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Abstract. This paper concerns three kinds of seemingly paradoxical real val-

ued functions of one variable. The first two, defined on R, are the celebrated

continuous nowhere differentiable functions, known as Weierstrass’s monsters,
and everywhere differentiable nowhere monotone functions—simultaneously

smooth and very rugged—to which we will refer as differentiable monsters.

The third kind was discovered only recently and consists of differentiable func-
tions f defined on a compact perfect subset X of R which has derivative equal

zero on its entire domain, making it everywhere pointwise contractive, while,
counterintuitively, f maps X onto itself. The goal of this note is to show that

this pointwise shrinking globally stable map f can be extended to functions

f, g : R → R which are differentiable and Weierstrass’s monsters, respectively.
Thus, we pack three paradoxical examples into two functions. The construc-

tion of f is based on the following variant of Jarńık’s Extension Theorem: For

every differentiable function f from a closed P ⊆ R into R there exists its

differentiable extension f̂ : R→ R such that f̂ is nowhere monotone on R \P .

1. Background

The number of counterintuitive examples that are known in mathematical anal-
ysis is very large, see e.g. book [8]. However, few have as much interesting history
as Weierstrass’s monsters—everywhere continuous nowhere differentiable functions
from [a, b] to R—and differentiable monsters—the maps from [a, b] to R that are
everywhere differentiable but monotone on no interval. Shortly, the first published
example of Weierstrass’s monster was given by K. Weierstrass and appeared in
the 1872 paper, see [7] or [23]. At that time, mathematicians commonly believed
that a continuous function must have a derivative at a “significant” set of points.
Thus, the example was received with disbelief and such functions eventually became
known as Weierstrass’s monsters. One of the most elegant examples of such maps
comes from the 1930 paper [20] of van der Waerden. It can be defined, on R, as

(1) f(x) :=

∞∑
n=0

4nfn(x),

where fn(x) := mink∈Z
∣∣x− k

8n

∣∣ is the distance from x ∈ R to the set 1
8nZ ={

k
8n : k ∈ Z

}
. (See [4] or [19, thm. 7.18].) A large number of simple constructions

of Weierstrass’s monsters can be also found in [21] or a recent book [10].
The history of differentiable monsters is described in detail in the 1983 paper

of A. M. Bruckner [2]. The first construction of such a function was given in
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1887 by A. Köpcke [13]. (A gap in [13] was corrected in [14, 15].) The most
influential study of this subject is the 1915 paper [6] of A. Denjoy. Two relatively
simple constructions of differentiable monsters come from the 1970s papers [12,22].
A considerably simpler construction was recently found by the first author [4].
Specifically, a differentiable monster in [4] is defined on R as

(2) f(x) := h(x− t)− h(x),

where h a strictly increasing differentiable function from R onto R for which G :=
{x ∈ R : f ′(x) = 0} contains a countable dense set1 D and t is chosen from a dense
Gδ-set

⋂
d∈D

(
(−d+G) ∩ (d−G)

)
.

The third paradoxical example we consider was first constructed in the 2016
paper [5] of the first author and J. Jasinski. Since then, the construction was
further generalized, in [1], and simplified, see [4]. The example is a differentiable
self-homeomorphism f of a compact perfect subset X of R with f′(x) = 0 for all
x ∈ X. Thus, f is shrinking at every x ∈ X and so, one would expect that the
diameter of f[X] should be smaller than that of X, which evidently is not the case.
Of course, X must have Lebesgue measure zero, since f ′ ≡ 0 implies that f[X] must
have measure zero, see for example [9, p. 355]. The construction of f from [4] is
also simple enough to be described in few lines. Specifically, it can be defined as

(3) f := h ◦ σ ◦ h−1

from X := h[2ω] onto itself, where σ : 2ω → 2ω is the add-one-and-carry adding
machine,2 while h(s) :=

∑∞
n=0 2sn3−(n+1)N(s�n), while N(s � n) is defined as

N(s � n) :=
∑
i<n−1 si2

i + (1− sn−1)2n−1 + 2n, Notice, that X = h[2ω] is a sub-
set of the Cantor ternary set, denoted in what follows as C.

To extend f to a differentiable monster, we will use the following result, that was
first proved in the 1923 paper [11] of V. Jarńık and independently rediscovered in
the 1974 paper [18] of G. Petruska and M. Laczkovich. Its simplified proof, as well
as a history of this result, can be found in a recent paper [3] of M. Ciesielska and
the first author.

