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Monsters in Calculus
Krzysztof Chris Ciesielski

Abstract. One of the strangest, most mind-boggling examples in analysis is that of a function
from R to R that is everywhere differentiable but monotone on no interval. The graph of such
a “monstrous” function is simultaneously smooth and very rugged. Although such examples
have been known for over 100 years, so far the existing constructions are quite involved. In this
note we provide a simple example of such a map. It is presented in a broader context of other
paradoxical examples related to differentiability of continuous maps from R to R, including
a differentiable function which maps a compact perfect subset X of R onto itself even though
its derivative vanishes on X.

1. INTRODUCTION. Most continuous functions f : R → R one studies are C1,
that is, have continuous first derivative. This favorable property can fail for two re-
lated, but distinct reasons. The first is that a continuous function need not be differ-
entiable, as typified by the absolute value map f(x) := |x|. The second reason is that
an everywhere differentiable function can have a discontinuous derivative, as usually
exemplified by the map f(x) := x2 sin (x−1) for x 6= 0 and f(0) := 0. Each of these
anomalies is pushed to its limits in the following three classes of examples.

Weierstrass’s monsters. There exist continuous functions f : R → R that are
nowhere differentiable. The first published example of such a map was given by
K. Weierstrass and appeared in the 1872 paper [19]. At that time, mathematicians
commonly believed that a continuous function must have a derivative at a “signifi-
cant” set of points. Thus, the example was received with disbelief and such functions
became known as Weierstrass’s monsters. A large number of simple constructions
of Weierstrass’s monsters have appeared in the literature; see for example [10]. Our
favorite is the following variant of an example of van der Waerden [18] (see also [16,
Thm. 7.18]), since the proof of its properties requires only the standard tools of one-
variable analysis. Set f(x) :=

∑∞
n=0 4

nfn(x), where fn(x) := mink∈Z
∣∣x− k

8n

∣∣ is
the distance from x ∈ R to the set 1

8n
Z = { k

8n
: k ∈ Z}; see Figure 1(a). It is con-

tinuous at each x ∈ R, since |f(y)− f(x)| ≤ |
∑n

i=0 4
ifi(y)−

∑n
i=0 4

ifi(x)|+ 1
2n

for every y ∈ R and n ∈ N. It is not differentiable at any x ∈ R, since for every
n ∈ N with x ∈

[
k
8n
, k+1

8n

]
, k ∈ Z, there exists a yn ∈

{
k
8n
, k+1

8n

}
\ {x} such that∣∣∣ f(x)−f(yn)x−yn

∣∣∣ ≥ ∣∣∣∣ f( k+1
8n

)−f( k
8n

)
k+1
8n
− k

8n

∣∣∣∣ = 8n
∣∣∑n

i=0 4
ifi(

k+1
8n

)−
∑n

i=0 4
ifi(

k
8n
)
∣∣ ≥ 2

3
4n−1.

Differentiable monsters. There exist maps f : R → R that are everywhere differ-
entiable and nowhere monotone—simultaneously smooth and very rugged. Does that
sound like an oxymoron? We think so. In particular, since they seem to us even more
monstrous than Weierstrass’s monsters, in what follows we will refer to them as differ-
entiable monsters. Of course, by the mean value theorem, f is a differentiable monster
if, and only if, its derivative f ′ attains both positive and negative values on every in-
terval. In particular, the derivative f ′ of a differentiable monster is discontinuous on a
dense set.

The history of differentiable monsters is described in detail in the 1983 paper of
A. M. Bruckner [3]. The first construction of such a function is given in A. Köpcke’s
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(a) Graph of
∑4
i=0 4

ifi(x).
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(b) Graph of h(x− .4)− h(x) with h := g−1
17 .
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(c) The graphs of g1 (dotted), g9 (dashed), and g17
(solid). The inverse of g17 is the map h from (d).
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(d) Top to bottom: the graphs of h := g−1
17 , h(x− .4),

and h(x− .4)− h(x), same as (b) but different scale.

