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Abstract. We present a beautiful but relatively unknown theorem that every

differentiable function f ∶P → R, with P ⊂ R being closed, admits differentiable
extension F ∶R → R. We present an elementary proof of this result based on

a construction sketched in a hard-to-access 1923 paper [4] of V. Jarńık. Us-

ing this construction, we also obtain an elegant version of Whitney extension
theorem characterizing when such an f admits continuously differentiable ex-

tension.

1. Continuous and differentiable extension theorems

For a function f ∶P → R with P ⊂ R let f̃ be its extension to the set P̃ =
(−∞, inf(P ) − 1] ∪P ∪ [sup(P ) + 1,∞) such that f̃ = 0 on the (possibly empty) set

P̃ ∖ P . Also, if P is closed in R, let f̄ ∶R → R be the linear interpolation of f̃ , that
is, the extension of f̃ such that f̄ is linear on [a, b] for every connected component

(a, b) of R∖ P̃ . (See Fig. 1.) If f is continuous, then so is its linear interpolation f̄ :
its continuity at every x ∈ R ∖ P is obvious, while its continuity at points x ∈ P
follows from the fact that for every component (a, b) of R ∖ P̃
(1) f̄(y) is between f(a) and f(b) for every y ∈ (a, b),
so that ∣f̄(x) − f̄(y)∣ ≤ max{∣f(x) − f(a)∣, ∣f(x) − f(b)∣}.

�

�
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Figure 1. A map f , represented by thick curves, is extended to
f̃ via thick dashed ray and to the linear interpolation f̄ by dotted
segments. The intervals IJ (see Def 1) marked on the x-axis are

added to the domain P̃ of f̃ to obtain P̂ .

We just proved the following instance of Tietze extension theorem:

Continuous Extension Theorem. Every continuous map f ∶P → R, where P ⊂ R
is closed, admits continuous extension F ∶R→ R.
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Did you know, that this result has the following differentiable analog?

Differentiable Extension Theorem. Every differentiable map f ∶P → R, where
P ⊂ R is closed, admits differentiable extension F ∶R→ R.

Here differentiability of f ∶P → R is understood as existence of its derivative: the
function f ′∶P ′ → R where P ′ ⊂ P is the set of all accumulation points of P and

f ′(p) = limx→p, x∈P
f(x)−f(p)

x−p for every p ∈ P ′.

Differentiable Extension Theorem, to which we will refer as DE Theorem, was
first proved in a 1923 paper [4] by a prominent Czech mathematician Vojtěch Jarńık
(1897-1970), in case when P ⊂ R is a compact perfect set, that is, when P ′ = P . It
also appeared in print in several more recent papers with quite involved proofs, as
we detail in Section 4.1. Nevertheless, the theorem and the proof we present below
remain almost completely unknown, even among experts.

As we can see in Fig. 1, the linear interpolation f̄ of a differentiable f need not to
be differentiable. Nevertheless, f̄ has actually very good differentiability properties,

best expressed in terms of the unilateral derivatives D−f̄(x) = limy→x−
f̄(x)−(̄y)
x−y and

D+f̄(x) = limy→x+
f̄(x)−(̄y)
x−y :

Proposition 1. If f ∶P → R is differentiable map, where P ⊂ R is closed, then the
unilateral derivatives of its linear interpolation f̄ exist and are finite everywhere.

In particular, f̄ is differentiable at all points x ∈ R that do not belonging to the
set EP of all end-points of connected components of R ∖ P̃ .

Proof. Clearly D+f̄(x) and D−f̄(x) exist for every x ∈ R ∖ P ′. They also exist for

every x ∈ P ′, since for every component I = (a, b) of R ∖ P̃ with x ∉ [a, b],

(2) ∣f̄(y)−f̄(x)∣
y−x is between ∣f(a)−f(x)∣

a−x and ∣f(b)−f(x)∣
b−x for every y ∈ (a, b),

so that ∣f ′(x) − ∣f̄(y)−f̄(x)∣
y−x ∣ ≤ max{∣f ′(x) − ∣f(a)−f(x)∣

a−x ∣ , ∣f ′(x) − ∣f(b)−f(x)∣
b−x ∣}.

