TYPICAL BAD DIFFERENTIABLE EXTENSIONS

KRZYSZTOF C. CIESIELSKI AND CHENG-HAN PAN

ABSTRACT. By a 1923 result of V. Jarník, every differentiable map φ from a closed subset P of \mathbb{R} into \mathbb{R} has a differentiable extension $f: \mathbb{R} \to \mathbb{R}$. It has been recently proved, by the authors, that among such differentiable extensions of φ there is always one that is nowhere monotone on $\mathbb{R} \setminus P$. In particular, the family $E_{\varphi}^1(\mathbb{R})$ of "bad" differentiable extensions $f: \mathbb{R} \to \mathbb{R}$ of φ , for which the set $[f'=0] := \{x \in \mathbb{R} : f'(x) = 0\}$ is dense in $\mathbb{R} \setminus P$, is nonempty.

We notice here that $E_{\varphi}^{1}(\mathbb{R})$ with a natural distance is a complete metric space and prove that actually a typical function in $E_{\varphi}^{1}(\mathbb{R})$ is nowhere monotone on $\mathbb{R} \setminus P$. At the same time, the set $M_{\varphi}(\mathbb{R})$, of functions $f \in E_{\varphi}^{1}(\mathbb{R})$ which are monotone on some nonempty subinterval of every nonempty open $U \subset \mathbb{R} \setminus P$, is dense in $E_{\varphi}^{1}(\mathbb{R})$. This last statement remains true, when the term "monotone" is replaced with either of the following three terms: "strictly increasing," "strictly decreasing," or "constant."

1. BACKGROUND

In 1923, V. Jarník proved that every differentiable map φ from a closed subset P of \mathbb{R} into \mathbb{R} has a differentiable extension $f: \mathbb{R} \to \mathbb{R}$. An interesting story of this result being forgotten and rediscovered is described in details in [3]. (Compare also [6].) In short, Jarník's full paper with this result [9], written in Czech, and its announcement [8] in French, with a sketch of construction, were published in rather obscure journals. So, the theorem was unnoticed by the mathematical community until the mid 1980's, when it was cited in [1]. In the meantime, the theorem was rediscovered in 1974 by G. Petruska and M. Laczkovich [12] and further elaborated on in 1984 by J. Mařík [11].

In a 2012 paper [10] M. Koc and L. Zajíček proved a version of Jarník's Extension Theorem showing that an extension f of φ can be, on the set $\mathbb{R} \setminus P$, as good as possible, that is, C^{∞} . In the opposite direction, the authors proved in [5] that this f can also be, on $\mathbb{R} \setminus P$, as bad as possible, that is, nowhere monotone. The goal of this paper is to extend the above-mentioned result from [5] by showing that, within a complete metric space $E^1_{\varphi}(\mathbb{R})$ defined in the next section, a typical differentiable extension of φ is nowhere monotone on $\mathbb{R} \setminus P$. Here we use the term *typical* to say that the set of all such functions is *residual*, that is, contains a dense G_{δ} -set.

Date: Draft of 1/22/2019.

2. The space of Differentiable Functions

Let $D^1(\mathbb{R})$ be the family of all differentiable functions from \mathbb{R} into \mathbb{R} and let $C^1(\mathbb{R})$ stand for all $f \in D^1(\mathbb{R})$ with derivative f' being continuous. It is well known (see, e.g., [7, example 5.4]) that the subspace of $C^1(\mathbb{R})$, consisting of all functions $f \in C^1(\mathbb{R})$ for which their C^1 -norm

$$||f||_{C^1} := ||f||_{\infty} + ||f'||_{\infty}$$

is finite, forms a Banach space. Of course $\|\cdot\|_{\infty}$ is the supremum norm. This follows immediately from the following well-known theorem, see e.g. [14, theorem 9.37].

