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Abstract

The paper constitutes a comprehensive study of ten classes of self-
maps on metric spaces 〈X, d〉 with the local and pointwise (a.k.a. local
radial) contraction properties. Each of those classes appeared previously
in the literature in the context of fixed point theorems.

We begin with presenting an overview of these fixed point results,
including concise self contained sketches of their proofs. Then, we proceed
with a discussion of the relations among the ten classes of self-maps with
domains 〈X, d〉 having various topological properties which often appear
in the theory of fixed point theorems: completeness, compactness, (path)
connectedness, rectifiable path connectedness, and d-convexity. The bulk
of the results presented in this part consists of examples of maps that show
non-reversibility of the previously established inclusions between theses
classes. Among these examples, the most striking is a differentiable auto-
homeomorphism f of a compact perfect subset X of R with f ′ ≡ 0, which
constitutes also a minimal dynamical system. We finish with discussing a
few remaining open problems on weather the maps with specific pointwise
contraction properties must have the fixed points.
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1 Background

The famous 1922 Banach Fixed Point Theorem states that every self-map f of
a complete metric space 〈X, d〉 must have a fixed point (i.e., an ξ ∈ X with
f(ξ) = ξ) provided there exists a constant λ ∈ [0, 1) such that d(f(x), f(y)) ≤
λd(x, y) for all x, y ∈ X. Maps like this are called contractions, and Banach’s
theorem is also known as the Contraction Principle.

The Contraction Principle has a multitude of generalizations, where the
contraction assumption on f is weakened. Among them are two 1962 results of
Edelstein that f must have a fix point provided: (i) X is compact and function
f is shrinking, that is, d(f(x), f(y)) < d(x, y) for all distinct x, y ∈ X; (ii)
X is compact connected and f is locally shrinking, that is, when for every
x ∈ X there exists an ε > 0 such that f restricted to the open ball B(x, ε),
centered at x and of radius ε, is shrinking. In particular, (ii) implies that any
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f on a compact connected space X must have fixed point provided f is locally
contractive, that is, when for every x ∈ X there exist an ε > 0 and a λ ∈ [0, 1)
such that d(f(y), f(z)) ≤ λd(y, z) for all y, z ∈ B(x, ε). Yet another group
of generalizations involves the functions f that are pointwise contractive, that
is, such that for every x ∈ X there exist an ε > 0 and a λ ∈ [0, 1) for which
d(f(x), f(y)) ≤ λd(x, y) as long as y ∈ B(x, ε). Notice that this notion is closely
related to that of a derivative, see Remark 2.3. Here we have the following
results: (iii) 1978 theorem of Hu and Kirk, with proof corrected in 1982 by
Jungck, that f must have a fixed point, provided X is rectifiably path connected
and f is uniformly pointwise contractive, that is, pointwise contractive but such
that λ is the same for all x ∈ X; and (iv) 2016 theorem of the authors of this
paper, that f must have a fixed point, provided X is compact rectifiably path
connected and f is pointwise contractive [11]. Also, another 2016 paper [10] of
the authors gives a paradoxically-looking example providing a key insight into
a possible behavior of the pointwise contractive maps.

The four local and pointwise notions of contractive and shrinking maps men-
tioned above, together with their several uniform versions, lead to twelve classes
of mappings, of which only ten are distinct, precisely defined in Section 2. The
goal of these paper is to fully discuss the fixed and periodic point theorems avail-
able for these mappings (see Section 3), as well as the inclusions among these
classes of functions (see Section 4). In this work we restrict our attention to the
mappings defined in Section 3. In particular, the multitude of other contraction-
like notions that appear in literature (see e.g. 1977 paper [31] of Rhoades com-
paring 125 different global contraction-like conditions, most of which involve
distances of the form d(x, f(x)), or the more recent work [23, 24, 5]) fall outside
of the scope of presented material. Section 5 contains the remetrization results
on which the generalizations of Fixed Point Theorem are based.

The relations between the considered classes of maps depend on the topolog-
ical properties of the space 〈X, d〉 on which the maps act. We will restrict our
attention to the topological properties that already appeared in the context of
the fixed point theorems. These include: completeness, compactness, connect-
edness and path connectedness, rectifiable path connectedness, and, so called,
d-convexity, which encompasses convexity in the Banach spaces. There are eight
different topological classes that can be defined in terms of the aforementioned
properties. In Section 6, using diagrams, we summarize the inclusions between
the ten classes of maps we consider for the eight classes of topological spaces
mentioned above. We reference examples showing that no implication between
the classes exist, unless the diagrams force the implication. These examples are
described in Section 7. All examples are with no periodic and/or fixed points,
unless their existence is implied by an appropriate fix/periodic point theorem.
The last section discusses the few remaining open problems.

We should mention that a large portion of fixed point theory (including
locally contractive maps) is developed in metric spaces with additional algebraic
structure, like Banach spaces, partially ordered sets, complete lattices, and many
other. Such topics are not discussed in this paper and we refer interested readers
to the monographs [19], and more recent [3], [7] and [24].
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2 Dozen notions of contractive maps

In what follows, all self maps we consider are defined on the complete metric
spaces, with the space usually denoted by X and the metric by d. However,
the notions defined below are valid also for maps f : X → Y between arbitrary
metric spaces X and Y .

Definition 2.1. Let X be a metric space and let f : X → X. The following
properties are also identified with the corresponding classes of functions.

Global notions:

(C) f is contractive (with a contraction constant λ), provided there exists a
λ ∈ [0, 1) such that d(f(x), f(y)) ≤ λd(x, y) for every x, y ∈ X;

(S) f is shrinking, provided d(f(x), f(y)) < d(x, y) for every distinct x, y ∈ X.

Local notions:

(LC) f is locally contractive, provided for every y ∈ X there exists an open
U 3 y such that f � U is contractive;

(uLC) f is locally contractive with the same contraction constant, provided there
exists a λ ∈ [0, 1) such that for every y ∈ X there exists an open U 3 y for
which f � U is contractive with the contraction constant λ; occasionally
we will use an abbreviation (λ)-(uLC) when we like to stress that (uLC)
is satisfied with a constant λ;

(ULC) f is uniformly locally contractive, provided there exist ε > 0 and λ ∈ [0, 1)
such that for every y ∈ X the restriction f � B(y, ε) is contractive with
a contraction constant λ; we will occasionally use an abbreviation (ε, λ)-
(ULC) when we like to stress that (ULC) is satisfied with the constants ε
and λ;

(LS) f is locally shrinking, provided for every y ∈ X there exists an open U 3 y
such that f � U is shrinking;

(ULS) f is uniformly locally shrinking, provided there exists an ε > 0 such that
f � B(y, ε) is shrinking for every y ∈ X; occasionally we will use notation
(ε)-(ULS) to stress that (ULS) is satisfied with a radius ε;

Pointwise notions:

