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Abstract. The Darboux-like functions represent a group of maps that are
continuous in a generalized sense. The algebra of subsets of RR (i.e., maps
from R to R) generated by these classes has nine atoms, that is, the smallest
non-empty elements of the algebra. The subject of this work is to study the in-
tersections of these atoms with the class SZ of Sierpiński-Zygmund functions—
the maps that have as little of the standard continuity as possible. Specifically,
we will show that it is independent of the standard axioms of set theory that
each of these atoms has a non-empty intersection with SZ. For seven of the nine
atoms this has been unknown, and the constructions of the examples provide
answers to the problems stated in a recent survey A century of Sierpiński-
Zygmund functions of K. C. Ciesielski and J. Seoane-Sepúlveda. Notice that
lineability of the main classes of Darboux-like functions, as well as of Sierpiński-
Zygmund functions, has been intensively studied. The presented work opens
a possibility to study also the lineability of the nine smaller classes we discuss
here.

1. Introduction

For X ⊂ R, a map f : X → R is a Sierpiński-Zygmund function (or just SZ-
function) provided f � S, its restriction to S, is discontinuous for any S ⊂ X of
cardinality c. Here c stands for the continuum, that is, the cardinality of R. The
first example of such function f : R→ R was constructed in a 1923 paper [28] of
Wac law Sierpiński and Antoni Zygmund. The SZ-maps have “as little continuity
as possible.”

On the other hand, an f : R → R is Darboux provided it satisfies the inter-
mediate value property, that is, for every a < b and y between f(a) and f(b),
there is a c ∈ [a, b] with f(c) = y. This is equivalent to the fact that f [C] is
connected (i.e., an interval) for every connected C ⊂ R. The name is used in
honor of Jean Gaston Darboux who, in a 1875 paper [11], has shown that all
derivatives, including those that are discontinuous, have the intermediate value
property. The classes of Sierpiński-Zygmund and Darboux functions from R to
R are denoted, respectively, by the symbols SZ and D.

By definition, any f ∈ D shares the intermediate value property with the class
of all continuous maps from R to R. As such, D can be considered as a class of
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generalized continuous functions. Since SZ contains only extremely discontinuous
functions, it is not surprising that SZ contains no generalized continuous function
in the most typical uses of such term, including, but not limited to, approximately
or I-approximately continuous functions and Borel, Baire, or Lebesgue measur-
able functions. But this is where the class D stands apart from the other classes of
generalized continuous functions: in a 1997 paper [2], M. Balcerzak, K. Ciesielski
and T. Natkaniec proved that existence of Darboux SZ-functions is independent of
the standard axioms of set theory ZFC.1 More precisely, the authors proved in [2]
that SZ∩D = ∅ in the iterated perfect set model and constructed an f ∈ SZ∩D
under the assumption that covM = c, where

covM := {κ : R is not a union of less than κ-many meager sets in R}.
Notice that the property covM = c is consistent with ZFC, as it follows from
the Continuum Hypothesis (and, more generally, from the Martin’s Axiom). For
more details concerning this discussion, see [10]. Interestingly, it seems to be
unknown if the assumption covM = c is necessary to prove that SZ∩D 6= ∅, that
is, whether both properties are equivalent.

All classes of Darboux-like functions we discuss in this paper are contained inD.
Therefore, all our constructions require an additional set-theoretical assumption,
which we will keep as in [2], that is, we will use the assumption covM = c: R is
not a union of less than c-many meager sets. More specifically, we will use the
following well-known and easy-to-see result.

Proposition 1.1. If covM = c holds, then no Gδ-subset of R which is dense in
some nontrivial interval is a union of less than c-many meager subsets of R.

For a set X ⊂ R let RX denote the class of all functions from X to R and let

G := {f ∈ RG : f is continuous and G is a Gδ-subset of R}.
A standard construction of an SZ-function, including the original one from the
1923 paper, uses the following result of K. Kuratowski, see e.g., [18, theorem 3.8,
p. 16].

Proposition 1.2. For every continuous function g from an S ⊂ R to R, there
exist a Gδ-set G ⊂ R containing S and a continuous extension ḡ : G→ R of g.

In what follows, we will repeatedly use the following well-known result that
follows immediately from Proposition 1.2. In its statement, and in what follows,
we identify any function with its graph. Also, for a set X, the symbol |X| denotes
the cardinality of X.

Proposition 1.3. If f is a map from an X ⊂ R into R such that |f ∩ g| < c for
every g ∈ G, then f is an SZ-function.

Notice that a partial function f from (a subset of) R to R is an SZ-map,
provided |f ∩ g| < c for every g ∈ G. Other simple and well-known properties of
SZ maps that we will use are as follows.

1This result settled a problem posed in a 1993 paper [12] by U. Darji, who constructed there,
in ZFC, a map in SZ∩PR and asked about a function in SZ∩D. For more on this subject, see
survey [10].
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Proposition 1.4. (i) Any restriction of an SZ-map is SZ.
(ii) If f : R→ R is a union of countably many SZ partial maps, then f ∈ SZ.

In the standard setting, the collection of Darboux-like classes of functions from
R to R encompasses, beside of the class D, also seven other classes of maps: PC
of peripherally continuous functions, PR of functions with perfect road, Conn of
connectivity functions, AC of almost continuous functions, Ext of extendable func-
tions, CIVP of functions with Cantor Intermediate Value Property, and SCIVP
of functions with Strong Cantor Intermediate Value Property. We will provide
their definitions in the following sections on the as needed basis. The inclusion
relations among them are presented in Figure 1.

