"Big" Continuous Restrictions of Arbitrary Functions

K. C. Ciesielski, M. E. Martínez-Gómez, and J. B. Seoane-Sepúlveda

Abstract

We discuss an amazing 1922 result of Henry Blumberg that for an arbitrary $f: \mathbb{R} \rightarrow \mathbb{R}$, there is a dense $D \subset \mathbb{R}$ such that the restriction $f \upharpoonright D$ is continuous. In particular, we provide a new short proof of this theorem.

1. INTRODUCTION. As soon as a student is introduced to the notion of continuity for one variable real-valued functions, $f: \mathbb{R} \rightarrow \mathbb{R}$, it is natural to note that not all such maps are (everywhere) continuous. Perhaps the most natural examples illustrating this are maps having just a single jump discontinuity, such as the famous characteristic function $\chi_{(0, \infty)}: \mathbb{R} \rightarrow\{0,1\}$ of $(0, \infty)$. Most undergraduate students are, usually, pleased after learning such examples, without even wondering whether anything "worse" could happen. However, some students may inquire if an arbitrary $f: \mathbb{R} \rightarrow \mathbb{R}$ must have "a lot" of points of continuity, as $\chi_{(0, \infty)}$ does. Fortunately, there is yet another simple example of a function f that is, actually, discontinuous at every point: the characteristic function $\chi_{\mathbb{Q}}$ of the set \mathbb{Q} of all rational numbers, known as the Dirichlet function, and named after P. Dirichlet (1805-1859). This example would surely satisfy all but the most curious students. However, such extremely curious (probably graduate) students may notice that the restriction $f \upharpoonright \mathbb{Q}^{c}$ of $f=\chi_{\mathbb{Q}}$ to the (very big) set $\mathbb{Q}^{c}:=\mathbb{R} \backslash \mathbb{Q}$ of irrational numbers is still continuous. A natural question arises: Must something like this be true for every function $f: \mathbb{R} \rightarrow \mathbb{R}$?

In the early 20th century Henry Blumberg (1886-1950, see Figure 1), a RussianAmerican mathematician, proved the following astonishing result [2].

Figure 1. H. Blumberg in 1914 (courtesy of Dr. George Blumberg and the Blumberg family).

Figure 2. A. Zygmund in 1980 Summer Symposium in Real Analysis (courtesy of the Real Analysis Exchange) and W. Sierpiński

Theorem 1. For every $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a dense subset D of \mathbb{R} such that $f \upharpoonright D$ is continuous.

Of course, the key property of the set D in Theorem 1 is that it is "big," in the sense that it is dense in \mathbb{R}. However, the set D provided in the construction is just countable. Consequently, a natural question is whether the existence of an even bigger set D in the theorem above can always be ensured.

A negative answer to this last question was given only a year later, in the 1923 paper [14] by two Polish mathematicians, Wacław Sierpiński (1882-1969) and Antoni Zygmund ${ }^{1}$ (1900-1992); see Figure 2. More particularly, they proved the following result (where \mathfrak{c} denotes the cardinality of the continuum, that is, of \mathbb{R}). Any function as in the following theorem is nowadays called a Sierpiński-Zygmund (or just SZ-) function.

Theorem 2. There exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \upharpoonright S$ is discontinuous for every $S \subset \mathbb{R}$ of cardinality \mathfrak{c}.

Thus, by Theorem $\underline{2}$, the countable set D constructed in the proof of Theorem $\underline{1}$
 axioms with the axiom of choice) of set theory. Indeed, under the continuum hypothesis $\mathrm{CH},{ }^{2}$ if f is an SZ-function, then any set D with continuous $f \upharpoonright D$ must be countable, as it has cardinality less than \mathfrak{c}. Still, one might wonder if under the negation of the continuum hypothesis something more can be said about the cardinality of the set D from Blumberg's theorem. However, even $\neg \mathrm{CH}$ does not decide anything definitive on the possible size of D. Specifically, this follows from the following two results.
(1) In a model of ZFC obtained by adding at least ω_{2} Cohen reals, the continuum hypothesis fails, while there exists an $f: \mathbb{R} \rightarrow \mathbb{R}$ for which $f \upharpoonright X$ is discontinuous for every uncountable $X \subset \mathbb{R}$. This has been proved by Gruenhage (see the work of

