
ALGEBRAS OF MEASURABLE EXTENDABLE

FUNCTIONS OF MAXIMAL CARDINALITY
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Abstract. The class Ext of all extendable functions from R to R is the
smallest among all Darboux-like classes of functions, which constitute
different natural generalizations of the class of usual continuous func-
tions. The goal of this paper is to construct, within Ext, an algebra A
which has maximal possible cardinality, that is, 2c. This, in particular,
would confirm a conjecture of T. Natkaniec from 2013. Moreover, the
constructed algebra A consists only of functions that are both Baire and
Lebesgue measurable.

1. Preliminaries

The work presented here is a contribution to a recent ongoing research
concerning the following general question: For an arbitrary subset M of a
vector space (or algebra) W , how big can a vector subspace (or algebra) V
contained in M ∪{0} be? The current state of the art concerning this topic
is described in [1, 5]. Given a cardinal number α and a vector space X, we
say that M ⊂ X is α-lineable if M ∪ {0} contains a vector subspace of X
of dimension α. Moreover, provided that X is a vector space contained in
some (linear) algebra, then A is called:

• algebrable if there is an algebra M so that M \{0} ⊂ A and M is in-
finitely generated, that is, the cardinality of any system of generators
of M is infinite.
• strongly α-algebrable if there exists an α-generated free algebra M

with M \ {0} ⊂ A. Recall that if X is contained in a commutative
algebra, then a set B ⊂ X is a generating set of some free algebra
contained in A if, and only if, for any N ∈ N, any nonzero polynomial
P inN variables without constant term and any distinct f1, . . . , fN ∈
B, we have P (f1, . . . , fN ) 6= 0 and P (f1, . . . , fN ) ∈ A.

The notion of simple α-algebrability is defined in a similar fashion. Of course,
strong α-algebrability implies α-algebrability, which implies α-lineability.
However, in general, the converse implications do not hold, see, e.g., [1, 5].
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For a topological space X and A ⊂ X we will use the symbols int(A),
cl(A), and bd(A) to denote the interior, the closure, and the boundary of A
in X, respectively. To define the class of extendable functions, recall that
for the topological spaces X and Y a function f : X → Y is

• connectivity provided the graph of f � C, the restriction of f to C,
is connected in X × Y for every connected subset C of X.
• extendable provided there is a connectivity map F : X × [0, 1] → Y

with f(x) = F (x, 0) for all x ∈ X.
• peripherally continuous provided for every x ∈ X, open U ⊂ X

containing x, and open V ⊂ Y containing f(x), there exists an open
W ⊂ X such that x ∈W ⊂ cl(W ) ⊂ U and f [bd(W )] ⊂ V .

These classes are denoted, respectively, as Conn(X,Y ), Ext(X,Y ), and
PC(X,Y ). We will write simply Conn, Ext, and PC when X = Y = R.

The notion of connectivity functions can be traced back to 1922 paper
[21] of K. Kuratowski and W. Sierpiński. However, the term “connectivity
map” seems to be first used in 1956 note [23] of J. Nash, see [19]. The
notion of peripherally continuous functions was introduced in 1957 paper
[19] of O. H. Hamilton, see also [26]. The notion of extendable functions
(without the name) first appeared in 1959 paper [26] of J. Stallings, where
he asks a question whether every connectivity function defined on [0, 1] is
extendable.

For what follows, we will need the following 2001 result.

Proposition 1.1 (K. Ciesielski, T. Natkaniec, and J. Wojciechowski [11]).
If n ≥ 2, then Ext(Rn,R) = Conn(Rn,R) = PC(Rn,R).

The main contribution of [11] is the proof that Conn(Rn,R) ⊂ Ext(Rn,R),
since the inclusion Ext(Rn,R) ⊂ Conn(Rn,R) is obvious, Conn(Rn,R) ⊂
PC(Rn,R) was proved by J. Stallings [26] (see also O. H. Hamilton [19]),
and PC(Rn,R) ⊂ Conn(Rn,R) was proved by M. R. Hagan [18]. (See also
G. T. Whyburn [27] and R. G. Gibson, F. Roush [16, theorem 8.1].)

