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Distinct Continuous Maps with All Riemann
Sums Equal

Krzysztof Chris Ciesielski and Yichen Liu

Abstract. Do examples as in the title exist? It depends on how the term Riemann sum is un-

derstood. For the standard, left, or right Riemann sums such examples do not exist. However,

as we will see, they do exist for the lower and upper Riemann sums. Nevertheless, there are

only a few examples of such pairs and they have a very simple structure. In this article, we

describe all such pairs among Riemann integrable functions from an interval [a, b] into R.

We also show that such pairs have an especially nice format when we restrict our attention

to continuous maps. All the arguments presented are elementary. In particular, the part con-

cerning continuous functions is self-contained and presented in a format accessible to good

undergraduate students.

1. INTRODUCTION. The most commonly taught definition of a definite integral of

a function f : [a, b] → R is due to Bernhard Riemann (1826–1866). It was presented

to the faculty at the University of Göttingen in 1854, but was not published in a journal

until 1868; see [5]. It relies on a notion of a Riemann sum which, for a partition P :=
{x0, x1, . . . , xn} of an interval I := [a, b] (such that a = x0 < x1 < · · · < xn = b)
and a sequence~t := 〈ti ∈ [xi, xi+1] : i < n〉 of tags, is defined as

S
(

f, P,~t
)

:=
∑

i<n

(xi+1 − xi)f(ti).

A map f : [a, b] → R is said to be Riemann integrable provided there exists a unique

number σ ∈ R, denoted
∫ b

a
f(x) dx and referred to as the Riemann integral of f , such

that for every ε > 0 there exists a δ > 0 so that

∣

∣

∣
S
(

f, P,~t
)

− σ
∣

∣

∣
< ε (1)

whenever the number |P | := max{xi+1 − xi : i < n} is less than δ.

A somewhat unpleasant part of this definition is its use of (essentially arbitrary)

tags ~t. There are several ways to avoid their use while still getting the same notion of

integrability. One way is to use the notions of lower and upper Darboux sums, also

known as lower and upper Riemann sums, and defined, respectively, as

L(f, P ) :=
∑

i<n

(xi+1 − xi) inf
t∈[xi,xi+1]

f(t)

and

U(f, P ) :=
∑

i<n

(xi+1 − xi) sup
t∈[xi,xi+1]

f(t).

If, in the above definition, we replace (1) with

|L(f, P )− σ| < ε and |U(f, P )− σ| < ε,
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then we obtain a notion of the Darboux integral, first introduced by Jean-Gaston Dar-

boux (1842–1917) in his 1875 Mémoire [2]. It is well known and easy to see that

these two notions of integrals are actually equivalent, sinceL(f, P ) ≤ S
(

f, P,~t
)

≤

U(f, P ) and each of the sumsL(f, P ) andU(f, P ) is arbitrarily close to S
(

f, P,~t
)

for an appropriate choice of ~t.

Yet another way to avoid tags in (1) is to replaceS
(

f, P,~t
)

with the right Riemann

sum (or another uniformly defined notion of tags) defined as

R(f, P ) := S (f, P,~r ) ,

where, for a fixed partition P := {x0, x1, . . . , xn}, we define ~r := 〈xi+1 : i < n〉.
Once again, this leads to the same notion of an integral. (For a proof in the case of

continuous maps, see, e.g., [3].)

Now, assume that for the Riemann integrable functions f, g : [a, b] → R we have

L(f, P ) = L(g, P ) for every partition P of [a, b]. (2)

Does this imply that

∫ d

c

f(x)dx =

∫ d

c

g(x)dx for all [c, d] ⊆ [a, b]? (3)

In the textbook [4] the authors actually ask, in Exercise 14.32, for a proof that indeed

(2) implies (3). In fact, such an implication does not hold. However, before we show

this, let us first indicate that the implication (2)⇒(3) actually seems very intuitive. We

argue for this by showing that a slight variation of (2), namely

R(f, P ) = R(g, P ) for every partition P of [a, b] (4)

does imply (3) (for Riemann integrable f and g). In other words, the examples sug-

gested by the title do not exist when the term “Riemann sum” is understood as “right

Riemann sum”—validating our claim from the abstract. (The arguments for the left

and standard Riemann sums are similar.)