Fact 1. If a sequence $\langle f_n \in D^1(\mathbb{R}) : n \in \mathbb{N} \rangle$ converges uniformly to an $f \in C(\mathbb{R})$ and the sequence $\langle f'_n : n \in \mathbb{N} \rangle$ is Cauchy with respect to the uniform convergence, then f is differentiable and $\lim_{n\to\infty} f'_n = f'$.

Fact 1 immediately implies also that:

Proposition 1. $D^1(\mathbb{R})$ is a complete metric with respect to metric

(1)
$$\rho(f,g) := \min\{1, \|f-g\|_{C^1}\}.$$

In what follows, P will always denote a closed subset of \mathbb{R} (possibly empty) and φ a differentiable function from P into \mathbb{R} , that is, such that for any non-isolated $p \in P$ the limit

$$\varphi'(p) := \lim_{x \to p, \ x \in P} \frac{\varphi(x) - \varphi(p)}{x - p}$$

exists and is finite. For $f \in D^1(\mathbb{R})$, let $[f' = 0] := \{x \in \mathbb{R} : f'(x) = 0\}$ and define

 $D^1_{\varphi}(\mathbb{R}) := \{ f \in D^1(\mathbb{R}) \colon \varphi \subset f \}$ $E^1_{\varphi}(\mathbb{R}) := \{ f \in D^1(\mathbb{R}) \colon \varphi \subset f \& [f' = 0] \text{ is dense in } \mathbb{R} \setminus P \}.$

We will write $E^1(\mathbb{R})$ for $E^1_{\emptyset}(\mathbb{R})$ (i.e., for $E^1_{\varphi}(\mathbb{R})$, where the domain of φ is empty).

Lemma 1. $E_{\varphi}^{1}(\mathbb{R})$ is a nonempty closed subspace of $D^{1}(\mathbb{R})$ considered with the metric ρ . In particular, $E_{\varphi}^{1}(\mathbb{R})$ is a complete metric space.

Proof. It has been proved by the authors in [5] that there is an $f \in D^1_{\varphi}(\mathbb{R})$ which is nowhere monotone on $\mathbb{R} \setminus P$. Such f belongs to $E^1_{\varphi}(\mathbb{R})$ since the derivative f' must have both positive and negative values on every nonempty $(a, b) \subset \mathbb{R} \setminus P$ as f is monotone nowhere on $\mathbb{R} \setminus P$. Thus, it must also have value 0, as any derivative has the Darboux property (i.e., satisfies the conclusion of Intermediate Value Theorem), see [6, theorem 2.1] or [14, theorem 7.31]. This shows that $E^1_{\varphi}(\mathbb{R})$ is nonempty.

Clearly, $D^1_{\varphi}(\mathbb{R})$ is closed in $D^1(\mathbb{R})$. Since $E^1_{\varphi}(\mathbb{R}) = D^1_{\varphi}(\mathbb{R}) \cap E^1(\mathbb{R})$, it remains to show that $E^1(\mathbb{R})$ is closed in $D^1(\mathbb{R})$. Our argument for this comes from a paper [15] of C. Weil. To see this, assume that a sequence $\langle f_n \in E^1(\mathbb{R}) : n \in \mathbb{N} \rangle$ converges to an $f \in D^1(\mathbb{R})$ with respect to ρ . We need to show that $f \in E^1(\mathbb{R})$. Indeed, for every $n \in \mathbb{N}$, the set $G_n := [f'_n = 0]$ is dense in $\mathbb{R} \setminus P$. It is also G_{δ} in $\mathbb{R} \setminus P$, since this is true for all derivatives, see e.g. [6]. Hence $f' = \lim_{n \to \infty} f'_n$ has value 0 on the set $\bigcap_{n \in \mathbb{N}} G_n$, which is also dense G_{δ} in $\mathbb{R} \setminus P$, as $\mathbb{R} \setminus P$ is a Baire space (it is locally compact Hausdorff). \Box

Notice, that we proved also that $E^1(\mathbb{R})$ is nonempty and closed in $D^1(\mathbb{R})$.