The relations between these classes for the functions from R to R look
considerably different. To give a fuller picture of this, we also recall that a
function f : R→ R is

• Darboux provided f [C] is connected (i.e., an interval) for every con-
nected C ⊂ R. That is, f is Darboux if, and only if, it has the
intermediate value property. The name is in honor of J.-G. Darboux
who in his 1875 paper [13] studied this property and shown that ev-
ery derivative (even discontinuous) must have the intermediate value
property.
• almost continuous (in the sense of Stallings) provided every open

subset of R2 containing the graph of f contains also the graph of
a continuous function from R to R. This class was introduced in a
1959 paper [26] by J. Stallings, where it is proved that every such
function from [0, 1] onto [0, 1] must have a fixed point.
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• SCIVP (or has the Strong Cantor Intermediate Value Property) pro-
vided for every p, q ∈ R with f(p) 6= f(q) and for every Cantor set
K between f(p) and f(q), there exists a Cantor set C between p
and q such that f [C] ⊂ K and f � C is continuous. This notion
was introduced in a 1992 paper [25] of H. Rosen, R. G. Gibson, and
F. Roush to help distinguish extendable and connectivity functions
on R.

These classes of functions are denoted, respectively, as D, AC, and SCIVP.
The relation between all these classes, commonly referred to as Darboux-like
classes of functions, are presented in Figure 1. More information about these
classes can be found in the papers [17], [6], and [10].

Ext //

))

AC // Conn // D // PC

SCIVP

66

Figure 1. The strict inclusions, indicated by arrows, among
the classes of Darboux-like functions from R to R.

The lineability of the above defined classes has been thoroughly studied
by several authors in the past several years (see, e.g., [3, 7–9, 24]). Thus, it
has been proved in [9, theorem 4.2] that, for n > 1, the class Ext(Rn,R)
is not c+-lineable, where c stands for continuum, that is, the cardinality
of R. On the other hand Ext(Rn,R) is clearly c-algebrable, as justified by
the class of all continuous functions. The class Ext is 2c-lineable, as shown
independently in a 2013 paper [24, corollary 12] and 2014 paper [9, theorem
3.1].

The difficulty with proving the strong 2c-algebrability for the functions
from R to R is that many polynomials (e.g., p(x) = x2) are not surjective.
(The algebrability of the classes of functions from C to C is handled con-
siderably easier, see e.g. [2–4].) Nevertheless, in a 2013 paper T. Natkaniec
partially overcame these difficulties showing [24, corollary 10] that the class
AC(Rn,R) is 2c-algebrable for every n ≥ 1. He also asks [24, problem 11]
whether the class Ext is (strongly) 2c-algebrable. The goal of this article is
to give an affirmative answer to this question. It is presented in Theorem 3.1
and Corollary 3.2, whose proofs employ the ideas that come from [3]. Also, in
what follows, for f, g : Rn → R we define [f = g] := {x ∈ Rn : f(x) = g(x)}.

2. Massive sets for functions with interval range

Let F ⊂ R(Rn) and J ⊂ R be nonempty. Following Natkaniec [24], we say
that a set M ⊂ Rn is 〈F , J〉-massive provided there exists a map g : Rn → J
such that for every f : Rn → J , if M ⊂ [f = g], then f ∈ F . Notice that
such a witness map g : Rn → J belongs to F .

Our main result heavy relies on the following 1996 result.
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Proposition 2.1 (K. Ciesielski and I. Rec law [12, theorem 3.3]). There
exists a ϕ ∈ Conn(R2,R) and a meager subset M of R2 such that for every
ψ : R2 → R, if M ⊂ [ψ = ϕ], then ψ ∈ Conn(R2,R). In particular, M
is 〈Conn(R2,R),R〉-massive and, by Proposition 1.1, also 〈PC(R2,R),R〉-
massive.

The set M from Proposition 2.1 constructed in [12] is of the form of⋃
B∈B bd(B), where B is a countable basis of R2 from the following lemma.

It is interesting to see that actually any set M from Proposition 2.1 must
contain a subset of the form

⋃
B∈B bd(B).

