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Abstract Dijkstra’s algorithm DA is one of the most

useful and efficient graph-search algorithms, which can

be modified to solve many different problems. It is usu-

ally presented as a tool for finding a mapping which,

for every vertex v, returns a shortest-length path to v

from a fixed single source vertex. However, it is well

known that DA returns also a correct optimal mapping

when multiple sources are considered and for path-value

functions more general than the standard path-length.

The use of DA in such general setting can reduce many

image processing operations to the computation of an

optimum-path forest with path-cost function defined in

terms of local image attributes.

In this paper, we describe the general properties of a

path-value function defined on an arbitrary finite graph

which, provably, ensure that Dijkstra’s algorithm in-
deed returns an optimal mapping. We also provide the

examples showing that the properties presented in a

2004 TPAMI paper on the image foresting transform,

which were supposed to imply proper behavior of DA,

are actually insufficient. Finally, we describe the prop-

erties of the path-value function of a graph that are
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provable necessary for the algorithm to return an opti-

mal mapping.
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1 Introduction

In 1959, Edsger Wybe Dijkstra presented a note [19]

describing the solutions of two graph-search problems

for connected edge weighted graphs. The solution of

the second problem, on finding the shortest-length path

from a single source vertex s to another vertex v, can

be trivially extended to multiple sources, that is, given

a non-empty subset S of vertices, to finding a path from

a u ∈ S to v whose length does not exceed the length

of any other path from a w ∈ S to v. This extension

can be done by adding to the original graph the dummy

vertex s, connecting it to each vertex in S by an edge

of weight zero, and finding for this extended graph the

shortest-length path from s to v. Ever since, the solu-

tion of the shortest-path problem from [19] is known as

Dijkstra’s algorithm. It has been applied, in the original

or a modified form, in the multitude different practical

tasks, like routing phone calls in telephone networks,

finding the best flights between airports for a given de-

parture time, and designating file servers in the local

computer networks.

The modified versions of Dijkstra’s algorithm usu-

ally rely on some monotone path-value function [25]

and they can either minimize or maximize an optimum-

path value map. In [22] the authors proposed the image

foresting transform, IFT, a methodology to design im-

age processing operators based on the modifications of
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Dijkstra’s algorithm to multiple sources and more gen-

eral path-value functions. The IFT essentially reduces

image processing operators to the computation of an

optimum-path forest in a graph derived from the im-

age, followed by a local processing of its attributes. Its

applications include boundary-based [23,24,30], region-

based [43,42,26,4,17,16,5,28,1,29], and hybrid [11,38]

image segmentation, morphological reconstructions

[21], simultaneous connected filtering and watershed

transforms [27], fast binary morphology [34], linear-

time exact Euclidean distance transform and one-pixel-

wide connected multiscale skeletonization [20], shape

description [41,40,3], clustering [36,6], and classifica-

tion [33,32,37,2].

In this paper, we describe the properties that a

path-value function of a graph must satisfy in order

to ensure that Dijkstra’s algorithm returns an opti-

mum path-value map, provide examples to show that

the path-value function properties presented in [22] are

insufficient to ensure the “proper” behavior of the al-

gorithm, and present a simple variant of Dijkstra’s al-

gorithm that guarantees its output to be a spanning

forest. Note that, the published IFT-based image oper-

ators either satisfy the sufficient condition [24,42,16,5,

28,21,27,20,6,32] or have been proposed by using the

aforementioned variant that guarantees a spanning for-

est [26,28,39,12,30,1]. Therefore, the main contribu-

tion of this work is the formulation of the general con-

ditions of the path-value functions that provably ensure

that the algorithm returns an optimum path-value map.

This paper is organized as follows. Section 2 presents

the basic definitions and notation, with examples of the

most commonly used path-value functions, especially in

image processing. The characterization theorem for Di-

jkstra’s algorithm and its aforementioned variant are

presented in Sections 3 and 4. Section 5 shows that

the properties given in [22] as sufficient for ensuring

that the algorithm works correctly are actually insuf-

ficient. Comments on optimization and the proofs are

presented in Sections 6 and 7, respectively. Conclusions

are stated in Section 8.

2 Basic definitions and examples pertinent to

the algorithm

Let G = 〈V,E〉 be a directed graph, where V is a non-

empty finite set of its vertices and E ⊂ V ×V is the set

of its edges. We assume also that G has no loops, that

is, that 〈v, v〉 /∈ E for every v ∈ V . A path (in G), with

terminus v = v` and of length ` ≥ 0, is any sequence

pv = 〈v0, . . . , v`〉 of vertices such that 〈vj , vj+1〉 ∈ E for

any j < `; it is from S ⊂ V to v ∈ V when v0 ∈ S and

v` = v; and if 〈v, w〉 ∈ E, then pvˆw denotes the path

〈v0, . . . , v`, w〉. Let ΠG be the family of all paths in G

and consider a path-value function ψ : ΠG → [−∞,∞],

where [−∞,∞] — the extended real line — is consid-

ered with the curly order relation ψ(pv) � ψ(qv), being

either ψ(pv) ≤ ψ(qv) or ψ(pv) ≥ ψ(qv). The choice of

� as either ≤ or ≥ depends of the application and it is

always clear from the context.

Commonly, the path-value function ψ is defined

from an edge-weight map ωE : E → R (i.e., G is an

edge-weighted graph G = 〈V,E, ωE〉) which, in dif-

ferent applications, is referred to as the local distance,

cost, or affinity function, see Examples 1 and 2. Also,

in some cases, ψ is defined from a vertex-weight map

ωV : V → R, see Examples 3 and 4. However, we assume

here only that the function ψ is computable by a read-

ily available algorithm. In particular, the definition of ψ

need not depend on either edge- or vertex-weight map,

see Examples 6 and 10. Also, in general, a set S ⊂ V

of seeds (i.e., of vertices where all cost-effective paths

must start) need not to be specified, see Examples 3, 6,

and 7.

A Dijkstra-type algorithm associated with ψ is con-

cerned with finding, for every v ∈ V , the cost/strength

ψ(pv) of a ψ-optimal path in ΠG to v. We say that a

map σ : V → [−∞,∞] is a ψ-optimal map provided, for

every v ∈ V , σ[v] = ψ(pv) for some ψ-optimal path pv
to v. Since “optimal” may mean either standard-order

minimal (e.g., as in Example 1) or standard-order max-

imal (e.g., as in Example 2), we will define � as ≤ in

the former case and as ≥ in the latter case. This will

allow us to talk uniformly on the �-minimization task,

independently on which of the two situations we con-

sider.

Typically, a Dijkstra-type algorithm actually finds

a map π : V → ΠG such that, for every v ∈ V , π[v] is a

path to v. This map induces the map σ : V → [−∞,∞]

as a composition σ = ψ◦π, that is, σ is given via formula

σ[v] = ψ(π[v]). The family P = {π[v] : v ∈ V } usually

forms a forest in the graph, that is, it has the properties:

(i) for every v ∈ V there exists a unique path pv ∈ P
to v; (ii) every initial segment of a p = 〈v0, . . . , v`〉 ∈ P
(i.e., 〈v0, . . . , vk〉 for k ≤ `) also belongs to P .

