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Abstract. We show that the class of functions that are per-
fectly everywhere surjective and almost continuous in the sense
of Stallings but are not Jones functions is c+-lineable. Moreover,
it is consistent that this class is 2c-lineable, as this holds when
2<c = c. We also prove that the additivity number for this class
is between ω1 and c. This lower bound can be achieved even when
ω1 < c, as it is implied by the Covering Property Axiom CPA. The
main step in this proof is the following theorem, which is of inde-
pendent interest: CPA implies that there exists a family F ⊂ C(R)
of cardinality ω1 < c such that for every g ∈ C(R) the set g \

⋃
F

has cardinality less than c. Some open problems are posed as well.

1. Introduction

During a Math conference in Kent State University (Kent, OH) in
November of 2016 the following question was posed to the public:

How “large” (in terms of algebraic genericity) is the class
of functions in RR that are perfectly everywhere surjective
and almost continuous (in the sense of Stallings) but not
Jones?

More recently (in [19]) the study of the class of perfectly everywhere
surjective functions that are not Jones was also considered (recall that
Jones functions are, both, perfectly everywhere surjective and almost
continuous).
The above question becomes clear once we define the following con-
cepts.
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Definition 1.1. Given a function f : R→ R, we say that:
(i) f is perfectly everywhere surjective (f ∈ PES) if f [P ] = R for

every perfect set P ⊂ R.
(ii) f is a Jones function (f ∈ J) if C∩f 6= ∅ for every closed C ⊂

R2 with domC (i.e., projection of C on the first coordinate)
has cardinality continuum c.

(iii) f is almost continuous (in the sense of Stallings; f ∈ AC)
if for each open set G ⊂ R2 such that f ⊂ G there exists a
continuous function g : R→ R such that g ⊂ G.

The notion of “being large” in terms of algebraic genericity is nowa-
days expressed in the following more precise terminology (see, e.g.,
[1, 3, 4, 11–13,21,25,28]).

Definition 1.2. Given a (finite or infinite) cardinal number κ, a subset
M of a vector space X is called κ-lineable in X if there exists a linear
space Y ⊂M ∪ {0} of dimension κ.

Intuitively, lineability seeks for a linear structure within M ∪ {0} of
the highest possible dimension. However, there exist setsM containing
no linear substructures of highest dimension, [4]. Due to the previous
reason, this “maximal lineability number” is best expressed as the lin-
eability coefficient L defined as the least cardinal for which there is no
linear substructure of that cardinality (see [14] or [7].)

Definition 1.3. The lineability coefficient of a class F ⊂ RR is defined
as

L(F) = min{κ :

there is no κ-dimensional vector space V with V ⊂ F ∪ {0}}.

Recall that F admits the maximal lineability number if, and only
if, L(F) is a cardinal successor, that is, L(F) is of the form κ+. (The
symbol κ+ stands for the successor cardinal of κ.) We refer the inter-
ested reader to [4,8–10,18,23] for many applications of this concept to
several different fields within mathematics and, for a complete modern
state of the art of this area of research, see [1, 11].

On the other hand, and since the appearance of the work [22], the no-
tion of lineability has been linked to that of the additivity coefficient A,
which was introduced by the third author in [26,27].

Definition 1.4. Let F ⊂ RR. The additivity of F is defined as the
following cardinal number:

A(F) = min
({
|F | : F ⊂ RR ∧ (∀g ∈ RR)(g + F 6⊂ F)

}
∪ {(2c)+}

)
.
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The class of all continuous functions f : R → R is denoted by C(R)
Recall also that a function f : R→ R is almost continuous if and only if
it intersects every blocking set , that is, a closed setK ⊂ R2 which meets
every continuous function g : R → R and is disjoint with at least one
function from RR. The domain dom(K) of every blocking set contains
a non-degenerate connected set (see [24] or [26].)

