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“Big” Continuous Restrictions of Arbitrary
Functions

K. C. Ciesielski, M. E. Martı́nez–Gómez,
and J. B. Seoane–Sepúlveda

Abstract. We discuss an amazing 1922 result of Henry Blumberg that for an arbitrary
f : R→ R, there is a dense D ⊂ R such that the restriction f � D is continuous. In particu-
lar, we provide a new short proof of this theorem.

1. INTRODUCTION. As soon as a student is introduced to the notion of continu-
ity for one variable real-valued functions, f : R→ R, it is natural to note that not all
such maps are (everywhere) continuous. Perhaps the most natural examples illustrating
this are maps having just a single jump discontinuity, such as the famous characteris-
tic function χ(0,∞) : R → {0, 1} of (0,∞). Most undergraduate students are, usu-
ally, pleased after learning such examples, without even wondering whether anything
“worse” could happen. However, some students may inquire if an arbitrary f : R→ R
must have “a lot” of points of continuity, as χ(0,∞) does. Fortunately, there is yet an-
other simple example of a function f that is, actually, discontinuous at every point: the
characteristic function χQ of the set Q of all rational numbers, known as the Dirichlet
function, and named after P. Dirichlet (1805–1859). This example would surely satisfy
all but the most curious students. However, such extremely curious (probably gradu-
ate) students may notice that the restriction f � Qc of f = χQ to the (very big) set
Qc := R \Q of irrational numbers is still continuous. A natural question arises: Must
something like this be true for every function f : R→ R?

In the early 20th century Henry Blumberg (1886–1950, see Figure 1), a Russian-
American mathematician, proved the following astonishing result [2].

Figure 1. H. Blumberg in 1914 (courtesy of Dr. George Blumberg and the Blumberg family).
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Figure 2. A. Zygmund in 1980 Summer Symposium in Real Analysis (courtesy of the Real Analysis Ex-
change) and W. Sierpiński

Theorem 1. For every f : R→ R there exists a dense subset D of R such that f � D
is continuous.

Of course, the key property of the setD in Theorem 1 is that it is “big,” in the sense
that it is dense in R. However, the set D provided in the construction is just countable.
Consequently, a natural question is whether the existence of an even bigger set D in
the theorem above can always be ensured.

A negative answer to this last question was given only a year later, in the 1923
paper [14] by two Polish mathematicians, Wacław Sierpiński (1882–1969) and Antoni
Zygmund1 (1900–1992); see Figure 2. More particularly, they proved the following
result (where c denotes the cardinality of the continuum, that is, of R). Any function
as in the following theorem is nowadays called a Sierpiński–Zygmund (or just SZ-)
function.

Theorem 2. There exists a function f : R→ R such that f � S is discontinuous for
every S ⊂ R of cardinality c.

Thus, by Theorem 2, the countable set D constructed in the proof of Theorem 1
is the best we can do within the standard axiom system ZFC (the Zermelo–Fraenkel
axioms with the axiom of choice) of set theory. Indeed, under the continuum hypothesis
CH,2 if f is an SZ-function, then any set D with continuous f � D must be countable,
as it has cardinality less than c. Still, one might wonder if under the negation of the
continuum hypothesis something more can be said about the cardinality of the set D
from Blumberg’s theorem. However, even ¬CH does not decide anything definitive on
the possible size of D. Specifically, this follows from the following two results.

(1) In a model of ZFC obtained by adding at least ω2 Cohen reals, the continuum
hypothesis fails, while there exists an f : R → R for which f � X is discontinuous
for every uncountable X ⊂ R. This has been proved by Gruenhage (see the work of

1After the Second World War Zygmund worked in the United States.
2Recall that CH, the statement that there is no cardinal number between c and ω (where ω is the cardinality

of N), is independent of the usual axioms ZFC of set theory.
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Recław [11, Theorem 4]) and Shelah [13, §2]. Of course, in such a model of ZFC the
set D from Blumberg’s theorem can be at most countable, while ¬CH holds.