Remark 1. If $P \neq \mathbb{R}$, then the space $E^1_{\varphi}(\mathbb{R})$, with the metric ρ , has a closed discrete subset of cardinality continuum. In particular, neither $E^1_{\varphi}(\mathbb{R})$ nor $D^1(\mathbb{R})$ is separable.

Proof. Let a < b be such that $[a, b] \cap P = \emptyset$ and let $f \in E^1_{\varphi}(\mathbb{R})$.

Choose a sequence $b = b_1 > a_1 > b_2 > a_2 > \cdots$ converging to a such that a is a Lebesgue density point of the complement of $\bigcup_{n \in \mathbb{N}} (a_n, b_n)$. For every $n \in \mathbb{N}$, let $g_n \colon \mathbb{R} \to \mathbb{R}$ be a map as in Lemma 2 with support in $[a_n, b_n]$ and vertically rescaled so that $||g'_n||_{\infty} = 1$. For every $s \colon \mathbb{N} \to \{-1, 1\}$, let $h_s = \sum_{n \in \mathbb{N}} s(n)g'_n$. It is bounded and approximately continuous—this is ensured at x = a by the Lebesgue density requirement.

This implies that each $H_s(x) = \int_0^x h_s(t) dt$ is in $E^1(\mathbb{R})$, since $H'_s = h_s$, see e.g. [2, theorem 7.36, p. 317]. In particular, $H_s + f \in E^1_{\varphi}(\mathbb{R})$. Also, for every distinct $s, t: \mathbb{N} \to \{-1, 1\}$, we have $\rho(H_s + f, H_t + f) = \min\{1, ||H_s - H_t||_{C^1}\} \ge \min\{1, ||H'_s - H'_t||_{\infty}\} = 1$. That is, we indeed found a closed discrete subset $\{H_s + f: s: \mathbb{N} \to \{-1, 1\}\}$ of $E^1_{\varphi}(\mathbb{R})$ of cardinality continuum.

3. The main theorem

Theorem 1. If $P \subset \mathbb{R}$ is closed and $\varphi \colon P \to \mathbb{R}$ is differentiable, then a typical function in $E^1_{\varphi}(\mathbb{R})$ is nowhere monotone on $\mathbb{R} \setminus P$.

The key step in the proof of Theorem 1 is the following lemma, which is a bit similar to [5, lemma 5].

Lemma 2. For every a < b < c < d, there exists a "bump" map $g \in E^1(\mathbb{R})$ strictly increasing on (a, c), strictly decreasing on (c, d) such that g'(b) > 0, $\|g\|_{C^1} < \infty$, and with g(x) = 0 for any $x \in \mathbb{R} \setminus (a, d)$.

Proof. Let a < b < c < d. We first construct a strictly increasing differentiable $g_0 = g \upharpoonright [a, c]$ with bounded C^1 -norm, $[g'_0 = 0]$ dense in $[a, c], g'_0(b) > 0$, and $g_0(a) = g'_0(a) = g'_0(c) = 0$.

For this, let $h: [0,1] \to \mathbb{R}$ be a Pompeiu function, that is, strictly increasing and differentiable with [h' = 0] dense in [0,1]. Its construction can be found in a 1907 paper [13] of D. Pompeiu, as well as in more contemporary works [14, sec. 9.7] and [4]. In addition, hhas bounded C^1 -norm, since it is an inverse of a function defined as $\gamma(x) = \sum_{i=1}^{\infty} A_i (x - q_i)^{1/3}$, where $\{q_i : i \in \mathbb{N}\}$ is dense in [0, 1], and the numbers A_i are positive with $\sum_{i=1}^{\infty} A_i < \infty$. (As such, $\gamma'(x)$ is bounded away from 0, so that the derivative of $h = \gamma^{-1}$ is bounded.)

Let p < q < r be in [0, 1] such that h'(p) = h'(r) = 0 and h'(q) > 0and let β be a C^1 map with strictly positive derivative that maps [a, c]onto [p, r] and with $\beta(b) = q$. Then, for L(t) = t - h(p), the composition $g_0 = L \circ h \circ \beta$ is as needed.