Indeed, (4) implies that R(f − g, P ) = R(f, P )− R(g, P ) = 0 for every parti-

tion P . Using this with P = {a, b} we get (b − a)(f − g)(b) = R(f − g, P ) = 0,

that is, (f − g)(b) = 0. Moreover, for every x ∈ (a, b), if P = {a, x, b}, then

(x− a)(f − g)(x) = (x− a)(f − g)(x) + (b− x)(f − g)(b) = R(f − g, P ) = 0.

In other words, (4) implies that f = g on (a, b] and so we have (3).

Why does a similar argument not work for the lower Riemann sums (2) in place

of the right Riemann sums (4)? A simple answer is that, in general, the equation

L(f − g, P ) = L(f, P ) − L(g, P ) does not hold. Specifically, if f and g are con-

tinuous and f is increasing while g is decreasing, then L(g, P ) = S (g, P,~r ), while

L(f, P ) = S
(

f, P, ~ℓ
)

with ~ℓ = 〈xi : i < n〉 6= ~r. This gives us all the elbow room

needed to find a counterexample to the implication (2)⇒(3).

Proposition. Let I = [a, b], fix m,β, γ ∈ R, and let f, g : I → R be defined, for

every x ∈ I , as f(x) = mx+ β and g(x) = −mx+ γ, respectively. If f(a) = g(b)
(see Figure 1), then L(f, P ) = L(g, P ) for every partition P of I . In particular, if

m 6= 0, then (3) fails for [c, d] =
[

a+b

2
, b
]

.
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Figure 1. Graphs of maps f and g from Proposition for m > 0.

Proof. Let P = {x0, x1, . . . , xn} be a partition of the interval I = [a, b] with

a = x0 < x1 < · · · < xn = b. Exchanging f with g, if necessary, we can assume

that m ≥ 0. Then

L(f, P )− L(g, P )

=
n
∑

k=1

L(f, {xk−1, xk})−
n
∑

k=1

L(g, {xk−1, xk})

=
n
∑

k=1

(xk − xk−1)(mxk−1 + β)−
n
∑

k=1

(xk − xk−1)(−mxk + γ))

=
n
∑

k=1

(

m(x2
k − x2

k−1) + (β − γ)(xk − xk−1)
)

= m(x2
n − x2

0) + (β − γ)(xn − x0)

= (xn − x0)
(

(mx0 + β)− (−mxn + γ)
)

= (b− a)(f(a)− g(b)) = 0

as needed.

Clearly the implication (2)⇒(3) fails for [c, d] =
[

a+b

2
, b
]

since, for our choice of

functions f and g, we have
∫ d

c
f(x)dx−

∫ d

c
g(x)dx = (b−a)2

4
m 6= 0.

2. THE CASE OF CONTINUOUS FUNCTIONS. We will refer to any pair 〈f, g〉
of functions as in Proposition (and Figure 1) with m 6= 0 as an

�
-pair. As we in-

dicated earlier, the existence of such examples seems quite counterintuitive. But, per-

haps, even more surprising is the fact that the
�

-pairs are the only such examples

within the class of continuous functions, as stated in the following theorem.
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Theorem 1. For every continuous f, g : I → R the following conditions are equiva-

lent:

(a1) L(f, P ) = L(g, P ) for every partition P of I and f 6= g.

(b1) 〈f, g〉 is an
�

-pair.