AC // Conn // D

""
Ext

$$

::

PC

SCIVP // CIVP // PR

<<

Figure 1. All inclusions, indicated by arrows, among the
Darboux-like classes of functions from R to R. The only inclu-
sions among the intersections of these classes are those that follows
trivially from this schema. (See [14], [6], or [10].)

It is worthy to mention that while Figure 1 remains unchanged when we restrict
Darboux-like classes to Baire class 2 (so Borel) functions, all classes represented
there coincide (i.e., are equal) when restricted to the class of Baire 1 functions.
(See the references in [6] or [10].) Also, directly by the definition (not provided
here), any SCIVP function has continuous restrictions to many perfect sets. Thus,
SZ∩ SCIVP = ∅ and, by Figure 1, also SZ∩Ext = ∅. In particular, in what
follows we will be interested only in the classes in Figure 2.

AC // Conn // D

��
CIVP // PR // PC

Figure 2. Six Darboux-like classes of functions that consistently
contain SZ-maps. Arrows indicate strict inclusions.

Notice, that the algebra of subsets of D generated by the classes in Fig-
ure 2 has 9 atoms: D \(Conn∪PR), D∩PR \(Conn∪CIVP), D∩CIVP \Conn,
Conn \(AC∪PR), Conn∩PR \(AC∪CIVP), Conn∩CIVP \AC, AC \PR,
AC∩PR \CIVP, and AC∩CIVP. (The algebra of subsets of PC \D generated
by the classes in Figure 2 has only 3 atoms and it can be proved in ZFC that
they have a non-empty intersections with SZ. See e.g. [10].)
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The main goal of this paper is to construct, under the additional set-theoretical
assumption that covM = c, the examples of functions belonging to the following
nine classes, the intersections of the above-mentioned atoms with SZ:

(i) SZ∩D \(Conn∪PR);
(ii) SZ∩D∩PR \(Conn∪CIVP);

(iii) SZ∩D∩CIVP \Conn.
(iv) SZ∩Conn \(AC∪PR);
(v) SZ∩Conn∩PR \(AC∪CIVP);

(vi) SZ∩Conn∩CIVP \AC;
(vii) SZ∩AC \PR;
(viii) SZ∩AC∩PR \CIVP;
(ix) SZ∩AC∩CIVP.

Notice that for the first seven of these classes, the existence of such examples was
previously unknown, and their construction solves [10, problems 4.10, 4.13, 4.14].
We also show that the machinery we construct here allows also easy constructions
of the remaining two previously-known examples.

2. A map in SZ∩AC \PR

The goal of this section is to prove the following theorem.

Theorem 2.1. If covM = c holds, then SZ∩AC \PR 6= ∅.

The fact that, under the Continuum Hypothesis, SZ∩AC 6= ∅ was first noticed
in a 1982 paper [19] of K. R. Kellum, who pointed out that a function in SZ∩Conn
constructed by J. Ceder in his 1981 paper [4] is also AC. An example of a
function in SZ∩AC∩PR was constructed, under covM = c, in a 1997 paper [2]
of M. Balcerzak, K. Ciesielski, and T. Natkaniec.

Recall, that an f : R → R has a perfect road (at every x ∈ R), denoted as
f ∈ PR, provided for every x ∈ R there exists a perfect P ⊆ R having x as
a bilateral limit point (i.e., with x being a limit point of (−∞, x) ∩ P and of
(x,∞)∩P ) such that f � P is continuous at x. This class was first introduced in
a 1936 paper [20] of I. Maximoff, where he proved that a Baire class 1 function
is Darboux if, and only if it has a perfect road.

In what follows, we will use the following simple fact.

Proposition 2.2. If f : R → R is unbounded on every perfect subset of R, then
f has perfect road at no point.

Proof. Suppose f has a perfect road at x ∈ R. Then, there exists a perfect
P having x as a bilateral limit point such that f � P is continuous at x. By
continuity, there exists an δ > 0 such that f � P is bounded on P ∩ [x− δ, x+ δ].
However, P ∩ [x− δ, x+ δ] contains a perfect set, a contradiction. �

A function f : R→ R is almost continuous (in the sense of Stallings), denoted
as f ∈ AC, provided every open set in R2 containing the graph of f contains also
the graph of a continuous function from R to R. This class was first seriously
studied in a 1959 paper [29] of J. Stallings. However it appeared already in an
earlier paper [16] of O. H. Hamilton.
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The above definition emphasizes the similarities between continuous and almost
continuous functions. However, a more useful characterization of maps in AC
relies on the notion of blocking sets. Specifically, a B ⊂ R2 is a blocking set
provided it is closed, meets the graph of every continuous function, and is disjoint
with some (arbitrary) function h ∈ RR. In what follows, the family of all blocking
sets will be denoted by B. It is an easy exercise to see that

a map f̄ : R→ R is AC if, and only if, f̄ ∩B 6= ∅ for every B ∈ B. (1)

(See e.g., [19, lemma 1].) More interestingly, every B̂ ∈ B contains another
blocking set B such that π[B] is a non-trivial interval (see e.g. [24]), where π[B]
is a projection of B onto the first coordinate (which, in case when B is a function
f , is also denoted as dom(f) and referred to as the domain of f). In particular,
if

K := {K ⊂ R2 : K is compact and π[K] = [a, b] for some a < b},
then we have the following easy and well-known result.

Proposition 2.3. If f ∈ RR is such that f ∩ K 6= ∅ for every K ∈ K, then
f ∈ AC.

Proof. By (1) it is enough to show that every B ∈ B contains some K ∈ K. But,
by the above discussion, π[B] has a non-empty interior. Since B is a countable
union of compact sets Bn, n < ω, and π[B] is a union of compact sets π[Bn], by
Baire Category Theorem there exists an n < ω such that π[Bn] has a non-empty
interior. Clearly, such Bn contains a K ∈ K. �

Our constructions of almost continuous functions will rely on the following
result, that implicitly is already in [2]. (Compare also [10, lemma 4.6].)