Proposition 1. (Jarńık’s Extension Theorem) Every differentiable function
f : P → R, where P ⊆ R is closed, admits a differentiable extension f̄ : R→ R.

The differentiability of f : P → R is understood as the existence of its derivative,
that is, a function f ′ : P ′ → R where P ′ ⊆ P is the set of all accumulation points

of P and f ′(p) := limx→p, x∈P
f(x)−f(p)

x−p for every p ∈ P ′.
In our proof we will also use the following well known result.

Proposition 2. (Folklore) For every closed K ⊆ R, there exists a C∞ function
g : R→ R such that g(x) = g′(x) = 0 for all x ∈ K and g(x) > 0 on Kc = R \K.

Proof. By [16, prop. 2.25], for every n ∈ N there is a C∞ map gn : R→ [0, 1] such
that gn = 1 on {x ∈ R : dist(x,K) ≥ 1

n} and gn = 0 on {x ∈ R : dist(x,K) ≤ 1
n+2}.

Then g =
∑
n∈N cngn is as needed, provided cng

(i)
n [R] ⊂ [0, 2−n] for all i ≤ n. �

1Such a map h was first constructed in the 1907 paper [17] of D. Pompeiu. It can be defined

as the inverse of a function g(x) :=
∑∞

i=1 2−i(x− qi)1/3, where {qi : i ∈ N} is an enumeration of

rational numbers such that |qi| ≤ i for all i ∈ N.
2For s = 〈s0, s1, s2, . . . 〉 ∈ 2ω it is defined: σ(s) := 〈0, 0, 0, . . . 〉 when si = 1 for all i < ω and,

otherwise, σ(s) := 〈0, 0, . . . , 0, 1, sk+1, sk+2, . . . 〉, where sk = 0 and si = 1 for all i < k.
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2. Differentiable monster extending f

The existence of such a function will be deduced from the following version of
Jarńık’s Extension Theorem.

Theorem 3. For every closed set P ⊆ R and differentiable f : P → R, there exists

a differentiable extension f̂ : R→ R of f such that f̂ is nowhere monotone on R\P .

In particular, if P is nowhere dense in R, then f̂ is monotone on no interval.

Of course, applying Theorem 3 to our pointwise shrinking globally stable map

f : X→ X ⊆ R, the resulting extension f̂ : R→ R is a differentiable monster.

Corollary 1. There exists a differentiable monster f : R→ R extending the map-
ping f : X→ X from (3). �

Our proof of Theorem 3 will be based on the following two lemmas, the first of
which is a variant of the squeeze theorem.

Lemma 4. Let g : R→ [0,∞) and f̄ : R→ R be differentiable such that g′(x) = 0

on [g = 0] := {x ∈ R : g(x) = 0}. If f̂ : R → R is such that
∣∣∣f̂(x)− f̄(x)

∣∣∣ ≤
g(x) for every x ∈ R, then f̂ is differentiable on [g = 0].

Proof. It is enough to show that limh→0
f̂(x+h)−f̂(x)

h = f̄ ′(x) for every x ∈ [g = 0].

Indeed, if Q(x, h) = f̂(x+h)−f̂(x)
h − f̄(x+h)−f̄(x)

h , then limh→0Q(x, h) = 0 since

0 ≤ |Q(x, h)| =
∣∣∣ f̂(x+h)−f̄(x+h)

h

∣∣∣ ≤ ∣∣∣ g(x+h)−g(x)
h

∣∣∣ h→0−→ g′(x) = 0. Therefore,

limh→0
f̂(x+h)−f̂(x)

h = limh→0Q(x, h) + limh→0
f̄(x+h)−f̄(x)

h = f̄ ′(x), as needed. �

In the next lemma, we consider C([a, b]) with the sup norm ‖ · ‖.

Lemma 5. For every ε > 0 and continuous function f̄ : [a, b] → R, there exists a
differentiable nowhere monotone f : [a, b]→ R such that

∥∥f − f̄∥∥ < ε, f(a) = f̄(a),

f(b) = f̄(b), and f ′(a) = f ′(b) = 0.