Figure 1. Approximations of (a) Weierstrass’s and (b) differentiable monsters. Note the different scales and
shapes. We used dyadic numbers 〈q1 . . . , q17〉 = 〈0, 1, 12 ,
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〉

and approximations gn(x) :=
∑n
i=1 0.9

i(x− qi)1/3 of g.

1887 paper [12]; see also [13, 14]. The most influential study of this subject is a 1915
paper of A. Denjoy [7]. Until now, we find the simplest constructions of differentiable
monsters to be from the 1974 paper [11] of Y. Katznelson and K. Stromberg and from
the 1976 article [20] of C. Weil. However, the first of these, while elementary, still
requires a delicate inductive construction. The second one uses a Baire category argu-
ment on the space D of bounded derivatives, where D is endowed with the supremum
norm. Specifically, Weil shows thatD0 := {f ∈ D : f−1(0) is dense in R} is a closed
linear subspace of D and, using Pompeiu’s functions (which we discuss shortly), that
E := {f ∈ D0 : f is not a differentiable monster} is of first category in D0.

A cellar full of monsters. Perhaps the most familiar monster is Cantor’s. Often called
Cantor’s ternary function or simply the Cantor function, it also goes by Cantor stair-
case function and the devil’s staircase; see for example [17]. The Cantor function is
a continuous, nondecreasing map c : [0, 1] → [0, 1] that monstrously (or devilishly)
manages to do all its increasing on a set C of measure zero called the Cantor ternary
set, while being constant on each of the intervals comprising [0, 1] \ C. The reader is
probably familiar with the usual description of C as the set of all numbers in [0, 1]
whose ternary representation can be expressed using only the digits 0 and 2. An
equivalent description, which follows, provides us a means to open the cellar door.
First note that C =

{∑∞
n=0

2s(n)

3n+1 : s ∈ 2ω
}

, where 2ω is the set of all functions from
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ω := {0, 1, 2, . . .} into 2 := {0, 1}. On C we define c
(∑∞

n=0
2s(n)

3n+1

)
:=
∑∞

n=0
s(n)

2n+1

and, for x ∈ [0, 1] \ C, set c(x) := c(inf C ∩ [x, 1]). Then c is continuous, nonde-
creasing, and has zero derivative on the open dense set [0, 1] \ C of full Lebesgue
measure. At the same time, it maps the nowhere dense measure zero set C onto [0, 1],
which, at first glance, seems counterintuitive.

It is well known that c is not differentiable on C. (For example, c′(x) does not
exist for x = 2/3 ∈ C, since c(x+2·3−n)−c(x)

2·3−n = 2−n

2·3−n → ∞ as n→∞. But note
that the set of points of nondifferentiability of c is considerably smaller than C, since,
as proved by R. Darst [6], it has Hausdorff dimension [ln(2)/ ln(3)]2, while C has
Hausdorff dimension ln(2)/ ln(3).) For our purposes, a convenient way to see the
nondifferentiability of c is by noting the following result; see for example [9, p. 355].

Fact. If F : R → R is differentiable on a measurable set X ⊂ R and |F ′(x)| ≤ L
for all x ∈ X , then the measurem(F [X]) of F [X] is less than or equal to L ·m(X).

Indeed, the fact implies that the function c cannot be differentiable, as otherwise
[0, 1] = c[C] =

⋃∞
L=1 c[{x ∈ C : |c′(x)| ≤ L}] would have measure zero.