Most applications define the cost map ψ so that

all optimal paths must start from an explicitly given

non-empty set S ⊂ V of seeds. In such cases, the fact

that all ψ-optimal paths indeed start at S is ensured

by requiring that ψ(pv) ≺ ψ(qv) whenever pv ∈ ΠG is

from S and qv ∈ ΠG is from V \ S. See examples of

commonly used path-value functions below. However,

in what follows, we do not require that the cost func-

tions are defined with an explicitly specified seed set.

(Though, one can always consider the entire set V as

being a set of seeds.) In image processing, G = 〈V,E〉
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is commonly a grid graph, with V being the image do-

main and the set E of edges the connectors of adjacent

pixels.

Example 1 The classic Dijkstra’s shortest-path algo-

rithm [19] searches, for every v ∈ V , for a path

from a fixed non-empty set S ⊂ V of seeds to

v of minimal weighted length. So, � is interpreted

as ≤. The algorithm uses the path-value function

— the length — defined from the local distance

ωE : E → [0,∞) as follows. Whenever v0 ∈ S we put

ψsum(〈v0, . . . , v`〉) =
∑

1≤j≤` ωE(vj−1, vj) for ` > 0 and

ψsum(〈v0〉) = 0; otherwise ψsum(〈v0, . . . , v`〉) =∞.

In image processing, an optimum contour tracking

operation constrained to a set of strokes across the

object’s boundary, geodesic dilations of a binary set,

and some approaches for region-based image segmenta-

tion [23,24,22,4,1] rely on the modifications of ωE in

ψsum for one or multiple sources.

Example 2 Another example is the path-value function

ψmin. In the fuzzy connectedness applications [43,7,26,

42,8,13,14,15,16,10], this function ψmin is used to mea-

sure the “strength of connectivity” between vertices, as

a function of a local connectivity (i.e., affinity) map

ωE : E → [0, 1] defined as follows. If v0 ∈ S, then

ψmin(〈v0, . . . , v`〉) = min1≤j≤` ωE(vj−1, vj) ∈ [0, 1] for

` > 0 and ψmin(〈v0〉) = 1. Otherwise, for v0 /∈ S, we

put ψmin(〈v0, . . . , v`〉) = −∞. Its applications are con-

cerned with the paths of maximal strength of connect-

edness. So, for ψmin, we will interpret � as ≥.

Example 3 A path-value function can also be defined

from a vertex altitude map ωV : V → [−∞,∞) via

formula ψpeak(〈v0, . . . , v`〉) = max1≤j≤`{h(v0), ωV (vj)}
for ` > 0, and ψpeak(〈v0〉) = h(v0) for some handicap

value h(v0) ≥ ωV (v0) for all v0 ∈ V . In image pro-

cessing, its applications involve superior morphological

reconstructions and watershed transforms [21,27,22],

which are concerned with the paths of minimal peak.

So, for ψpeak, we will interpret � as ≤.

The handicap values may be defined as h(v0) =

ωV (v0) for v0 ∈ S, and h(v0) = ∞ otherwise, as is

the case in the watershed transform from a set S of la-

beled markers [22]. For superior reconstruction [21], we

may define h ≥ ωV and, for watershed transforms from

a grayscale marker, h > ωV as discussed in [27]. In both

cases, the set S can only be discovered on-the-fly, as de-

rived from the minima of the resulting ψpeak-minimal

map σ[ ].

Example 4 Another example of a path-value function

based on a vertex altitude map ωV : V → [0,∞) is de-

fined as follows. If v0 ∈ S, then ψdif(〈v0, . . . , v`〉) =

max0≤j≤` ωV (vj) − min0≤j≤` ωV (vj) for ` > 0

and ψdif(〈v0〉) = 0. Otherwise, for v0 /∈ S,

ψdif(〈v0, . . . , v`〉) = ∞. Its applications are concerned

with the paths of minimal height (difference between

maximum and minimum altitudes). So, for ψdif , we will

interpret � as ≤.

In image processing, ψdif defines a minimal barrier

distance between vertices, which is useful in some image

segmentation applications [39,12].

Example 5 Yet another example of a path-value func-

tion based on a vertex altitude map ωV : V → [0,∞)

is the map ψlast : V → [0,∞), which is defined as

ψlast(〈v0, . . . , v`〉) = ωV (v`) when v0 ∈ S and as

ψlast(〈v0, . . . , v`〉) = ∞ otherwise. Its applications seek

the paths of minimal strength. Examples are a particu-

lar case of the riverbed boundary tracking [30] and the

imposition of connectivity constraints in region-based

image segmentation [29]. Thus, for ψlast, we will inter-

pret � as ≤.

3 Dijkstra’s algorithm DA and the correctness

theorem

In the following algorithm, any time during its exe-

cution and for any v ∈ V , π[v] is a path to v with

σ[v] = ψ(π[v]). The algorithm, putting aside notational

differences, is identical to the one studied in [22] with

a minor exception — the paths that we store in the

array π[ ] were indicated in [22] via predecessor map

P [ ]: a path π[v`] = 〈v0 . . . , v`〉 was indicated through

the assignments P [v0] = nil and P [vi] = vi−1 for any

i ∈ {1, . . . , `}. In the algorithm, we use the operation

arg � -opt that finds a vertex v in H for which the value

of ψ(π[v]) has a �-minimal value, that is, consists of

the (standard) minimum value in case of standard or-

der minimization, and the (standard) maximum value

in case of standard order maximization.

Notice that Algorithm 1, referred in what follows as

DA, requires precisely |V |-many executions of the main

loop, since, after the execution of line 2, nothing is ever

inserted again into H. Also, the order of performed op-

erations in the algorithm is not uniquely determined

by its structure, since the execution of line 4 may re-

sult in choosing different �-minimal elements w. This

is the reason for the use of phrases “is guaranteed”

and “cannot be” in the theorems that follow.

To state our main theorem, on the correctness of

DA, we will need the following additional terminology

and notation. For G = 〈V,E〉 and a value-path function

ψ : ΠG → [−∞,∞] define a max-value path function

Ψ : ΠG → [−∞,∞] by putting, for every 〈v0, . . . , v`〉 ∈
ΠG,

Ψ(〈v0, . . . , v`〉) = max{ψ(〈v0, . . . , vi〉) : i = 0, 1, . . . , `},



4 Krzysztof Chris Ciesielski et al.

Algorithm 1: Dijkstra’s algorithm DA, aiming

to find the ψ-optimal map

Data: A finite graph G = 〈V,E〉 and a path-value
function ψ from ΠG to 〈[−∞,∞],� 〉

Result: An array σ[ ] of numbers, aiming for being
ψ-optimal map

Additional Structure: A variable σ′, a set H, and
an array π[ ] of paths, such that, at any time and for
any v ∈ V , π[v] is a path to v with σ[v] = ψ(π[v])

1 foreach v ∈ V do π[v]← 〈v〉; σ[v]← ψ(π[v])
/* initialization loop */

2 H← V
3 while H 6= ∅ do /* the main loop */

4 remove an element w of arg � -optu∈Hσ[u] from H
5 foreach x such that 〈w, x〉 ∈ E do
6 σ′ ← ψ(π[w]̂ x)
7 if σ′ ≺ σ[x] then σ[x]← σ′; π[x]← π[w]̂ x

where maximum is with respect to the order relation �.