(2) Under Martin’s axiom MA, for every function f : R→ R and every infinite cardi-
nal κ < c there exists a κ-dense set X ⊂ R (i.e., such that X ∩ (a, b) has cardinality
κ for every a < b) for which f � X is continuous. This was proved by Baldwin [1]. In
particular, under MA+¬CH, which is consistent with ZFC, the setD from Blumberg’s
theorem can actually be ω1-dense.

Another possible generalization of Theorem 1 studied in the literature is whether
there is a model of ZFC in which the set D (not necessarily dense) can be always
chosen either of second category or of positive Lebesgue outer measure. Of course,
neither of these holds either in the model from (1) or under MA (since, under MA,
every set of cardinality less than c is both meager and of measure 0). But each of these
questions has a positive answer. A model of ZFC in which for every f : R→ R there
exists a second category set D with f � D continuous is constructed in a 1995 paper
[13] of Shelah. It is easy to see that this property implies that the set D can also be
of second category in every nonempty open set in R (see, e.g., [5, Theorem 2.10]).
In the measure case, Rosłanowski and Shelah proved, in a 2006 paper [12], that it
is consistent with ZFC that for every f : R → R there exists a continuous function
g : R → R that agrees with f on a set D of positive Lebesgue outer measure. Of
course, for f = χ(0,∞), this last set D cannot be dense. But, even if we require only
that f � D be continuous, such aD cannot be expected to be of positive outer measure
in every nonempty open set in R. This is prevented by an example of Brown [4].
(Compare also [5, Theorem 2.11].)

There is also a multitude of other generalizations of Blumberg’s theorem (e.g., con-
cerning functions between topological spacesX and Y ). See, for example, [3, 6, 7, 10].
To see these results from a more general real analysis perspective, see [5, 9].

2. THE PROOFS. The proof of Blumberg’s theorem relies on the following lemma
from [2]. (See also [9].) For f : R→ R, a point x ∈ R is said to be f -pleasant pro-
vided for every open B 3 f(x) there is an open UB

x 3 x such that the set f−1(B) is
categorically dense inUB

x (i.e., f−1(B) ∩ V is of second category for every nonempty
open V ⊂ UB

x ).

Lemma 3. For every f : R→ R the set Pf of all f -pleasant points is residual (i.e., it
contains an intersection of countably many dense open sets) in R.

Proof. Let B be a countable basis for R. For every B ∈ B let

EB :=
{
x ∈ f−1(B) : f−1(B) is not categorically dense in any open U 3 x

}
and notice that EB is of first category. Indeed, it is a union of two first category sets:
W ∩ EB , where W =

⋃
{V ∈ B : V ∩ EB is of first category}, and bd(W ) ∩ EB

(where bd(W ) is the boundary of W ).
Since E :=

⋃
B∈B EB is of first category, it is enough to show that R \ E ⊂ Pf .

To see this, fix an x ∈ R \ E and an open W 3 f(x). Choose B ∈ B with f(x) ∈
B ⊂ W . Since x /∈ EB , there is an open UB

x 3 x such that f−1(B) is categorically
dense in UB

x . Then f−1(W ) ⊃ f−1(B) is also categorically dense in UB
x ; that is,

UW
x := UB

x is as needed.

New proof of Blumberg’s Theorem. Let B = {Bn : n < ω} be a basis for R. We con-
struct, by induction on n < ω, the sequences 〈xn ∈ Bn ∩ Pf \ {xi : i < n} : n < ω〉
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and 〈〈Un
k , V

n
k 〉 ∈ B2 : k ≤ n < ω〉, aiming for D := {xn : n < ω} to be our desired

set. The continuity of f � D is ensured by the properties of the constructed sets Un
k

and V n
k : each family {V n

i : n < ω} will form a basis of R at f(xi) and each D-open
U j
i ∩D 3 xi will be contained in f−1(V j

i ).
To ensure this, we will assume that for every n < ω and i ≤ j ≤ n, k ≤ ` ≤ n

with j ≤ `:

(an) f−1(V j
i ) is categorically dense inU j

i , xi ∈ U j
i ∩ f−1(V

j
i ), and V j

i has diameter
less than 2−j ;
(bn) if U j

i ∩ U `
k 6= ∅ and 〈i, j〉 6= 〈k, `〉, then j < ` and U `

k × V `
k ⊂ U

j
i × V

j
i .