The fact seems also to imply that if L ∈ [0, 1), then F [X] should be smaller than
X , making it impossible for F [X] to contain X . Although this claim is true for any
X of finite positive measure, the next example shows that it can fail badly for compact
perfect sets X of measure zero. More specifically, in [5], K. C. Ciesielski and J. Jasin-
ski constructed a differentiable function F : R→ R and a compact perfect set X ⊂ R
such thatF [X] = X whileF ′ ≡ 0 on X. Thus, the map f := F � X, the restriction ofF
to X, is pointwise contractive but globally stable (in the sense that f[X] = X). The map
f is defined as f = h ◦ σ ◦ h−1, where σ : 2ω → 2ω is the add-one-and-carry adding
machine (i.e., σ(〈1, 1, . . . , 1, 0, sk+1, sk+2, . . . 〉) := 〈0, 0, . . . , 0, 1, sk+1, sk+2, . . . 〉
and σ(〈1, 1, 1, . . . 〉) := 〈0, 0, 0, . . . 〉) and h : 2ω → R is an appropriate embedding
that ensures that f ′ ≡ 0. (For more on adding machines, see [8].) Such an f can be
extended to a differentiable F : R→ R by Jarnı́k’s differentiable extension theorem,
an elementary proof of which can be found in [4]. The embedding h can be defined by
the following formula, based on its variants from [5] and [2]:

h(s) :=
∑∞

n=0 2sn3
−(n+1)N(s�n),

where N(s � n) is the natural number for which the following 0-1 sequence1

ν(s, n) = 〈1, 1 − sn−1, sn−2, . . . , s0〉 is its binary representation, that is, we have
N(s � n) :=

∑
i<n−1 si2

i + (1− sn−1)2n−1 + 2n.
Clearly, 2n ≤ N(s � n) ≤

∑
i≤n 2

i < 2n+1 for every s ∈ 2ω and n ∈ ω. Hence,
the sequence 〈N(s � n) : n ∈ ω〉 is strictly increasing and h is an embedding into C.
So, X = h[2ω] ⊂ C. Actually, f is an auto-homeomorphism (of X) with every orbit
dense, since so is σ. The proof that f ′ ≡ 0 is presented in Section 4.

2. THE CONSTRUCTION OF A DIFFERENTIABLE MONSTER. Our ex-
ample is given as f(x) := h(x− t)− h(x), where h is the inverse of a version of a
Pompeiu’s function defined below. The new part in our construction is a shift trick: a
short and simple argument that a Baire-category typical t ∈ R gives a correct f .

Pompeiu’s functions. Let Q := {qi : i ∈ N} be an enumeration of any countable
dense subset of R (e.g., the set Q of rational numbers) such that |qi| ≤ i for all i ∈ N.

1ν(s, n) is obtained from s � n = 〈s0, . . . , sn−1〉 by changing its last digit sn−1 to 1− sn−1, append-
ing 1 at the end, and reversing the order. The “appending 1” step is to ensure that 2n ≤ N(s � n). The
“changing” step is the key new trick, that comes from [2], needed to prove property (a) from Section 4.
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Fix an r ∈ (0, 1) and let g : R → R be defined by g(x) =
∑∞

i=1 r
i(x − qi)1/3. We

will rely on the following result, the proof of which is given in Section 3. Intuitively, g
has a non-horizontal tangent line at every point, vertical at each (qi, g(qi)), since the
same is true for the map (x − qi)1/3; see Figure 1(c). The graph of its inverse, h, is
the reflection of the graph of g with respect to the line y = x. So, h also has a tangent
line at every point, the vertical tangent lines of g becoming horizontal tangents of h;
see Figure 1(d).

Proposition. The function g is continuous, strictly increasing, and onto R. Its inverse
h is everywhere differentiable with h′ ≥ 0 and such thatZ := {x ∈ R : h′(x) = 0} is
dense in R. Moreover, R \ Z is also dense in R and Z is aGδ-set (i.e., it is a countable
intersection of open sets).

The maps g are closely related to the well-studied functions (see, e.g., [?], [3],
or [17, Sec. 9.7]) constructed in the 1907 paper [15] of D. Pompeiu, where they
are defined by γ(x) :=

∑∞
i=1Ai(x− qi)1/3, with {qi : i ∈ N} being dense in some

bounded interval (a, b), while the numbersAi are positive with
∑∞

i=1Ai <∞. These
definitions ensure that the functions γ(x), as well as our g(x), are continuous, be-
ing uniform limits of continuous functions. Notice, the set Q is not restricted to be
contained in a bounded interval as in Pompeiu’s definition. We can do this since we
replace the more general absolutely convergent series

∑
Ai with the geometric series∑

ri, so we have more leeway with the choice of qi. (For instance, bounding |qi| by
any fixed power of i still leads to a continuous g.) The proof that the inverses of g and
γ have derivative 0 on the image of {qi : i ∈ N} is, in both cases, the same.