We say that a path pv = 〈v0, . . . , v`〉 ∈ ΠG to v = v`:

– is ψ-optimal if it is �-minimal, that is, provided

ψ(pv) � ψ(qv) for any other path qv ∈ ΠG to v;

– is hereditarily ψ-optimal, provided 〈v0, . . . , vk〉 is ψ-

optimal for every k ≤ `;
– is hereditarily optimal, HO, provided it is hereditar-

ily ψ-optimal and Ψ(〈v0, . . . , vk〉) � Ψ(p) for every

hereditarily ψ-optimal p to vk and all k ≤ `;
– is Ψ -minimal (in a strong sense) provided Ψ(pv) ≺
Ψ(q v̂) for every q v̂ ∈ ΠG such that ψ(pv) ≺ ψ(q v̂)

and q is either empty or HO;

– has the replacement property when ψ(〈v0, . . . , vi〉) =

ψ(qvi−1
v̂i) for every HO path qvi−1

∈ ΠG to vi−1
and all i ∈ {1, . . . , `};

– is monotone when ψ(〈v0, . . . , vi〉) � ψ(〈v0, . . . , vj〉)
for all i ≤ j ≤ `;

– is hereditarily ψ-optimal monotone, HOM, provided

it is both hereditarily ψ-optimal and monotone.

Now, we are ready for our main theorem on the

correctness of DA.

Theorem 1 Let G = 〈V,E〉 be a finite directed graph

with no loops and ψ : ΠG → [−∞,∞] be a path-value

function. If

(E) for every v ∈ V there exists a Ψ -minimal HO path

to v with the replacement property,

then the array σ[ ] returned by DA is guaranteed

to be the ψ-optimal map. Moreover, the array π[ ] re-

turned by DA has the property that, for every v ∈ V ,

π[v] = 〈v0, . . . , v`〉 is an HO path to v = v` and π[vi] =

〈v0, . . . , vi〉 every i ∈ {0, . . . , `} (i.e., {π[v] : v ∈ V } is

an optimal forest).

Conversely, if the following monotonicity property

holds

(M) ψ(〈v0, . . . , vi〉) � ψ(〈v0, . . . , v`〉) for every path

〈v0, . . . , v`〉 ∈ ΠG and 0 ≤ i < `,

then the function σ[ ] returned by DA cannot be ψ-

optimal, unless for every v ∈ V there exists a heredi-

tarily ψ-optimal path to v.

The proof of Theorem 1 is presented in Section 7.

In the mean time, we will discuss DA and the conse-

quences of Theorem 1.

The two notions involving explicitly the max-value

path function Ψ (i.e., HO and Ψ -minimal, used to ex-

press (E)) are, at first, hard to fully grasp. Luckily, in

most of the applications, they can be replaced by the

considerable simpler notion of an HOM path, as it can

be seen from the following simple result and the fact

that property (M) is satisfied for the vast majority of

path-value functions (see, e.g., Corollary 2).

Remark 1 Every HOM path p = 〈v0, . . . , v`〉 ∈ ΠG is a

Ψ -minimal HO path.

Proof Let p = 〈v0, . . . , v`〉 ∈ ΠG be an HOM path

and q as in the definition of Ψ -minimality. Then, the

monotonicity of p implies that Ψ(p) = ψ(p). Thus,

Ψ(p) = ψ(p) ≺ ψ(q v̂) � Ψ(q v̂), that is, p is indeed

Ψ -minimal. It is HO since, for every k ≤ ` and hered-

itarily ψ-optimal p to vk, we have Ψ(〈v0, . . . , vk〉) =

ψ(〈v0, . . . , vk〉) � ψ(p) � Ψ(p).

Since in the majority of the application of DA the

Ψ -minimal HO paths that satisfy (E) are actually HOM

paths, one might wonder if in all applications of the

theorem the phrase “Ψ -minimal HO” can be replaced

with “HOM paths.” The simplest example that negates

such a claim is given by the path-value function ψlast

from Example 5: every path from S is optimal with

respect to ψlast (so, (E) is satisfied and, in fact, any

spanning forest rooted at S is optimal), while for V =

{s, c}, E = {〈s, c〉, 〈c, s〉}, S = {s}, and ωV (s) = 1,

ωV (c) = 0, the vertex c admits no HOM path.

●

●

s ● a

b-2
t ●

2

2

5

Fig. 1 For this graph, with S = {s}, indicated weight map
ωE , and path-value function ψsum, (E) is clearly satisfied for
every vertex v 6= t. It is also satisfied for v = t by a path
pt = 〈s, a, b, t〉: it is the only ψsum-optimal path, as ψsum(pt) =
2 < 5 = ψsum(〈s, t〉) and also Ψsum(pt) = 4 < 5 = Ψsum(〈s, t〉).
However, t does not admit HOM path, as pt is not monotone.

Another example of a path-value function on a

graph, which satisfies (E) but has a vertex admitting
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no HOM path, is presented in Figure 1. This example

uses path-value function ψsum (Example 1), in which

we allow negative values for the edge weight map ωE .

From Theorem 1 and Remark 1 it is easy to deduce

the following characterization of path-value functions ψ

for which DA must return the expected optimal map.

Corollary 1 If G = 〈V,E〉 and ψ : ΠG → [−∞,∞]

satisfy (M) and the following replacement property

(R) ψ(pv`) = ψ(qv`−1
v̂`) for every HOM paths

pv` = 〈v0, . . . , v`〉 to v` and qv`−1
to v`−1,

then σ[ ] returned by DA is the ψ-optimal map if, and

only if, for every v ∈ V there exists a hereditarily ψ-

optimal path to v.

Proof The existence of hereditarily ψ-optimal paths to

every v ∈ V is a sufficient condition, since, by (M) and

(R), every such path is HOM and has the replacement

property. So, by Remark 1, (E) holds and Theorem 1

implies that σ[ ] returned by DA is as needed.

The necessity of the existence of hereditarily ψ-opti-

mal paths follows immediately from the second part of

Theorem 1.

The usefulness of Theorem 1 and Corollary 1 can be

appreciated, when noticing how easily one can deduce

from them the following two results.

Corollary 2 The path-value functions ψsum, ψmin, and

ψpeak satisfy the properties (M) and (R). In particular,

the DA algorithm works correctly for these functions.

Proof The definitions of these functions immediately

imply that every path is monotone and that the follow-

ing strong version (R*) of the replacement property (R)

holds:

(R*) ψ(qv`−1
v̂`) � ψ(pv`) for all paths pv` = 〈v0, . . . , v`〉

to v` and qv`−1
to v`−1 with ψ(qv`−1

) � ψ(pv`−1
).