Lemma 2.4. For every K ∈ K, the following holds.

(i) There exists a ĝ ∈ G contained in K and with dom(ĝ) dense in π[K].
(ii) If ĝ is as (i) and g ∈ G is such that dom(g∩ĝ) is dense in some non-trivial

interval J , then g � J ⊂ K.

Proof. (i) is a well known fact. The map h : π[K]→ R, h(x) = inf{y : 〈x, y〉 ∈ K},
is of Baire class one. (See e.g. [19, lemma 1].) So, the set G of its points
of continuity is a dense Gδ-subset of π[K]. (See e.g., [21, theorem 48.5].) In
particular, ĝ := h � G is as needed. (See also [19, lemma 1] or [8, p. 117].)

(ii) First notice that

g � J ⊂ cl(ĝ ∩ g).

Indeed, the function γ : J ∩ dom(g) → g ⊂ R2, given as γ(x) := 〈x, g(x)〉, is
continuous and the set D := dom(ĝ ∩ g) is dense in J . Therefore, we have
g � J = γ[J ∩ dom(g)] ⊂ γ[cl(D)] ⊂ cl(γ[D]) ⊂ cl(ĝ ∩ g).

Hence, g � J ⊂ cl(g � J) ⊂ cl(ĝ ∩ g) ⊂ cl(ĝ) ⊂ cl(K) = K, as needed. �

The most important component in the construction of every example presented
in this paper is a result stated as the following lemma.
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Lemma 2.5. Assume that covM = c holds. Let M be an Fσ meager subset of R.
Then there is a partial function f from R \M to R such that

(a) |f ∩ g| < c for every g ∈ G, that is, f is an SZ-function;
(b) f is unbounded on every perfect P ⊂ R with P ∩M = ∅;
(c) K ∩ f 6= ∅ for every K ∈ K.

Proof. Let {gξ : ξ < c} be an enumeration of G. By induction on ξ < c, define the
sequence of quadruples 〈Cξ, Zξ, Dξ, fξ〉 as follows.

(C) If dom(gξ) \M is uncountable, then Cξ is a countable infinite set, enu-
merated as {xn : n < ω} and contained in (dom(gξ) \M) \

⋃
ζ<ξ(Cζ ∪Dζ).

Otherwise we put Cξ := ∅.
(Z) Zξ := dom(gξ) \

⋃
ζ<ξ(Cζ ∪Dζ ∪ dom(gζ ∩ gξ)).

(D) Dξ is a dense at most countable subset of Zξ \ (Cξ ∪M).
(F) fξ : Cξ ∪Dξ → R is defied as:

(i) fξ(xn) ∈ (n,∞) \ {gζ(xn) : ζ < ξ} for every xn ∈ Cξ;
(ii) fξ(x) = gξ(x) on Dξ.

The choice of a set Cξ is possible, since an uncountable Gδ-set dom(gξ)\M has
cardinality c. It is also clear that f :=

⋃
ξ<c fξ is a partial function from R \M

to R.
To see (a), notice that for every g ∈ G there exists a ζ < c such that g = gζ

and that for every ξ > ζ we have gζ ∩ fξ = ∅: on Cξ it is ensured by (i), while
on Dξ by (ii) and the fact that dom(gζ ∩ gξ) is disjoint with Zξ ⊃ Dξ. Hence,
f ∩ g = f ∩ gξ is a subset of

⋃
η≤ξ fη which has cardinality < c as a union of

< c-many countable sets. So, indeed, |f ∩ g| < c. Hence, by a remark just before
Proposition 1.4, f is an SZ-function.

To see (b), notice that for every perfect P ⊂ R with P ∩M = ∅ there exists
a ξ < c such that dom(gξ) = P (as every perfect set is a Gδ set). Then, by (C),
the set Cξ ⊂ P ∩ dom(f) is infinite and, by (i), f is unbounded on it.

Finally, we will argue for (c) using Lemma 2.4. So, fix a K ∈ K, let ĝ ∈ G be
contained in K and with dom(ĝ) dense in π[K], and choose a ξ < c with gξ = ĝ.
Define

α := min{ζ ≤ ξ : dom(gζ ∩ gξ) is somewhere dense in R}.

It is well-defined, since ξ is in the minimized set. Let J denote a non-trivial
interval in which dom(gα ∩ gξ) = dom(gα ∩ ĝ) is dense. Then, by Lemma 2.4(ii),
we have gα � J ⊂ K. This and (ii) imply that f � (Dα ∩ J) = fα � (Dα ∩ J) =
gα � (Dα ∩ J) ⊂ K. Also, Dα ∩M = ∅. Thus, to finish the proof of (c) it is
enough to show that Dα ∩ J 6= ∅.

To see this, first notice that

dom(gβ ∩ gα) ∩ J is nowhere dense for every β < α. (2)

Indeed, otherwise there exists a β < α such that dom(gβ ∩ gα) ∩ J is a Gδ-set
dense in some non-trivial interval I ⊂ J . In particular, dom(gβ ∩ gξ) contains the
set dom(gβ ∩ gα) ∩ dom(gα ∩ gξ), which is a Gδ-set dense in I, contradicting the
minimality of α.
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Now, by (2) and Proposition 1.1, the set Zα\(Cα∪M) is dense in J . Therefore,
by (D), also Dα is dense in J , so that Dα ∩ J 6= ∅, as needed. �

Proof of Theorem 2.1. Let σ ∈ SZ and f be an SZ-function from Lemma 2.5 used
with M = ∅. We claim that f̄ = f ∪ σ � (R \ dom(f)) is as needed, that is, in
SZ∩AC \PR.