A differentiable monster. Using the properties of our variant of Pompeiu’s func-
tions given in the proposition, the construction is just a few lines, as presented in the
box below. Note, that the construction works for any increasing function g for which
g′(x) ∈ (0,∞] exists for all x ∈ R and equals∞ on a dense subset of R. The density
of G from the box follows from the Baire category theorem on R.

Smooth and rugged f(x) := h(x− t)− h(x): an oxymoron in calculus?
Let h and Z be as in the proposition and D ⊂ R \ Z be countable and dense.
SinceZ is a denseGδ-set, so isG :=

⋂
d∈D

(
(−d+Z) ∩ (d−Z)

)
. Any t ∈ G

makes f , shown in Figure 1(b), a differentiable monster.
Indeed, f is clearly differentiable with f ′(x) = h′(x − t) − h′(x). Also,

f ′ > 0 on t+D, since for every d ∈ D we have t+ d ∈ Z, so that f ′(t+ d) =
h′(d)− h′(t+ d) = h′(d) > 0. Similarly, f ′ < 0 onD, since for every d ∈ D
we have d− t ∈ Z, so that f ′(d) = h′(d− t)− h′(d) = −h′(d) < 0.

It is not clear why this argument was not previously discovered, as the idea of the
construction of a differentiable monster as a difference of two Pompeiu-like functions
was considered earlier, as in [3, pp. 66–67]. Our argument might have been easily
included in the 1907 paper [15] of D. Pompeiu, as all the tools we use were already
present there.

3. PROOF OF THE PROPOSITION. The series g(x) =
∑∞

i=1 r
i(x − qi)1/3

converges uniformly on every bounded set: |g(x)| ≤
∑∞

i=1 r
i(|x| + i + 1), as∣∣(x− qi)1/3∣∣ ≤ (|x| + |qi| + 1)1/3 ≤ |x| + |qi| + 1 ≤ |x| + i + 1. Thus, g is

continuous. It is strictly increasing and onto R, since that is true of every term
ψi(x) := ri(x− qi)1/3.
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The trickiest part is to show that

g′(x) =
∑∞

i=1 ψ
′
i(x)

(
=
∑∞

i=1 r
i 1
3

1

(x−qi)2/3

)
. (1)

However, this holds when
∑∞

i=1 ψ
′
i(x) = ∞, since, for every y 6= x, we have

g(x)−g(y)
x−y =

∑∞
i=1

ψi(x)−ψi(y)
x−y ≥

∑n
i=1

ψi(x)−ψi(y)
x−y , and the last expression is arbi-

trarily large for large enough n and y close enough to x. On the other hand, when∑∞
i=1 ψ

′
i(x) <∞, then (1) follows from the fact that 0 < ψi(x)−ψi(y)

x−y ≤ 6ψ′i(x) for
every y 6= x.2 Indeed, for ε > 0 and n ∈ N for which

∑∞
i=n+1 ψ

′
i(x) < ε/14,∣∣∣ g(x)−g(y)x−y −

∑∞
i=1 ψ

′
i(x)

∣∣∣ ≤∑n
i=1

∣∣∣ψi(x)−ψi(y)x−y − ψ′i(x)
∣∣∣+ 7

∣∣∑∞
i=n+1 ψ

′
i(x)

∣∣
≤
∑n

i=1

∣∣∣ψi(x)−ψi(y)x−y − ψ′i(x)
∣∣∣+ ε

2
,

which is less than ε for y close enough to x.
Now, by (1), g′(x) =∞ on the dense set Q. So, h = g−1 is strictly increasing and

differentiable, with h′ ≥ 0. The set Z = {x ∈ R : h′(x) = 0} is dense in R, since it
contains the dense set g[Q]. It is aGδ-set, since h′ is Baire class one (being a pointwise
limit of continuous functions hn(x) :=

h(x+2−n)−h(x)
2−n ) and a preimage of any closed

set for such a map is a Gδ-set. (In our case, Z =
⋂
i,N∈N

⋃
n≥N h

−1
n (−1/i, 1/i).)