If ψ satisfies (M) and (R*), then every v ∈ V admits

a hereditarily ψ-optimal path to v, see Proposition 2.

So, every such path is HOM satisfying the replacement

property, and (E) holds.

●●

● ●

s

b

a

c

.5

.4 .5
●

d .8

.7

Fig. 2 For the graph, with S = {s}, neither pd = 〈s, a, c, d〉 nor
qd = 〈s, b, c, d〉 from s to d is hereditarily ψdif -optimal: only pd
is optimal, since ψdif(pd) = .8−.5 < .8−.4 = ψdif(qd); but the
initial segment 〈s, a, c〉 of pd is suboptimal, as ψdif(〈s, a, c〉) =
.7− .5 > 5− .4 = ψdif(〈s, b, c〉).

At the same time, Theorem 1 easily implies that the

reverse is true for the barrier path-value function ψdif

from Example 4. (Compare also [39,12].)

Proposition 1 The DA algorithm need not to return

an optimal map, when executed for the path-value func-

tion ψdif .

Proof For a weighted graph depicted in Figure 2, which

comes from [12], there is no hereditarily ψdif -optimal

path from S = {s} to d. Since ψdif clearly satisfies (M),

the result follows from Theorem 1.

4 Another variant DA* of Dijkstra’s algorithm

It would have been nice if it had been possible to prove

about DA that, independently of any extra assump-

tions on the path-value function ψ,

(•) the family {π[v] : v ∈ V } returned by the algorithm

is always a forest.

Actually, it was claimed in [22, Lemma 2] that DA (in

their formalism) indeed satisfies (•) (i.e., never returns

a cycle) for any path-value function ψ.oteApparently,

there was a typo in the version of DA from [22], since

they defined a set F , never used, to avoid reprocessing

the vertices in the inner loop of the algorithm. A proper

use of F would make [22, Lemma 2] valid. However, the

following simple example shows that a family {π[v] : v ∈
V } returned by DA need not be a forest. The example

also shows that the second part of Theorem 1 indeed

requires some assumption on the map ψ.

Example 6 Consider G = 〈V,E〉 with V = {s, a} and

E = {〈s, a〉, 〈a, s〉}. Identify � with ≤. Define ψ(p) = 0

for any path p from s of nonzero length, and ψ(p) = 1

for any other path. Then, DA returns paths π[s] =

〈s, a, s〉 and π[a] = 〈s, a〉 (as we start with the initializa-

tion π[s] = 〈s〉, π[a] = 〈a〉 and, after the first execution

of the loop, we have π[s] = 〈s〉, π[a] = 〈s, a〉).
In particular, DA returns a non-trivial circular path

π[s] = 〈s, a, s〉, which cannot belong to any forest, so (•)
is not satisfied. (In the formalism of [22], DA returns

the predecessor indicators P [s] = a and P [a] = s, also

a cycle.)

Moreover, DA returns π[s] = ψ(〈s, a, s〉) = 0 and

π[a] = ψ(〈s, a〉) = 0, that is, an optimal map π, in spite

the fact, that there is no hereditarily ψ-optimal path

in the graph (as any path of length 0 is suboptimal).

Thus, the second part of Theorem 1 indeed requires

some additional assumptions on ψ.

The property (•) can be ensured by the following

simple modification of DA, obtained by replacing con-

dition “〈w, x〉 ∈ E” in line 5 with “〈w, x〉 ∈ E and

x ∈ H”. This leads to:
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Algorithm 2: Dijkstra’s algorithm DA*, aiming

to find the ψ-optimal map

Data: A finite graph G = 〈V,E〉 and a path-value
function ψ from ΠG to 〈[−∞,∞],� 〉

Result: An array σ[ ] of numbers, aiming for being
ψ-optimal map

Additional Structure: A variable σ′, a set H, and
an array π[ ] of paths, such that, at any time and for
any v ∈ V , π[v] is a path to v with σ[v] = ψ(π[v])

1 foreach v ∈ V do π[v]← 〈v〉; σ[v]← ψ(π[v])
/* initialization loop */

2 H← V

3 while H 6= ∅ do /* the main loop */

4 remove an element w of arg � -optu∈Hσ[u] from

H
5 foreach x such that 〈w, x〉 ∈ E and x ∈ H do
6 σ′ ← ψ(π[w]̂ x)
7 if σ′ ≺ σ[x] then σ[x]← σ′; π[x]← π[w]̂ x

We have the following modification of Theorem 1

for DA*.

Theorem 2 Let G = 〈V,E〉 be a directed graph with

no loops and ψ : ΠG → R be a path-value function.

If π[ ] is returned by DA*, then, for every v ∈ V ,

π[v] = 〈v0 . . . , v`〉 is a path with no repeated vertices

such that π[vi] = 〈v0 . . . , vi〉 for every i ∈ {0, . . . , `}
(i.e., {π[v] : v ∈ V } is a forest). If (E) holds, then σ[ ]

returned by DA* is guaranteed to be the ψ-optimal

map. Moreover, the returned map π[ ] consists of hered-

itarily ψ-optimal paths.

Conversely, if there exists a v ∈ V such that there is

no hereditarily ψ-optimal path to v, then the function

σ[ ] returned by DA* cannot be ψ-optimal.

The proof of Theorem 2 is presented in Section 7.

Though, notice that the last part follows immediately

from the first part of the theorem, that DA* satisfies

(•).
Of course, by Theorem 2, if (E) is satisfied, then

DA* returns an optimum-path forest. But it is worth

to mention, that even when the sufficient conditions are

not satisfied, the resulting spanning forest from DA*

(not necessarily optimal) has been useful as an effective

image segmentation, see e.g. [26,28,39,12,1,31].

5 Discussion of properties (E) and “smooth

function” from [22]

Considering our notation, the properties C1-C3 of path-

value functions in [22], called smooth functions, can be

stated as follows: for any v` ∈ V there exists a ψ-

optimal path pv`
= 〈v0 . . . , v`〉 ∈ ΠG, with ` ≥ 0, such

that for ` > 0, if pv`−1
= 〈v0 . . . , v`−1〉, then

C1. ψ(pv`−1
) � ψ(pv`),

C2. pv`−1
is ψ-optimal, and

C3. ψ(qv`−1
v̂`) = ψ(pv`) for any ψ-optimal qv`−1

∈ ΠG.

The authors claimed in the paper that for any path-

value function ψ that satisfies properties C1-C3, DA

returns the ψ-optimal map σ[ ].

The proof of this claim is presented in the appendix

of paper [22], where the authors first claim, without a

proof, that C1-C3 implies C1*-C3*, which can be stated

as follows: for any v` ∈ V there exists a ψ-optimal path

pv` = 〈v0 . . . , v`〉 ∈ ΠG, with ` ≥ 0, such that for 0 ≤
k ≤ `− 1 and ` > 0,

C1*. ψ(〈v0, . . . , vk〉) � ψ(pv`),

C2*. 〈v0, . . . , vk〉 is ψ-optimal, and

C3*. ψ(qvk 〈̂vk+1, . . . , v`〉) = ψ(pv`) for any ψ-optimal

path qvk .