In Theorem 2, presented in the next section, we will generalize the above charac-

terization to the case when the functions f and g are assumed only to be Riemann

integrable. Since Theorem 1 follows easily from Theorem 2, we could have opted to

skip a direct proof of Theorem 1 in favor of deducing it from Theorem 2. Nevertheless,

we decided against such an approach and we start with a proof of Theorem 1. There are

two advantages of doing so. First, the proof of Theorem 1 we present is self-contained

and at the level accessible to good undergraduate students, while even the statement

of Theorem 2 uses more advanced mathematical language (of functions equal almost

everywhere). Thus, the proof of Theorem 1 will be accessible to a considerably wider

audience than that of Theorem 2. Second, the proof in the case of continuous maps

emphasizes the idea behind the proof of the general case without getting too cluttered

with the technical details needed for the argument. Since the format of the proof of

Theorem 2 is quite close to that of Theorem 1, this will allow us to just sketch the

proof of the general case, emphasizing only the differences between the two cases.

Proof of Theorem 1. Clearly, by Proposition, any
�

-pair satisfies the condition (a1),

that is, (b1) implies (a1). Thus, we only need to prove the converse. For this, fix maps

f, g : I → R satisfying (a1). We will show that 〈f, g〉 constitutes an
�

-pair.

To see this, first notice that, for the partition P = {a, b},

(b− a)min
t∈I

f(t) = L(f, P ) = L(g, P ) = (b− a)min
t∈I

g(t)

and let

µ := min
t∈I

f(t) = min
t∈I

g(t).

We start with the following fact.

Fact 2.1. f−1(µ) ∩ g−1(µ) = ∅ .

Proof. To see this, by way of contradiction assume that f(x) = g(x) = µ for some

x ∈ I . We will show that this implies that f = g, contradicting (a1). So, let t ∈ (a, b).
We need to show that f(t) = g(t). We can assume that t > x, the case t < x being

similar. Now, using L(f, P ) = L(g, P ) with P = {a, t, b}, we see that

min
u∈[t,b]

f(u) = min
u∈[t,b]

g(u), (5)

as µ(t− a) + (b− t)minu∈[t,b] f(u) = µ(t− a) + (b − t)minu∈[t,b] g(u). In par-

ticular, for every s ∈ (x, t), using L(f, P ) = L(g, P ) with P = {a, s, t, b}, we get

µ(s− a) + (t− s) min
u∈[s,t]

f(u) + (b− t) min
u∈[t,b]

f(u)

= µ(s− a) + (t− s) min
u∈[s,t]

g(u) + (b− t) min
u∈[t,b]

g(u)
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which, by (5), implies that minu∈[s,t] f(u) = minu∈[s,t] g(u). Therefore,

f(t) = lim
s→t−

(

min
u∈[s,t]

f(u)

)

= lim
s→t−

(

min
u∈[s,t]

g(u)

)

= g(t).

So, f = g on (a, b) and, since the functions are continuous, also on [a, b].

Notice that, by Fact 2.1, we have min f−1(µ) 6= min g−1(µ).

Fact 2.2. If min f−1(µ) < min g−1(µ) and (a1) holds, then f−1(µ) = {a}.

Proof. First, we notice that x := min f−1(µ) equals a. Indeed, otherwise we would

have x− a > 0. But min f−1(µ) < min g−1(µ) implies that µ < minu∈[a,x] g(u)
and so, using P = {a, x, b}, we get

L(f, P ) = µ(x− a) + µ(b− x)

< min
u∈[a,x]

g(u)(x− a) + min
u∈[x,b]

g(u)(b − x) = L(g, P ),

which contradicts (a1).

To finish the proof we show that existence of an x ∈ (a, b] with f(x) = µ leads

to a contradiction. Indeed, by Fact 2.1, we have g(x) > µ. So, by the continuity of g,

there exists a t ∈ (a, x) with minu∈[t,x] g(u) > µ. But then, using P = {a, t, x, b},

we get

L(f, P ) = µ(t− a) + µ(x− t) + µ(b− x)

< min
u∈[a,t]

g(u)(t − a) + min
u∈[t,x]

g(u)(x − t) + min
u∈[x,b]

g(u)(b − x) = L(g, P ),

which contradicts (a1).