It is known that the class J is a proper subclass both of the class
PES and the class AC (although, until the present work, it has not
been studied if it is a proper class of AC∩PES). It is known that the
family J, and so also each of the families PES and AC, is 2c-lineable
(see [21] and [20], respectively.)

This paper is arranged in two main sections. Section 2 focuses on
answering the question mentioned earlier in this Introduction. Namely,
we show that AC∩PES\J is c+-lineable. On the other hand, it is known
that A(PES) = A(J) = A(AC) > c [22, Theorem 3.16]. In Section 3 we
will provide lower and upper bounds for the additivity of AC∩PES \ J.
Some open questions and directions of research are also provided.

2. Lineability of the class AC∩PES \ J

Let us recall the notion of Bernstein set. We say that B ⊂ R is a
Bernstein set if B and R\B meet each perfect set P ⊂ R. Clearly, each
Bernstein set can be decomposed into c-many Bernstein sets. Moreover,
if B is a Bernstein set and P is a perfect set, then |B ∩ P | = c, hence
if B is Bernstein and |C| < c then B \C and B ∪C are Bernstein sets,
too. Observe that f ∈ PES if, and only if, each level set f−1(y), y ∈ R,
is a Bernstein set.

Lemma 2.1. Let F be the family of all closed subsets of R2 such that
each S ∈ F is either a blocking set or equal to P × {y} for some
perfect set P ⊂ R and y ∈ R. For every Bernstein set B ⊂ R and a
C ⊂ R \ {0} nowhere dense in R there exists a function ϕ ∈ RR such
that:

(i) ϕ(x) = 0 for every x ∈ R \B.
(ii) For every λ ∈ R \ {0}, the set {x ∈ C : ϕ(x) = λx} has at

most one element.
(iii) For every S ∈ F , the set {x ∈ B : 〈x, ϕ(x)〉 ∈ S} has cardi-

nality c.
In particular, ϕ ∈ AC∩PES \ J.

Proof. Clearly the family F has cardinality c. Let 〈Sξ : ξ < c〉 be an
enumeration of F with each S ∈ F appearing c-many times.
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By transfinite induction, on ξ < c, we will construct a sequence
〈〈xξ, yξ〉 ∈ B ×R : ξ < c〉 aiming for ϕ = {〈xξ, yξ〉 : ξ < c} ∪ (X ×{0}),
where X = R \ {xξ : ξ < c}.

So, assume that, for some ξ < c, the sequence 〈〈xζ , yζ〉 : ζ < ξ〉 is
already constructed. We need to choose 〈xξ, yξ〉. For this, consider two
cases. If Sξ is a blocking set, we choose

xξ ∈ dom(Sξ) ∩B \ (C ∪ {xζ : ζ < ξ}).

The choice is possible, since dom(Sξ) \ C has non-empty interior and
so dom(Sξ) ∩B \ C has cardinality c.

Otherwise, Sξ = P ×{y} for some perfect set P . If y = 0 let Lξ = ∅.
If not, let Lξ be the set of all x ∈ P for which the line through 〈0, 0〉
and 〈x, y〉 intersects the set {〈xζ , yζ〉 : ζ < ξ}. Then, Lξ has cardinality
smaller than c and we can choose

xξ ∈ dom(Sξ) ∩B \ (Lξ ∪ {xζ : ζ < ξ}).

In either case we choose yξ so that 〈xξ, yξ〉 ∈ Sξ.
The above construction ensures that the sequence 〈xξ : ξ < c〉 is

one-to-one, so our ϕ is indeed a function.
Clearly (i) holds, as {xξ : ξ < c} ⊆ B. The property (iii) holds,

since each S ∈ F appears in our enumeration, as Sξ, c-many times and
〈xξ, ϕ(xξ)〉 = 〈xξ, yξ〉 ∈ Sξ = S. Finally, notice that our inductive step
preserves (ii). Indeed, if Sξ is a blocking set, then this is obvious, since
then xξ /∈ C. Otherwise, this is ensured by our choice of xξ outside of
the set Lξ.