The additional remark holds, since D−f̄(x) = D−f̃(x) = D+f̃(x) = D+f̄(x) for

every x ∈ P̃ ∖EP .

ba

Figure 2. A format of the graph (thin continuous curve) of F =
f̄ +g on a component (a, b) of R∖P . The thick segments represent
the parts of the graph of f

Proposition 1 suggests that F from DE Theorem can be constructed by making
small adjustment of f̄ , that is, defining F as f̄ + g for some small adjustor map
g∶R → R such that g = 0 on P̃ , see Fig. 2. Indeed, this is precisely the way we
will proceed. For function g to have a chance to work properly, it must correct
differentiability problems of f̄ at the endpoints of the components of R ∖ P̃ . For
this, it should have the following property for every component (a, b) of R ∖ P̃ :



DIFFERENTIABLE EXTENSION THEOREMS 3

(∗̃) g ↾ [a, b] is C1, D+g(a) = f̃ ′(a) − f̃(b)−f̃(a)
b−a , and D−g(b) = f̃ ′(b) − f̃(b)−f̃(a)

b−a .

This ensures that D+F (a) = f̃ ′(a) and D−F (b) = f̃ ′(b). The main difficulty in
constructing an adjustor g that works properly is in ensuring that, after the ad-
justment, the derivatives D+F and D−F still exist on P̃ . Also, a problem with (∗̃)

is that it is not well defined when either a or b is an isolated point in P̃ .
We first address this second problem, since it has an easy solution: we extend P̃

to a perfect set P̂ ⊂ R for which f̄ ↾ P̂ is differentiable and notice that it is enough
to find a differentiable extension F of f̄ ↾ P̂ . This way we will avoid the problem
of isolated points a or b in (∗̃). We will also obtain, as an additional benefit, a new
way to characterize functions f that admit continuously differentiable extensions
F ∶R → R, an alternative formulation of the Whitney’s extension theorem [10], see
Section 3.

Definition 1. Let J be the family of all components of R ∖ P̃ . For each J =
(a, a + h) ∈ J put IJ = [a + 1

3
h, a + 2

3
h] when a ∈ P ′ and let IJ = [a, a + h

2
], the left

half of J , otherwise.1 Then we define P̂ = P̃ ∪⋃J∈J IJ and f̂ = f̄ ↾ P̂ . We will refer

to f̂ as the canonical extension of f . See Fig. 1.

Notice that P̂ is perfect and EP ⊂ EP̂ . Thus, the unilateral differentiability of

f̄ , Proposition 1, implies immediately the following result.

Proposition 2. If P is a closed subset of R and f ∶P → R is differentiable, then P̂

is a perfect subset of R unbounded from both sides and f̂ ∶ P̂ → R is differentiable.
In particular, in order to prove DE Theorem it is enough to show that it holds

for perfect sets P ⊂ R unbounded from both sides.

2. Proof of DE Theorem

Let f be a differentiable function from a closed set P ⊂ R into R. We need to
show that it admits differentiable extension F ∶R → R. By Proposition 2 we can
assume, without loss of generality, that P is perfect and unbounded from both
sides.

Let f̄ ∶R→ R be the linear interpolation of f . Let κ ≤ ω be the cardinality of the
family J of all connected components of R ∖ P and let {(ai, bi)∶1 ≤ i ≤ κ} be an
enumeration of J . For every 1 ≤ i ≤ κ define `i = min{1, bi−ai} and let εi ∈ (0,3−i`i)
be such that

(a) ∣f ′(ai) − f(x)−f(ai)
x−ai ∣ < 3−i for every x ∈ P ∩ [ai − εi, ai);

(b) ∣f ′(bi) − f(x)−f(bi)
x−bi ∣ < 3−i for every x ∈ P ∩ (bi, bi + εi].

Let g∶R→ R be a map such that g = 0 on P and, for every 1 ≤ i ≤ κ,

(∗) g ↾ [ai, bi] is C1, D+g(ai) = f ′(ai)− f(bi)−f(ai)bi−ai , D−g(bi) = f ′(bi)− f(bi)−f(ai)bi−ai ;

(c) g = 0 on [ai + ε2
i , bi − ε2

i ] and ∣g(x)∣ ≤ ε2
i for x ∈ [ai, bi];

(d) ∣g(x)∣ ≤ ∣g′(ai)(x − ai)∣ for x ∈ [ai, ai + ε2
i ]; and

(e) ∣g(x)∣ ≤ ∣g′(bi)(x − bi)∣ for x ∈ [bi − ε2
i , bi].