(PC) f is pointwise contractive, if for every x ∈ X there exist an open U 3 x
and a λ ∈ [0, 1) such that d(f(x), f(y)) ≤ λd(x, y) for all y ∈ U ;1

1The notions in this group are often named local radial contractions, see e.g, [20] or [21].
We feel that the term pointwise contraction better describes the nature of these functions, see
[18] or [12].
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(uPC) f is pointwise contractive with the same contraction constant, if there exists
a λ ∈ [0, 1) such that for every x ∈ X there is an open set U 3 x for which
d(f(x), f(y)) ≤ λd(x, y) for all y ∈ U ;

(UPC) f is uniformly pointwise contractive, if there exist a λ ∈ [0, 1) and an ε > 0
such that for every x ∈ X, d(f(x), f(y)) ≤ λd(x, y) for all y ∈ B(x, ε);

(PS) f is pointwise shrinking, if there for every x ∈ X there exists open U 3 x
such that d(f(x), f(y)) < d(x, y) for all y ∈ U ;

(UPS) f is uniformly pointwise shrinking, if there exists an ε > 0 such that for
every x ∈ X we have d(f(x), f(y)) < d(x, y) for all y ∈ B(x, ε).

The obvious relations among the defined properties, plus those indicated by
Remark 2.2, are shown in Figure 1. We have included notions (UPC) and (UPS)
in Definition 2.1 for symmetry. However, as they are redundant, we will drop
them from further considerations. (Compare also Figure 3.)

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)

(UPC) (uPC) (PC)

(UPS) (PS)

Figure 1: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a complete metric space. The upward
arrows are justified by Remark 2.2. No other implications in the figure exist,
see Theorem 6.1.

Figure 1, as well as the similar figures and the associated theorems for the
maps defined on the spacesX with other topological properties, will be discussed
in detail in Section 6.

Remark 2.2. (UPC) is equivalent to (ULC) and (UPS) is equivalent to (ULS).

Proof. Clearly (ULC) implies (UPC). Now assume that f : X → X satisfies
(UPC) with some ε > 0 and λ ∈ [0, 1). Let x ∈ X and suppose that y, z ∈
B
(
x, ε2

)
. Then d(y, z) ≤ d(y, x) + d(x, z) < ε

2 + ε
2 = ε so z ∈ B(y, ε). By the

(UPC) property d(f(y), f(z)) ≤ λd(y, z) which shows that f is (ULC) with the
same λ and ε

2 . The argument for (UPS) =⇒ (ULS) is similar.
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For a self-map f on 〈X, d〉 and a limit point x ∈ X, let

D∗f(x) = lim supy→x
d(f(x),f(y))

d(x,y) ,

and for isolated point x we set D∗f(x) = 0. In particular, if X is a subset of
R (considered with the standard metric), X has no isolated points, and f is
differentiable, then D∗f(x) = |f ′(x)|. The (PC) and (uPC) properties can be
expressed in terms of this notion as follows.

Remark 2.3. For every f : X → X, the (uPC) property simply says that
sup{D∗f(x) : x ∈ X} < 1; (PC) is equivalent to D∗f(x) < 1 for all x ∈ X.

Proof. (uPC) gives us a number λ < 1 such that D∗f(x) ≤ λ for all limit

x ∈ X because we have d(f(x),f(y))
d(x,y) ≤ λ for y sufficiently close but not equal to

x. Inversely, if sup{D∗f(x) : x ∈ X} = η < 1, then f is (uPC) with any λ such
that η < λ < 1. The other equivalence follows similarly.

In the next two sections we review the fixed/periodic points theorems uti-
lizing the above defined terminology and further discuss how the classes are
related.

3 Fixed and periodic point theorems

For f : X → X and a number n ∈ ω = {0, 1, 2, . . .}, the n-th iteration f (n) of
f is defined as f ◦ · · · ◦ f , the composition of n instances of f . In particular,
f (1) = f and f (0) is the identity function.

Nearly a century old theorem of Banach [4] states that

Theorem 3.1. (Banach 1922) If X is a complete metric space and f : X → X
is (C), then f has a unique fixed point.

Proof. Fix an x ∈ X and notice that 〈f (n)(x) : n < ω〉 is a Cauchy sequence,
since the series formed by the distances d

(
f (n)(x), f (n+1)(x)

)
≤ λnd(x, f(x)) is

is convergent as it is bounded by the geometric series
∑∞
n=0 d(x, f(x))λn, where

λ ∈ [0, 1) is a contraction constant for f . So, the sequence converges to a point
ξ ∈ X, which is a fixed point, since

d(ξ, f(ξ)) = lim
n→∞

d
(
f (n)(x), f(f (n)(x))

)
= lim

n→∞
d
(
f (n)(x), f (n+1)(x)

)
= d(ξ, ξ) = 0,

implying that f(ξ) = ξ. Property (C) also implies the uniqueness of ξ.

This theorem, often called the Banach Contraction Principle, was studied in
great detail, see for example [31, 23, 24]. Here we focus solely on the fixed and
periodic point theorems for the mappings f , with properties from Definition 2.1.

An x ∈ X is a periodic point of f : X → X provided f (n)(x) = x for some
n > 0. In particular, x ∈ X is a fixed point of f if, and only if, it is a periodic
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point of f with period 1, that is, f (1)(x) = x. The (forward) orbit of an x ∈ X is
defined as O(x) = {f (n)(x) : n < ω}. Very significant contributions in the study
of shrinking and locally shrinking maps are due to Edelstein [16], see also [15].

Theorem 3.2. (Edelstein 1962) Let 〈X, d〉 be compact and let f : X → X.

(i) If f is (S), then f has a unique fixed point.

(ii) If f is (LS), then f has a periodic point.

(iii) If f is (LS) and X is connected, then f has a unique fixed point.

Proof. In case (i), notice that X 3 x 7→ d(x, f(x)) ∈ R is a continuous
mapping on a compact space. Thus, it attains its minimum at some x ∈ X,
which, by (S), must be a fixed point. This fixed point is clearly unique.

In case (ii), first notice (see Theorem 4.2) that f is actually (ULS) with
some constant ε > 0. Fix an x0 ∈ X and notice that there exist i < j < ω such
that d(f (i)(x0), f (j)(x0)) < ε. Put n = j − i > 0 and notice that f̂ = f (n) still
satisfies (ULS) with the constant ε.

Fix a ξ ∈ X at which the mapping X 3 x 7→ d(x, f̂(x)) ∈ R achieves the

minimum. So, d(ξ, f̂(ξ)) ≤ d(f (i)(x0), f̂(f (i)(x0))) = d(f (i)(x0), f (j)(x0)) < ε

and we must have d(ξ, f̂(ξ)) = 0, since otherwise d(f̂(ξ), f̂(f̂(ξ))) < d(ξ, f̂(ξ)),

contradicting the choice of ξ. Hence, f (n)(ξ) = f̂(ξ) = ξ, that is, that ξ is a
periodic point of f .