To finish the proof we need to show that ϕ ∈ AC∩PES \ J. Indeed,
condition (iii) immediately implies that ϕ ∈ AC∩PES. To see that
ϕ /∈ J note that, by (ii), the closed set Z1 = {〈x, x〉 : x ∈ C} intersects
ϕ in at most one point. Therefore, it contains an uncountable closed
subset which does not intersect ϕ, justifying ϕ /∈ J. �

Proposition 2.2. For every cardinal κ < c, the family AC∩PES \ J
is 2κ-lineable.

Proof. We can assume, without loss of generality, that ω ≤ κ < c.
Let {Bα : α < κ} a partition of R into κ many Bernstein sets. Let
C ⊂ R \ {0} be an uncountable compact nowhere dense in R. For
example C can be a translation of the Cantor ternary set. For every
α < κ, let ϕα be the function provided by Lemma 2.1 with B = Bα

and C as above. Consider the map Φ : Rκ → RR defined by

Φ(〈aβ〉β<κ) =
∑
β<κ

aβϕβ.
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This sum is well defined since, for every x ∈ R, ϕα(x) 6= 0 only if
x ∈ Bα. Clearly Φ is a linear injection. Thus, the range of Φ is a
linear space of dimension 2κ. In fact, this is immediate if we prove
that dim(Rκ) ≥ c, as for linear spaces over R of dimension not smaller
than c their dimension is equal to their cardinality. Now, as κ ≥ ω,
Rκ contains a subspace isomorphic with Rω. Since the dimension of
Rω is equal to c (if A is a family of infinite almost disjoint subsets
of ω of cardinality c, then their characteristic functions are linearly
independent), we obtain that the dimension of Rκ is, at least, c.

Thus, to finish the proof, it is enough to show that Φ(〈aβ〉β<κ) ∈
AC∩PES \ J whenever aβ 6= 0 for some β < κ.

Indeed, in such case, Φ(〈aβ〉β<κ) � Bβ = aβϕβ � Bβ intersects every
S ∈ F , ensuring that Φ(〈aβ〉β<κ) ∈ AC∩PES.

To see that Φ(〈aβ〉β<κ) /∈ J it is enough to show that its intersection
with Z1 = {〈x, x〉 : x ∈ C} has cardinality less than c, as then there is
a closed uncountable subset of Z1 that does not intersect Φ(〈aβ〉β<κ).
But this is the case, since

Z1 ∩ Φ(〈aβ〉β<κ) =
⋃
β<κ

Z1 ∩ aβϕβ

is a union of κ < c sets Z1 ∩ aβϕβ each having at most one element.
(Indeed, Z1 ∩ aβϕβ = ∅ for aβ = 0 and, for aβ 6= 0, its domain is
contained in the set {x ∈ C : ϕβ(x) = 1

aβ
x} which, by (ii), has at most

one element.) �

Since 2ω = c, we obtain immediately from Proposition 2.2 that the
family AC∩PES \ J is c-lineable. Note, however, that if we accept
the set-theoretical assumption that c is singular, then we reach a little
further. Indeed, in this case, we have cf c < c and so AC∩PES \ J is
2cf c-lineable. Thus, using the classical König’s Theorem that 2cf c > c,
we conclude that AC∩PES \ J is at least c+-lineable.

Next, we turn our attention to the case when c is regular. We start
with the following proposition.

Proposition 2.3. Assume that there exists a family {Bα : α < κ} of
almost disjoint Bernstein sets in R, that is, such that the intersection
of every two different sets from it has cardinality less than c. Then, the
family AC∩PES \ J is κ-lineable.