[^0]Recław [11, Theorem 4]) and Shelah [13, §2]. Of course, in such a model of ZFC the set D from Blumberg's theorem can be at most countable, while $\neg \mathrm{CH}$ holds.
(2) Under Martin's axiom MA, for every function $f: \mathbb{R} \rightarrow \mathbb{R}$ and every infinite cardinal $\kappa<\mathfrak{c}$ there exists a κ-dense set $X \subset \mathbb{R}$ (i.e., such that $X \cap(a, b)$ has cardinality κ for every $a<b$) for which $f \upharpoonright X$ is continuous. This was proved by Baldwin [1]. In particular, under MA $+\neg \mathrm{CH}$, which is consistent with ZFC, the set D from Blumberg's theorem can actually be ω_{1}-dense.

Another possible generalization of Theorem 1 studied in the literature is whether there is a model of ZFC in which the set D (not necessarily dense) can be always chosen either of second category or of positive Lebesgue outer measure. Of course, neither of these holds either in the model from (1) or under MA (since, under MA, every set of cardinality less than \mathfrak{c} is both meager and of measure 0). But each of these questions has a positive answer. A model of ZFC in which for every $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a second category set D with $f \upharpoonright D$ continuous is constructed in a 1995 paper [13] of Shelah. It is easy to see that this property implies that the set D can also be of second category in every nonempty open set in \mathbb{R} (see, e.g., [5, Theorem 2.10]). In the measure case, Rosłanowski and Shelah proved, in a 2006 paper [12], that it is consistent with ZFC that for every $f: \mathbb{R} \rightarrow \mathbb{R}$ there exists a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ that agrees with f on a set D of positive Lebesgue outer measure. Of course, for $f=\chi_{(0, \infty)}$, this last set D cannot be dense. But, even if we require only that $f \upharpoonright D$ be continuous, such a D cannot be expected to be of positive outer measure in every nonempty open set in \mathbb{R}. This is prevented by an example of Brown [4]. (Compare also [5, Theorem 2.11].)

There is also a multitude of other generalizations of Blumberg's theorem (e.g., concerning functions between topological spaces X and Y). See, for example, $[\mathbf{3}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}]$. To see these results from a more general real analysis perspective, see $[\mathbf{5}, \underline{9}]$.
2. THE PROOFS. The proof of Blumberg's theorem relies on the following lemma from [2]. (See also [9].) For $f: \mathbb{R} \rightarrow \mathbb{R}$, a point $x \in \mathbb{R}$ is said to be f-pleasant provided for every open $B \ni f(x)$ there is an open $U_{x}^{B} \ni x$ such that the set $f^{-1}(B)$ is categorically dense in U_{x}^{B} (i.e., $f^{-1}(B) \cap V$ is of second category for every nonempty open $\left.V \subset U_{x}^{B}\right)$.

Lemma 3. For every $f: \mathbb{R} \rightarrow \mathbb{R}$ the set P_{f} of all f-pleasant points is residual (i.e., it contains an intersection of countably many dense open sets) in \mathbb{R}.
Proof. Let \mathcal{B} be a countable basis for \mathbb{R}. For every $B \in \mathcal{B}$ let

$$
E_{B}:=\left\{x \in f^{-1}(B): f^{-1}(B) \text { is not categorically dense in any open } U \ni x\right\}
$$

and notice that E_{B} is of first category. Indeed, it is a union of two first category sets: $W \cap E_{B}$, where $W=\bigcup\left\{V \in \mathcal{B}: V \cap E_{B}\right.$ is of first category $\}$, and $\operatorname{bd}(W) \cap E_{B}$ (where $\operatorname{bd}(W)$ is the boundary of W).