In the remainder of the proof of Theorem 1 we will assume that

min f−1(µ) < min g−1(µ), the other case being symmetric. Thus, by Fact 2.2,

we have f−1(µ) = {a}. Notice also that g−1(µ) = {b}. This can be deduced either

by a similar argument or by applying Fact 2.2 to the functions f(−x) and g(−x).
Therefore, in what follows we will assume that

f−1(µ) = {a} and g−1(µ) = {b}. (6)

In the following fact, and in the rest of this article, the term “increasing” need not

mean strictly increasing, and similarly for the term “decreasing.”

Fact 2.3. If (6) and (a1) hold, then f is increasing and g is decreasing.

Proof. We prove only the monotonicity of f , the argument for g being similar. So, by

way of contradiction, assume that f is not increasing. Then there are s < t in (a, b] so

that f(s) > f(t) and so y := minu∈[s,b] f(u) < f(s).
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Figure 2. Illustration for the proof of Fact 2.3.

By (6), we have f(a) = µ < y < f(s). So, by the intermediate value theorem,

there exists a largest number v ∈ [a, s] so that f(v) = y. See Figure 2. Define P =
{a, v, s, b} and Q = {a, v, b} and notice that

L(f, P ) = µ(v − a) + y(s− v) + y(b− s) = µ(v − a) + y(b− v) = L(f,Q).

So, by (a1), we have L(g, P ) = L(f, P ) = L(f,Q) = L(g,Q). At the same time,

by (6), we have minu∈[v,s] g(u) > µ so that

L(g, P )− L(g,Q) =

(

min
u∈[v,s]

g(u)(s − v) + µ(b− s)

)

− µ(b− v)

=

(

min
u∈[v,s]

g(u) − µ

)

(s− v) > 0,

a contradiction.

With the above results, the proof of Theorem 1 is completed with a proof of the

following lemma. Notice that in its statement we do not assume that either f or g is

continuous. This is important, as we will also use Lemma in the proof of Theorem 2.

Lemma. Assume that f, g : [a, b] → R satisfy property (a1). If f is increasing and

continuous at b and g is decreasing and continuous at a, then 〈f, g〉 is an
�

-pair.

Proof. Let a < x < c < b, P = {a, b}, and Q = {a, c, b}. See Figure 3. Then

L(f,Q)− L(f, P ) = f(a)(c− a) + f(c)(b− c)− f(a)(b− a)

= (f(c)− f(a))(b− c)

and

L(g,Q)− L(g, P ) = g(c)(c − a) + g(b)(b − c)− g(b)(b − a)

= (g(c) − g(b))(c − a).
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Figure 3. Illustration for the proof of Lemma.

Since, by (a1), these two quantities are equal, we obtain

g(c)− g(b)

b− c
=
f(c)− f(a)

c− a
. (7)

Similarly, using P = {a, x, b} and Q = {a, x, c, b},

L(f,Q)− L(f, P ) = f(x)(c− x) + f(c)(b− c)− f(x)(b− x)

= (f(c)− f(x))(b− c),

L(g,Q)− L(g, P ) = g(c)(c − x) + g(b)(b − c)− g(b)(b− x)

= (g(c) − g(b))(c − x),

and

g(c)− g(b)

b− c
=
f(c)− f(x)

c− x
. (8)

By (7) and (8), we have
f(c)−f(a)

c−a
= f(c)−f(x)

c−x
. In particular, since f is continuous at

b, for every x ∈ (a, b),

f(x)− f(a)

x− a
=
f(c)− f(a)

c− a
→c→b

f(b)− f(a)

b− a
,

that is, f is a line with slope m := f(b)−f(a)

b−a
. Substituting this in (7) with c = x we

get
g(x)−g(b)

b−x
= m for every x ∈ (a, b) and, by continuity of g at a, also for x = a.