Lemma 2.2. Let M and ϕ be as in Proposition 2.1. Then there exists a
countable basis B of R2 such that

(i) bd(B) ⊂M for every B ∈ B, and
(ii) for every ψ : R2 → R with M ⊂ [ψ = ϕ], the sets W justifying the

definition of peripheral continuity of ψ can be chosen from B.

Proof. Let B0 be the family of all open sets W in R2 with bd(W ) ⊂M and
notice that this is a basis for R2.

To see this, fix an open U ⊂ R2 and an x ∈ U . By way of contradiction,
assume that bd(W ) \ M 6= ∅ for every open W ⊂ R2 with x ∈ W ⊂
cl(W ) ⊂ U . Let ψ : R2 → R be an extension of ϕ � M such that ψ(y) =
ψ(x) + 1 for every y /∈ {x} ∪M . Then M ⊂ [ψ = ϕ], so ψ should belong
to Conn(R2,R) = PC(R2,R). However, ψ fails the definition of peripheral
continuity for V = (ψ(x)− 1, ψ(x) + 1), x, and U , a contradiction.

Now, since B0 is a basis for R2, which is second countable, it contains a
countable subfamily B which forms a basis for R2. (See e.g., [22, exercise 2,
p. 194].) �

We will also need the following variant of Proposition 2.1.

Lemma 2.3. Let I ⊂ R be a non-degenerate interval and h : R→ int(I) be
a homeomorphism. If ϕ and M are as in Proposition 2.1, then for every
ψ : R2 → I with M ⊂ [ψ = h ◦ ϕ] we have ψ ∈ Conn(R2, I). In particular,
h ◦ ϕ witnesses that M is 〈Conn(R2,R), I〉- and 〈PC(R2,R), I〉-massive.

Proof. Let ψ : R2 → I be such that M ⊂ [ψ = h ◦ ϕ]. It is enough to
show that ψ is peripherally continuous. To see this, fix an x ∈ R2, an open
U ⊂ R2 containing x, and an open V ⊂ I containing ψ(x). We need to find
an open W ⊂ R2 such that x ∈W ⊂ cl(W ) ⊂ U and ψ[bd(W )] ⊂ V .

Let D = ψ−1(int(I)) and notice that M ⊂ D, since for every y ∈ M ⊂
[ψ = h ◦ ϕ] we have ψ(y) = (h ◦ ϕ)(y) ∈ int(I). Let ψ̂ : R2 → int(I)

be an extension of ψ � D such that ψ̂(x) ∈ V1 := V ∩ int(I). Then, we

have M ⊂ [ψ̂ = h ◦ ϕ] = [h−1 ◦ ψ̂ = ϕ] and so h−1 ◦ ψ̂ ∈ PC(R2,R).

Let B be as in Lemma 2.2. Since h−1 ◦ ψ̂(x) ∈ h−1(V1), there exists a

W ∈ B with x ∈ W ⊂ cl(W ) ⊂ U and h−1 ◦ ψ̂[bd(W )] ⊂ h−1(V1). But
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we have bd(W ) ⊂ M ⊂ D, so that ψ̂[bd(W )] = ψ[bd(W )]. Therefore, also

ψ[bd(W )] = ψ̂[bd(W )] ⊂ V1 ⊂ V . This means that W is as needed. �

From Lemma 2.3 we deduce the following corollary, which constitutes a
slight strengthening of [12, corollary 3.4].

Corollary 2.4. There exists a g ∈ Ext and a meager subset M of R such
that for every non-degenerate interval I the set M is 〈Ext, I〉-massive, what
is witnessed by h ◦ g, where h is a homeomorphism from R onto int(I).

Proof. Let ϕ and M be as in Proposition 2.1. By Kuratowski-Ulam theorem
(see, e.g., [20]), there is a y ∈ R such that the set M := {x ∈ R : (x, y) ∈M}
is meager in R. Define g by letting g(x) = ϕ(x, y) for every x ∈ R. We claim
that g and M are as needed.

To see this, let I be a non-degenerate interval and h be a homeomorphism
from R onto int(I). Let f : R→ I be such that M ⊂ [f = h◦g]. It is enough
to find a connectivity function F : R2 → I with f(x) = F (x, 0) for all x ∈ R.