Proof. By Proposition 2.2, and the above remark, we can assume that
κ ≥ ω. (Even that κ > c.) Let C ⊂ R\{0} be an uncountable compact
nowhere dense in R. For every α < κ, let ϕα be the function provided
by Lemma 2.1 with B = Bα and C as above. It is enough to prove
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that the linear space generated by {ϕα : α < κ} proves κ-lineability
of AC∩PES \ J. But any non-zero function from this space, of the
form f =

∑
α<κ aαϕα =

∑
i<n aαiϕαi , clearly belongs to AC∩PES, the

argument being as in Proposition 2.2. Also, using the notation as in
Proposition 2.2, Z1 ∩ f has cardinality less than c, since it is contained
in the union of two sets: the finite set

⋃
i<n Z1 ∩ aαiϕαi and the set⋃

i<j<nBαi ∩ Bαj of cardinality less than c. So, as in Proposition 2.2,
f /∈ J. �

We will also need the following simple fact.

Lemma 2.4. If c is regular, then there exists a family of cardinality
c+ of almost disjoint Bernstein sets in R.

Proof. First observe that for any family {Bα : α < c} of almost disjoint
Bernstain sets there exists a Bernstein set B which is almost disjoint
with every set Bα, α < c. In fact, let {Pα : α < c} be a family of all
perfect sets on R. For every α < c choose, using a fact that c is regular,
a point

xα ∈ Pα ∩

(
Bα \

⋃
β<α

Bβ

)
.

Let B = {xα : α < c}. Then B meets each perfect set. Moreover for
every α < c,

B ∩Bα ⊂ {xβ : β ≤ α}
is of size less than c, hence B is almost disjoint with Bα. Finally, since
B0 is a Bernstein set, |B ∩ B0| < c, and |B0 ∩ P | = c for any perfect
set P , R \B meets P . Therefore, B is a Bernstein set.

Now, Kuratowski-Zorn’s Lemma yields that there exists a maximal,
with respect to the inclusion, family B of almost disjoint Bernstein sets.
By the remark above, |B| ≥ c+. �

Theorem 2.5. AC∩PES \ J is c+-lineable.

Proof. The case when c is singular follows from Proposition 2.2 and the
subsequent short discussion. The case when c is regular follows from
Proposition 2.3 and Lemma 2.4. �

Theorem 2.6. If 2<c = c, then AC∩PES \ J is 2c-lineable. Hence

L(AC∩PES \ J) = (2c)+.

Proof. By Proposition 2.3, it is enough to show that 2<c = c implies
that there exists a family or cardinality 2c of almost disjoint Bernstein
sets on R. Let T be a tree of all 0-1 sequences t : α → 2, α < c. Let
{Pα : α < c} be a sequence of all perfect subsets of R. For every t ∈ T
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let dom(t) denote the domain of t. Note that |T | = c. Thus, we can
define inductively a function F : T → R such that

(i) F (t) ∈ Pdom(t);
(ii) F is one-to-one.

For every f : c→ 2 let

Sf = F [{t ∈ T : t ⊂ f}].
Clearly, |Sf ∩Sg| < c if f 6= g. For a given perfect set Pα and f : c→ 2
we have F (f� α) ∈ Sf ∩Pα. Hence Sf is a Bernstein set. In particular,
the family {Sf : f ∈ 2c} satisfies the assertion. �

Corollary 2.7. If 2<c = c, then the classes PES \ J and AC \ J are
2c-lineable. In particular,

L(PES \ J) = (2c)+ = L(AC \ J).

Clearly, the continuum hypothesis, CH, (as well as the Martin’s
axiom MA) implies that 2<c = c. Hence, 2c-lineability of the class
AC∩PES \ J is consistent with ZFC. By Theorem 2.5, 2c-lineability of
AC∩PES \ J follows also from 2c = c+.

Problem 2.8. Are the families PES\AC, AC∩PES \ J, PES\J, and
AC \ J 2c-lineable in ZFC? What about their algebrability (see [2,5,6]),
when considered within the class of complex functions?