Therefore, g is a line with slope −m. Since, as before, we have f(a) = g(b), 〈f, g〉
constitutes an

�
-pair.
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3. THE CASE OF RIEMANN INTEGRABLE FUNCTIONS. But what happens

within the class of all Riemann integrable functions? Is the characterization from The-

orem 1 valid when we weaken the assumption “continuous” to “Riemann integrable?”

If you think that such naı̈ve generalization cannot be true, you are right. At least up to

a point, see Theorem 2 below.

Basically, the characterization from Theorem 1 does not hold for the class R of

all Riemann integrable maps (on I = [a, b]), since R is much bigger than the class of

continuous functions. Specifically, recall that aD ⊂ R is null (or of Lebesgue measure

zero) provided that for every ε > 0 there is a family {(ci, di) : i ∈ N} of open intervals

such that D ⊂
⋃

i∈N
(ci, di) and

∑

i∈N
(di − ci) < ε. In particular, it is well known

and easy to see that

no null set contain an interval and a union of two such sets is still null. (9)

A well-known Lebesgue characterization of R, whose nice short proof can be found

in [1], is as follows:

f ∈ R if, and only if, f is bounded and the set D(f) of points of discontinuity of f
is null.

Recall also that the functions f and g are equal almost everywhere, abbreviated as

f = g a.e., provided the set [f 6= g] := {x ∈ I : f(x) 6= g(x)} is null.

Now, it is easy to see that if the functions f, g : I → R are such that

for some
�

-pair 〈f̄ , ḡ〉 we have f ≥ f̄ , g ≥ ḡ, f = f̄ a.e., and g = ḡ a.e., (10)

then the pair 〈f, g〉 also satisfies condition (a1): they are not equal (even a.e.)

by (9), while the other part of (a1) holds since inf f([c, d]) = min f̄([c, d]) and

inf g([c, d]) = min ḡ([c, d]) whenever a ≤ c < d ≤ b. At the same time, if the sets

[f 6= f̄ ] and [g 6= ḡ] are nonempty, then 〈f, g〉 is not an
�

-pair, that is, the character-

ization from Theorem 1 does not hold. This is in spite of the fact that the maps f and

g as in (10) can be Riemann integrable, e.g., when the sets [f 6= f̄ ] and [g 6= ḡ] are

finite.

Of course, property (10) is not that far from the condition (b1) of Theorem 1. Sur-

prisingly, (10) is also the condition (b2) that could be used in the characterization we

seek for the Riemann integrable functions:

Theorem 2. For every Riemann integrable f, g : I → R the following conditions are

equivalent:

(a2) L(f, P ) = L(g, P ) for every partition P of I and f and g are not equal a.e.

(b2) There is an
�

-pair 〈f̄ , ḡ〉 such that f̄ ≤ f , ḡ ≤ g, f̄ = f a.e., and ḡ = g a.e.

Informally, if f, g : I → R are Riemann integrable such that L(f, P ) = L(g, P )
for every partition P of I , then

f 6= g in a.e. sense if, and only if, 〈f, g〉 is an
�

-pair in a.e. sense.

Thus, in a sense, the naı̈ve generalization of Theorem 1 for f, g ∈ R is achieved.

We have also the following characterization for the Riemann integrable maps where

the “a.e.” requirement in condition (b2) is omitted. For this, however, we need to further

strengthen the assumption (a2).
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Corollary 3. For every Riemann integrable f, g : I → R the following conditions are

equivalent:

(a3) L(f, P ) = L(g, P ) and U(f, P ) = U(g, P ) for every partition P of I and f
and g are not equal a.e.

(b1) 〈f, g〉 is an
�

-pair.

f

x

y

g

x

y

Figure 4. Maps showing that in Corollary 3 clause a.e. cannot be dropped.