Then, they proceed in proving that for any path-value

function satisfying C1*-C3* DA must return an opti-

mal mapping.

Unfortunately, neither implication “C1-C3=⇒
C1*-C3*” nor the claim that conditions C1*-C3* are

enough to ensure the optimized output of DA is true,

as shown by the following three examples.

Example 7 Let G = 〈V,E〉 be a simple planar grid

with V = {0, . . . , 5} × {0, . . . , 5} considered with 4-

adjacency, that is, 〈(k, `), (m,n)〉 ∈ E precisely when

|k − m| + |` − n| = 1. Let s0 = (0, 0) and consider

standard minimization, that is, � being ≤.

For a path pv` = 〈v0, . . . , v`〉 ∈ ΠG in which s0
appears only at place v0 we put ψ(pv`) = ` provided

` ≤ 3 and ψ(pv`
) = 0, otherwise. For a path pv` in

which s0 appears more than once, or does not appear at

all, we put ψ(pv`) = 100. Then ψ(〈s0〉) = 0 is optimal.

Also, every v` ∈ V a one-to-one path pv` of length ` ≥
5, which achieves �-minimal value of 0. In addition,

the properties C1-C3 are satisfied for any path pv` of

length ` ≥ 5. However, only s0 admits HOM path, so

the properties C1*-C2* are not satisfied. Moreover, for

any v1 adjacent to s0, DA returns a suboptimal value 1.

● ●

●

s s'
●

a'a

●b

●

b'

Fig. 3 The graph for Example 8.
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Example 8 Let G = 〈V,E〉 be as in Figure 3, that is,

with six vertices V = {s, s′, a, a′, b, b′} and eight di-

rected edges E = {〈s, a〉, 〈a, b〉, 〈s′, a′〉, 〈a′, b′〉,
〈a, a′〉, 〈a′, a〉, 〈b, b′〉, 〈b′, b〉}. We use the standard mini-

mization (i.e., with � being ≤), S = {s, s′}, and define

ψ(pv) = 0 for any pv ∈ ΠG from S of the following

form:

– v ∈ {s, s′, a, a′} or having repeated vertices (i.e., not

a simple path);

– 〈 . . . , a′, b′, b〉, 〈s, a, a′, b′〉, 〈 . . . , a, b, b′〉, 〈s′, a′, a, b〉.

For all other paths pv ∈ ΠG we put ψ(pv) = 1.

The path-value function ψ satisfies conditions

C1*-C3*: The path pb = 〈s, a, a′, b′, b〉 satisfies the

properties for b: C1* and C2* since it is HOM (as

ψ(〈s, a, a′, b′〉) = 0) and C3*, since the only replace-

ment of 〈s, a, a′, b′〉 in pb with an optimal path to b′

that does not have repeated vertices is pb itself, while

the replacements of any shorter initial segments of pb
are also of the optimal form 〈 . . . , a′, b′, b〉. The symmet-

ric argument shows that the path pb′ = 〈s′, a′, a, b, b′〉
also satisfies conditions C1*-C3*. It is also easy to see

that any path from S to v ∈ {b, b′, c, c′} satisfies C1*-

C3* as well.

DA and DA* may terminate with a suboptimal

path: Indeed, if the first two vertices removed from H
are s and s′, then the algorithm will terminate with

suboptimal π[b] = 〈s, a, b〉 and π[b′] = 〈s′, a′, b′〉.

DA and DA* may terminate with the optimal

map: Indeed, if the first two vertices removed from H
are s and a, then the algorithm will terminate with the

hereditary optimal π[b] = 〈s, a, a′, b′, b〉.

Note that the two last claims may happen depend-

ing on the tie-breaking policy for removing vertices from

H. (In practice, the implementations usually follow the

first-in-first-out rule, which ensures that s and s′ would

be removed first.) Apart from that, we provide next an

even stronger example, in which the path-value func-

tion satisfies C1*-C3* for which the algorithms cannot

return the optimal map.

● ●

●

s s'
●

a'a

●b

●

b'

c ● c'●

Fig. 4 The graph for Example 9.

Example 9 Let G′ = 〈W,E〉 be as in Figure 4 and con-

sider the standard minimization (so that � is ≤) with

S = {s, s′} and ψ(pv) = 0 for any pv ∈ ΠG′ from S of

the form:

– v ∈ {s, s′, a, a′} or having repeated vertices (i.e., not

a simple path);

– 〈 . . . , a′, b′, b〉, 〈s, a, a′, b′〉, 〈 . . . , a, b, b′〉, 〈s′, a′, a, b〉;
– 〈 . . . , a′, c′, c〉, 〈s′, a′, c′〉, 〈 . . . , a, c, c′〉, or 〈s, a, c〉.

For all other paths pv ∈ ΠG′ we put ψ(pv) = 1.

The path-value function ψ satisfies conditions

C1*-C3*: The graph G′ restricted to the vertices in

V = {s, s′, a, a′, b, b′} become the graph G from Exam-

ple 8 with the same path-value function. Since, in G′,

there are no edges from {c, c′} to V , the same paths as

in Example 8 show that the conditions C1*-C3* are sat-

isfied for any v ∈ V . The conditions are satisfied for c by

a path pc = 〈s′, a′, c′, c〉: C1* and C2* since it is HOM

and C3*, since the only replacement of 〈s′, a′, c′〉 in pc
with an optimal path to c′ is 〈s, a, a′, c′, c〉, of optimal

format 〈 . . . , a′, c′, c〉. Similarly, C1*-C3* are satisfied

for c′ by a path pc′ = 〈s, a, c, c′〉.

DA and DA* must terminate with a suboptimal

path: Indeed, if the algorithm terminates with π[a] =

〈s, a〉 and π[a′] = 〈s′, a′〉, then, by Example 8, we end up

with suboptimal π[b] and π[b′]. Also, termination with

π[a] = 〈s′, a′, a〉 implies that we end up with suboptimal

π[c], while termination with π[a′] = 〈s, a, a′〉 ensures

suboptimality of π[c′].

The following example shows, that the full replace-

ment property we use in Theorem 1 is not necessary for

DA to work properly. Nevertheless, it is not clear, how

this assumption could be weakened while keeping the

theorems valid.

●

● ●

s

s'

x
●

b'

b●

Fig. 5 The graph for Example 10.

Example 10 Let G be as in Figure 5 and use the stan-

dard minimization (i.e., with � being ≤), S = {s, s′}
and ψ(pv) = 0 for any pv ∈ ΠG being one of the two

paths 〈s, x, b, b′〉 and 〈s′, x, b′, b〉 or their initial segment.

For all other paths pv ∈ ΠG we put ψ(pv) = 1. Then
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neither b nor b′ admits an optimal path with the re-

placement property. However, DA, as well as DA*, re-

turn optimal maps: either with π[b] = 〈s′, x, b′, b〉 or

with π[b′] = 〈s, x, b, b′〉.