Such g can be defined on each [ai, bi] as g(x) = ∫
x
ai
hi(r) dr, where hi∶ [ai, bi] → R,

depicted in Fig. 3, is such that hi = 0 on [ai + ε2
i , bi − ε2

i ],

1This definition of set IJ is chosen for our version of Whitney extension theorem from Section 3.
The proof of DE Theorem will also work if we define IJ = ∅ for J = (a, a + h) ∈ J with a ∈ P ′.
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aiAi

D+g(ai)

si ai+ei2 bi-ei2 biti

Bi

D-g(bi)

Figure 3. A format of a map hi.

● there is an si ∈ (ai, ai + ε2
i ) such that hi is linear on [ai, si] with hi(si) = 0

and hi(ai) = f ′(ai)− f(bi)−f(ai)
bi−ai while ∫

si
ai

∣hi(r)∣ dr = 1
2
∣hi(ai)∣(si −ai) < ε2

i ;

on [si, ai+ε2
i ] it is defined as hi(x) = Aidist(x,{si, ai+ε2

i }), where constant

Ai is chosen so that ∫
ai+ε2i
ai

hi(r) dr = 0;

● there is a ti ∈ (bi − ε2
i , bi) such that hi is linear on [ti, bi] with hi(ti) = 0

and hi(bi) = f ′(bi) − f(bi)−f(ai)
bi−ai while ∫

bi
ti

∣hi(r)∣ dr = 1
2
∣hi(bi)∣(bi − ti) < ε2

i ;

on [bi − ε2
i , ti] it is defined as hi(x) = Bidist(x,{bi − ε2

i , ti}), where constant

Bi is chosen so that ∫
bi
bi−ε2i

hi(r) dr = 0.

We claim, that if g satisfies all these requirements, then F = f̄+g is a differentiable
extension of f . To see this, fix an x ∈ R. We need to show that F ′(x) exists.

For x ∈ R ∖ P this follows from the first part of (∗) and differentiability of f̄
on R ∖ P . So, in what follows we assume that x ∈ P . Next notice that it is
enough to show that the unilateral derivatives D+F (x) and D−F (x) exist. Indeed,
if they exist, than they are equal: for x ∉ ⋃1≤i≤κ{ai, bi} this is ensured by the fact
that D+F (x) = D+f(x) = D−f(x) = D−F (x), while for x ∈ ⋃1≤i≤κ{ai, bi} by the
condition (∗) imposed on g.

Since the cases are symmetric, we will show only the existence of D+F (x).
Clearly, it exists when x is in the set E = {ai∶1 ≤ i ≤ κ}. So, assume that x ∉ E and
fix an ε > 0. Then F (x) = f(x) and it is enough to find a δ > 0 such that

(3) ∣f ′(x) − F (y)−f(x)
y−x ∣ < 5ε whenever y ∈ (x,x + δ).

For this, pick an m ∈ N such that 3−m < ε and choose δ > 0 such that (x,x + δ)
is disjoint with ⋃i<m[ai, bi] and ∣f ′(x) − f̄(y)−f̄(x)

y−x ∣ < ε whenever 0 < ∣y − x∣ < δ.

This choice is possible by Proposition 1. We claim that (3) holds for such δ. Since

∣f ′(x) − F (y)−f(x)
y−x ∣ = ∣f ′(x) − f̄(y)+g(y)−f̄(x)

y−x ∣ ≤ ∣f ′(x) − f̄(y)−f̄(x)
y−x ∣ + ∣ g(y)

y−x ∣ < ε + ∣ g(y)
y−x ∣,

it is enough to show that ∣ g(y)
y−x ∣ < 4ε.

If y ∉ ⋃1≤i≤κ[ai, ai + ε2
i ] ∪ [bi − ε2

i , bi], then ∣ g(y)
y−x ∣ < 4ε holds, since then g(y) = 0.