In case (iii), notice that, by Proposition 5.2(ii), there exists a complete metric
D on X topologically equivalent to d, such that f is (S) with respect to this
metric. Thus, by (i), f has a unique fixed point.

It is worth noting that in [14, theorem 2.6 p. 796] Ding and Nadler generalize
items (ii) and (iii) of Theorem 3.2 to locally compact spaces X. Theorem 3.2 is
also discussed in [13].

To state our next theorem, of Hu and Kirk [21] with a proof corrected by
Jungck [22] (see discussion in [2, p 66]), we need the following definitions. A
metric space X is rectifiably path connected provided any two points x, y ∈ X
can be connected in X by a path p : [0, 1]→ X of finite length `(p), that is, by
a continuous map p satisfying p(0) = x and p(1) = y, and having a finite length
`(p) defined as the supremum over all numbers:

n∑
i=1

d(p(ti), p(ti−1)) with 0 < n < ω and 0 = t0 < t1 < · · · < tn = 1.

Theorem 3.3. (Hu and Kirk 1978; Jungck 1982) If 〈X, d〉 is a rectifiably
path connected complete metric space and a map f : X → X is (uPC), then f
has a unique fixed point.

Proof. The assumptions on 〈X, d〉 and f imply (see Proposition 5.5(iii)) that
there exists a complete metric D on X such that f is (C), when X is considered
with the metric D. So, by Theorem 3.1, f has a unique fixed point, see also [2,
theorem 6 p 66].
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It is worth noting that Rakotch, in 1962 paper [30], and Marjanović, in 1976
paper [25], proved earlier Theorem 3.3 under the stronger assumption that f is
(uLC). The next theorem is very recent and comes from authors paper [11]. It
generalizes Theorem 3.3 to the (PC) maps, no uniformity assumption, at the
expense of requiring that the domain of f is compact.

Theorem 3.4. (Ciesielski and Jasinski 2016) Assume that 〈X, d〉 is com-
pact rectifiably path connected metric space. If f : X → X is (PC), then f has
a unique fixed point.

Proof. Let D is the distance from Proposition 5.5. By part (iv) of the
proposition, f : 〈X,D〉 → 〈X,D〉 is (S). Let M = inf{D(x, f(x)) : x ∈ X}.
Then, by Corollary 5.4(ii), there exists an x̄ ∈ X such that D(x̄, f(x̄)) = M
(which is not completely obvious, since 〈X,D〉 need not be compact, see the
footnote to Proposition 5.5).

To finish the proof it is enough to notice that M must be equal 0, since
otherwise D(f(x̄), f(f(x̄))) < D(x̄, f(x̄)), contradicting minimality of M . Thus,
D(x̄, f(x̄)) = 0 and f(x̄) = x̄, as required. The uniqueness of the fixed point is
ensured by the fact that f : 〈X,D〉 → 〈X,D〉 is (S).

The main part of the following theorem has been proved in 1961 paper [15]
of Edelstein. The proof the entire theorem can be also found in the authors
paper [11]. (We missed this 1961 result of Edelstein when writing [11].)

Theorem 3.5. Assume that 〈X, d〉 is complete and that f : X → X is (ULC).

(i) (Edelstein 1961) If X is connected, then f has a unique fixed point.

(ii) (Ciesielski and Jasinski 2016) If X has a finite number of components,
then f has a periodic point.

Proof. To see (i), let ε > 0 and λ ∈ [0, 1) be such that f (ε, λ)-(ULC). By
Remark 5.1 and Proposition 5.2(i), there exists a metric D̂ on X topologically
equivalent to d such that f : 〈X, D̂〉 → 〈X, D̂〉 is (C) with constant λ. Hence,
by the Banach Contraction Principle, f has a unique fixed point.

To see (ii), let C1, . . . , Cm be the connected components of X. Since f (n)[C1]
is connected, there must exist i < i+k with f (i)[C1] and f (i+k)[C1] intersecting
the same component of X, call it C. Then f (k)[C] ⊂ C. Applying (i) to
f (k) � C : C → C, we can find an x ∈ C with f (k)(x) = x. So, x is a periodic
point of f .

Notice that Theorems 3.3 and 3.5 are reduced to the Banach Contraction
Principle by using appropriate (but different) remetrization results. Similar (but
different) connections between the Theorem 3.2 and the Banach Contraction
Principle were also discussed in 1975 paper [32] of Rosenholtz.
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4 Implications between the contractive notions

Following Jungck [22], we say that 〈X, d〉 is d-convex provided for any dis-
tinct points x, y ∈ X there exists a path p : [0, 1] → X from x to y such that
d(p(t1), p(t3)) = d(p(t1), p(t2)) + d(p(t2), p(t3)) whenever 0 ≤ t1 < t2 < t3 ≤ 1.
Clearly, every d-convex space is rectifiably path connect. On the other hand,
any convex subset of a Banach space is d-convex. In particular, such is any
interval considered with the standard distance.

The part (i) of the next theorem is a particular case of [22, theorem p. 503]
of Jungck.

Theorem 4.1. Let 〈X, d〉 be d-convex and let f : X → X.

(i) (Jungck 1982) If f is (uPC) with a constant λ, then it is (C) with the
same constant.

(ii) If f is (PS), then it is (S).

Proof. First notice, that for every distinct y, z ∈ X

(•) if L = d(f(y),f(z)
d(y,z) , then there exist x ∈ X and a sequence 〈xn 6= x : n < ω〉

in X converging to x such that d(f(x),f(xn)
d(x,xn)

≥ L for all n < ω.

Indeed, let p : [0, 1]→ X be a path from y to z from the definition of d-convexity.
Define a nested sequence 〈[sn, tn] : n < ω〉 of intervals in [0, 1] such that, for

every n < ω, [sn, tn] has length 2−n and d(f(p(sn)),f(p(tn))
d(p(sn),p(tn))

≥ L: we start with

[s0, t0] = [0, 1] and, having [sn, tn], at lest one of the halfs of [sn, tn] can be
chosen as [sn+1, tn+1]. Let {t} =

⋂
n<ω[sn, tn]. Then x = p(t) is as desired,

since for every n < ω, there is un ∈ {sn, tn} for which xn = p(un) 6= x and

satisfies d(f(x),f(xn))
d(x,xn)

≥ L.

Now, to see (i), notice that if L = d(f(y),f(z)
d(y,z) for some distinct y, z ∈ X then,

by (•), L ≤ D∗f(x) ≤ λ.
To see (ii), assume that f is not (S). Then there exist distinct y, z ∈ X with

L = d(f(y),f(z)
d(y,z) ≥ 1. Let x be as in (•) for this pair. Then f is not ((PS)) at x.

For the compact spaces we have the following implications. (See [11, propo-
sition 4.3]. Compare also [14, theorem 4.2].)