6 On optimization of the algorithms

Remark 2 For the path-value functions ψ satisfying the

property (M),1 the condition “x ∈ H” in line 5 of DA*

is redundant. On that other hand, under such assump-

tion, it makes sense to keep the condition in line 5 of

DA* (or even add it to DA), since this may reduce an

unnecessary computation of ψ(π[w]̂ x).

Note also that, for most path-value functions ψ,

it is not necessary to keep track of the entire paths

π[w] to calculate ψ(π[w]̂ x). For example, in the case of

the path-value functions ψsum, ψmin, and ψpeak, from

Examples 1-3, we have the equations ψsum(π[w]̂ x) =

σ[w] + ωE(w, x), ψmin(π[w]̂ x) = min{σ[w], ωE(w, x)},
and ψpeak(π[w]̂ x) = max{σ[w], ωV (x)}, respectively.

Similar simplification is also possible for the bar-

rier distance from Example 4, though in this case, it is

necessary to keep record of two functions,

ψ+
dif(〈v0, . . . , v`〉) = max

0≤j≤`
ωV (vj)

and

ψ−dif(〈v0, . . . , v`〉) = min
0≤j≤`

ωV (vj),

updated via ψ+
dif(π[w]̂ x) = max{ψ+

dif(π[w]), ωV (x)} and

ψ−dif(π[w]̂ x) = min{ψ−dif(π[w]), ωV (x)}, from which ψdif

is evaluated as ψdif(pv) = ψ+
dif(pv)− ψ−dif(pv).

Remark 3 In general, assuming that the path value can

be found in O(1)-time and that graph degree is of the

O(1)-order of magnitude, the algorithms can be imple-

mented with H being a binary heap [18] to ensure their

termination in O(n lnn)-time, where n is the number

of vertices in the graph. This follows from the fact that

the main loop is executed precisely n-times and that its

execution, finding a vertex with � minimal value of π,

take at most lnn operations.

The linear-time implementation of the algorithms is

also possible for sparse graphs and integer path-value

functions ψ, as long as, the finite initial values ψ(〈v0〉)
and differences |ψ(pvi)− ψ(pvi−1

)| for 0 < i ≤ l are less

than a number K > 0 for any path pv` ∈ ΠG [22]. This

requires an efficient bucket-sort implementation of H,

as the one described in [24].

1 Actually, it is enough to assume only that every heredi-
tarily ψ-optimal path is monotone.

Remark 4 In some applications, it makes sense for the

algorithms to terminate before the main loop is exe-

cuted for every vertex, giving additional gain in opti-

mization. Examples involve the computation of

geodesic paths from a source set to a destination set

and shape dilation [22]. In the first case, early termi-

nation can occur when a vertex from the destination

set is removed from H and, in the second case, when

the removed vertex w has optimum-path value ψ(π[w])

above a given threshold.

7 Proofs

The following notation and results are for either DA

and DA*.

For k ∈ {1, . . . , |V |}, let Hk be the state of H imme-

diately before the k-th execution of line 5, let wk be the

vertex removed from H = Hk during the k-th execution

of line 5, and let πk be π[wk] at that time.2 First notice

the following lemma, that makes no use of the property

(E).

Lemma 1 During the execution of DA or DA* and

after the initialization loop,

(i) for every v ∈ V , π[v] is a path to v with σ[v] =

ψ(π[v]);

(ii) the value of σ[v] never increases (in the � sense)

and π[v] changes only when σ[v] decreases;

(iii) for every v ∈ V and k ∈ {0, . . . , |V |}, directly after

the k-th execution of the main loop, either π[v] = 〈v〉
or π[v] = πjˆv for some j ∈ {1, . . . , k − 1};

(iv) for every πk = 〈v0, . . . , v`〉 and i = 1, . . . , ` − 1, if

vi = wj, then πj = 〈v0, . . . , vi〉;
(v) Ψ(πi) � Ψ(πj) for every i, j ∈ {1, . . . , |V |}, i ≤ j.

Proof (i): Certainly this holds directly after the initial-

ization loop. Also, the property is preserved when line 7

is executed.

(ii): The values of σ[v] or π[v] can change only by

the execution of line 7 with x = v, when σ[v] = σ[x]
decreases.

(iii): Certainly this holds directly after the initial-

ization loop. Also, the property is preserved when line 7

is executed.

(iv): Let k ∈ {1, . . . , |V |}. By recursion, it is enough

to prove that (iv) holds for this k, as long as it holds for

every k′ ∈ {1, . . . , k−1}. To see that (iv) holds for such

a k, notice that, by (iii), either πk = 〈v〉 or πk = πi v̂

for some i ∈ {1, . . . , k − 1}. Now, if πk = 〈v〉, then (iv)

holds in void, since there is no i for which the condition

2 Notice, that in case of the algorithm DA, the value of
π[wk] can still further change, as shown in Example 6. But,
in the presented argument, πk remains fixed.
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needs to be checked. On the other hand, if πk′ = πi v̂

for some k′ = i ∈ {1, . . . , k − 1}, then the condition is

satisfied by the recursive assumption.

(v): It is enough to prove, by induction on k ∈
{1, . . . , |V |}, that the following property

Ik: Ψ(πi) � Ψ(πj) for every 1 ≤ i ≤ j ≤ k holds.

This clearly holds for k = 1. So, assume that it holds for

some k < |V |. We will show that it holds also for k+ 1.

For this, it is enough to prove that Ψ(πk) � Ψ(πk+1).

So, let q be the shortest initial segment of πk with

ψ(q) = Ψ(πk). Then ψ(q) = Ψ(q) and, by (iii), q termi-

nates at wj for some j ≤ k. In particular, by (iv), πj = q

and Ψ(πj) = Ψ(q) = ψ(q) = Ψ(πk). Also, by (iii), πk+1

is either 〈wk+1〉 or πiˆwk+1 for some i ∈ {1, . . . , k}.
First assume the latter case, that πk+1 = πiˆwk+1.

If j ≤ i, then, by the inductive assumption, Ψ(πk) =

Ψ(πj) � Ψ(πi) � Ψ(πiˆwk+1) = Ψ(πk+1), as needed.

So, assume that i < j. Then, after the i-th execution of

the main loop, we have σ[wk+1] � ψ(πiˆwk+1). Since,

by (ii), the value of σ[wk+1] never decreases, the in-

equality σ[wk+1] � ψ(πiˆwk+1) remains true after the

j − 1-st execution of the main loop of the algorithm.

In particular, the minimality choice of wj , ensured in

line 4, gives ψ(πj) = σ[wj ] � σ[wk+1] � ψ(πiˆwk+1).

Therefore, we have the following inequalities Ψ(πk) =

Ψ(πj) = ψ(πj)� ψ(πiˆwk+1) � Ψ(πiˆwk+1) = Ψ(πk+1),

as needed.