Indeed, f̄ ∈ SZ by Propositions 1.3 and 1.4. Also, f̄ /∈ PR, since, by part
(b) of Lemma 2.5, f̄ ⊃ f is unbounded on any perfect P ⊂ R, and so, by
Propositions 2.2, is perfect-road free. Finally, by part (c) of Lemma 2.5, f̄ ⊃ f
intersects every K ∈ K. So, by Proposition 2.3, f̄ ∈ AC. �

3. A map in SZ∩D \(PR∪Conn)

Recall that a map f : R → R is connectivity, denoted as f ∈ Conn, provided
f � S is a connected subset of R2 for every connected subset S (i.e., an interval)
of R. This concept was first defined in a research problem [22] proposed by
J. Nash in 1956. He inquired if an endomorphic map on a cell, that preserves
connectedness of any connected subset of its domain to its graph, must have a
fixed point or not. This problem was studied and given an affirmative answer
by O. H. Hamilton and J. Stallings in their papers [16] and [29], respectively.
In addition, J. Stallings proved also in [29] that AC ⊂ Conn. Notice, that the
inclusion Conn ⊂ D is obvious.

A function f : R → R is everywhere surjective, denoted as f ∈ ES, provided
f [(a, b)] = R for all a < b. Equivalently, f ∈ ES if, and only if, f−1(y) is dense in
R for every y ∈ R. This class, under different names, has been studied by many
authors, see e.g. [15], [23], [7], or [5, section 7.2]. The name everywhere surjective
comes from a 2005 paper [1] of R. Aron, V. I. Gurariy, and J. B. Seoane and the
consecutive work of these authors. Clearly ES ⊂ D.

The goal of this section is to prove the following theorem.

Theorem 3.1. If covM = c holds, then SZ∩ES \(PR∪Conn) 6= ∅ and so also
SZ∩D \(PR∪Conn) 6= ∅.

An example, under covM = c, of an additive function in SZ∩D \Conn can be
found in [26]. In what follows ∆ will be defined as the diagonal, that is,

∆ := {〈x, x〉 : x ∈ R}.

Proof of Theorem 3.1. Let function f̄ be as in the proof of Theorem 2.1, that is,
defined as f̄ = f ∪ σ � (R \ dom(f)), where σ ∈ SZ and f is from Lemma 2.5
used with M = ∅. Notice that f̄ ∈ ES, since by (c) of Lemma 2.5, f intersects
any constant map g defined on any non-trivial interval. Also, by Propositions 1.3
and 1.4, f̄ ∈ SZ.

Since ∆ ∈ G, the set D := dom(∆ ∩ f̄) has cardinality < c, as f̄ ∈ SZ. Let

f̂ := f̄ +χD, where χD is the characteristic function of the set D. We claim that
f̂ ∈ SZ∩ES \(PR∪Conn).

Indeed, f̂ /∈ PR by Proposition 1.4, since for any perfect P ⊂ R the map f̂ is
unbounded. (This is the case, since f̂ := f̄ + χD, where χD is bounded, while
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f ⊂ f̄ is unbounded on P .) Also, f̂ ∈ ES since, for every y ∈ R, the set f̄−1(y)

is dense in R (as f̄ ∈ ES), and so is f̂−1(y), as it contains

f̄−1(y) \ {x ∈ D : f̂(x) = y} ⊃ f̄−1(y) \ {y}.

We have f̂ /∈ Conn, since f̂ has a graph dense in R2 (as f̂ ∈ ES) and its graph

does not intersect ∆. Finally, f̂ ∈ SZ by Proposition 1.4, as both f̂ � R \ D =

f̄ � R \D and f̂ � D are SZ. �

4. Maps in SZ∩D∩CIVP \Conn and in SZ∩D∩PR \(Conn∪CIVP)

A function f : R→ R has Cantor Intermediate Value Property, what is denoted
as f ∈ CIVP, provided for every a, b ∈ R with f(a) 6= f(b) and for every perfect
set K between f(a) and f(b), there exists a perfect set C between a and b such
that f [C] ⊆ K.

Choose a countable family F = {Pp,q ⊆ (p, q) : p < q & p, q ∈ Q} of pairwise
disjoint nowhere dense perfect sets and define

M̂ :=
⋃
F . (3)

Notice that M̂ is a meager and an Fσ-subset of R. Also, for every Pp,q ∈ F let

{Cp,q,ξ : ξ < c} (4)

be a partition of Pp,q consisting of perfect sets. It exists, since Pp,q is homeomor-
phic to C2, where C is the Cantor set, and the sets {{x} × C : x ∈ C} form its
partition. Thus,

{Cp,q,ξ : ξ < c & p < q & p, q ∈ Q}
is a partition of M̂ .

Lemma 4.1. Let M̂ be as in (3). Then there exists a function h : M̂ → R such
that

(a) |h ∩ g| < c for every g ∈ G, that is, h is an SZ-function;

(b) for every perfect K ⊂ R and a < b there exists a perfect P ⊂ M̂ ∩ (a, b)
such that h[P ] ⊂ K.

Proof. Let {gξ : ξ < c}, {xζ : ζ < c}, and {Kξ : ξ < c} be the enumerations of G,

M̂ , and the family of all perfect subsets of R, respectively. Let sets Cp,q,ξ be as

in (4). By induction on ζ < c, define a function h : M̂ → R such that

h(xζ) ∈ Kξ \ {gη(xζ) : η < ζ & xζ ∈ dom(gη)},
where ξ < c is such that xζ ∈ Cp,q,ξ for some p, q ∈ Q, p < q. This completes the
construction.