Proof. First notice that

(∗) There exists a differentiable nowhere monotone ϕ : [0, 1]→ [0, 1] such that
ϕ(0) = ϕ′(0) = ϕ′(1) = 0 and ϕ(1) = 1.

To see this, take an arbitrary differentiable nowhere monotone function Φ: R→ R
(e.g. the map f from (2)) and notice that the set [g′ = 0] := {x ∈ R : Φ′(x) = 0} is
dense. Since Φ is not constant, there exist p, q ∈ [Φ′ = 0] such that Φ(p) 6= Φ(q).
Let L1, L2 : R→ R be linear functions such that L1(0) = p, L1(1) = q, L2(Φ(p)) = 0
and L2(Φ(q)) = 1. Then ϕ = L2 ◦ Φ ◦ L1 satisfies (∗).

Let M := ‖ϕ‖ and notice that M ≥ 1. By uniform continuity of f̄ , there exists
a δ > 0 such that for every x, y ∈ [a, b],

(4) |x− y| < δ implies
∣∣f̄(x)− f̄(y)

∣∣ < ε

5M
.

Choose a = x0 < x1 < · · · < xn = b with n ≥ 2 such that xi+1−xi < δ for every
i < n. Then

(5)
∣∣f̄(x)− f̄(xi)

∣∣ < ε

5M
≤ ε

5
for every i < n and x ∈ [xi, xi+1].
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Define y0 = f̄(a), yn = f̄(b), and choose, by induction, numbers y1, . . . , yn−1 with
the property that, for every i < n, we have yi+1 6= yi and

∣∣yi − f̄(xi)
∣∣ < ε

5M ≤
ε
5 .3

In particular,

(6) |yi+1 − yi| ≤
∣∣yi+1 − f̄(xi+1)

∣∣+
∣∣f̄(xi+1)− f̄(xi)

∣∣+
∣∣f̄(xi)− yi

∣∣ < 3ε

5M
.

For every i < n, let Li : R → R be a linear function such that Li(xi) = 0 and
Li(xi+1) = 1. Define fi : [xi, xi+1]→ R via formula

(7) fi(x) := (yi+1 − yi)ϕ(Li(x)) + yi for every x ∈ [xi, xi+1].

Then f =
⋃
i<n fi is as needed.

Indeed, differentiability of f follows from the differentiability of each map fi and
the fact that they, as well as their derivatives, agree on the end points: for every
i < n we have fi(xi) = yi, fi(xi+1) = yi+1, and f ′i(xi) = f ′i(xi+1) = 0. It satisfies∥∥f − f̄∥∥ < ε since, we see that for every x ∈ [xi, xi+1],∣∣f(x)− f̄(x)

∣∣ ≤ |f(x)− yi|+
∣∣yi − f̄(xi)

∣∣+
∣∣f̄(xi)− f̄(x)

∣∣
= |(yi+1 − yi)ϕ(Li(x))|+

∣∣yi − f̄(xi)
∣∣+
∣∣f̄(xi)− f̄(x)

∣∣
< |yi+1 − yi| ‖ϕ‖+

ε

5
+
ε

5
≤ 3ε

5M
M +

2ε

5
= ε.

This also ensures f(a) = f̄(a), f(b) = f̄(b), and f ′(a) = f ′(b) = 0. �

Proof of Theorem 3. Let f̄ : R → R be the differentiable extension of f , which
exists by Jarńık’s theorem, see Proposition 1. Let K := P ∪Z, where Z is the set of

all integers, and let g : R→ [0,∞) be as in Proposition 2. We will define f̂ : R→ R
so that

(8)
∣∣∣f̂(x)− f̄(x)

∣∣∣ ≤ g(x) for every x ∈ R.

This, by Lemma 4, will ensure that f̂ is differentiable on the set [g = 0] = K.

Since (8) demands f̂ = f̄ on K, we need to define f̂ only on Kc = R \K. Let J
be the collection of all connected components of Kc. Notice that each interval in

J is bounded, since Z ⊆ K. So, fix a J = (a, b) ∈ J . We will define f̂ on J as the
following function fJ .