To finish the proof, it is enough to notice that if $\ell: [c, d] \to \mathbb{R}$ is a linear function with $\ell(c) = c$ and $\ell(d) = a$, then $g_0 \cup (g_0 \circ \ell)$ is the desired function g on [a, d], which can be uniquely extended to the required g.

Proof of Theorem 1. For an open nonempty interval $J \subset \mathbb{R} \setminus P$, let

$$U_J^+ = \{ f \in E_{\varphi}^1(\mathbb{R}) \colon (\exists x \in J) f'(x) > 0 \}$$

and

$$U_J^- = \{ f \in E_{\varphi}^1(\mathbb{R}) \colon (\exists x \in J) f'(x) < 0 \}.$$

We claim that

(*) the sets U_J^+ and U_J^- are open and dense in $E_{\varphi}^1(\mathbb{R})$.

Indeed, they are open, since for every $f \in U_J^-$ (or $f \in U_J^+$) and $x \in J$ for which f'(x) < 0 (f'(x) > 0, respectively), the ρ -ball centered at f and of radius |f'(x)| is contained in U_J^- (U_J^+ , respectively).

To see that $U_J^+ \cap U_J^-$ is dense in $E_{\varphi}^1(\mathbb{R})$, choose an arbitrary $f \in E_{\varphi}^1(\mathbb{R})$ and $\varepsilon \in (0, 1)$. It is enough to find a $g \in D^1(\mathbb{R})$ with $\|g\|_{C^1} < \varepsilon$ such that $f+g \in U_J^+ \cap U_J^-$. To find such g choose $a_0 < b_0 < d_0 < a_1 < b_1 < d_1$ in J with f' equal 0 at each of these points. Let g_0 and g_1 be as in Lemma 2 applied to numbers $a_0 < b_0 < d_0$ and $a_1 < b_1 < d_1$, respectively. Multiplying these functions by a small enough constant, if necessary, we can also assume that $\|g_0\|_{C^1} < \varepsilon$ and $\|g_1\|_{C^1} < \varepsilon$. Then the function $g = g_0 - g_1$ is as needed, completing the proof of (\star) .

Finally, let \mathcal{J} be the countable family of all nonempty intervals $J \subset \mathbb{R} \setminus P$ with rational endpoints. Then $G = \bigcap_{J \in \mathcal{J}} (U_J^+ \cap U_J^-)$ is a dense G_{δ} set in $E_{\varphi}^1(\mathbb{R})$, and every function in G is nowhere monotone on $\mathbb{R} \setminus P$.

4. Functions that are nowhere nowhere-monotone

We say that a function $f \colon \mathbb{R} \to \mathbb{R}$ is increasing at a point $x \in \mathbb{R}$ provided there exists an interval (a, b) containing x on which f is strictly increasing. Let $M_{\varphi}^{\nearrow}(\mathbb{R})$ be the family of all $f \in E_{\varphi}^{1}(\mathbb{R})$ for which the set of points at which f is increasing is dense in $\mathbb{R} \setminus P$.

Similarly, we say that $f : \mathbb{R} \to \mathbb{R}$ is monotone (constant or decreasing) at a point $x \in \mathbb{R}$ provided there exists an interval (a, b) containing x on which f is monotone, constant, or strictly decreasing, respectively. With each of these notions we associate their respective families $M_{\varphi}(\mathbb{R}), M_{\varphi}^{\rightarrow}(\mathbb{R}), \text{ and } M_{\varphi}^{\searrow}(\mathbb{R}), \text{ in a way in which } M_{\varphi}^{\checkmark}(\mathbb{R}) \text{ is associated}$ with the notion of "increasing at a point."

Clearly, $M_{\varphi}^{\checkmark}(\mathbb{R})$, $M_{\varphi}^{\rightarrow}(\mathbb{R})$, and $M_{\varphi}^{\searrow}(\mathbb{R})$ are disjoint and contained in $M_{\varphi}(\mathbb{R})$ which, by Theorem 1, is first category in $E_{\varphi}^{1}(\mathbb{R})$. The goal of this section is to show that each of these first category sets is dense in $E_{\varphi}^{1}(\mathbb{R})$.