Theorem 4.2. (LC)=⇒(ULC) and (LS)=⇒(ULS) for maps f : X → X with
compact X.

Proof. Suppose X is compact. To see that (LC) implies (ULC), for each
y ∈ X find an open set Uy 3 y such that f � Uy is Lipschitz with a constant
λy ∈ [0, 1). By compactness of X, there is a finite X0 ⊂ X such that U0 =
{Uy : y ∈ X0} covers X. Let δ > 0 be a Lebesgue number for the cover U0 of X.
(See e.g. [27, lemma 27.5].) Then ε = δ/2 satisfies (ULC) with the contraction
constant λ = max{λy : y ∈ X0}.
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The argument for (LS)=⇒(ULS), when X is compact, is similar.

The next result seems to be never published before.

Theorem 4.3. (S)&(ULC)⇒ (C) for maps f : X → X with compact X.

Proof. Let ε > 0 and λ ∈ [0, 1) be such that d(f(x), f(y)) ≤ λd(x, y) for any
x, y ∈ X with d(x, y) < ε. Let Z = {〈x, y〉 ∈ X2 : d(x, y) ≥ ε} and define g on

Z by g(x, y) =
∣∣∣d(f(x),f(y))d(x,y)

∣∣∣. Since Z is compact, g attains its maximum value

λ1 on Z. We must have λ1 < 1, since f is (S). Thus, f is (C) with a contraction
constant max{λ, λ1} < 1.

5 Geodesics and remetrization results

For ε > 0, we say that X is ε-chainable, provided for every p, q ∈ X there exists
a finite sequence s = 〈x0, x1, . . . , xn〉, referred to as an ε-chain from p to q, such
that x0 = p, xn = q, and d(xi, xi+1) ≤ ε for every i < n. The length of the
ε-chain s is defined as l(s) =

∑
i<n d(xi+1, xi).

Remark 5.1. All connected spaces are ε-chainable for any ε > 0.

Proof. (See Engelking [17, Exercise 6.1.D(a) p 359]) Fix x, y ∈ X and ε > 0.
Define, by induction on n < ω, a sequence 〈Bn ⊂ X : n < ω〉 as B0 = {x} and
Bn+1 = {z ∈ X : ∃b ∈ Bn(d(z, b) < ε)}. The union

⋃
n<ω Bn 6= ∅ is a clopen,

so by, connectedness of the space X, we have
⋃
n<ω Bn = X. Thus, y ∈ Bn for

some n < ω and so, there exists an ε-chain, with n+ 1 terms, from x to y.

The part (ii) of Proposition 5.2 can be found (with slightly different proof) in
Rosenholtz [32]. The proposition resembles also the results of Jungck from [22]
and of Hu and Kirk from [21]. See also [2, Lemma 2 p. 70].

Proposition 5.2. Let ε > 0 and assume that 〈X, d〉 is connected or, more
generally, ε-chainable. Then the map D̂ : X2 → [0,∞) given as

D̂(x, y) = inf{l(s) : s is an ε-chain from x to y}

is a metric on X topologically equivalent to d. If 〈X, d〉 is complete, then so is
〈X, D̂〉. Moreover,

(i) If f : 〈X, d〉 → 〈X, d〉 is (η, λ)-(ULC) for some η > ε, then f : 〈X, D̂〉 →
〈X, D̂〉 is (C) with constant λ.

(ii) If 〈X, d〉 is compact and f : 〈X, d〉 → 〈X, d〉 is (ULS) with a constant
η > ε, then f : 〈X, D̂〉 → 〈X, D̂〉 is (S).

Proof. To see that D̂ is a metric on X it is enough to show that D̂ satisfies
the triangle inequality. So, fix x, y, z ∈ X and δ > 0. Then, there exist the
ε-chains s = 〈x0, . . . , xn〉 from x to y and t = 〈y0, . . . , ym〉 from y to z with
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D̂(x, y) ≥ l(s) − δ and D̂(y, z) ≥ l(t) − δ. Since u = 〈x0, . . . , xn, y0, . . . , ym〉 is
an ε-chain from x to z with l(u) = l(s) + l(t), we have

D̂(x, y) + D̂(y, z) ≥ l(s)− δ + l(t)− δ = l(u)− 2δ ≥ D̂(x, z)− 2δ.

Since the constant δ > 0 was arbitrary, we obtain the desired triangle inequality
D̂(x, y) + D̂(y, z) ≥ D̂(x, z).

Also if d(x, y) ≤ ε, then we have D̂(x, y) = d(x, y) (since then d(x, y) ≤
D̂(x, y) ≤ l(〈x, y〉) = d(x, y)). This implies topological equivalence and com-
pleteness statements, finishing the proof of the main part of the proposition.

To see (i), fix x, y ∈ X. We need to show that D̂(f(x), f(y)) ≤ λD̂(x, y).
For this, fix a δ > 0 and let s = 〈x0, . . . , xn〉 be an ε-chain from x to y with
D̂(x, y) ≥ l(s) − δ. Notice that, by (η, λ)-(ULC), for every i < n we have
d(f(xi+1), f(xi)) ≤ λd(xi+1, xi). In particular, t = 〈f(x0), . . . , f(xn)〉 is an ε-
chain and l(t) =

∑
i<n d(f(xi+1), f(xi)) ≤

∑
i<n λd(xi+1, xi) = λl(s). Hence,

D̂(f(x), f(y)) ≤ l(t) ≤ λl(s) ≤ λ(D̂(x, y) + δ). Since δ > 0 was arbitrary, we
obtain the desired inequality D̂(f(x), f(y)) ≤ λD̂(x, y).

To see (ii), choose distinct x, y ∈ X. We need to show that D̂(f(x), f(y)) <
D̂(x, y). So, let {Uk : k < n} be a cover of X by open sets of d-diameter less than
ε. Notice that if s = 〈x0, x1, . . . , xm〉 is an ε-chain from p to q and i < j ≤ m
are such that xi and xj belong to the same Uk, then t = 〈x0, . . . , xi, xj , . . . , xm〉
is also an ε-chain from p to q for which l(t) ≤ l(s). In particular, for any ε-chain
s from p to q there exists an ε-chain t from p to q such that any Uk contains at
most two of the terms in t. In particular,

D̂(x, y) = inf{l(s) : s is an ε-chain from x to y containing 2n terms}.

In other words, if Z ⊂ X2n is the set of all ε-chains 〈x0, . . . , x2n−1〉 from x to y,
then Z is compact (as a closed subset of X2n) and D̂(x, y) = inf{l(s) : s ∈ Z}.
Therefore, the Extreme Value Theorem implies that there exists an ε-chain
s = 〈x0, . . . , x2n−1〉 from x to y with D̂(x, y) = l(s). To finish the proof, it is
enough to notice that, by the (η)-(ULS) assumption, 〈f(x0), . . . , f(x2n−1)〉 is
an ε-chain from f(x) to f(y) and so

D̂(f(x), f(y)) ≤
∑

i<2n−1
d(f(xi+1), f(xi)) <

∑
i<2n−1

d(xi+1, xi) = l(s) = D̂(x, y)

as needed.