Finally, assume that πk+1 = 〈wk+1〉. Then, after

the initialization, σ[πk+1] = ψ(〈wk+1〉) = ψ(πk+1) and,

by (ii), the inequality σ[wk+1] � ψ(πk+1) remains true

after j − 1-st execution of the main loop. So, the min-

imality choice of wj , ensured in line 4, gives ψ(πj) =

σ[wj ] � σ[wk+1] � ψ(πk+1). Thus, Ψ(πk) = Ψ(πj) =

ψ(πj) � ψ(πk+1) � Ψ(πk+1), as needed.

The following lemma is the key step in the proof of

the theorems.

Lemma 2 If (E) holds, then after the execution of DA

or DA*, for every k ∈ {1, . . . , |V |}:

(Pk) πk = π[wk] is HO.

Proof Choose a k ∈ {1, . . . , |V |} such that (Pj) holds

for every j ∈ {1, . . . , k− 1}. By the power of recursion,

it is enough to prove that (Pk) holds as well.

To see (Pk), choose, using (E), a Ψ -minimal HO path

p = 〈v0, . . . , v`〉 to wk with the replacement property

and notice that it is enough to prove that

(∗) ψ(πk) � ψ(p) and Ψ(πk) � Ψ(p).

Indeed, by Lemma 1(iii), πk = qˆwk ∈ ΠG, where q is

either empty or equal to πj for some j ∈ {1, . . . , k− 1}.
Hence, by the inductive assumption, q is either empty

or HO. Thus, the hereditary ψ-optimality of πk follows

from the inequality ψ(πk) � ψ(p), as p is a ψ-optimal

path to wk. Also, hereditary Ψ -optimality of πk follows

from its Ψ -optimality, that is, the property that

Ψ(πk) � Ψ(π) for every hereditarily ψ-optimal

path π to wk.

But this Ψ -optimality of πk follows from the inequality

Ψ(πk) � Ψ(p), since the HO property of p ensures that

Ψ(p) � Ψ(π) for every hereditarily ψ-optimal path π to

wk.

To prove (∗) first, notice that it holds when ` = 0.

Indeed, then we have p = 〈wk〉 and, right after the ini-

tialization, π[wk] is ψ-optimal. Hence, by the parts (i)

and (ii) of Lemma 1, the value of π[wk] remains un-

changed during the execution of the algorithm. In par-

ticular, πk = π[wk] = p = 〈wk〉 and Ψ(πk) = ψ(πk) =

ψ(p) = Ψ(p), giving us (∗). Therefore, in what follows

we assume that ` > 0.

Next, notice that v` = wk ∈ Hk. So, there exists the

smallest i ≤ ` such that vi ∈ Hk. Let t ∈ {k, . . . , |V |}
be such that vi = wt. We will consider several cases.

Case 0 < i = `. Then v`−1 /∈ Hk and π[v`−1] = πj
for some j < k. So, by the inductive assumption, πj =

π[v`−1] is HO. In particular, Ψ(πj) � Ψ(〈v0, . . . , v`−1〉),
as 〈v0, . . . , v`−1〉 is hereditarily ψ-optimal to v`−1 =

wj . Moreover, by the replacement property, ψ(πk) =

ψ(πjˆwk) = ψ(p). Thus, we have Ψ(πk) = Ψ(πjˆwk) =

max{Ψ(πj), ψ(πk)} � max{Ψ(〈v0, . . . , v`−1〉), ψ(p)} =

Ψ(p), proving (∗). So, in the rest of the argument we

will assume that i < `.

In the rest of the proof we will assume, by way of
contradiction, that (∗) is false. Notice, that this implies

that

(∗∗) Ψ(p) ≺ Ψ(πk) = Ψ(qˆwk) and there exists an s ∈
{1, . . . , k} such that πs is an initial segment of πk =

qˆwk for which Ψ(πs) = ψ(πs) = Ψ(πk).

Indeed, if (∗) is false, then either Ψ(p) ≺ Ψ(πk) or

ψ(p) ≺ ψ(πk). However, the second of these inequal-

ities implies that ψ(p) ≺ ψ(πk) = ψ(qˆwk) and, by the

Ψ -minimality of p, also Ψ(p) ≺ Ψ(qˆwk) = Ψ(πk). This

shows the first part of (∗∗). To see the second part, no-

tice that if π is the shortest initial segment of πk for

which ψ(π) = Ψ(πk) and π is a path to ws, then s is as

needed.

Case 0 = i < `. Then 〈v0〉 is ψ-optimal, as an initial

segment of HO path p, and so, right after the initial-

ization, π[wt] = π[v0] = 〈v0〉 is ψ-optimal. Hence, by

the parts (i) and (ii) of Lemma 1, the value of π[v0]

remains unchanged during the execution of the algo-

rithm. In particular, πt = 〈v0〉. Moreover, s ≤ k ≤ t so
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that wt = v0 belongs to Hs. In particular, the choice of

ws during the s-th execution of the algorithm’s loop en-

sures that ψ(πs) � ψ(〈v0〉). Hence, using (∗∗), ψ(πs) �
ψ(〈v0〉) � Ψ(p) ≺ Ψ(qˆwk) = Ψ(πk) = ψ(πs), a desired

contradiction.

Case 0 < i < `. Then vi−1 /∈ Hk and vi−1 = wr for

some r ∈ {1, . . . , k − 1}. Hence, by the inductive as-

sumption, the path πr = π[wr] = π[vi−1] is HO. There-

fore, by the replacement property, we have ψ(πr v̂i) =

ψ(〈v0, . . . , vi〉), that is, any time after the r-th execution

of the main loop the path πr v̂i to vi = wt is already

ψ-optimal. Hence, πt = π[wt] = π[vi] = πr v̂i.

If r < s, then the choice of ws during the s-th execu-

tion of the loop ensures that ψ(πs) � ψ(πt) and, using

(∗∗), ψ(πs) � ψ(πt) = ψ(πr v̂i) = ψ(〈v0, . . . , vi〉) �
Ψ(p) ≺ Ψ(qˆwk) = Ψ(πk) = ψ(πs), a desired contra-

diction. So, assume that r ≥ s. Then, by Lemma 1(v),

the property (Pr), and (∗∗), we have ψ(πs) � Ψ(πs) �
Ψ(πr) � Ψ(〈v0, . . . , vr〉) � Ψ(p) ≺ Ψ(qˆwk) = Ψ(πk) =

ψ(πs), once again a desired contradiction.

Proof (Proof of Theorems 1 and 2)

First notice that the family {π1, . . . , π|V |} forms a

forest: this follows from Lemma 1(iv) and the fact that

each πi is a path to different vertex wi.

The extra condition “x ∈ H” in line 5 of DA* en-

sures that the value of π[wk] does not change from

the value of πk during the j-th execution of the loop

for every j ≥ k. Thus, DA* returns {π1, . . . , π|V |} as

{π[v] : v ∈ V }, which is a forest, as claimed.