Notice that in Corollary 3 the clause “f and g are not equal a.e.” cannot be simply

reduced to “f 6= g.” Indeed, this is justified by the functions f, g : [−1, 1] → R,

f(x) =

{

sin(1/x) for x 6= 0

0 for x = 0
and g(x) =

{

sin(1/x) for x 6= 0

1 for x = 0.

See Figure 4.

The remainder of this article is dedicated to the proofs of the above results. Specif-

ically, we first deduce Corollary 3 from Theorem 2. Then, we prove Theorem 2.

Proof of Corollary 3. This follows from the fact that −L(f, P ) = U(−f, P ) for ev-

ery f and partition P . Using this, or by inspecting the argument in the proof of Propo-

sition, we see that (b1) implies (a3), that is, any
�

-pair satisfies (a3).

To prove the other implication, assume (a3) and notice that, by Theorem 2, there

exists an
�

-pair 〈f̄ , ḡ〉 such that f ≥ f̄ , g ≥ ḡ, and functions φ := f − f̄ ≥ 0 and

ψ := g − ḡ ≥ 0 are equal 0 a.e.

Also, by the above remark, the functions −f and −g satisfy (a2) from Theorem 2.

Thus, there exists an
�

-pair 〈f̄1, ḡ1〉 such that −f ≥ f̄1, −g ≥ ḡ1, and functions

φ1 := −f − f̄1 ≥ 0 and ψ1 := −g − ḡ1 ≥ 0 are equal 0 a.e. But this implies that

f̄1 = −f = −f̄ a.e and, as the maps f̄1 and f̄ are continuous, that f̄1 = −f̄ . In par-

ticular, φ = f − f̄ = f + f̄1 = −φ1. Hence φ = φ1 = 0, as both of these functions

are nonnegative.

This implies that f = f̄ . Similarly, g = ḡ. Hence 〈f, g〉 = 〈f̄ , ḡ〉 is an
�

-pair, that

is, (b1) is satisfied.
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Proof of Theorem 2. The fact that the condition (b2), which is identical to (10), im-

plies (a2) was given above. So, in what follows we will assume that the Riemann

integrable maps f, g : I → R satisfy (a2) and show that this implies (b2).

For a bounded function h : I → R, define h̄ : I → R via the formula

h̄(x) := lim
ε→0+

inf h([x− ε, x+ ε]), (11)

where h([x− ε, x+ ε]) := {h(t) : t ∈ I ∩ [x− ε, x+ ε]}. Clearly h̄ ≤ h. Also, let

µh := inf h(I).

It is easy to see that for every x ∈ I

h̄(x) = µh ⇐⇒ lim
n→∞

h(xn) = µh for some 〈xn〉n∈N
in I with xn → x. (12)

In particular, the set h̄−1(µh) :=
{

x ∈ I : h̄(x) = µh

}

is compact and nonempty.

Let f̄ and ḡ be defined from f and g by (11). We will show that these functions

satisfy (b2). Indeed, that f̄ ≤ f and ḡ ≤ g follow from (11). To see that f = f̄ a.e.,

notice that, by (11), f̄(x) = f(x) at every point x of continuity of f . Hence, by the

theorem of Lebesgue mentioned above, f = f̄ a.e. Similarly, g = ḡ a.e. Hence, to

finish the proof, we just need to show that 〈f̄ , ḡ〉 constitutes an
�

-pair. This will be

done in the steps similar to those used in the proof of Theorem 1.

By (12), the following equalities

µf = inf f(I) = min f̄(I) and µg = inf g(I) = min ḡ(I)

hold. Also, using (a2) forP = {a, b}, we see that µf = µg. Therefore, in what follows

we will use the symbol µ to denote µf = µg.

The format and proof of the following fact is very close to that of Fact 2.1. Thus,

we will only sketch its proof, emphasizing the differences.

Fact 3.1. f̄−1(µ) ∩ ḡ−1(µ) = ∅ .