So, we can assume that there is an 1 ≤ i ≤ κ such that y ∈ [ai, ai + ε2
i ] ∪ [bi − ε2

i , bi].
This implies that i ≥m and 3−i ≤ 3−m < ε.

If y ∈ [bi−ε2
i , bi], then y−x ≥ bi−ε2

i −ai ≥ `i−ε2
i ≥ εi and ∣ g(y)

y−x ∣ < ε2i
εi

< 3−i ≤ 3−m < ε.

So, assume that y ∈ [ai, ai + ε2
n]. If ai −x ≥ εi, then again ∣ g(y)

y−x ∣ < ε2i
εi

< 3−i ≤ 3−m < ε.
Thus, assume that ai − x < εn. Then, by (a), ∣f ′(ai) − f(x)−f(ai)

x−ai ∣ < 3−i ≤ 3−m < ε
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and ∣f ′(ai) − f ′(x)∣ ≤ ∣f ′(ai) − f(x)−f(ai)
x−ai ∣ + ∣ f̄(x)−f̄(ai)

x−ai − f ′(x)∣ < 2ε. So, by (d),

∣ g(y)
y−x ∣ ≤ ∣ g

′(ai)(y−ai)
y−x ∣ = ∣

(f ′(ai)−
f(bi)−f(ai)

bi−ai
)(y−ai)

y−x ∣

= ∣
f ′(ai)(y−ai)−

f̄(y)−f(ai)
y−ai

(y−ai)
y−x ∣ = ∣ f

′(ai)(y−ai)−(f̄(y)−f(ai))
y−x ∣

= ∣ [f
′(ai)(x−ai)+f(ai)−f(x)]+[f ′(ai)−f ′(x)](y−x)+[f ′(x)(y−x)+f(x)−f̄(y)]

y−x ∣

≤ ∣f ′(ai) − f(x)−f(ai)
x−ai ∣ ∣x−ai

y−x ∣ + ∣f ′(ai) − f ′(x)∣ + ∣f ′(x) − f̄(y)−f̄(x)
y−x ∣

< ε + 2ε + ε = 4ε.

This completes the proof of DE Theorem.

�
a1b4 b1a2a4 b3a3 b2

x

f(x)
g(x)=x2

Figure 4. Graph of a map f ∶P → R, horizontal thick segments,
with f ′ = 0 on P . No differentiable extension F ∶R → R of f has

continuous derivatives, unless f(an)−f(bn+1)
an−bn+1

→n→∞ 0.

3. Alternative formulation of Whitney extension theorem

It is well known and easy to see that function f from DE Theorem need not
to admit C1 extension, even when f ′ is constant. See, for example, Fig. 4. The
theorem characterizing functions f ∶P → R that admit C1 extension F ∶R → R was
proved in 1938 by Whitney [10]. The usual characterization of such functions f
either involves complicated conditions on difference quotients of f , or requires a
use of a non-standard notion of the derivative of f , see [6, thm W]. Below we
present an alternative variant of Whitney extension theorem.

Theorem 3. A differentiable map f ∶P → R, where P ⊂ R is closed, admits a con-
tinuously differentiable extension F ∶R → R if, and only if, the canonical extension

f̂ ∶ P̂ → R of f (see Definition 1) is continuously differentiable.

Proof. Let J be the family of all connected components of R ∖ P̃ .

To show necessity of continuous differentiability of f̂ assume that there exists
a continuously differentiable extension F ∶R → R of f . Clearly, by Proposition 2,

f̂ is differentiable. Also, f̂ ′ is continuous on P̂ ∖ P ′, since f̂ is locally linear on

P̂ ∖ P ′ = ⋃J∈J IJ . Thus, we need to show that f̂ ′ is continuous on P ′. Notice that
F = f and F ′ = f ′ on P ′.