The complement of Z must be dense, since otherwise h would be constant on some
interval.

4. PROOF THAT f ′ ≡ 0. This follows from the following two observations:

(a) For every s ∈ 2ω there is a k ∈ ω such that N(σ(s) � n) = N(s � n) + 1 for
every n > k.

(b) If n = min{i ∈ ω : si 6= ti} for some distinct s = 〈si〉 and t = 〈ti〉 from 2ω, then
3−(n+1)N(s�n) ≤ |h(s)− h(t)| ≤ 3 · 3−(n+1)N(s�n).

Assuming these two observations to be true, to see that f ′(h(s)) = 0 for an s ∈ 2ω,
choose a k ∈ ω satisfying (a) and let δ > 0 be such that 0 < |h(s)− h(t)| < δ im-
plies that n = min{i ∈ ω : si 6= ti} is greater than k. Fix a t ∈ 2ω for which 0 <
|h(s)− h(t)| < δ. Then n = min{i ∈ ω : si 6= ti} = min{i ∈ ω : σ(s)i 6= σ(t)i}
and, using (a) and (b) for the pairs 〈s, t〉 and 〈σ(s), σ(t)〉,

|f(h(s))− f(h(t))|
|h(s)− h(t)|

=
|h(σ(s))− h(σ(t))|
|h(s)− h(t)|

≤ 3 · 3−(n+1)N(σ(s)�n)

3−(n+1)N(s�n)
= 3 · 3−(n+1).

Hence f ′(h(s)) = 0, as 3 · 3−(n+1) is arbitrarily small for δ small enough.
Property (a) holds sinceN(σ(s) � n) = N(s � n) + 1 for every s ∈ 2ω and n > 0

for which ν(s, n) 6= 〈1, . . . , 1〉, that is, when s � n 6= 〈1, . . . , 1, 0〉.
To see (b), notice that, for every s ∈ 2ω and n > 0,

2sn3
−(n+1)N(s�n) ≤

∑
k≥n 2sk3

−(k+1)N(s�k) ≤ (2sn + 1)3−(n+1)N(s�n), (∗)
2It is enough to prove this for ψ(x) := x1/3. It holds for x = 0, as ψ′(0) =∞. Also, since ψ(x) is odd

and concave on (0,∞), we can assume that x > 0 and y < x. Then L(y) < ψ(y), where L is the line passing

through (x, ψ(x)) and (0,−ψ(x)). So, 0 < ψ(x)−ψ(y)
x−y <

L(x)−L(y)
x−y = 2x1/3

x
= 6ψ′(x), as needed.
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where the second inequality holds, since series reminder
∑

k>n 2sk3
−(k+1)N(s�k)

is bounded above by the quantity 2
∑∞

i=1 3
−((n+1)N(s�n)+i) = 3−(n+1)N(s�n). We

can assume that sn = 0 and tn = 1, as s � n = t � n. Then, by property (∗),
h(t)− h(s) =

∑
k≥n 2tk3

−(k+1)N(t�k) −
∑

k≥n 2sk3
−(k+1)N(s�k) is bounded below

by 2tn3−(n+1)N(t�n) − (2sn + 1)3−(n+1)N(s�n) = 2 · 3−(n+1)N(s�n) − 3−(n+1)N(s�n),
as needed. Similarly, again by (∗), |h(t)− h(s)| = h(t)− h(s) is bounded above by∑

k≥n 2tk3
−(k+1)N(t�k) ≤ (2tn + 1)3−(n+1)N(t�n) = 3 · 3−(n+1)N(s�n).

ACKNOWLEDGMENT. We would like to thank Dr. Rick Mabry for his help in improving the exposition of
the presented material.

REFERENCES
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