In what follows we will use the following 1945 result of Myers [29, page 219].
For reader’s convenience, we include its short self-contained proof.

Lemma 5.3. Let 〈X, d〉 be a compact metric space and, for any n < ω, let
pn : [0, 1] → X be a rectifiable path such that `(pn � [0, t]) = t`(pn) for any
t ∈ [0, 1]. If L = lim infn→∞ `(pn) < ∞, then there exists a subsequence
〈pnk : k < ω〉 converging uniformly to a rectifiable path p : [0, 1] → X with
`(p) ≤ L.
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Proof. Select a countable dense subset U = {um : m < ω} of [0, 1]. By
compactness of X, it is possible to find a subsequence 〈pnk : k < ω〉 with
`(pnk)→k→∞ L such that limk→∞ pnk(um) = p(um) for all m < ω. Then, maps
{pnk : k < ω} converge uniformly to continuous p : [0, 1]→ X with `(p) ≤ L.

Indeed, let m ∈ {nk : k < ω} be such that `(pnk) ≤ `(pm) for all k < ω and
notice that for every 0 ≤ s ≤ t ≤ 1 we have

d(pnk(s), pnk(t)) ≤ `(pnk � [s, t]) = (t− s)`(pnk) ≤ (t− s)`(pm).

To see that the maps pnk form uniformly converging sequence, choose an ε > 0.
It is enough to show that there exists an N such that

d(pnj (s), pnk(s)) < ε for all s ∈ [0, 1] and j, k > N.

So, let J be a finite cover of [0, 1] by open intervals each of length not exceeding
δ = ε

4`(pm) . For every J ∈ J choose a u ∈ U ∩ J and an NJ such that

d(pnk(u), p(u)) < ε/4 for all k > NJ . Then, for every s ∈ J and j, k > NJ we
have d(pnk(s), p(u)) ≤ d(pnk(s), pnk(u)) + d(pnk(u), p(u)) < |s− u|`(pm) + ε

4 ≤
δ`(pm) + ε

4 = ε
2 and d(pnk(s), pnj (s)) ≤ d(pnk(s), p(u)) + d(p(u), pnj (s)) < ε.

Hence, pnks converge uniformly to a continuous path p.
To see that `(p) ≤ L notice that for every 0 = t0 < t1 < · · · < tn = 1∑n

i=1 d(p(ti), p(ti−1)) = limk→∞
∑n
i=1 d(pnk(ti), pnk(ti−1))

≤ limk→∞
∑n
i=1(ti − ti−1)`(pm) = `(pm),

so that `(p) ≤ `(pm).
Finally, since for every k0 < ω, by removing from a sequence 〈pnk : k < ω〉

a finite number of elements we can ensure that that `(pm) = `(pnk0 ), we have
that `(p) ≤ `(pnk) for every k < ω, that is, `(p) ≤ limk→∞ `(pnk) = L.

Recall that a rectifiable path p : [0, 1]→ X from x to y is a geodesic provided
`(p) ≤ `(q) for any other path q : [0, 1]→ X from x to y. From Lemma 5.3 it is
easy to deduce the following corollary, the first part of which is a 1930 theorem
of Menger [26].

Corollary 5.4. Let 〈X, d〉 be compact metric space.

(i) (Menger 1930) If there is a rectifiable path in X from x to y, then there
is a geodesic in X from x to y.

(ii) If 〈X, d〉 is compact rectifiably path connected, then for every continuous
f : X → X there exist an x̄ ∈ X and a path p from x̄ to f(x̄) such that
`(p) ≤ `(q) for any path q from any x ∈ X to f(x).

Proof. First notice that any rectifiable path p : [0, 1] → X admits a repara-
metrization p̄ : [0, 1] → X (i.e., a path with the same range and same length)
satisfying the condition from Lemma 5.3: `(p̄ � [0, t]) = t`(p̄) for any t ∈ [0, 1].

Indeed, the map p̄ =
{〈

`(p�[0,t])
`(p) , p(t)

〉
: t ∈ [0, 1]

}
is as required, since for any

s = `(p�[0,t])
`(p) ∈ [0, 1], we have `(p̄ � [0, s]) = `(p � [0, t]) = s`(p) = s`(p̄).
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To see (i), assume that x, y ∈ X can be joint by a rectifiable path. Let L
be the infimum of the lengths of all such paths and choose rectifiable paths
pn : [0, 1] → X from x to y such that limn→∞ `(pn) = L. Application of
Lemma 5.3 to the sequence 〈p̄n : n < ω〉 gives a path p : [0, 1] → X from x
to y with `(p) = L.

To see (ii), let L = inf{`(q) : q is a path from x ∈ X to f(x)}. Then, there
exists paths pn : [0, 1] → X from xn to f(xn) such that limn→∞ `(pn) = L.
Application of Lemma 5.3 to 〈p̄n : n < ω〉 gives subsequence 〈p̄nk : k < ω〉
converging uniformly to a rectifiable path p : [0, 1] → X with `(p) ≤ L. If
x̄ = p(0) = limk→∞ pnk(0), then p is from x̄ = p(0) to p(1) = limk→∞ pnk(1) =
limk→∞ f(pnk(0)) = f(x̄). So, x̄ and p are as needed.

The following proposition is an elaboration of the results from [21] and [22],
see also [2, Theorem 6 p. 66].

Proposition 5.5. If 〈X, d〉 is a rectifiably path connected metric space, then
the map D : X2 → [0,∞) given as

D(x, y) = inf{`(p) : p is a rectifiable path from x to y}

is a metric on X. If 〈X, d〉 is complete, then so is 〈X,D〉.2

(i) If P is the range of a rectifiable path p in X, λ ≥ 0, and for every x ∈ X,
D∗f(x) ≤ λ with respect to the metric d, then `(f ◦ p) ≤ λ`(p).

(ii) If λ ≥ 0 and, for every x ∈ X, D∗f(x) ≤ λ with respect to the metric d,
then f : 〈X,D〉 → 〈X,D〉 is Lipschitz with the constant λ. In particular, if
0 ≤ λ < 1 and f : 〈X, d〉 → 〈X, d〉 is (λ)-(uPC), then f : 〈X,D〉 → 〈X,D〉
is (C) with the contraction constant λ.

(iii) If f : 〈X, d〉 → 〈X, d〉 is (LC), then f : 〈X,D〉 → 〈X,D〉 is (S).

(iv) If X is compact and f : 〈X, d〉 → 〈X, d〉 is (PC), then f : 〈X,D〉 → 〈X,D〉
is (S).