Theorem 2. Each of the sets $M_{\varphi}^{\nearrow}(\mathbb{R})$, $M_{\varphi}^{\rightarrow}(\mathbb{R})$, and $M_{\varphi}^{\searrow}(\mathbb{R})$ is dense in $E_{\varphi}^{1}(\mathbb{R})$.

The main step in the proof of Theorem 2 is the following Lemma 3.

Lemma 3. For every $f \in E_{\varphi}^{1}(\mathbb{R})$, $\varepsilon \in (0, 1)$, and a nonempty open set $U \subset \mathbb{R} \setminus P$, there exist $f_{1} \in E_{\varphi}^{1}(\mathbb{R})$ and p < q < r < s with $(p, s) \subset U$ such that $f_{1} = f$ on $\mathbb{R} \setminus (p, s)$, $\rho(f_{1}, f) < \varepsilon$, $f_{1} \upharpoonright (p, q)$ is strictly increasing, $f_{1} \upharpoonright (q, r)$ is constant, and $f_{1} \upharpoonright (r, s)$ is strictly decreasing.

Proof. Let g be as in Lemma 2 with a = 0, c = 1, and d = 2. Multiplying it by a constant, if necessary, we can also assume that g(c) = 1. Let $M = ||g||_{C^1}$ and notice that $M \ge 1$.

Notice that for every $\delta > 0$ the set $[|f'| \ge \delta] := \{x \in \mathbb{R} : |f'(x)| \ge \delta\}$ cannot be dense in U. Indeed, as $[|f'| \ge \delta]$ is a G_{δ} -set, its density in U would imply it intersects [f' = 0], which is not possible.

Let $\delta = \frac{\varepsilon}{12M}$ and choose a nonempty interval $(p, s) \subset U$ disjoint from $[|f'| \ge \delta]$ and with $s - p \le 1$. Decreasing this interval, if necessary, we can also assume that f'(p) = f'(s) = 0 and that $|f(x) - f(y)| \le \varepsilon/4$ for every $x, y \in [p, s]$. Let [q, r] be the middle third of [p, s].

For every $u, y \in [p, s]$, lies [q, r] be the matrix of [p, s]. For some $\xi \in (p, s)$, we have $\left|\frac{f(s)-f(p)}{q-p}\right| = 3\left|\frac{f(s)-f(p)}{s-p}\right| = 3|f'(\xi)| < 3\delta$. Thus, there exists a $v > \max\{f(s), f(p)\}$ such that $\frac{v-f(p)}{q-p} < 3\delta$ and $\frac{v-f(s)}{s-r} < 3\delta$. Consider the following two linear surjections: increasing $\ell_1: [p,q] \to [0,1]$ and decreasing $\ell_2: [r,s] \to [0,1]$. Notice, that ℓ_1 has the slope $m := \frac{1}{q-p}$, while ℓ_2 has the slope $\frac{1}{r-s} = -m$. Define $g_1 = (v - f(p)) \cdot g \circ \ell_1$ and notice that we have $g_1(p) = 0$ and $g_1(q) = v - f(p)$. Also, $\|g_1'\|_{\infty} = (v - f(p))\frac{1}{q-p}\|g'\|_{\infty} \leq \frac{v-f(p)}{q-p}M < 3\delta M = \varepsilon/4$ and $\|g_1\|_{\infty} = (v - f(p))\|g\|_{\infty} \leq \frac{v-f(p)}{q-p}M < \varepsilon/4$. Therefore, we have $\|g_1\|_{C^1} = \|g_1\|_{\infty} + \|g_1'\|_{\infty} < \varepsilon/2$. Similarly, if $g_2 = (v - f(s)) \cdot g \circ \ell_2$, then $\|g_2\|_{C^1} < \varepsilon/2$, $g_2(s) = 0$, and $g_2(r) = v - f(s)$. Define

$$f_1(x) = \begin{cases} f(p) + g_1(x) & \text{for } x \in [p, q] \\ v & \text{for } x \in [q, r] \\ f(s) + g_2(x) & \text{for } x \in [r, s] \\ f(x) & \text{for } x \in \mathbb{R} \setminus (p, s). \end{cases}$$

and notice that it is as needed.