These properties guarantee that D := {xn : n < ω} is as needed. Indeed, D is dense,
since it intersects every Bn ∈ B. Each family {V n

i : n < ω} will form a basis of R at
f(xi), since each open set V n

i contains xi and the diameters of V j
i go to 0 as j →∞.

Thus, to show that f � D is continuous at xi, it is enough to show that f maps eachD-
open U j

i ∩D 3 xi into V j
i . To see this, fix an xk ∈ D ∩ U j

i . We cannot have k < i,
since then xk would belong to disjoint U j

k and U j
i . By (aj), we have f(xi) ∈ V j

i .
Thus, assume that i < k. Then xk ∈ U j

i ∩ Uk
k and, by (bk), f(xk) ∈ V k

k ⊂ V j
i , as

needed.
To make the nth step in our construction, choose a nonempty interval B̂n ⊂ Bn

such that, for every i ≤ j < n, B̂n is either contained in U j
i or it is disjoint from U j

i .
Let

Fn := {U j
i : i ≤ j < n & B̂n ⊂ U j

i }.

If Fn 6= ∅, then n > 0 and, by (bn−1), Fn contains a smallest element, say Uµ
κ . We

choose

xn ∈ B̂n ∩ Pf ∩ f−1(V µ
κ ) \ {xi : i < n}.

This choice can be made since B̂n ⊂ Uµ
κ is open and nonempty, f−1(V µ

κ ) is cat-
egorically dense in Uµ

κ , and Pf \ {xi : i < n} is residual. If Fn = ∅, take xn ∈
B̂n ∩ Pf \ {xi : i < n}.

To finish the construction we first choose, for each k ≤ n, a V n
k as an open interval

containing f(xk) of length less than 2−k small enough such that if f(xk) ∈ V j
i for

some i ≤ j < n, then V n
k ⊂ V j

i . The existence of sets Un
k , k ≤ n, satisfying (an)

follows from {xi : i ≤ n} ⊂ Pf . Shrinking them if necessary, we can also ensure that
they are pairwise disjoint and that if, for some i ≤ j < n, xk ∈ U j

i , then Un
k ⊂ U j

i .
These choices ensure that (an) and (bn) are satisfied.

Construction of a Sierpiński–Zygmund function. The key fact needed in the construc-
tion is the following result of Kuratowski (1896–1980), see, e.g., [8, p. 16]:

(E) For every continuous g from an S ⊂ R into R there exists a Gδ-set G ⊃ S and
a continuous extension ḡ : G → R of g. In particular, g admits a Borel extension
ĝ : R→ R.

Indeed, for every x ∈ cl(S) define

oscg(x) := inf{diam(g[U ∩ S]) : U 3 x is open}
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and notice thatG := {x ∈ cl(S) : oscg(x) = 0} contains S and is aGδ-set in R since
G :=

⋂
n∈NWn, where each set Wn := {x ∈ cl(S) : oscg(x) < 1/n} is open. Now,

if cl(g) is the closure in R2 of the graph of g, then ḡ = cl(g) ∩ (G× R) is the graph
of our desired function ḡ. A Borel extension ĝ of ḡ can be defined to be 0 on R \G.

To construct a Sierpiński–Zygmund function f : R → R, let {xξ : ξ < c} be an
enumeration, with no repetition, of R and let {ĝξ : ξ < c} be an enumeration of all
Borel functions from R to R. For every ξ < c define f(xξ) so that

f(xξ) ∈ R \ {ĝζ(xξ) : ζ < ξ}.

This defines our SZ-function. Indeed, if f � S is continuous for some S ⊂ R then, by
(E), there exists a Borel extension ĝ : R→ R of f � S. Let ζ < c be such that ĝζ = ĝ.
Then S ⊂ {xξ : ξ ≤ ζ}, since f(xξ) 6= ĝζ(xξ) = ĝ(xξ) for every ξ > ζ . Thus, S has
cardinality < c, as needed, and we are done.
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Facultad de Ciencias Matemáticas, Plaza de Ciencias 3
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