Proof. The main part is straightforward and seems to be well known. For a
proof see, for example, Hu and Kirk [21] or Mycielski [28].

To show (i), fix an ε > 0. First notice that

d(f(p(t)), f(p(s))) ≤ (λ+ ε)`(p � [s, t]) for every 0 ≤ s < t ≤ 1. (1)

Indeed, for every x ∈ [s, t] we have D∗(f � P )(x) ≤ λ, so there exists a proper
open interval Ux = (x− δx, x+ δx) such that

d(f(p(x)), f(p(x′))) ≤ (λ+ ε)d(p(x), p(x′)) for every x′ ∈ Ux ∩ [s, t]. (2)

2Notice that the metrics d and D do not need to be topologically equivalent. For example,
let X be union of the “topologist’s sine curve” (see Munkres [27, p. 156]) and a semi-circular
curve connecting one end of the vertical segment with the “end” of the sine curve. If d is the
standard metric on R2, then 〈X, d〉 is compact rectifiably path connected, while 〈X,D〉 is not
compact – it is homeomorphic to [0,∞).
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Let J be a finite subset of [s, t] such that U = {Ux : x ∈ J} is a cover of [s, t]
containing no proper subcover. Let 〈x1, x3, . . . , x2n−1〉 be a list of elements of
J in the increasing order. Then, by minimality of U , for every 0 < i < n there
exists an x2i ∈ Ux2i−1

∩ Ux2i+1
∩ (x2i−1, x2i+1). Moreover, x0 = s ∈ Ux1

and
x2n = t ∈ Ux2n−1

. In particular, s = x0 ≤ x1 < x2 < · · · < x2n−1 ≤ x2n = t and
x2i, x2i+2 ∈ Ux2i+1 for every i < n. Therefore, by (2),

d(f(p(t)), f(p(s))) ≤
∑
k<2n d(f(p(xk)), f(p(xk+1)))

≤
∑
k<2n(λ+ ε)d(p(xk), p(xk+1)) ≤ (λ+ ε)`(p � [s, t]),

justifying (1).
To finish the argument for (i) choose the numbers 0 = t0 < t1 < · · · < tn = 1

such that `(f ◦ p) ≤
∑
i<n d(f(p(ti+1)), f(p(ti))) + ε. Then, by (1),

`(f ◦ p) ≤
∑
i<n d(f(p(ti+1)), f(p(ti))) + ε

≤
∑
i<n(λ+ ε)`(p � [ti−1, ti]) + ε = (λ+ ε)`(p) + ε.

Since this holds with any ε > 0, the desired inequality, `(f ◦ p) ≤ λ`(p), follows.
Item (ii) follows from (i). Indeed, for every a, b ∈ X and ε > 0 there is a

rectifiable path p from a to b such that `(p) < D(a, b) + ε. Then, by (i),

D(f(a), f(b)) = inf{`(q) : q is a rectifiable path from f(a) to f(b)}
≤ `(f ◦ p) ≤ λ`(p) ≤ λ(D(a, b) + ε).

Since ε was arbitrary, we get D(f(a), f(b)) ≤ λD(a, b) for every a, b ∈ X.

Figure 2: In a rectifiably path connected space X, if f is (LC) with metric d,
then f is (S) in metric D = inf{l(p) : P is a rectifiable path from x to y}.

To prove the property (iii), take distinct x, y ∈ X. We need to show that
D(f(x), f(y)) < D(x, y). Notice, that, by (ii), f : 〈X,D〉 → 〈X,D〉 is Lipschitz
with the constant 1. Also, by (LC), there exists an open U 3 x such that f � U
is d-contractive with a constant λ ∈ [0, 1).
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Choose a δ ∈ (0, D(x, y)) such that z ∈ U whenever d(x, z) ≤ δ, a rectifiable
path p : [0, 1] → X from x to y with `(p) < D(x, y) + (1 − λ)δ, and pick the
smallest ε ∈ (0, 1) with D(x, p(ε)) = δ see Figure 2. Then, p(t) ∈ U for every
t ∈ [0, ε], since, for such t, d(x, p(t)) ≤ D(x, p(t)) ≤ D(x, p(ε)) = δ. Therefore,
by (ii), `(f ◦ p � [0, ε]) ≤ λ`(p � [0, ε]). Hence

D(f(x), f(y)) ≤ D(f(x), f(p(ε))) +D(f(p(ε)), f(y))

≤ `(f ◦ p � [0, ε]) +D(p(ε), y)

≤ λ`(p � [0, ε]) + `(p � [ε, 1])

= −(1− λ)`(p � [0, ε]) + `(p)

≤ −(1− λ)D(x, p(ε)) + `(p)

= −(1− λ)δ + `(p) < D(x, y),

as required.
To see (iv), fix distinct x, y ∈ X. We need to show D(f(x), f(y)) < D(x, y).

By Corollary 5.4(i), there exists a path p : [0, 1]→ X from x to y with D(x, y) =
`(p). Since `(f ◦ p) ≥ D(f(x), f(y)), it is enough to prove that `(p) > `(f ◦ p).

To see this, let Y = p[[0, 1]]. It is easy to see that for every n < ω the set

Kn = {x ∈ Y : d(f(x), f(x′)) ≤ n
n+1d(x, x′) for all x′ ∈ Y with d(x, x′) < 1

n+1}

is closed in Y . Since f is (PC), we have Y =
⋃
n<ωKn. So, by Baire category

theorem, there is an n < ω such that the interior intYKn of Kn in Y is non-
empty. Thus, there exist a < b such that [a, b] ⊂ p−1(intYKn). In particular,
D∗f(x) ≤ n

n+1 for every x ∈ p[[a, b]] and, by (i), `(f ◦p � [a, b]) ≤ n
n+1`(p � [a, b]).

Moreover, property (S) implies that D∗f(x) ≤ 1 for every x ∈ Y so, again by (i),
`(f ◦ p � [c, d]) ≤ `(p � [c, d]) for every 0 ≤ c ≤ d ≤ 1. Thus,

`(p) = `(p � [0, a]) + `(p � [a, b]) + `(p � [b, 1])

> `(p � [0, a]) +
n

n+ 1
`(p � [a, b]) + `(p � [b, 1])

≥ `(f ◦ p � [0, a]) + `(f ◦ p � [a, b]) + `(f ◦ p � [b, 1])

= `(f ◦ p),

as needed.
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6 Discussion of the relations between the con-
tractive classes

In all theorems in this section we present the examples of maps which, if possible,
have no fixed and/or periodic points.

6.1 Complete spaces

(C)
F
3.1 (ULC) (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)

Figure 3: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being an arbitrary complete metric space.
Maps from (C) are indicated as (C)

F
3.1, to denote that they have the fixed point

property, F, according to Theorem 3.1. The maps from the other classes need
not have periodic points, the existence of which will later be denoted by a
superscript P. No other implications in the figure exist, see Theorem 6.1.