3. Additivity of the classes AC∩PES \ J and PES \ J

In this section we show that ω1 ≤ A(AC∩PES \ J) ≤ A(PES \ J) ≤ c
and that it is consistent with ZFC that the last inequality is strict. Of
course, the inequality A(AC∩PES \ J) ≤ A(PES \ J) follows immedi-
ately from monotonicity of A operator. The lower bound is justified
below. We start with showing the upper bound.

Theorem 3.1. A(PES \ J) ≤ c.

Proof. Let F = C(R). Since |C(R)| = c, it is enough to show that
h+ C(R) 6⊂ PES \ J for every h ∈ RR.

Indeed, by way of contradiction assume that h + C(R) ⊂ PES \ J
for some h ∈ RR. In particular, h ∈ h + C(R) ⊂ PES \ J and so
h /∈ J. Therefore, there exists a closed (even compact) C ⊂ R2 such
that |domC| = c and C∩h = ∅. The function γ : domC → R given by
γ(x) = inf{y : 〈x, y〉 ∈ C } is Borel (in fact, it is lower semi-continuous).
So, there exists a perfect compact P ⊂ domC such that γ � P is
continuous. By Tietze’s Extension Theorem, there exists an extension
f ∈ C(R) of γ � P . But then 0 6∈ (h − f)[P ], since h is disjoint with



8 CIESIELSKI, GÁMEZ, NATKANIEC, AND SEOANE

C ⊃ γ � P . Hence, h− f does not belong to PES in contradiction with
h+ C(R) ⊂ PES, what completes the proof. �

Next, we will prove the lower bound: A(AC∩PES \ J) ≥ ω1. For
this we will need the following lemma.

Lemma 3.2. Let F ⊂ RR be countable. Then, there exists a perfect
Q ⊂ [0, 1] and a continuous function γ : Q → R such that for every
f ∈ F and y ∈ R the set (γ + f � Q)−1(y) does not contain a perfect
subset.

Proof. Let {fn : n < ω} be an enumeration of F . Let {Is : s ∈ 2<ω} be
the family of closed subintervals of [0, 1], each of length 3−|s|, used in
the classical construction of the Cantor ternary set; that is, for every
s ∈ 2<ω, Iŝ 0 and Iŝ 1 are, respectively, the left and the right components
of Is from which we removed its middle third. (Here |t| denotes the
length of t, that is, |t| = n whenever t ∈ 2n.)

We will construct, by induction on n < ω, the family {Ps : s ∈ 2<ω}
of compact perfect subsets of [0, 1] such that, for every s ∈ 2<ω,

Pŝ 0 and Pŝ 1 are disjoint perfect subsets of Ps.
We aim for γ =

⋂
n<ω

⋃
s∈2n Ps × Is. Clearly γ defined like this is a

continuous bijection from Q =
⋂
n<ω

⋃
s∈2n Ps into the Cantor ternary

set.
We start with choosing a perfect set P∅ ⊂ [0, 1] such that either

f0 � P∅ is continuous, or there is no perfect subset P of P∅ for which
f0 � P is continuous. Also, if for some s ∈ 2n the perfect set Ps is
already constructed, we choose the sets Pŝ 0 and Pŝ 1 as follows. First
choose a perfect subset Qs of Ps such that either fn � Qs is continuous,
or there is no perfect subset P of Qs for which fn � P is continuous.
Let Z = {i ≤ n : fi � Qs is continuus}. For every i ∈ Z choose δi > 0
such that for every x, y ∈ Qs with |x−y| < δi, we have |fi(x)−fi(y)| <
3−(n+1). Let δs = min({δi : i ≤ n}∪{1}) and let Pŝ 0 and Pŝ 1 be disjoint
perfect subsets of Qs such that Pŝ 0∪Pŝ 1 has the diameter smaller than
δs. This finishes the inductive construction.