But, by Lemma 2.3, h◦ϕ witnesses that M is 〈PC(R2,R), I〉-massive. Let
ψ : R2 → I be an extension of h◦ϕ �M such that ψ(x, y) = h◦ϕ(x, y) = f(x)
for every x ∈ R. This is possible, since h◦ϕ(x, y) = h◦g(x) = f(x) whenever
(x, y) ∈ M . Then ψ is a connectivity function, as M ⊂ [ψ = h ◦ ϕ]. So,
the map F : R2 → I defined for every z ∈ R as F (x, z) = ψ(x, y + z)
is connectivity as well. To finish the proof, it is enough to notice that
F (x, 0) = ψ(x, y) = f(x) for all x ∈ R. �

We finish with the following simple implication of Corollary 2.4, which is
a strengthening of [12, lemma 3.2].

Lemma 2.5. There exists a family K of c-many pairwise disjoint sets such
that for every non-degenerate interval I the set K ∈ K is 〈Ext, I〉-massive
and the union

⋃
K has measure zero and is also meager. In particular, every

set in K has also measure zero and is meager.

Proof. First notice that there exists a family {Kξ : ξ < c} of pairwise disjoint
c-dense Fσ-sets such that

⋃
ξ<cKξ is meager and of measure zero. To see

this, fix a countable basis B for R. For every B ∈ B choose a measure zero
Cantor set CB ⊂ B (in such a way that these CB’s are pairwise disjoint for

B ∈ B) and let {CξB : ξ < c} be a partition of CB into Cantor subsets. For

every ξ < c let Kξ :=
⋃
B∈B C

ξ
B. Then the family {Kξ : ξ < c} is as needed.

Indeed, for any ξ < c and B ∈ B, CξB is a closed set of measure zero.
In particular, every Kξ is a c-dense Fσ-set also of measure zero. Also, by
construction, sets Kξ are pairwise disjoint. Finally, notice that⋃

ξ<c

Kξ =
⋃
ξ<c

⋃
B∈B

CξB =
⋃
B∈B

CB

is a countable union of c-dense Fσ-set that has measure zero.
Now, let g ∈ Ext and M be as in Corollary 2.4. Then, for every ξ < c,

there exists an auto-homeomorphisms hξ of R such that hξ[M ] ⊂ Kξ. (See
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e.g. [15].) Then the family K = {hξ[M ] : ξ < c} is as needed. This is

the case, since, for every ξ < c, the map g ◦ h−1
ξ and the set hξ[M ] satisfy

Corollary 2.4. �

3. The strongly 2c-algebrability of Ext

Let Hn be a family of all polynomials from Rn into R.

Theorem 3.1. There exists a family F ⊂ RR of cardinality 2c such that
for every h ∈ Hn and every sequence 〈f1, . . . , fn〉 of distinct elements of F
the map h(f1, . . . , fn) is non-zero, extendable, and both Baire and Lebesgue
measurable.

First, notice that this immediately implies our main result.

Corollary 3.2. The algebra generated by the family F from Theorem 3.1
consist only of functions that are extendable and both Baire and Lebesgue
measurable. In particular, all classes of Darboux-like functions from R to R
(see Figure 1), are strongly 2c-algebrable.

Proof. The statement follows immediately from the fact that h(f1, . . . , fn) ∈
Ext for all sequences 〈f1, . . . , fn〉 in F (not only those of distinct element).
This is the case, since for every sequence 〈f1, . . . , fn〉 in F there is a se-
quence 〈g1, . . . , gm〉 of distinct elements of F and a function j : {1, . . . , n} →
{1, . . . ,m} with the property that 〈f1, . . . , fn〉 = 〈gj(1), . . . , gj(n)〉. Then

ĥ(x1, . . . , xm) := h(xj(1), . . . , xj(n)) ∈ Hm and, by Theorem 3.1, we have

h(f1, . . . , fn) = ĥ(g1, . . . , gm) ∈ Ext, as needed. �

Proof of Theorem 3.1. Let H :=
⋃∞
n=1Hn × nω, where symbol nω denotes

{0, . . . , n − 1}ω. Since |H| = c, we can enumerate, with no repetition, the
family K from Lemma 2.5 as {Kh,p : 〈h, p〉 ∈ H}.