Theorem 6.1. No combination of any of the properties shown in Figure 3 imply
any other property, unless the graph forces such implication. In particular, for
the classes in the figure, listed by rows, we have:

(C): (C) : (S)&(ULC) – Example 27, with no periodic point;

(ULC): (ULC) : (S)&(uLC) – Example 16, with no periodic point;

(uLC): (uLC) : (S)&(LC)&(uPC) – Example 19, with no periodic point;

(LC): (LC) : (S)&(uPC) – Example 20, with no periodic point;

(S): (S) : (ULC) – Example 24, with no periodic point;

(ULS): (ULS) : (uLC) – Example 18, with no periodic point;

(LS): (LS) : (uPC) – Examples 28 and 21, with no periodic point;

(uPC): (uPC) : (S)&(LC) – Example 4, with no periodic point;

(PC): (PC) : (S) – Example 3, with no periodic point.
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6.2 Connected and path connected spaces

(C)
F
3.1 (ULC)

F
3.5 (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)

Figure 4: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a complete metric space which is either
connected or path connected. The left dashed arrow indicates that, by Propo-
sition 5.2(i), there exists equivalent metric for which any map that is (ULC)
in the old metric becomes (C). No other implications in the figure exist, see
Theorem 6.2.

Theorem 6.2. No combination of any of the properties shown in Figure 4 imply
any other property, unless the graph forces such implication. In particular, for
the classes in the figure, listed by rows, we have:

(C): (C) : (S)&(ULC) – Example 10, with fixed point;
(C) : (S)&(uLC), with no periodic point – see below (ULC):(S)&(uLC);

(ULC): (ULC) : (S)&(uLC) – Example 16, with no periodic point;

(uLC): (uLC) : (S)&(LC)&(uPC) – Example 19, with no periodic point;

(LC): (LC) : (S)&(uPC) – Example 20, with no periodic point;

(S): (S) : (ULC) – Example 6, with fixed point;
(S) : (ULS)&(uLC) – Example 17, with no periodic point;

(ULS): (ULS) : (uLC) – Example 18, with no periodic point;

(LS): (LS) : (uPC) – Example 21, with no periodic point;

(uPC): (uPC) : (S)&(LC) – Example 4, with no periodic point;

(PC): (PC) : (S) – Example 3, with no periodic point.
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6.3 Rectifiably path connected spaces

(C)
F
3.1 (ULC)

F
3.5 (uLC)

F
3.3 (LC)

(S) (ULS) (LS)

(uPC)
F
3.3 (PC)

(PS)

Figure 5: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a complete metric space which is rectifi-
ably path connected. Each of the dashed (not dotted) arrows indicates that, by
Proposition 5.5, there exists another complete rectifiably path connected metric
on X that makes any map from the bigger class to belong to the smaller class.
No other implications in the figure exist, see Theorem 6.3.

Theorem 6.3. No combination of any of the properties shown in Figure 5 imply
any other property, unless the graph forces such implication. In particular, for
the classes in the figure, listed by rows, we have:

(C): (C) : (S)&(ULC) – Example 10, with fixed point;
(C) : (S)&(LC), with no periodic point – see below (uPC) : (S)&(LC);

(ULC): (ULC) : (S)&(uLC) – Example 11, with fixed point;
(ULC) : (S)&(LC), with no periodic point – see (uPC) : (S)&(LC);

(uLC): (uLC) : (S)&(LC)&(uPC) – Example 13, with fixed point;
(uLC) : (S)&(LC), with no periodic point – see (uPC) : (S)&(LC);

(LC): (LC) : (S)&(uPC) – Example 14, with fixed point;
(LC) : (S)&(PC) – Example 5, with no periodic point;

(S): (S) : (ULC) – Example 6, with fixed point;
(S) : (ULS)&(LC) – Example 7, with no periodic point;

(ULS): (ULS) : (uLC) – Example 12, with fixed point;
(ULS) : (LC) – Example 15, with no periodic point;

(LS): (LS) : (uPC) – Example 9, with fixed point;
(LS) : (PC) – Example 8, with no periodic point;

(uPC): (uPC) : (S)&(LC) – Example 4, with no periodic point;

(PC): (PC) : (S) – Example 3, with no periodic point.
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6.4 d-convex spaces

(C)
F
3.1 (ULC)

F
3.1 (uLC)

F
3.1 (LC)

(S) (ULS) (LS)

(uPC)
F
3.1 (PC)

(PS)

Figure 6: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a d-convex metric space. The left and
upper portions of the equivalences ←→ follow from Theorem 4.1. No other
implications in the figure exist, see Theorem 6.4.

Theorem 6.4. No combination of any of the properties shown in Figure 6 imply
any other property, unless the graph forces such implication. In particular, for
the classes in the figure, listed by rows, we have:

(C): (C) : (S)&(LC), see below the example for (uPC);

(ULC): (ULC) : (S)&(LC), see below the example for (uPC);

(uLC): (uLC) : (S)&(LC) see below the example for (uPC);

(LC): (LC) : (S)&(PC) – Example 5, with no periodic point;

(uPC): (uPC) : (S)&(LC) – Example 4, with no periodic point;

(PC): (PC) : (S) – Example 3, with no periodic point.
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6.5 Compact spaces

(C)
F
3.1 (ULC)

P
3.2 (uLC)

P
3.2 (LC)

P
3.2

(S)
F
3.2 (ULS)

P
3.2 (LS)

P
3.2

(uPC) (PC)

(PS)

Figure 7: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a compact metric space. The left
portions of the equivalences ←→ follow from Theorem 4.2. Moreover, we also
have implication (S)&(ULC)⇒ (C), see Theorem 4.3. No other implications in
the figure exist, see Theorem 6.5.

Theorem 6.5. No combination of any of the properties shown in Figure 7
imply any other property, unless the graph forces such implication, with the
exception of the implication (S)&(ULC)⇒ (C). In particular, for the classes in
the figure, listed by rows, we have:

(C): (C)⇐ (S)&(ULC) – see Theorem 4.3;
(C) : (S)&(uPC), with fixed point – see below for (LC) : (S)&(uPC);
(C) : (ULC), with periodic but not fixed point – see below (S) : (ULC);
(C) : (uPC), with no periodic point – see below (LS) : (uPC);

(ULC): see below the examples for (LC);
(uLC): see below the examples for (LC);

(LC): (LC) : (S)&(uPC) – Example 14, with fixed point;
(LC) : (ULS)&(uPC) – Example 26, with periodic but not fixed point;
(LC) : (uPC), with no periodic point – see example for (LS) : (uPC);

(S): (S) : (ULC) – Example 23, with periodic but not fixed point;
(S) : (uPC), with no periodic point – see example for (LS) : (uPC);

(ULS): see below the example for (LS);

(LS): (LS) : (uPC) – Example 28, with no periodic point;