Fix an x ∈ P ′ and ε > 0. It is enough to find a δ > 0 such that

(4) ∣f̂ ′(x) − f̂ ′(y)∣ < ε whenever y ∈ P̂ ∩ (x − δ, x + δ).
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Let δ0 ∈ (0,1) be such that ∣F ′(x) − F ′(y)∣ < ε whenever ∣x − y∣ < δ0. Choose
δ ∈ (0, δ0) such that for every J = (a, b) ∈ J : if x ∈ [a, b], then δ < b−a

3
; if x ∉ [a, b]

and [a, b] /⊂ (x − δ0, x + δ0), then (x − δ, x + δ) is disjoint with [a, b]. To see that

such δ satisfies (4) pick y ∈ P̂ ∩ (x − δ, x + δ). If y ∈ P , then (4) holds, since then

∣f̂ ′(x) − f̂ ′(y)∣ = ∣F ′(x) − F ′(y)∣ < ε. So, assume that y ∉ P . Then, y ∉ P̃ , as δ < 1.
Thus, there exists a J = (a, b) ∈ J such that y ∈ IJ . Note that x ∉ [a, b], since in such
case δ < b−a

3
, preventing y ∈ IJ . Therefore, [a, b] ⊂ (x− δ0, x+ δ0), as (x− δ, x+ δ) is

not disjoint with [a, b], both containing y. By the mean value theorem, there exists

a ξ ∈ (a, b) ⊂ (x−δ0, x+δ0) such that F ′(ξ) = F (b)−F (a)
b−a . So ∣F ′(x)−F ′(ξ)∣ < ε. Also,

f̂ ′(y) = f̄ ′(y) = f(b)−f(a)
b−a = F ′(ξ). Therefore, ∣f̂ ′(x) − f̂ ′(y)∣ = ∣F ′(x) − F ′(ξ)∣ < ε,

proving (4).

The sufficiency of continuous differentiability of f̂ is proved by finding continu-

ously differentiable extension F ∶R→ R of f̂ . This F is constructed by a small refine-

ment of the construction of F in Section 2, in which we extend function f equal to f̂
from Theorem 3. More specifically, let {(ai, bi)∶1 ≤ i ≤ κ} be an enumeration of the

family of all connected components of R∖P̂ . For every 1 ≤ i ≤ κ, let αi and βi be the

endpoints of [ai, bi] such that f̂ ′(αi) ≤ f̂ ′(βi) and, when choosing maps hi, ensure

that their range is contained in [f̂ ′(αi) − f(bi)−f(ai)
bi−ai − 3−i, f̂ ′(βi) − f(bi)−f(ai)

bi−ai + 3−i].
This can be achieved by choosing si and ti so close to, respectively, ai and bi that
the resulted constants Ai and Bi have magnitude ≤ 3−i. We claim, that such con-
structed F has continuous derivative. To see this, choose an x ∈ R. We will show
only that F ′ is right-continuous at x, the argument for left-continuity being similar.

Clearly, the definition of F ensures that F ′ is right-continuous at x if there exists
a y > x such that (x, y) ∩ P̂ = ∅. So, assume that there is no such y. Choose an
ε > 0. It is enough to find a δ > 0 such that

(5) ∣F ′(x) − F ′(y)∣ < 2ε whenever y ∈ (x,x + δ).

Let δ0 > 0 be such that ∣f̂ ′(x) − f̂ ′(y)∣ < ε whenever y ∈ (x,x + δ0) ∩ P̂ . Choose
n ∈ N such that 3−n < ε and let δ ∈ (0, δ0) such that: (0, δ) is disjoint with every
(ai, bi) for which i < n; if (ai, bi) intersects (0, δ), then [ai, bi] ⊂ (0, δ0). To see

that such δ satisfies (5) pick y ∈ (x,x + δ). If y ∈ P̂ , then (5) holds, since then

∣F ′(x)−F ′(y)∣ = ∣f̂ ′(x)−f̂ ′(y)∣ < ε. So, assume that y ∉ P̂ . Then, y ∈ (ai, bi) for some

i ≥ n. Since βi ∈ [ai, bi] ⊂ (0, δ0), we have ∣f̂ ′(x) − f̂ ′(βi)∣ < ε and f̂ ′(βi) < f̂ ′(x) + ε.
So, F ′(y) = f̄ ′(y)+g′(y) = f(bi)−f(ai)

bi−ai +hi(y) ≤ f̂ ′(βi)+3−i < f̂ ′(x)+ε+3−i ≤ F ′(x)+2ε.

Similarly, F ′(y) ≥ f̂ ′(αi) − 3−i > f̂ ′(x) − ε − 3−i ≥ F ′(x) − 2ε. So, (5) holds.