Proof. As in Fact 2.1 we assume, by way of contradiction, that there exists an x ∈
f̄−1(µ) ∩ ḡ−1(µ). An argument identical to that given in the proof of Fact 2.1 shows

that for every t ∈ (a, b), t 6= x, and every s ∈ (a, t) close enough to t we have

infu∈[s,t] f(u) = infu∈[s,t] g(u). Therefore, for every point t ∈ (a, b) at which both f
and g are continuous, we have

f(t) = lim
s→t−

(

inf
u∈[s,t]

f(u)

)

= lim
s→t−

(

inf
u∈[s,t]

g(u)

)

= g(t).

This means that f(t) = g(t) for every t ∈ I not in the null setD(f) ∪D(g) ∪ {a, b}.

Thus, f = g a.e., which contradicts (a2).

Notice that, by Fact 3.1, we have inf f̄−1(µ) 6= inf ḡ−1(µ).

Fact 3.2. If inf f̄−1(µ) < inf ḡ−1(µ) and (a2) holds, then f̄−1(µ) = {a}.

Proof. Once again, the proof is a variation of the one for Fact 2.2. The difficulties are

caused by the lack of an extreme value theorem for f and g.

First, we note that inf f̄−1(µ) = a. To see this, assume, by way of contradiction,

that the number x := inf f̄−1(µ) is greater than a. Then x < inf ḡ−1(µ) ≤ b. Let

10 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 November 7, 2019 10:36 p.m. SS38.RiemannSumsRev#2˙2019˙11˙08epsResubmitted.te

d ∈ (x, inf ḡ−1(µ)) and notice that inf g([a, d]) > µ, since otherwise, by (12), there

is a t ∈ [a, d] with ḡ(t) = µ. Thus, there exists an ε > 0 with inf g([a, d]) ≥ µ+ ε.
In particular, if c ∈ (a, x), then for every t ∈ (c, d) and P = {a, t, b} we have

L(g, P ) ≥ (t− a)(µ+ ε) + (b− t)µ

= µ(b− a) + ε(t− a) ≥ µ(b− a) + ε(c − a). (13)

At the same time, clearly

L(f, P ) ≤ f(t)(b− a). (14)

Choose a sequence 〈xn〉n∈N
in I converging to x such that limn→∞ f(xn) = µ.

In particular, as ε(c − a) > 0, there exists an n ∈ N such that xn ∈ (c, d) and

f(xn)(b− a) < µ(b− a) + ε(c− a). But this, together with (13) and (14) used with

t := xn, implies that

L(f, P ) ≤ f(xn)(b− a) < µ(b− a) + ε(c − a) ≤ L(g, P ),

a contradiction.

The above argument, together with the definition (11), shows that a ∈ f̄−1(µ).
To finish the proof, assume, by way of contradiction, that there also exists an x ∈
(a, b] with f̄(x) = µ. Since we have a = inf f̄−1(µ) < inf ḡ−1(µ), we can choose a

d ∈ (a,min{x, inf ḡ−1(µ)}) and an ε > 0 such that inf g([a, d]) ≥ µ+ ε. Then, for

P = {a, d, b},

L(g, P ) ≥ (d− a)(µ + ε) + (b− d)µ = µ(b− a) + ε(d− a)

> µ(b− a) = L(f, P ),

a contradiction.

In the remainder of this proof we will assume that inf f̄−1(µ) < inf ḡ−1(µ), the

other case being symmetric. Thus, by Fact 3.2, we have f̄−1(µ) = {a}. Once again,

we can also deduce that ḡ−1(µ) = {b}. Therefore, in what follows we will assume

that

f̄−1(µ) = {a} and ḡ−1(µ) = {b}. (15)

Now, we are ready for the final piece of the puzzle.

Fact 3.3. If (15) and (a2) hold, then f̄ is increasing and ḡ is decreasing.