To see (a), notice that for every g ∈ G, there exists a ξ < c such that g = gξ
and h(xζ) 6= gξ(xζ) for every ζ > ξ. Thus, |h ∩ g| ≤ ξ < c.

To see (b), take perfect K ⊂ R and a < b. Find p, q ∈ Q with a < p < q < b

and a ξ < c such that K = Kξ. Then P := Cp,q,ξ ⊂ M̂ ∩ (a, b) is perfect and,
according to the construction, h[P ] = h[Cp,q,ξ] ⊆ Kξ = K, as needed. �
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Theorem 4.2. If covM = c holds, then SZ∩ES∩CIVP \Conn 6= ∅, and so also
SZ∩D∩CIVP \Conn 6= ∅.

Proof. Take the SZ-functions: h : M̂ → R from Lemma 4.1, f from Lemma 2.5
with M := M̂ , and an arbitrary σ ∈ SZ. Let

f̄ = f ∪ h ∪ σ �
(
R \ dom(f ∪ h)

)
.

Then f̄ ∈ ES, since by (c) of Lemma 2.5, f intersects any constant map g defined
on any non-trivial interval. Also, by Proposition 1.4, we have f̄ ∈ SZ. So, the set
D := dom(∆ ∩ f̄) has cardinality < c, as ∆ ∈ G. Let

f̂ := f̄ + χD,

where χD is the characteristic function of D. We claim that f̂ is as needed, that
is, that f̂ ∈ SZ∩ES∩CIVP \Conn.

Indeed, f̂ ∈ SZ by Proposition 1.4, as a union of two SZ-functions: f̂ � D and
f̂ � (R \D) = f̄ � (R \D). Also, f̂ ∈ ES since, for every y ∈ R, the set f̄−1(y) is

dense in R (as f̄ ∈ ES), and so is f̂−1(y), as it contains

f̄−1(y) \ {x ∈ D : f̂(x) = y} ⊃ f̄−1(y) \ {y}.

We have f̂ /∈ Conn, since f̂ has a graph dense in R2 (as f̂ ∈ ES) and its graph
does not intersect ∆.

To finish the proof, it remains to check that f̂ ∈ CIVP. So, fix a < b with
f̂(a) 6= f̂(b) and a perfect set K between f̂(a) and f̂(b). We need to find a

perfect C ⊂ (a, b) with f̂ [C] ⊂ K. By part (b) of Lemma 4.1, there exists a

perfect P ⊂ M̂ ∩ (a, b) such that h[P ] ⊂ K. Since |D| < c, there exists a perfect

C ⊂ P \ D. But f̂ = f̄ = h on P \ D. Hence, f̂ [C] = h[C] ⊂ h[P ] ⊂ K, as
needed. �

To construct a map in SZ∩ES∩PR \(Conn∪CIVP), we need yet another
lemma, where C denotes the classic Cantor ternary set in [0, 1].

Lemma 4.3. Let M̂ be as in (3). Then there exists a function h : M̂ → R such
that

(a) |h ∩ g| < c for every g ∈ G, that is, h is an SZ-function;

(b) h[M̂ ] ∩ C = ∅;
(c) for any 〈s, t〉 ∈ R2 there is a perfect set P ⊂ M̂ ∪ {s} having s as a

bilateral limit point and such that limx→s, x∈P h(x) = t.

Proof. Let {〈sξ, tξ〉 : ξ < c} be an enumeration of R2 and let sets Cp,q,ξ be as in (4).
For every ξ < c, let {pξn}n∈N and {qξn}n∈N be the sequences of rational numbers
converging to sξ, the first strictly increasing, the second strictly decreasing. Define

Pξ =
⋃
n∈N

(Cpn,pn+1,ξ ∪ Cqn+1,qn,ξ).

Note that {Pξ : ξ < c} is a family of pairwise disjoint subsets of M̂ and that, for
every ξ < c, the set Pξ ∪ {sξ} is perfect with sξ being its bilateral limit point.
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Let {xζ : ζ < c} be an enumeration of M̂ . By induction on ζ < c, define a

function h : M̂ → R so that

h(xζ) ∈ (tξ, tξ + |xζ − sξ|) \ (C ∪ {gη(xζ) : η < ζ & xζ ∈ dom(gη)}) (5)

when xζ is in some Pξ and

hξ(xζ) ∈ R \ (C ∪ {gη(xζ) : η < ζ & xζ ∈ dom(gη)})

otherwise. Such choice is possible since (yξ, yξ + |xζ − xξ|) \ C has cardinality c,
while {gη(xζ) : η < ζ & xζ ∈ dom(gη)} has a smaller cardinality. This completes
the construction.

Clearly, h satisfies (a) and (b). To see (c), fix an 〈s, t〉 ∈ R2 and let ξ < c be
such that 〈sξ, tξ〉 = 〈s, t〉. Then P := Pξ∪{sξ} is as needed, since our construction
ensures that |h(x)− tξ| < |x− sξ| for every x ∈ Pξ. �

Theorem 4.4. If covM = c holds, then SZ∩ES∩PR \(Conn∪CIVP) 6= ∅, and
so also SZ∩D∩PR \(Conn∪CIVP) 6= ∅.

Proof. Take the SZ-functions: h : M̂ → R from Lemma 4.3, f from Lemma 2.5
with M := M̂ , and an arbitrary σ ∈ SZ. Let

f̄ = f ∪ h ∪ σ �
(
R \ dom(f ∪ h)

)
.