4. History and related results

4.1. Differential Extension Theorem in literature. DE Theorem first ap-
peared in print in 1923 paper [4] of Vojtěch Jarńık, for the case when P ⊂ R is
compact perfect. Unfortunately, [4] appeared in little known journal, Bull. Inter-
nat. de l’Académie des Sciences de Bohême is written in French, and only sketches
the construction of the extension. A more complete version of the proof, that ap-
peared in [5], is written in Czech and is even less accessible. Therefore, this result
of Jarńık was unnoticed by the mathematical community until mid 1980s. DE The-
orem was rediscovered by György Petruska and Miklós Laczkovich and published
in 1974 paper [9]. Its proof in [9] is quite involved and embedded in a deeper, more
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general research. A simpler proof of the theorem appeared in 1984 paper [7] of
Jan Mař́ık; however, it is considerably more complicated than the one we presented
above and it uses Lebesgue integration tools. Apparently, the authors of neither [9]
nor [7] have been aware of Jarńık’s paper [4] at the time of publication of their
articles. However [4] is cited in 1985 paper [1] that discusses multivariable version
of DE Theorem. Also, two recent papers [8, 6] that address generalizations of DE
Theorem cite [4].

4.2. DE Theorem for functions on Rn. There is no straightforward general-
ization of DE Theorem to differentiable functions f defined on closed subsets P of
Rn. This is the case, since the derivative of any extension F ∶Rn → R is Baire class
one, as it is a pointwise limit of continuous functions Fn(x) = n (F (x + 1

n
) − F (x)).

Therefore the derivative f ′ of any differentiable extendable function f ′∶P → R must
be also Baire class one. However, there exists a differentiable function f ∶P → R,
with P ⊂ R2 being closed, for which f ′ is not Baire class one, see [1, thm 5]. Clearly
this f admits no differentiable extension to R2. However, in [1] the authors prove
that this is the only obstacle to generalize DE Theorem to multivariable functions.
More specifically, they prove that differentiable function f ∶P → R, with P being
a closed subset of Rn, admits differentiable extension F ∶Rn → R if, and only if,
f ′∶P → R is Baire class one.

4.3. What else is known about differentiable maps on closed P ⊂ R? If we
exclude results assuming that P has positive Lebesgue measure, what we discussed
above includes essentially all “positive” results. Everything else seems to be con-
centrated on different examples, some surprising, even weird. Perhaps, the most
unexpected among them is one described in the following 2016 theorem.

Theorem 4. (Ciesielski, Jasinski [3]) There exists a compact perfect set X ⊂ R
and a differentiable bijection f∶X→ X such that f ′(x) = 0 for every x ∈ X. Moreover,
the forward f-orbit of every x ∈ X is dense in X.

Of course, such X cannot be an interval. In fact, X must be of Lebesgue mea-
sure 0, as f[X] is of measure 0 whenever f ′ ≡ 0. By DE Theorem, the map f can
be extended to a differentiable F ∶R → R. However, such extension cannot be C1,
since for C1 maps F ∶R→ R we have (see [2, lemma 3.3]): If P is a compact perfect
subset of R such that P ⊂ F [P ], then there exists an x ∈ P such that ∣F ′(x)∣ ≥ 1.

Another strange example comes from 2014 paper [2] and concerns Peano-like
maps, that is, continuous maps from a space P onto its square P 2.

Theorem 5. (Ciesielski, Jasinski [2]) There exists a perfect subset P of R and
a differentiable f = ⟨f1, f2⟩ from P onto P 2 with f ′1 = f ′2 = 0. Moreover, f can be
extended to a C∞ map F ∶R→ R2.

Once again, P must be of measure 0, since P 2 = f[P ] have plane measure 0. The
set from Theorem 5 is unbounded. It is unknown, if such an example can exists
when P is compact, even when we assume only that f is differentiable, see [2]:

Problem 1. Let P ⊂ R be compact perfect and let f be a function from P onto
P 2. Can f be differentiable? continuously differentiable?

By DE Theorem the differentiable version of the problem can be rephrased as:
Do there exist a differentiable function F ∶R → R2 and a compact perfect set P ⊂ R
such that f[P ] = P 2? In this last version of the problem, the map F ∶R→ R2 cannot
be C1, as proved in [2, theorem 3.1].
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