To see that γ constructed with such a sequence is as needed, fix an
n < ω and y ∈ R. It is enough to show that, for every for every s ∈ 2n,
the set

(γ + fn � Q)−1(y) ∩Qs = {x ∈ Q ∩Qs : γ(x) = y − fn(x)}
does not contain a perfect subset. Indeed, this is clearly true when
there is no perfect subset P of Qs for which fn � P is continuous.
So, assume that fn � Qs is continuous. The proof is completed by
noticing that, in such case, the set {x ∈ Q ∩ Qs : γ(x) = y − fn(x)}
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has at most one element. To see this, by way of contradiction assume
that there are distinct x0, x1 ∈ Q ∩ Qs for which γ(x0) = y − fn(x0)
and γ(x1) = y − fn(x1). Then, |γ(x0) − γ(x1)| = |fn(x0) − fn(x1)|.
However, this is impossible. Indeed, there exists t ∈ 2<ω containing s
such that |t| ≥ n and each of the sets Pt̂ 0 and Pt̂ 1 contains precisely
one of the points x0, x1. But then, |γ(x0) − γ(x1)| ≥ 3−(|t|+1) while
|fn(x0)− fn(x1)| < 3−(|t|+1), since the number |x0 − x1| is smaller than
the diameter of Pt̂ 0 ∪ Pt̂ 1, so also smaller than δt. �

Theorem 3.3. ω1 ≤ A(AC∩PES \ J).

Proof. Let F ⊂ RR be countable. We need to find an h ∈ RR such that
h + F ⊂ AC∩PES \ J. We can assume that F is an additive group.
Let γ : Q→ R be as in Lemma 3.2. We may assume that Q is nowhere
dense. Let {Qf : f ∈ F} be pairwise disjoint perfect subsets of Q. We
will find h ∈ RR such that, for every f ∈ F , h + f is disjoint with
γ � Qf . This will ensure that h+ f /∈ J.

Let {B,B′} be a partition of R \ Q such that each of its elements
meets every perfect set P ⊂ R \ Q.Let 〈〈Pξ, zξ, fξ〉 : ξ < c〉 be an enu-
meration of P ×R×F , where P is the family of all perfect subsets of
R, and let 〈〈Kξ, f

′
ξ〉 : ξ < c〉 be an enumeration of K × F , where K is

the family of all blocking sets in R2. We will construct, by transfinite
induction on ξ < c, two sequences 〈〈xξ, yξ〉 : ξ < c〉, 〈〈x′ξ, y′ξ〉 : ξ < c〉, of
points in R2 such that for every ξ < c

(i) xξ ∈ Pξ\{xζ : ζ < ξ}, and xξ ∈ B if Pξ∩
⋃
f∈F Qf is countable,

(ii) yξ + fξ(xξ) = zξ,
(iii) yξ + f(xξ) 6= γ(xξ) for every f ∈ F with xξ ∈ Qf , and
(iv) x′ξ ∈ dom(Kξ) ∩B′ \ {x′ζ : ζ < ξ}, and 〈x′ξ, y′ξ + f ′ξ(x

′
ξ)〉 ∈ Kξ.

It is easy to see that, by (i), h0 = {〈xξ, yξ〉, 〈x′ξ, y′ξ〉 : ξ < c} is a partial
function. By (iii), we can extend h0 to an h ∈ RR such that for every
f ∈ F , h+ f is disjoint with γ � Qf , so that h+ f /∈ J. The condition
h+f ∈ PES is ensured by (i) and (ii). Finally, (iv) implies h+f ∈ AC.

It remains to construct our sequence. For this assume that, for some
ξ < c, the sequences 〈xζ , yζ〉, 〈x′ζ , y′ζ〉, ζ < ξ, is already constructed.