Then f̄ ∈ ES, since by (c) of Lemma 2.5, f intersects any constant map g defined
on any non-trivial interval. Also, by Proposition 1.4, we have f̄ ∈ SZ. So, the set
D := dom(∆∩ f̄) has cardinality < c, as ∆ ∈ G. Let χ̂ : D → R\C be one-to-one
and such that χ̂ ∩∆ = ∅. Define

f̂ := χ̂ ∪ f̄ � (R \D).

We claim that f̂ is as needed, that is, that f̂ ∈ SZ∩ES∩PR \(Conn∪CIVP).

Indeed, f̂ ∈ SZ by Proposition 1.4, as a union of two SZ-functions: f̂ � D and
f̂ � (R \D) = f̄ � (R \D). Also, f̂ ∈ ES since, for every y ∈ R, the set f̄−1(y) is

dense in R (as f̄ ∈ ES), and so is f̂−1(y), as it contains

f̄−1(y) \ {x ∈ D : f̂(x) = y} ⊃ f̄−1(y) \ χ̂−1(y).

We have f̂ /∈ Conn, since f̂ has a graph dense in R2 (as f̂ ∈ ES) and its graph
does not intersect ∆.

For f̂ /∈ CIVP, notice that f̂ ∈ ES implies the existence of a < b for which
C is between f̄(a) and f̄(b). Thus, it is enough to show, that f̂ [C] 6⊂ C for
every perfect C ⊂ R. So, by way of contradiction, assume that there is a perfect
C ⊂ R with f̂ [C] ⊂ C. Since |D| < c, there is a perfect P ⊂ C \ D, for which

of course f̂ [P ] ⊂ C. Then, P ∩ M̂ = ∅, since, by part (b) of Lemma 4.3, for

every x ∈ M̂ \D we have f̂(x) = h(x) /∈ C. So, f̂ = f on P and, by part (b) of

Lemma 2.5, f̂ [P ] = f [P ] is unbounded, contradicting f̂ [P ] ⊂ C.
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To finish the proof, we need to show that f̂ ∈ PR. To see this, fix an s ∈ R.
We need to find a perfect P ⊆ R having s as a bilateral limit point such that
f̂ � P is continuous at s. For this, let t = f̂(s). By part (c) of Lemma 4.3, there

is a perfect set P ⊂ M̂ ∪ {s} having s as a bilateral limit point and such that
limx→s, x∈P h(x) = t. Since |D| < c, we can decrease P so that P \ {s} is disjoint

with D. But then, limx→s, x∈P f̂(x) = limx→s, x∈P h(x) = t = f̂(s), that is, f̂ � P
is continuous at s, as needed. �

5. Three examples within the class SZ∩Conn \AC

It is well known (see e.g. [17, theorem 2] or [13]), that

Proposition 5.1. If f ∈ RR intersects every compact connected subset H of R2

with |π[H]| > 1, then f ∈ Conn.

In fact, this follows easily from a theorem, that if two points of the plane are
separated by a closed set F , then they are separated by a component of F .

On the other hand, J. H. Roberts constructed in [27] a subset Z ⊂ [0, 1]2

homeomorphic to the Cantor set C (so, zero-dimensional) which is a blocking
set for maps from [0, 1] to [0, 1], that is, such that Z ∩ g 6= ∅ for every con-
tinuous g : [0, 1] → [0, 1]. This construction was modified by K. Ciesielski and
A. Ros lanowski in [9, lemma 2.1] to obtain a zero-dimensional blocking set Z̄ for
functions from R to R. The following proposition describes the properties of this
set that we will use in what follows.

Proposition 5.2. Let X := (−1, 1) ∩ Q and G := (−1, 1) \ Q. There exists an
embedding F = 〈F0, F1〉 : R→ (−1, 1)× R such that F0 is non-decreasing,

(a) B := F [R] is a blocking set;
(b) zero-dimensional Z̄ := F [Z + C] ⊂ B is also a blocking set;
(c) γ := Z̄ ∩ π−1(G) = B ∩ π−1(G) is a continuous function on G; and
(d) for every x ∈ X the vertical section B ∩ π−1({x}) of B is a non-trivial

closed interval and Z̄ ∩ π−1({x}) consists of the two endpoints of that
interval.

Using Robert’s set Z is relatively easy to construct a connectivity function
f : [0, 1]→ [0, 1] which is not almost continuous. Below, we will use the set Z̄ to
construct the functions in SZ∩Conn \AC with the additional properties we ex-
amine. An example of additive function in SZ∩Conn \AC has been constructed,
under the Continuum Hypothesis, in [26, example 9]. The key result for this
construction is the following lemma.

Lemma 5.3. Let H be a compact connected subset of R2 with |π[H]| > 1. If
H contains no vertical section of the set B ∩ π−1(X) from Proposition 5.2, then
there is a K ∈ K contained in H \ Z̄.
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Proof. If π[H] 6⊂ [−1, 1], then there are a < b with [a, b] ⊂ π[H] \ [−1, 1] and
K := H ∩ π−1([a, b]) is as needed. So, assume that π[H] ⊂ [−1, 1]. Since π[H]
has more than one element and is connected, there is an x ∈ X that belongs to
the interior of π[H]. Let c < d be such that B ∩ π−1({x}) = {x} × [c, d]. See
Figure 3. Since H contains no vertical section of the set B, there is a y ∈ (c, d)
with 〈x, y〉 /∈ H. Let s, t ∈ R be such that F (s) = 〈x, d〉 and F (t) = 〈x, c〉. We
assume that s < t, the other case being similar.2 Then, F1(s) = d > y > F1(t) and
there exist p ∈ (−1, x) ∩ π[H] and q ∈ (x, 1) ∩ π[H] such that F1(u) > y > F1(v)
for every u ∈ [p, x] and v ∈ [x, q]. See Figure 3. Also, we can assume that
[p, q] × {y} is disjoint with H (e.g. by imposing that the length of [p, q] is less
than the distance from 〈x, y〉 to H).