Since $E:=\bigcup_{B \in \mathcal{B}} E_{B}$ is of first category, it is enough to show that $\mathbb{R} \backslash E \subset P_{f}$. To see this, fix an $x \in \mathbb{R} \backslash E$ and an open $W \ni f(x)$. Choose $B \in \mathcal{B}$ with $f(x) \in$ $B \subset W$. Since $x \notin E_{B}$, there is an open $U_{x}^{B} \ni x$ such that $f^{-1}(B)$ is categorically dense in U_{x}^{B}. Then $f^{-1}(W) \supset f^{-1}(B)$ is also categorically dense in U_{x}^{B}; that is, $U_{x}^{W}:=U_{x}^{B}$ is as needed.

New proof of Blumberg's Theorem. Let $\mathcal{B}=\left\{B_{n}: n<\omega\right\}$ be a basis for \mathbb{R}. We construct, by induction on $n<\omega$, the sequences $\left\langle x_{n} \in B_{n} \cap P_{f} \backslash\left\{x_{i}: i<n\right\}: n<\omega\right\rangle$
and $\left\langle\left\langle U_{k}^{n}, V_{k}^{n}\right\rangle \in \mathcal{B}^{2}: k \leq n<\omega\right\rangle$, aiming for $D:=\left\{x_{n}: n<\omega\right\}$ to be our desired set. The continuity of $f \upharpoonright D$ is ensured by the properties of the constructed sets U_{k}^{n} and V_{k}^{n} : each family $\left\{V_{i}^{n}: n<\omega\right\}$ will form a basis of \mathbb{R} at $f\left(x_{i}\right)$ and each D-open $U_{i}^{j} \cap D \ni x_{i}$ will be contained in $f^{-1}\left(V_{i}^{j}\right)$.

To ensure this, we will assume that for every $n<\omega$ and $i \leq j \leq n, k \leq \ell \leq n$ with $j \leq \ell$:
(a_{n}) $f^{-1}\left(V_{i}^{j}\right)$ is categorically dense in $U_{i}^{j}, x_{i} \in U_{i}^{j} \cap f^{-1}\left(V_{i}^{j}\right)$, and V_{i}^{j} has diameter less than 2^{-j};
(b_{n}) if $U_{i}^{j} \cap U_{k}^{\ell} \neq \emptyset$ and $\langle i, j\rangle \neq\langle k, \ell\rangle$, then $j<\ell$ and $U_{k}^{\ell} \times V_{k}^{\ell} \subset U_{i}^{j} \times V_{i}^{j}$.
These properties guarantee that $D:=\left\{x_{n}: n<\omega\right\}$ is as needed. Indeed, D is dense, since it intersects every $B_{n} \in \mathcal{B}$. Each family $\left\{V_{i}^{n}: n<\omega\right\}$ will form a basis of \mathbb{R} at $f\left(x_{i}\right)$, since each open set V_{i}^{n} contains x_{i} and the diameters of V_{i}^{j} go to 0 as $j \rightarrow \infty$. Thus, to show that $f \upharpoonright D$ is continuous at x_{i}, it is enough to show that f maps each D open $U_{i}^{j} \cap D \ni x_{i}$ into V_{i}^{j}. To see this, fix an $x_{k} \in D \cap U_{i}^{j}$. We cannot have $k<i$, since then x_{k} would belong to disjoint U_{k}^{j} and U_{i}^{j}. By $\left(a_{j}\right)$, we have $f\left(x_{i}\right) \in V_{i}^{j}$. Thus, assume that $i<k$. Then $x_{k} \in U_{i}^{j} \cap U_{k}^{k}$ and, by $\left(b_{k}\right), f\left(x_{k}\right) \in V_{k}^{k} \subset V_{i}^{j}$, as needed.

