣∣∣∣(f̄ ∗ g)(bj + xNj )− (f̄ ∗ g)(bj)

bj + xNj − x

∣∣∣∣∣−
∣∣∣∣(f̄ ∗ g)(bj)− (f̄ ∗ g)(x)

bj + xNj − x

∣∣∣∣
≥

∣∣∣∣∣(f̄ ∗ g)(bj + xNj )− (f̄ ∗ g)(bj)

2−(7Nj−1) + 2−8Nj

∣∣∣∣∣−
∣∣∣∣(f̄ ∗ g)(bj)− (f̄ ∗ g)(x)

bj − x

∣∣∣∣
≥ 2−5Nj−4

2−(7Nj−1) + 2−8Nj
−M j→∞−→ ∞,

finishing the proof. �

3. Final remarks and open problems

We first observe that the functions f and ḡ from Theorem 2.2 can be
chosen equal. Indeed, we have:

Corollary 3.1. There exists a differentiable h ∈ L1[−1, 1] such that h ∗ h
is not differentiable at any point of a perfect subset of [−1, 1].
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Proof. For a map g from X ⊂ R to R let Dif(g) be the set of all x ∈ X
where g is differentiable and let nDif(g) = X \Dif(g) be its complement. It
is known, that Dif(g), and so also nDif(g), are Borel in X.2

Now, let f̄ and g be as in Theorem 2.2. Then

(f̄ + g) ∗ (f̄ + g) = f̄ ∗ f̄ + g ∗ g + 2f̄ ∗ g.

In particular, 2f̄ ∗g = (f̄+g)∗ (f̄+g)− f̄ ∗ f̄−g ∗g. Hence, the uncountable
set nDif(f̄ ∗ g) is contained in

nDif((f̄ + g) ∗ (f̄ + g)) ∪ nDif(f̄ ∗ f̄) ∪ nDif(g ∗ g).

Thus, there is an h ∈ {f̄ , g, f̄ + g} with nDif(h) uncountable. Now, since
nDif(h) is Borel, it must contain a perfect set. �

In the same direction, notice that the continuous functions f and g con-
structed by Jarńık [6], for which nDif(f ∗ g) = ∅, are actually equal.

Let us also point out that the above results can be translated to higher
order differentiation, as related to Proposition 1.1. Specifically, if f and ḡ
are as in Theorem 2.2, k = 2, 3, 4, . . ., and F is k-times differentiable with
F (k−1) = f , then F ∗ ḡ fails to have k-th derivative on an uncountable set.
Thus, the continuity assumption of f (k) in Proposition 1.1 is essential.

However, for k > 1, if both f and g are k-times differentiable, then so is
f ∗ g. Actually, it is at least 2(k − 1)-times differentiable, with

(f ∗ g)2(k−1) = (f (k−1) ∗ g)(k−1) = f (k−1) ∗ g(k−1).

We would like to finish this paper with the following interesting open
question.

Problem 3.2. Assume that f, g ∈ L1[−1, 1] are differentiable. How small
the set of points of differentiability of f ∗g can be? Could it be empty? What
if we, additionally, assume that f ′ ∗ g ∈ L1[−1, 1]?
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Sepúlveda, The convolution of two differentiable functions on the circle need not be
differentiable, Rev. Mat. Complut. 32 (2019), no. 2, 187–193, DOI 10.1007/s13163-
018-0274-5.

[9] , Algebraic genericity and the differentiability of the convolution, J. Approx.
Theory 241 (2019), 86–106, DOI 10.1016/j.jat.2019.01.002.

[10] Y. Katznelson, An introduction to harmonic analysis (3rd analysis), Cambridge Math-
ematical library, Cambridge University Press, Cambridge, 2004.

[11] W. Rudin, Fourier Analysis on groups, Interscience tracts in pure and applied Math-
ematics, vol. 12, Interscience publishes (a division of John Wiley and Sons), New
York–London, 1962.

[12] Z. Zahorski, Sur l’ensemble des points de non-dérivabilité d’une fonction continue,
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