K

H

B

d

y

c

p m x q

F (s)

〈x, y〉

F (t) H

B

L

u

d

y

c

p x v q

F (s)

〈x, y〉

F (t)

Figure 3. Illustration for the proof of Lemma 5.3. Left figure
corresponds to the case when [p, x) ⊂ π[H ∩ ([p, x) × (−∞, y])].
The right figure addresses the case leading to the contradiction

Now, if [p, x) ⊂ π[H∩([p, x)×(−∞, y])], then the set K := H∩([p,m]×[y,∞)),
for any m ∈ (p, x), is as needed. See the left part of Figure 3. Similarly, if
(x, q] ⊂ π[H ∩ ((x, q]× [y,∞))], then the set K := H ∩ ([m′, q]× [y,∞)), for any
m′ ∈ (x, q), satisfies the lemma. Therefore, by way of contradiction, assume that
neither of this happens. Then, there are u ∈ [p, x) and v ∈ (x, q] such that the
set

L := ({u} × (−∞, y]) ∪ ([u, v]× {y}) ∪ ({v} × [y,∞))

is disjoint with H, see the right part of Figure 3. But this is impossible, since
such L separates H ∩ ({p} × R) 6= ∅ from H ∩ ({q} × R) 6= ∅, contradicting the
connectedness of H. �

2Actually, the other case cannot happen in the actual construction of the curve from Propo-
sition 5.2.
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Theorem 5.4. If covM = c holds, then SZ∩Conn∩CIVP \AC 6= ∅.

Proof. Similarly as in the proof of Theorem 4.2, take the SZ-functions: h : M̂ → R
from Lemma 4.1, f from Lemma 2.5, this time with M := M̂ ∪ X where X is
from Proposition 5.2, and an arbitrary σ ∈ SZ. Let

f̄ = f ∪ h ∪ σ �
(
R \ dom(f ∪ h)

)
.

Then, by Proposition 1.4, we have f̄ ∈ SZ. So, the set D := X ∪ dom(γ ∩ f̄)
has cardinality < c, where γ ∈ G is as in part (c) of Proposition 5.2. Moreover,
dom(Z̄ ∩ f̄) ⊂ D. Let χ̂ : D → R be such that χ̂ ∩ Z̄ = ∅ and χ̂ � X ⊆ B \ Z̄,
where Z̄ and B are from Proposition 5.2. Define

f̂ := χ̂ ∪ f̄ � R \D.

We claim that f̂ is as needed, that is, that f̂ ∈ SZ∩Conn∩CIVP \AC.

Indeed, f̂ ∈ SZ by Proposition 1.4, as a union of two SZ-functions: f̂ � D and
f̂ � R \D = f̄ � R \D. Clearly, f̂ /∈ AC, since f̂ ∩ Z̄ = ∅, while Z̄ is a blocking
set.

An argument that f̂ ∈ CIVP is identical to one presented in Theorem 4.2.
Finally, to see that f̂ ∈ Conn, fix a compact connected subset H of R2 with
|π[H]| > 1. By Proposition 5.1 it is enough to show that f̂ ∩ H 6= ∅. This is
clear when H contains a vertical section of the set Z̄ ∩ π−1(X), since we ensured

that χ̂ ⊂ f̂ intersects every such H. But otherwise, by Lemma 5.3, there is a
K ∈ K contained in H \ Z̄. Also, by Lemma 2.5, there an x ∈ dom(f) such
that 〈x, f(x)〉 ∈ K ⊂ H. So, to finish the proof, it is enough to notice that

f̂(x) = f(x). Indeed, this is the case, since x /∈ D: x /∈ X, as dom(f) is disjoint

from M = M̂ ∪X; and x /∈ dom(γ ∩ f̄) since K is disjoint from Z̄ ⊃ γ. �

The proof of the next theorem is a simple mix of the elements of the proofs of
Theorems 5.4 and 4.4.

Theorem 5.5. If covM = c holds, then SZ∩Conn∩PR \(AC∪CIVP) 6= ∅.

Proof. Similarly as in the proof of Theorem 4.4, take the SZ-functions: h : M̂ → R
from Lemma 4.3, f from Lemma 2.5 with M := M̂ ∪ X where set X is from
Proposition 5.2, and σ : R→ R. Let

f̄ = f ∪ h ∪ σ �
(
R \ dom(f ∪ h)

)
.

Then f̄ ∈ ES, since by (c) of Lemma 2.5, f intersects any constant map g defined
on any non-trivial interval. Also, by Proposition 1.4, we have f̄ ∈ SZ. So, the
set D := X ∪ dom(γ ∩ f̄) has cardinality < c, where γ ∈ G is as in part (c) of
Proposition 5.2. Moreover, dom(Z̄ ∩ f̄) ⊂ D. Let χ̂ : D → R such that χ̂∩ Z̄ = ∅
and χ̂ � X ⊆ B \ Z̄, where Z̄ and B are from Proposition 5.2. Define

f̂ := χ̂ ∪ f̄ � (R \D).

We claim that f̂ is as needed, that is, that f̂ ∈ SZ∩Conn∩PR \(AC∪CIVP).