To make the nth step in our construction, choose a nonempty interval $\hat{B}_{n} \subset B_{n}$ such that, for every $i \leq j<n, \hat{B}_{n}$ is either contained in U_{i}^{j} or it is disjoint from U_{i}^{j}. Let

$$
\mathcal{F}_{n}:=\left\{U_{i}^{j}: i \leq j<n \& \hat{B}_{n} \subset U_{i}^{j}\right\} .
$$

If $\mathcal{F}_{n} \neq \emptyset$, then $n>0$ and, by $\left(b_{n-1}\right), \mathcal{F}_{n}$ contains a smallest element, say U_{κ}^{μ}. We choose

$$
x_{n} \in \hat{B}_{n} \cap P_{f} \cap f^{-1}\left(V_{\kappa}^{\mu}\right) \backslash\left\{x_{i}: i<n\right\} .
$$

This choice can be made since $\hat{B}_{n} \subset U_{\kappa}^{\mu}$ is open and nonempty, $f^{-1}\left(V_{\kappa}^{\mu}\right)$ is categorically dense in U_{κ}^{μ}, and $P_{f} \backslash\left\{x_{i}: i<n\right\}$ is residual. If $\mathcal{F}_{n}=\emptyset$, take $x_{n} \in$ $\hat{B}_{n} \cap P_{f} \backslash\left\{x_{i}: i<n\right\}$.

To finish the construction we first choose, for each $k \leq n$, a V_{k}^{n} as an open interval containing $f\left(x_{k}\right)$ of length less than 2^{-k} small enough such that if $f\left(x_{k}\right) \in V_{i}^{j}$ for some $i \leq j<n$, then $V_{k}^{n} \subset V_{i}^{j}$. The existence of sets $U_{k}^{n}, k \leq n$, satisfying (a_{n}) follows from $\left\{x_{i}: i \leq n\right\} \subset P_{f}$. Shrinking them if necessary, we can also ensure that they are pairwise disjoint and that if, for some $i \leq j<n, x_{k} \in U_{i}^{j}$, then $U_{k}^{n} \subset U_{i}^{j}$. These choices ensure that (a_{n}) and $\left(b_{n}\right)$ are satisfied.

Construction of a Sierpiński-Zygmund function. The key fact needed in the construction is the following result of Kuratowski (1896-1980), see, e.g., [8, p. 16]:
(E) For every continuous g from an $S \subset \mathbb{R}$ into \mathbb{R} there exists a $G_{\boldsymbol{\delta}}$-set $G \supset S$ and a continuous extension $\bar{g}: G \rightarrow \mathbb{R}$ of g. In particular, g admits a Borel extension $\hat{g}: \mathbb{R} \rightarrow \mathbb{R}$.

Indeed, for every $x \in \operatorname{cl}(S)$ define

$$
\operatorname{osc}_{g}(x):=\inf \{\operatorname{diam}(g[U \cap S]): U \ni x \text { is open }\}
$$

and notice that $G:=\left\{x \in \operatorname{cl}(S): \operatorname{osc}_{g}(x)=0\right\}$ contains S and is a G_{δ}-set in \mathbb{R} since $G:=\bigcap_{n \in \mathbb{N}} W_{n}$, where each set $W_{n}:=\left\{x \in \operatorname{cl}(S): \operatorname{osc}_{g}(x)<1 / n\right\}$ is open. Now, if $\operatorname{cl}(g)$ is the closure in \mathbb{R}^{2} of the graph of g, then $\bar{g}=\operatorname{cl}(g) \cap(G \times \mathbb{R})$ is the graph of our desired function \bar{g}. A Borel extension \hat{g} of \bar{g} can be defined to be 0 on $\mathbb{R} \backslash G$.

To construct a Sierpiński-Zygmund function $f: \mathbb{R} \rightarrow \mathbb{R}$, let $\left\{x_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration, with no repetition, of \mathbb{R} and let $\left\{\hat{g}_{\xi}: \xi<\mathfrak{c}\right\}$ be an enumeration of all Borel functions from \mathbb{R} to \mathbb{R}. For every $\xi<\mathfrak{c}$ define $f\left(x_{\xi}\right)$ so that

$$
f\left(x_{\xi}\right) \in \mathbb{R} \backslash\left\{\hat{g}_{\zeta}\left(x_{\xi}\right): \zeta<\xi\right\}
$$