Choose an increasing sequence 〈ck : k ∈ Z〉 such that limk→−∞ ck = a and
limk→∞ ck = b. Then (a, b) =

⋃
k∈Z[ck, ck+1]. For each k ∈ Z, let εk := inf g[ck, ck+1]

and notice that εk > 0 since g is positive on (a, b). Using Lemma 5 to f̄ � [ck, ck+1]
and εk choose differentiable nowhere monotone functions fk : [ck, ck+1] → R such
that fk(ck) = f̄(ck), fk(ck+1) = f̄(ck+1), f ′k(ck) = f ′k(ck+1) = 0, and

|fk(x)− f̄(x)| < εk for all x ∈ [ck, ck+1].

This ensures that functions fk and their derivatives agree at the endpoints, so that
fJ =

⋃
k∈Z fk is a differentiable function. It is clearly nowhere monotone, since so

is each fk. Finally, notice that

(9)
∣∣fJ(x)− f̄(x)

∣∣ ≤ g(x) for every x ∈ J

since for every k ∈ Z and x ∈ [ck, ck+1], we have
∣∣fJ(x)− f̄(x)

∣∣ =
∣∣fk(x)− f̄(x)

∣∣ <
εk ≤ g(x).

3We can choose yi = f̄(xi), unless some consecutive numbers f̄(xi) are equal.
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To finish the proof, define f̂ on K as f̄ � K and on each J ∈ J as fJ . We claim,

that such f̂ is as needed.

Indeed, this definition and (9) ensure that (8) holds so, by Lemma 4, f̂ is dif-
ferentiable on K. It is differentiable on Kc, since it is differentiable on each of its

components. Also, since f̂ is nowhere monotone on each J ∈ J , it is also nowhere
monotone on every interval I for which I ∩K is nowhere dense in I (as then, the

sets {x ∈ I : f̂ ′(x) < 0} and {x ∈ I : f̂ ′(x) > 0} are dense in I). In particular, f̂ is
nowhere monotone on R \ P and, in the case when P is nowhere dense in R, also
on R. �

3. Weierstrass’s monster extending f

The main goal of this section is to prove the following theorem, where C is the
Cantor ternary set.

Theorem 6. There exist Weierstrass’s monsters f, h : R → R such that h(x) = 0
for all x ∈ C and f extends the function f : X→ X from (1).

The construction of these functions will be based on the following lemma.

Lemma 7. Let f : [0, 1] → R be non-constant, continuous, with f(0) = 0 = f(1).
Let K be the family of all connected components of [0, 1] \ C. If h0 : [0, 1] → R is
defined as

h0(x) :=

{
(b− a)f(x−ab−a ) for x ∈ (a, b) ∈ K,
0 for x ∈ C,

then h0 is continuous but not differentiable at any x ∈ C.

Proof. For every n ∈ N let Kn := {(a, b) ∈ K : b − a = 1
3n } and hn : [0, 1] → R be

defined as

hn(x) :=

{
(b− a)f(x−ab−a ) for x ∈ (a, b) ∈ Kn
0 otherwise.

Then hn is continuous, ‖hn‖ = ‖f‖
3n , and so h0 =

∑∞
n=1 hn is continuous by Weier-

strass M-test.
Next choose an arbitrary x ∈ C. Since f is non-constant, M = ‖f‖ > 0 and

M = f(x0) for some x0 ∈ (0, 1). For every n ∈ N choose an xn ∈ (a, b) with
|h0(xn)| = M . Then, by the construction of C, 0 < |xn − x| < 2(b − a) = 2

3n so
that xn →n x. Moreover,∣∣∣∣h0(xn)− h0(x)

xn − x

∣∣∣∣ =
|h0(xn)|
|xn − x|

=
(b− a)M

|xn − x|
≥ (b− a)M

2(b− a)
=
M

2
,

so the finite derivative h′0(x) indeed does not exist. �

Proof of Theorem 6. Let f be the restriction of the Weierstrass’s monster from (1)
to [0, 1] and notice that f(0) = f(1) = 0. Let h0 be the function from Lemma 7.
Then h0 is a Weierstrass’s monster with h0 � C ≡ 0. It is easy to extend it to a
Weierstrass’s monster h on R.

To construct f , let f̄ : R → R be an arbitrary differentiable extension of the
function f : X → X from (1). Such an extension exists by Jarńık’s theorem, see
Proposition 1. Define f := f̄ +h, where h is as above. Clearly f is continuous and,
since X ⊆ C and h � C ≡ 0, we also have f � X = f̄ � X + h � X = f. Finally, f
cannot be differentiable at any x ∈ R, since otherwise h = f − f̄ would be. �
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