Indeed, it is easy to see that f_1 is well defined differentiable function with $f'_1(p) = f'_1(q) = f'_1(r) = f'_1(s) = 0$. All other requirements for f_1 are clearly satisfied, except possibly for $\rho(f_1, f) < \varepsilon$. To see this, it is enough to prove that $||(f_1 - f)| \downarrow J||_{C^1} < \varepsilon$ for J being [p, q], [q, r], and |r,s|.

But on J = [p, q] we have

$$||f_{1} - f||_{C^{1}} \leq ||g_{1}||_{C^{1}} + ||f - f(p)||_{C^{1}} < \varepsilon/2 + ||f - f(p)||_{\infty} + ||(f - f(p))'||_{\infty} < \varepsilon/2 + \varepsilon/4 + \delta < \varepsilon.$$

Similarly, $||f_1 - f||_{C^1} < \varepsilon$ on J = [r, s]. Finally, on J = [q, r],

$$\|f_1 - f\|_{C^1} \le \|v - f(p)\|_{C^1} + \|f - f(p)\|_{C^1} \le \varepsilon/4 + \varepsilon/4 + \delta < \varepsilon,$$

needed.

as needed.

Proof of Theorem 2. We prove only the density of $M_{\varphi}^{\checkmark}(\mathbb{R})$, the proof for the other two cases being essentially the same. Fix an $f_0 \in E^1_{\varphi}(\mathbb{R})$ and an $\varepsilon \in (0, 1)$. We need to find $g \in M^{\nearrow}_{\varphi}(\mathbb{R})$ with $||f_0 - g||_{C^1} \leq \varepsilon$.

Let $\{B_n : n \in \mathbb{N}\}$ be the intervals forming a basis for $\mathbb{R} \setminus P$. Define $J_0 = \emptyset$. By induction on $n \in \mathbb{N}$ we will construct the sequences $\langle J_n \subset \mathbb{R} \setminus P \colon n \in \mathbb{N} \rangle$ of pairwise disjoint, possibly empty, open intervals and $\langle f_n \in E^1_{\varphi}(\mathbb{R}) \colon n \in \mathbb{N} \rangle$ such that the following inductive properties hold for every $n \in \mathbb{N}$.

- (i) $B_n \cap \bigcup_{i \le n} J_i \neq \emptyset$,
- (ii) f_n is strictly increasing on each J_i with $i \leq n$, $f_{n-1} = f_n$ on $\mathbb{R} \setminus \bigcup_{i < n} J_i$, and $\rho(f_{n-1}, f_n) < 2^{-n} \varepsilon$.

The inductive step is facilitated by Lemma 3. Specifically, we let U to be the interior of $B_n \setminus \bigcup_{i < n} J_i$. If $U = \emptyset$, we let $f_n = f_{n-1}$ and $J_n = \emptyset$. Otherwise we choose p < q < r < s and f_n by applying Lemma 3 to $f_{n-1} \in E^1_{\varphi}(\mathbb{R}), \ 2^{-n}\varepsilon > 0$, and just chosen U. Let $J_n = (p,q)$. This choice of f_n and J_n ensures properties (i) and (ii).

To finish the proof, notice that the sequence $\langle f_n \in E^1_{\varphi}(\mathbb{R}) : n \in \mathbb{N} \rangle$ is Cauchy with respect to ρ , so that the limit $g = \lim_{n \to \infty} f_n$ exists and belongs to $E^1_{\varphi}(\mathbb{R})$. By (ii), $\rho(f_0, f_n) < (1 - 2^{-n})\varepsilon$ for every $n \in \mathbb{N}$. Therefore, $\rho(f_0, g) \leq \varepsilon$.