Indeed, f̂ ∈ SZ by Proposition 1.4, as being a union of two SZ-functions: χ̂
and f̄ � (R \D). Clearly, f̂ 6∈ AC, since f̂ ∩ Z̄ = ∅, while Z̄ is a blocking set.
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The arguments for f̂ 6∈ CIVP and f̂ ∈ PR are the same that those used in
Theorem 4.4, while f̂ ∈ Conn can be argued as in Theorem 5.4. �

Similarly, the proof of this last theorem in this section is a mix of the elements
of proofs of Theorems 5.4 and 3.1.

Theorem 5.6. If covM = c holds, then SZ∩Conn \(AC∪PR) 6= ∅.

Proof. Take the SZ-functions: f from Lemma 2.5 with M := X from Proposi-
tion 5.2, σ ∈ SZ, and X̂ : X → R such that X̂ ⊂ B \ Z̄. Let

f̄ = f ∪ X̂ ∪ σ �
(
R \ dom(f ∪ X̂)

)
.

Then, by Proposition 1.4, we have f̄ ∈ SZ. So, the set D := dom(γ ∩ f̄) has
cardinality < c, where γ ∈ G is as in part (c) of Proposition 5.2. Moreover, we
have dom(Z̄ ∩ f̄) ⊂ D. Define

f̂ := f̄ + χD,

where χD is the characteristic function of D. We claim that f̂ is as needed, that
is, that f̂ ∈ SZ∩Conn∩ \ (AC∪PR).

Indeed, f̂ ∈ SZ by Proposition 1.4 as both f̂ � (R\D) = f̄ � (R\D) and f̂ � D
are SZ. Clearly, f̂ 6∈ AC, since f̂ ∩ Z̄ = ∅, while Z̄ is a blocking set.

To show f̂ 6∈ PR, fix any perfect P ⊂ R. By Proposition 2.2, it is enough to
show that f̂ is unbounded on P . To see this, choose a perfect C ⊂ P \X. Then,

by (b) of Lemma 2.5, f̄ ⊃ f is unbounded on C ⊂ P . Therefore f̂ is unbounded
on P as being the sum of an unbounded function and the other bounded.

The argument for f̂ ∈ Conn is identical to one used for it in Theorem 5.4. �

6. Easy examples in SZ∩AC∩CIVP and SZ∩AC∩PR \CIVP

The examples of maps in these classes, being additionally additive, have been
constructed under the same set theoretical assumption earlier: for the class
SZ∩AC∩CIVP in a 1999 paper [3] of K. Banaszewski and T. Natkaniec while for
the class SZ∩AC∩PR \CIVP in a 2004 paper [25] of T. Natkaniec and H. Rosen.
Nevertheless, we have crafted a powerful Lemma 2.5 as the core of all theorems
above. In particular, the lemma produces a partial function f such that any
extension of f is almost continuous, and dom(f) avoids an arbitrary Fσ meager
subset of R. Along with Lemmas 4.1 and 4.3, the same machinery allows us to
easily build the maps in SZ∩AC∩CIVP and SZ∩AC∩PR \CIVP.

Theorem 6.1. If covM = c holds, then SZ∩AC∩CIVP 6= ∅.

Proof. The function f̄ used in the proof of Theorem 4.2 is as needed. That is, if

f̄ := f ∪ h ∪ σ �
(
R \ dom(f ∪ h)

)
,

where h : M̂ → R is from Lemma 4.1, f is from Lemma 2.5 with M := M̂ and
σ ∈ SZ, then f̄ ∈ SZ∩AC∩CIVP.

Indeed, f̄ ∈ AC by part (c) of Lemma 2.5. Also, by Proposition 1.4, we have
f̄ ∈ SZ.
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To see that f̄ ∈ CIVP, fix a < b with f̄(a) 6= f̄(b) and a perfect set K between
f̄(a) and f̄(b). We need to find a perfect P ⊂ (a, b) with f̄ [P ] ⊂ K. But, by

part (b) of Lemma 4.1, there exists a perfect P ⊂ M̂ ∩ (a, b) such that h[P ] ⊂ K.
Since f̄ = h on P , f̄ [P ] = h[P ] ⊂ K, as needed. �

Theorem 6.2. If covM = c holds, then SZ∩AC∩PR \CIVP 6= ∅.

Proof. The function f̄ used in the proof of Theorem 4.4 is as needed. That is, if

f̄ := f ∪ h ∪ σ �
(
R \ dom(f ∪ h)

)
,

where h : M̂ → R is from Lemma 4.3, f is from Lemma 2.5 with M := M̂ and
σ ∈ SZ, then f̄ ∈ SZ∩AC∩PR \CIVP.

Indeed, f̄ ∈ AC∩ES by part (c) of Lemma 2.5. Also, by Proposition 1.4, we
have f̄ ∈ SZ.

For f̄ /∈ CIVP, notice that f̄ ∈ ES implies the existence of a < b for which C
is between f̄(a) and f̄(b). Thus, it is enough to show, that f̄ [P ] 6⊂ C for every
perfect P ⊂ R. So, by way of contradiction, assume that there is a perfect P ⊂ R
with f̄ [P ] ⊂ C. Then, P ∩ M̂ = ∅, since, by part (b) of Lemma 4.3, for every

x ∈ M̂ we have f̄(x) = h(x) /∈ C. So, f̄ = f on P and, by part (b) of Lemma 2.5,

f̄ [P ] = f [P ] is unbounded, contradicting f̂ [P ] ⊂ C.
To see f̄ ∈ PR, fix an s ∈ R and let t = f̄(s). By part (c) of Lemma 4.3,

there is a perfect set P ⊂ M̂ ∪ {s} having s as a bilateral limit point and such
that limx→s, x∈P h(x) = t. Since limx→s, x∈P f̄(x) = limx→s, x∈P h(x) = t = f̄(s),
we conclude that f̄ � P is continuous at s. �
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