This defines our SZ-function. Indeed, if $f \upharpoonright S$ is continuous for some $S \subset \mathbb{R}$ then, by (E), there exists a Borel extension $\hat{g}: \mathbb{R} \rightarrow \mathbb{R}$ of $f \upharpoonright S$. Let $\zeta<\mathfrak{c}$ be such that $\hat{g}_{\zeta}=\hat{g}$. Then $S \subset\left\{x_{\xi}: \xi \leq \zeta\right\}$, since $f\left(x_{\xi}\right) \neq \hat{g}_{\zeta}\left(x_{\xi}\right)=\hat{g}\left(x_{\xi}\right)$ for every $\xi>\zeta$. Thus, S has cardinality $<\mathfrak{c}$, as needed, and we are done.

ACKNOWLEDGEMENT. The third author was supported by Grant MTM2015-65825-P.

REFERENCES

1. Baldwin, S. (1990/91). Martin's axiom implies a stronger version of Blumberg's theorem. Real Anal. Exchange. 16(1): 67-73. www.jstor.org/stable/44153681
2. Blumberg, H. (1922). New properties of all real functions. Trans. Amer. Math. Soc. 24(2): 113-128. doi.org/10.2307/1989037
3. Bradford, J. C., Goffman, C. (1960). Metric spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 11(4): 667-670. doi.org/10.2307/2034731
4. Brown, J. B. (1977). A measure theoretic variant of Blumberg's theorem. Proc. Amer. Math. Soc. 66(2): 266-268. doi.org/10.2307/2040943
5. Ciesielski, K. C. (1997). Set-theoretic real analysis. J. Appl. Anal. 3(2): 143-190. doi.org/10.1515/JAA. 1997.143
6. Goffman, C. (1954). On a theorem of Henry Blumberg. Michigan Math. J. 2(1): 21-22.
7. Jordan, F. (2001/2002). Generalizing the Blumberg theorem. Real Anal. Exchange. 27(2): 423-439.
8. Kechris, A. S. (1995). Classical Descriptive Set Theory. Graduate Texts in Mathematics 156. New York, NY: Springer-Verlag. doi.org/10.1007/978-1-4612-4190-4
9. Kharazishvili, A. B. (2006). Strange Functions in Real Analysis. Pure and Applied Mathematics 156. Boca Raton, FL: Chapman \& Hall/CRC.
10. López Pellicer, M. (1984). A note on the Blumberg property. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid. 78(1-2): 147-150.
11. Recław, I. (1993). Restrictions to continuous functions and Boolean algebras. Proc. Amer. Math. Soc. 118(3): 791-796. doi.org/10.2307/2160122
12. Rosłanowski, A., Shelah, S. (2006). Measured creatures. Israel J. Math. 151(1): 61-110. doi.org/10.1007/BF02777356
13. Shelah, S. (1995). Possibly every real function is continuous on a non-meagre set. Publ. Inst. Math. (Beograd) (N.S.) 57(71): 47-60.
14. Sierpiński, W., Zygmund, A. (1923). Sur une fonction qui est discontinue sur tout ensemble de puissance du continu. Fund. Math. 4: 316-318. doi.org/10.4064/fm-4-1-316-318.

Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA and Department of Radiology, MIPG, University of Pennsylvania, Philadelphia, PA 19104-6021, USA kcies@math.wvu.edu

Departamento de Análisis Matemático y Matemática Aplicada
Facultad de Ciencias Matemáticas, Plaza de Ciencias 3
Universidad Complutense de Madrid, 28040 Madrid, Spain
mariae24@ucm.es
Instituto de Matemática Interdisciplinar (IMI)
Departamento de Análisis Matemático y Matemática Aplicada

[^0]: ${ }^{1}$ After the Second World War Zygmund worked in the United States.
 ${ }^{2}$ Recall that CH , the statement that there is no cardinal number between \mathfrak{c} and ω (where ω is the cardinality of \mathbb{N}), is independent of the usual axioms ZFC of set theory.