Finally, to see that $g \in M^{\nearrow}_{\omega}(\mathbb{R})$ notice that, by (i), for every $n \in \mathbb{N}$ there exists an $i \leq n$ such that $B_n \cap J_i \neq \emptyset$. Moreover, by (ii), the restriction $g \upharpoonright (B_n \cap J_i) = f_i \upharpoonright (B_n \cap J_i)$ is strictly increasing. So, indeed $g \in M^{\checkmark}_{\varphi}(\mathbb{R})$.

References

- [1] V. Aversa, M. Laczkovich, and D. Preiss, *Extension of differentiable functions*, Comment. Math. Univ. Carolin. 26 (1985), no. 3, 597-609.
- [2] A. M. Bruckner, J.B. Bruckner, and B.S. Thomson, *Real Analysis*, Prentice-Hall, NJ, 1997.

- [3] Monika Ciesielska and Krzysztof Chris Ciesielski, Differentiable extension theorem: a lost proof of V. Jarník, J. Math. Anal. Appl. 454 (2017), no. 2, 883–890, DOI 10.1016/j.jmaa.2017.05.032.
- [4] Krzysztof Chris Ciesielski, Monsters in calculus, Amer. Math. Monthly 125 (2018), no. 08, 739–744, DOI 10.1080/00029890.2018.1502011.
- [5] Krzysztof Chris Ciesielski and Cheng-Han Pan, Doubly paradoxical functions of one variable, J. Math. Anal. Appl. 464 (2018), no. 1, 274–279, DOI 10.1016/j.jmaa.2018.04.012.
- [6] Krzysztof Chris Ciesielski and Juan B. Seoane-Sepúlveda, Differentiability versus continuity: Restriction and extension theorems and monstrous examples, Bull. Amer. Math. Soc., electronically published on September 7, 2018 (to appear in print), DOI 10.1090/bull/1635.
- [7] John K. Hunter and Bruno Nachtergaele, *Applied analysis*, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
- [8] V. Jarník, Sur l'extension du domaine de définition des fonctions d'une variable, qui laisse intacte la dérivabilité de la fonction, Bull. Internat. de l'Académie des Sciences de Bohême (1923), 1–5.
- [9] _____, O rozšíření definičního oboru funkcí jedné proměnné, přičemž zůstává zachována derivabilita funkce [On the extension of the domain of a function preserving differentiability of the function], Rozpravy Čes. akademie, II. tř. XXXII (1923), no. 15, 1–5 (Czech).
- [10] M. Koc and L. Zajíček, A joint generalization of Whitney's C¹ extension theorem and Aversa-Laczkovich-Preiss' extension theorem, J. Math. Anal. Appl. 388 (2012), no. 2, 1027–1037, DOI 10.1016/j.jmaa.2011.10.049.
- [11] J. Mařík, Derivatives and closed sets, Acta Math. Hungar. 43 (1984), no. 1-2, 25–29, DOI 10.1007/BF01951320.
- [12] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189–212, DOI 10.1007/BF01901760.
- [13] D. Pompeiu, Sur les fonctions dérivées, Math. Ann. 63 (1907), no. 3, 326–332, DOI 10.1007/BF01449201.
- [14] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner, *Elemen*tary Real Analysis, 2008. http://classicalrealanalysis.info/documents/TBB-AllChapters-Landscape.pdf.
- [15] C.E. Weil, On nowhere monotone functions, Proc. Amer. Math. Soc. 56 (1976), 388–389, DOI 10.2307/2041644.

DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNIVERSITY, MORGANTOWN, WV 26506-6310, USA. AND DEPARTMENT OF RADIOLOGY, MIPG, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA 19104-6021, USA. E-mail address: KCies@math.wvu.edu

DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNIVERSITY, MORGANTOWN, WV 26506-6310, USA. *E-mail address*: chpan@mix.wvu.edu