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In a 1920 paper [5] Wacław Sierpiński proved the following theorem characterizing
the space Q of rational numbers considered with the standard topology:

ST. Any countable metric space 〈X, d〉 without isolated points is homeomorphic to Q.

Its simple and natural form seems to indicate, that its proof could be included in
an undergraduate topology curriculum as soon as a notion of homeomorphism is intro-
duced. This result can help to illuminate the difference between the standard topologies
on R and on Q: according to ST, Q is homeomorphic to Q2 and to Q` (i.e., Q with the
“Sorgenfrey topology,” generated by all left closed intervals [p, q)); in contrast, their
real counterparts R, R2, and R`—obtained by replacing Q with R in their respective
definitions—are mutually topologically different. Also, ST implies that the Fursten-
berg topology on the integers Z used to prove the infinitude of primes (see [4] or [1])
is actually homeomorphic to the standard topology on Q.

Nevertheless, so far ST could not have been included early in topological education
for a simple reason—all proofs of ST published so were too complicated for such
purpose. True, the proofs of ST presented in [3] and [2] are relatively simple; however,
they both are considerably longer than our proof of ST provided below and are not self
contained, since they both rely on Cantor’s characterization of the linear structure of
Q: Any linearly ordered dense set with neither smallest nor greatest element is order-
isomorphic to (Q,≤).

Proof of ST. Let S be the set of all infinite sequences s = 〈s1, s2, . . . 〉 of natural
numbers that are eventually zero, that is, such that 0 = sn = sn+1 = · · · for some
n ∈ N := {1, 2, 3, . . .}. Notice that S is countable and so is the set N<ω of all finite
sequences of natural numbers. Consider S with a topology τ generated by a basis
formed by all sets [t], with t ∈ N<ω, defined as

[t] := {s ∈ S : t ⊂ s},

where “t ⊂ s” means “the sequence s extends t.”∗ To finish the proof it is enough to
show that

there is a homeomorphism h : X → S, (1)

since then there exists also a homeomorphism H : Q→ S and so H−1 ◦ h : X → Q
is a homeomorphism proving ST.

To see (1), let {xn : n < ω} be an enumeration, with no repetitions, of the set X
and let D := {d(x, y) : x, y ∈ X} be the set of all distances between the elements
in X . Notice that D is countable. Also, for any r > 0 with r /∈ D, the open ball
Bd(c, r) := {x ∈ X : d(c, x) < r} centered in c ∈ X and with radius r is also a
closed set in X , since it is equal to Bd[c, r] := {x ∈ X : d(c, x) ≤ r}. All open balls
in X considered below will be with radiuses not in D. So, they will be clopen sets.

In the construction of h we will repeatedly use the following simple fact.
∗MSC: Primary 54B99; Keywords: homeomorphism; space of rational numbers; characterization;
∗Of course, 〈S, τ〉 is actually a subspace of NN considered with the product topology.
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(∗) For every k ∈ N and nonempty open subset U of X there exists a sequence
Sk(U) := 〈Bi : i ∈ N〉 of pairwise disjoint clopen balls contained in U , each
of radius ≤ 2−k, such that U =

⋃
i∈NBi. Moreover, we assume that B0 contains

xn(U), where n(U) := min{i < ω : xi ∈ U}.

The balls are chosen by induction on i ∈ N: each Bi is centered at the point xn(Ui),
where Ui := U \

⋃
j<iBj , and has radius ri ∈ (0, 2−k) \D small enough so that

Bi ( U \
⋃

j<iBj . More specifically, each Ui is open, as a difference of open U and
a finite union of balls, each of which is a closed set according to our choice of balls of
radiuses not in D. Each nonempty Ui−1, including U0 = U , has more than one point,
since X has no isolated points. This allows us to choose each ri small enough, so that
Ui = Ui−1 \ Bi is nonempty, as long as Ui−1 6= ∅. Finally, each xk ∈ U belongs to⋃

j≤iBj , according to our rule of choosing the center of each Bi with the smallest
possible available index.

Next, we construct the family {Bs : s ∈ N<ω} of nonempty clopen sets in X . The
construction is by induction on the length of sequences s. Thus, for the sequence ∅ of
length 0 we put B∅ := X . Also, if Nk is the set of all sequences in N<ω of length k
(possibly 0) and for every s ∈ Nk and i ∈ N the symbol ŝ i denotes the sequence s
extended by one more term with value i, then we define 〈Bŝ i : i ∈ N〉 := Sk(Bs).

Notice that

for every x ∈ X and k ∈ N there exists a unique s ∈ Nk so that x ∈ Bs. (2)

This is justified by an easy inductive argument. For k = 1 this holds, since the sets
{B∅̂ i : i ∈ N} form a partition of B∅ = X . Also, if x ∈ Bs for some s ∈ Nk, then
there is precisely t ∈ Nk+1, which must be of the form t = ŝ i, for which x ∈ Bŝ i,
as the sets {Bŝ i : i ∈ N} form a partition of Bs.

Notice that, by (2), for every x ∈ X there is a unique sequence s = sx ∈ NN such
that x ∈

⋂
k∈NBs�k, where s � k is the restriction of s to its first k elements. De-

fine h : X → NN by letting h(x) := sx for every x ∈ X . This is a homeomorphism
from (1).

Indeed, clearly h is one-to-one. To see that h is onto S, first notice that h[X] ⊂ S.
Indeed, by (∗), for every xj ∈ X we have h(xj) � k = 0 for every k > n, where n is
such that d(xi, xj) > 2−n for every i < j. Thus, h(xj) ∈ S, since h(xj) is eventually
0. Also, h is onto S, since for every s ∈ S there exists a k ∈ N such that sm = 0 for all
m ≥ k. Let j = n(Bs�k). Then, by (∗), xj ∈ Bs�m for all m ≥ k and so h(xj) = s.

Finally, we need to show that both h and h−1 are continuous. Indeed, h is continu-
ous, since for every basic open set [s] in S, s ∈ N<ω, we have h−1([s]) = Bs is open
in X . Also, h−1 is continuous, since {Bs : s ∈ N<ω} is a basis for X and, for every
s ∈ N<ω, (h−1)−1(Bs) = h(Bs) = [s] is open in S.
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Summary. In a 1920 paper Sierpiński proved the following theorem characterizing
the space Q of rational numbers considered with the standard topology: Any countable
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metric space 〈X, d〉 without isolated points is homeomorphic to Q. In this note we
provide a simple proof of this result, that requires only basic topological background.
As such, it can be incorporated into an undergraduate topology curriculum.
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