Moreover, when condition (E) holds, Lemma 2 en-

sures that, after the execution of DA or DA*, the forest

{π1, . . . , π|V |} is optimal. In particular, by Lemma 1(ii),

the value of π[wk] = πk does not change during the j-th

execution of the loop for every j ≥ k. So, both algo-

rithms, DA as well as DA*, return {π1, . . . , π|V |} as

{π[v] : v ∈ V }, the optimal forest.

The last part of Theorem 2 follows immediately

from its first part, that for path returned DA* among

P = {π[v] : v ∈ V }, all its initial segments must be also

in P , so that, if all paths in P are ψ-optimal, then they

must be also hereditarily ψ-optimal.

Similarly, to prove the last part of Theorem 1 it is

enough to show that, under the assumption of (M), the

family P = {π[v] : v ∈ V } returned by DA coincides

with {π1, . . . , π|V |}, which is a forest. But this immedi-

ately follows from Lemma 3 below.

Lemma 3 DA executed with a path-value function

satisfying (M) returns the map π[ ] such that for every

v` ∈ V , if π[v`] = 〈v0 . . . , v`〉, then π[vi] = 〈v0 . . . , vi〉
for every i ∈ {0, . . . , `}.

Proof Since the algorithm terminates with H empty, it

is enough to prove that the following properties hold

any time after the initialization loop.

(i) For every v` ∈ V \ H, if π[v`] = 〈v0 . . . , v`〉, then,

for every i ∈ {0, . . . , `}, vi ∈ V \ H and π[vi] =

〈v0 . . . , vi〉.
(ii) ψ(π[wi]) � ψ(π[wj ]) � ψ(π[u]) for every u ∈ H and

wi,wj ∈ V \ H with i ≤ j.

Certainly this holds directly after the initialization

loop. Thus, it is enough to show, that (i) and (ii) are

preserved by any, say k-th, execution of the main loop.

Indeed, the properties (i) and (ii) are preserved

when we remove w from H by the execution of line 4.

For (ii), this follows from the �-minimality imposed

on w = wk removed from H. To see (i), notice that,

by Lemma 1(iii), just before execution of line 4, π[w]

equals either to 〈w〉 or to π[u]̂ w, where u ∈ V \ H and

π[u] satisfies (i). In either case, π[w] satisfies (i), after

w is removed from H.

So, it is enough to show that each execution of

line 7 preserves (i) and (ii). Indeed, we can execute

the commands σ[x] ← σ′ and π[x] ← π[w]̂ x only when

x ∈ H since, by (M), any x ∈ V \ H is equal to wi for

some i ∈ {1, . . . , k} and σ′ = ψ(π[w]̂ x) � ψ(π[w]) =

ψ(π[wk]) � ψ(π[wi]) = ψ(π[x]) = σ[x], where the first

inequality is justified by (M) and the second by (ii).

Thus, the condition σ′ ≺ σ[x] in line 7 is not satis-

fied, so the rest of the line is not executed. Hence, it

is enough to show, that execution of line 7 with x ∈ H
preserves (i) and (ii).

In this case, after line 7 is executed, we still have

ψ(π[wi]) � ψ(π[wk]) = ψ(π[w]) � ψ(π[w]̂ x) = ψ(π[x]),
preserving (ii). At the same time, (i) cannot be affected

by a change of π[x] when x ∈ H. Thus completes the

proof of Theorems 1 and 2.

The only remaining proof we still need is that of

Proposition 2 If ψ satisfies (M) and

(R*) ψ(qv`−1
v̂`) � ψ(pv`) for all paths pv` = 〈v0, . . . , v`〉

to v` and qv`−1
to v`−1 with ψ(qv`−1

) � ψ(pv`−1
),

then every v ∈ V admits a hereditarily ψ-optimal path

to v.3

Proof First notice that, by the properties (M) and (R*),

for every path 〈v0, . . . , v`〉, if vi = vj for some i ≤ j ≤
`, then we have ψ(〈v0, . . . , vi〉) � ψ(〈v0, . . . , vj〉) and

3 Note that if we weaken the assumptions by replacing (R*)
with the property (R+) obtained by replacing in (R*) symbols
� with the equation =, then the implication does not hold
any more: ψdif from Example 4 satisfies (M) and, for the
example from Figure 2, also (R+), but fails the conclusion of
Proposition 2.
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ψ(〈v0, . . . , vi, vj+1, . . . , v`〉) � ψ(〈v0, . . . , v`〉). Thus, for

every path pv to v there exists a path qv to v which

contains no repeated vertices and such that ψ(qv) ≤
ψ(pv). In particular, for every v ∈ V there exists a

number ψ(v), the strength of the ψ-optimal path to v:

it is the �-smallest among the numbers ψ(qv), where

qv is a path to v with no repeated vertices.

Now, suppose the proposition is false. Among v ∈ V
for which no path to v is hereditarily ψ-optimal, pick

a point v∗ for which ψ(v∗) is �-minimal and let pv` =

〈v0, . . . , v`〉 be a path to v∗ with ψ(pv`) = ψ(v∗). Choose

the greatest index k ∈ {0, . . . ` − 1} for which the in-

equality ψ(vk) � ψ(〈v0, . . . , vk〉) is not the equation.

It exists since pv` cannot be hereditarily ψ–optimal.

Therefore, ψ(vk) ≺ ψ(〈v0, . . . , vk〉) � ψ(pv`) = ψ(v∗),

so, by the �-minimality of ψ(v∗), there exists a hered-

itarily ψ-optimal path qvk to vk. Now, by induction on

n ∈ {k, . . . , `}, we prove that there exists a hereditarily

ψ-optimal path qvn to vn. Clearly, it is true for n = k.

Also, if it is true for some n ∈ {k, . . . , `− 1}, then it

is also true for n + 1. Indeed, as ψ(qvn) = ψ(vn) �
ψ(〈v0, . . . , vn〉), (R*) implies ψ(vn+1) � ψ(qvn v̂n+1) �
ψ(〈v0, . . . , vn+1〉) = ψ(vn+1), where the last equation

follows from the definition of k. Thus, ψ(qvn v̂n+1) =

ψ(vn+1) and, since qvn is hereditarily ψ-optimal, so is

qvn+1
= qvn v̂n+1, finishing the induction.

Now, qv` is a hereditarily ψ-optimal path to v` = v∗,

contradicting the choice of v∗.

8 Conclusion

We presented the conditions of path-value functions on

directed graphs that ensure the correct behavior of the
Dijkstra-type algorithms and discussed the benefits of

such result to image processing. This result, with the

proposed graph-search algorithm DA*, can be used to

guide the design of new operators based on the image

foresting transform, IFT. As future work, we intend to

present a survey of IFT-based operators for image pro-

cessing and analysis.

A recent work [35] has appeared as a survey on the

all-pairs shortest paths problem for the case of the ad-

ditive path-value function (Example 1). Therefore, the

present work also creates opportunity for further in-

vestigation of the all-pairs shortest paths problem for

path-value functions that satisfy condition (E), as well

as of solutions to new problems in other applications of

Dijkstra’s algorithm.
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