First we choose 〈xξ, yξ〉. If there is no f ∈ F for which Pξ ∩ Qf is
uncountable, then it is enough to pick xξ ∈ Pξ ∩ B \ {xζ : ζ < ξ} not
in the countable set Pξ ∩

⋃
f∈F Qf and define yξ = zξ − fξ(xξ). This

ensures that conditions (i)-(iii) are satisfied, (iii) in void.
So, assume that there is an f ∈ F for which Pξ ∩Qf is uncountable

and let P be a perfect subset of Pξ∩Qf for such f ∈ F . To ensure (i), we
will choose xξ ∈ P \ {xζ : ζ < ξ}. Moreover, to ensure (ii) and (iii), we
need to choose xξ so that fξ(xξ)−f(xξ) 6= zξ−γ(xξ). If f̂ = fξ−f ∈ F ,
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then this last requirement can be written as xξ /∈ (γ + f̂ � Q)−1(zξ).
Now, by Lemma 3.2, the set (γ + f̂ � Q)−1(zξ) does not contain any
perfect set. Therefore, P \(γ+ f̂ � Q)−1(zξ) must have cardinality c. In
particular, we can choose xξ ∈ P \

(
(γ + f̂ � Q)−1(zξ) ∪ {xζ : ζ < ξ}

)
.

This choice, together with defining yξ = zξ − fξ(xξ) ensures that the
conditions (i)–(iii) are satisfied.

Next, we choose 〈x′ξ, y′ξ〉. Let K = Kξ and f = f ′ξ. Since dom(K)
has non-empty interior and Q is nowhere dense, B′∩dom(K) is of size
continuum, so we can choose x′ξ ∈ (B′ ∩ dom(K)) \ {x′ζ : ζ < ξ}. Fix
y ∈ R such that 〈x′ξ, y〉 ∈ K and put y′ξ = y− f(x′ξ). This ensures that
condition (iv) is satisfied. �

Corollary 3.4. ω1 ≤ A(AC∩PES \ J) ≤ A(PES \ J) ≤ c. In particu-
lar, CH implies that A(AC∩PES \ J) = A(PES \ J) = c.

The natural question here is, whether either the first or the last
inequality in Corollary 3.4 can be replaced, in ZFC, by the equality. In
what follows, we show that the last inequality can be strict. For this, we
will need the following lemma, which is a modification of Theorem 3.1.

Lemma 3.5. Let F ⊂ C(R) be such that for every g ∈ C(R) the set
g \

⋃
F has cardinality less than c. If |F| < c and F contains the

constant zero function, then h + F 6⊂ PES \ J for every h ∈ RR. In
particular, A(PES \ J) ≤ |F|.

Proof. We proceed as in the proof of Theorem 3.1. That is, by way
of contradiction assume that h + F ⊂ PES \ J for some h ∈ RR. In
particular, h ∈ h + F ⊂ PES \ J and so h /∈ J. Therefore, there exists
a compact C ⊂ R2 such that |domC| = c and C ∩h = ∅. The function
γ : domC → R given by γ(x) = inf{y : 〈x, y〉 ∈ C} is Borel. So, there
exists a perfect compact P ⊂ domC such that γ � P is continuous.
By Tietze’s Extension Theorem, there exists an extension g ∈ C(R) of
γ � P . So, γ \

⋃
F ⊂ g \

⋃
F has cardinality less than c. In particular,

there exists an f ∈ F such that the set Q = {x ∈ P : f(x) = γ(x)}
is closed and uncountable, hence it contains a perfect set. But then
0 6∈ (h− f)[Q], since h is disjoint with C ⊃ γ � Q. Hence, h− f does
not belong to PES in contradiction with h+F ⊂ PES, what completes
the proof. �

We will also need the following result, which is of the independent
interest (a generalization of this theorem to the class of differentiable
functions can be found in [15]).
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Theorem 3.6. The Covering Property Axiom CPA implies that there
exists a family F ⊂ C(R) of cardinality ω1 < c such that for every
g ∈ C(R) the set g \

⋃
F has cardinality less than c.