For every 〈h, p〉 ∈ Hn×nω, let gh,p : R→ int(h[Rn]) witness the fact that
Kh,p is 〈Ext, h[Rn]〉-massive. For each x ∈ R, let

~vh,p(x) = 〈~vh,p(x)0, . . . , ~vh,p(x)n−1〉 ∈ Rn

be such that h(~vh,p(x)) = gh,p(x). Also, let p̄ : βω → n be a continuous

extension of p to the Stone-Čech compactification βω of ω. (We refer the
interested reader to [14] for an extensive account of the properties of the
Stone-Čech compactification.)

For every ultrafilter U ∈ βω and every x ∈ Kh,p let fU (x) := ~vh,p(x)p̄(U) ∈
R. For x /∈

⋃
〈h,p〉∈HKh,p we can define fU (x) := 0. Then, the family

F := {fU : U ∈ βω} is as needed.
To see this, first choose distinct U0, . . . ,Un−1 ∈ βω and an h ∈ Hn. We

will show that h(fU0 , . . . , fUn−1) ∈ Ext and is Baire and Lebesgue measur-
able.

To see this, choose a partition {U0, . . . , Un−1} of ω such that Ui ∈ Uj if,
and only if, i = j. Let p ∈ nω be such that p−1(i) = Ui for every i ∈ n.
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Then p̄ : βω → n has the property p̄(Ui) = i for every i ∈ n. We claim that
h(fU0 , . . . , fUn−1) = gh,p on Kh,p, ensuring h(fU0 , . . . , fUn−1) ∈ Ext. Indeed,
for every x ∈ Kh,p we have

h(fU0 , . . . , fUn−1)(x) = h(fU0(x), . . . , fUn−1(x))

= h(~vh,p(x)p̄(U0), . . . , ~vh,p(x)p̄(Un−1))

= h(~vh,p(x)0, . . . , ~vh,p(x)n−1)

= h(~vh,p(x)) = gh,p(x)

as needed. Thus, indeed h(fU0 , . . . , fUn−1) ∈ Ext. Notice also that, by con-
struction, K : =

⋃
〈h,p〉∈HKh,p is meager and has measure zero. Moreover,

on R \K, the values of fU are always the same, equal 0. Thus, on R \K,
h(fU0 , . . . , fUn−1) is constant equal h(0, . . . , 0). So, indeed h(fU0 , . . . , fUn−1)
is Baire and Lebesgue measurable.

Next, notice that for every non-constant h ∈ Hn there exists an x ∈ Kh,p

such that gh,p(x) 6= 0. To see this, choose a nonzero c ∈ h[Rn] and let
ψ : R→ R extend gh,p � Kh,p be such that ψ(x) = c for every x ∈ R \Kh,p.
Then, ψ is extendable, so Darboux. Thus, it is impossible for gh,p � Kh,p to
attain only value 0.

We use this fact to show that F has indeed cardinality 2c. Since βω
has such cardinality, it is enough to show that all maps fU are distinct.
To see this, choose distinct U0,U1 ∈ βω and let h(s, t) = s − t. Choose p
with p(Ui) = i for every i < 2 and pick x ∈ Kh,p with gh,p(x) 6= 0. Then,
fU0(x) − fU1(x) = ~vh,p(x)0 − ~vh,p(x)1 = h(~vh,p(x)) = gh,p(x) 6= 0, so that
fU0 6= fU1 , as needed.

Finally, we need to show that our algebra is strongly 2c-algebrable. To
see this, let h ∈ Hn be non-constant and choose distinct U0, . . . ,Un−1 ∈ βω.
We need to find an x such that h(fU0 , . . . , fUn−1)(x) 6= 0. For this, choose
p ∈ nω with p̄[Ui] = {i} for every i < n and pick x ∈ Kh,p with gh,p(x) 6= 0.
Then, h(fU0 , . . . , fUn−1)(x) = gh,p(x) 6= 0, as needed. �
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