Proof. We will prove this only for f̄ , the case of ḡ being symmetric. Here the difficulty

comes from an lack of the intermediate value theorem.

By way of contradiction, assume that this f̄ is not increasing. Then, there are s < t
in I with f̄(s) > f̄(t). Let y := inf f([s, b]) and v := sup{x ∈ [a, s] : f̄(x) ≤ y}.

Notice that v < s, as otherwise, by (11), we would have f̄(s) ≤ y ≤ f̄(t), contradict-

ing the choice of s and t. Also, by (11), f̄(v) ≤ y and f(u) ≥ f̄(u) > y holds for all

u ∈ (v, s]. Consider the following two cases.
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Figure 5. Illustrations for Fact 3.3: left for f̄(v) = y and right for f̄(v) < y.

Case f̄(v) = y: There is a sequence 〈vn〉n∈N
in [a, v] ⊂ I with vn → v and

limn→∞ f(vn) = f̄(v) = y. Let Pn = {a, vn, s, b} and Qn = {a, vn, b}, see Fig-

ure 5, and notice that

L(f, Pn)−L(f,Qn) = inf f([vn, s])(s− vn) + y(b− s)− inf f([vn, b])(b− vn).

Recalling the definition of f̄ at v, see (11), we infer from limn→∞ f(vn) = f̄(v) = y
and vn → v that

inf f([vn, s]) →n y and inf f([vn, b]) →n y.

Thus, L(f, Pn)− L(f,Qn) →n 0.

Also

L(g, Pn) = inf g([a, vn])(vn − a) + inf g([vn, s])(s− vn) + µ(b− s),

L(g,Qn) = inf g([a, vn])(vn − a) + µ(s− vn) + µ(b− s).

Hence,

L(g, Pn)− L(g,Qn) =
[

inf g([vn, s])− µ
]

(s− vn)

≥
[

inf g([a, s]) − µ
]

(s− vn) →n

[

inf g([a, s]) − µ
]

(s− v) > 0.

Thus, there exists an n ∈ N such that L(f, Pn)− L(f,Qn) 6= L(g, Pn)− L(g,Qn),
contradicting (a2).

Case f̄(v) < y: In this case, there is a sequence 〈vn〉n∈N
in [a, v] such that vn → v

and limn→∞ f(vn) = f̄(v). Choose a sequence 〈wn〉n∈N
in (v, s] converging to v

and notice that, by the choice of v, inf f([wn, b]) = y for all n ∈ N. This time let

Pn = {a, vn, wn, b} and Qn = {a, vn, b}, see Figure 5, and notice that

L(g, Pn) = inf g([a, vn])(vn − a) + inf g([vn, wn])(wn − vn) + µ(b− wn)

L(g,Qn) = inf g([a, vn])(vn − a) + µ(wn − vn) + µ(b− wn).

So, since g is bounded,

L(g, Pn)− L(g,Qn) =
[

inf g([vn, wn])− µ
]

(wn − vn) →n 0.
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Also

L(f, Pn) = µ(vn − a) + inf f([vn, wn])(wn − vn) + y(b− wn)

L(f,Qn) = µ(vn − a) + inf f([vn, b])(wn − vn) + inf f([vn, b])(b − wn).

So, as
[

inf f([vn, wn])− inf f([vn, b])
]

(wn − vn) →n 0,

lim
n→∞

(L(g, Pn)− L(g,Qn))

= lim
n→∞

(y − inf f([vn, b]))(b − wn) = (y − f̄(v))(b − v) > 0.

Therefore, once again, L(f, Pn) − L(f,Qn) 6= L(g, Pn)− L(g,Qn) for some n ∈
N, contradicting (a2).

Now, by Fact 3.3 and (11), f̄ is continuous at b and ḡ is continuous at a. Conse-

quently, the functions f̄ and ḡ satisfy the assumptions of Lemma. Hence (a2) indeed

implies that 〈f̄ , ḡ〉 constitutes an
�

-pair.
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