Proof. Under CPA we have c = ω2. So, we just need to find a desired
family F of cardinality ω1. Notice, that it is enough to prove that for
every compact perfect set Z ⊂ R there exists a family FZ ⊂ C(R)
of cardinality ω1 < c such that for every g ∈ C(Z) the set g \

⋃
FZ

has cardinality less than c. Indeed, if this holds, then the family F =⋃
n<ω F[−n,n] is as needed. So, fix a compact perfect set Z ⊂ R.
It has been proved in [17] (see also [16, Thm. 4.1.1]) that there exists

a covering K of R2 of cardinality ω1 by compact sets such that every
K ∈ K has a one-to-one projection onto one of the coordinates. We
will repeat here the same argument for the product Z ×C(Z) in place
of R2. We consider C(Z) with the uniform convergence topology, so
that Z × C(Z) is a Polish space.

We will use terminology and notation as in [16]. Let E be the family
of all compact perfect subsets of X = Z ×C(Z) such that every P ∈ E
has a one-to-one projection onto either Z or C(Z). Then, the argument
precisely as the one used in the proof of [16, Prop. 4.1.3(b)] shows that
the family E is Fprism-dense. Therefore, by CPAprism, there is an E0 ⊂ E
such that |E0| ≤ ω1 and |X \

⋃
E0| ≤ ω1.

Let F0 be the family of all P ∈ E0 for which the projection onto Z is
one-to-one. Thus, every P ∈ F0 is a continuous function from a com-
pact set dom(P ) ⊂ Z into C(Z). Therefore, the map fP : dom(P )→ R
defined as fP (x) = P (x)(x) is continuous and, by Tietze’s Extension
Theorem, can be extended to f̂P ∈ C(R). We claim that the family
FZ = {f̂P : P ∈ F0} is as needed.

To see this, fix a g ∈ C(Z) and notice that

dom
(
g ∩

⋃
FZ
)

=
⋃
P∈F0

{x ∈ Z : g(x) = f̂P (x)}

⊃
⋃
P∈F0

{x ∈ dom(P ) : g(x) = fP (x)}

=
⋃
P∈F0

{x ∈ dom(P ) : g(x) = P (x)(x)}

⊃
⋃
P∈F0

{x ∈ dom(P ) : P (x) = g}

= dom
(

(Z × {g}) ∩
⋃
F0

)
.
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We need to show that Z \ dom (g ∩
⋃
FZ) has cardinality at most ω1.

For this, it is enough to prove that Z \ dom ((Z × {g}) ∩
⋃
F0) has

cardinality at most ω1. But this is the case, since (Z ×{g}) \
⋃
F0 has

cardinality at most ω1, as it is contained in the union of the following
two sets, each of cardinality≤ ω1: X\

⋃
E0 and

⋃
P∈E0\F0

(
(Z×{g})∩P

)
,

where each set (Z × {g}) ∩ P contains at most one element, as the
projection of any P ∈ E0 \ F0 onto C(Z) is one-to-one and |E0 \ F0| ≤
ω1. �

Clearly, the family F ⊂ C(R) from Theorem 3.6 is of cardinality less
than c and has a property that any continuous g from a perfect set
Q ⊂ R into R agrees with some f ∈ F on a set of cardinality c. This
property cannot be proved in ZFC. In fact, MA implies that for every
perfect set P ⊂ R there is a perfect set Q ⊂ P and a g ∈ C(Q) such
that g ∩ f = ∅ for every f ∈ F .1

Corollary 3.7. CPA implies that A(PES \ J) ≤ ω1. In particular, it
is consistent with ZFC that A(AC∩PES \ J) = A(PES \ J) = ω1 < c.

Proof. To see A(PES \ J) ≤ ω1, let F be as in Theorem 3.6. We can
assume that F contains the constant zero function, adding it to F , if
necessary. Then, by Lemma 3.5, A(PES \ J) ≤ |F| = ω1.

The additional statement follows from this, Corollary 3.4, and the
fact that CPA implies c = ω2. �

Problem 3.8. Is either of the inequalities ω1 < A(AC∩PES \ J) or
A(AC∩PES \ J) < A(PES \ J) consistent with ZFC? What about the
consistency of ω1 < A(AC∩PES \ J) < A(PES \ J) < c?
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