(uPC): (uPC) : (S)&(PC) – Example 2, with fixed point;
(uPC) : (ULS)&(PC) – Example 25, with periodic but not fixed point;
(uPC) : (PC) – Example 30, with no periodic point;

(PC): (PC) : (S) – Example 1, with fixed point;
(PC) : (ULS) – Example 22, with periodic but not fixed point;
(PC) : (PS) – Example 29, with no periodic point.
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6.6 Compact (path) connected spaces

(C)
F
3.1 (ULC)

F
3.2 (uLC)

F
3.2 (LC)

F
3.2

(S)
F
3.2 (ULS)

F
3.2 (LS)

F
3.2

(uPC)
?
8.1 (PC)

?
8.1

(PS)
?
8.1

Figure 8: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a compact and either connected or path
connected metric space. The dashed arrows indicate that, by Proposition 5.2,
there exists a complete metric on X topologically equivalent to the original,
that makes any map from the bigger class to belong to the smaller class. The
left portions of the equivalences ↔ follow from Theorem 4.2. Moreover, we also
have implication (S)&(ULC) ⇒ (C), see Theorem 4.3. No other implications
in the figure exist, see Theorem 6.6. The question marks in the graph refer to
open problems.

Theorem 6.6. No combination of any of the properties shown in Figure 8 imply
any other property, unless the graph forces such implication. In particular, for
the classes in the figure, listed by rows, we have:

(C): (C)⇐ (S)&(ULC) – see Theorem 4.3;
(C) : (S)&(uPC), with fixed point – see example for (LC) : (S)&(uPC);
(C) : (ULC), with fixed point – see below (S) : (ULC);

(ULC): see below the example for (LC);

(uLC): see below the example for (LC);

(LC): (LC) : (S)&(uPC) – Example 14, with fixed point;

(S): (S) : (ULC) – Example 6, with fixed point;

(ULS): see below the example for (LS);

(LS): (LS) : (uPC) – Example 9, with fixed point;

(uPC): (uPC) : (S)&(PC) – Example 2, with fixed point;

(PC): (PC) : (S) – Example 1, with fixed point.
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6.7 Compact rectifiably path connected spaces

(C)
F
3.1 (ULC)

F
3.2 (uLC)

F
3.2 (LC)

F
3.2

(S)
F
3.2 (ULS)

F
3.2 (LS)

F
3.2

(uPC)
F
3.3 (PC)

F
3.4

(PS)
?
8.2

Figure 9: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a compact and rectifiably path connected
metric space. The dashed arrows indicates that, by Propositions 5.2 and 5.5
there exists equivalent metric that makes any map from the bigger class to
belong to the smaller class. The left portions of the equivalences ↔ follow
from Theorem 4.2. Moreover, we also have implication (S)&(ULC) ⇒ (C), see
Theorem 4.3. No other implications in the figure exist, see Theorem 6.7. The
question mark in the graph refers to an open problem.

Theorem 6.7. No combination of any of the properties shown in Figure 9 imply
any other property, unless the graph forces such implication. In particular, for
the classes in the figure, listed by rows, we have:

(C): (C)⇐ (S)&(ULC) – see Theorem 4.3;
(C) : (S)&(uPC), with fixed point – see example for (LC) : (S)&(uPC);
(C) : (ULC), with fixed point – see below (S) : (ULC);

(ULC): see below the example for (LC);

(uLC): see below the example for (LC);

(LC): (LC) : (S)&(uPC) – Example 14, with fixed point;

(S): (S) : (ULC) – Example 6, with fixed point;

(ULS): see below the example for (LS);

(LS): (LS) : (uPC) – Example 9, with fixed point;

(uPC): (uPC) : (S)&(PC) – Example 2, with fixed point;

(PC): (PC) : (S) – Example 1, with fixed point.
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6.8 Compact d-convex spaces

(C)
F
3.1 (ULC)

F
3.1 (uLC)

F
3.1 (LC)

F
3.1

(S)
F
3.2 (ULS)

F
3.2 (LS)

F
3.2

(uPC)
F
3.1 (PC)

F
3.4

(PS)
F
3.2

Figure 10: The relations between the local contractive and shrinking properties
for the maps f : X → X, with X being a compact d-convex metric space. The
left and upper portions of the equivalences ←→ follow from Theorem 4.1 and
Theorem 4.2. No other implications in the figure exist, see Theorem 6.8.

Theorem 6.8. No combination of any of the properties shown in Figure 10
imply any other property, unless the graph forces such implication. In particular,

(C): see below the example for (uPC);

(ULC): see below the example for (uPC);

(uLC): see below the example for (uPC);

(LC): see below the example for (uPC);

(uPC): (uPC) : (S)&(PC) – Example 2, with fixed point;

(PC): (PC) : (S) – Example 1, with fixed point.
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7 The examples

All examples presented in this section consist of the self-maps of complete metric
spaces. Actually, all these metric spaces will be subsets of R considered with
the standard topology; however, the metric we use will often be a non-standard
metric.

7.1 Examples on intervals with standard metric

Notice that, by Theorem 3.2(i), if X is compact, than any map f : X → X as
in Example 1 must have a fixed point.

Example 1. The map f : [0, 1] → [0, 1], f(x) = arctanx, is from (S)&¬(PC).
It has a fixed point, as f(0) = 0.

Proof. It is not (PC) by Remark 2.3, as f ′(0) = 1. It is (S) by the Mean
Value Theorem, since f ′(x) ∈ (0, 1) for every x > 0.

Notice that, by Theorem 3.2(i), if X is compact, than any map f : X → X
as in Example 2 must have a fixed point. Note also that although the map
in Example 2 is differentiable, it cannot be continuously differentiable since for
C1[0, 1] maps (PC)⇒(uPC).

Figure 11: The graph of g : [0, 1] → [0, 1] from Example 2 for which the map
f2(x) =

∫ x
0
g(t) dt is (S) and (PC) but not (uPC).

Example 2. There exists a map f2 : [0, 1]→ [0, 1] from (S)&(PC)&¬(uPC). It
has a fixed point, as f2(0) = 0.

Construction. Choose a sequence b0 > a0 > b1 > a1 > · · · converging to
0 such that 0 is a Lebesgue density point of the complement of

⋃
n<ω(an, bn).
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For every n < ω let gn be a map from [0, 1] onto [0, 1 − 2−n−1] with support

in [an, bn]. For example, take a tent-like gn(x) = 2 1−2−n−1

bn−an dist(x,R \ [an, bn]).
Then g =

∑
n<ω gn, see Figure 11, is from [0, 1] onto [0, 1) which is approxi-

mately continuous—it is ensured at x = 0 by the Lebesgue density requirement.
This implies that f2(x) =

∫ x
0
g(t) dt is differentiable from [0, 1] to [0, 1] with

f ′2(x) = g, see e.g. [6, Theorem 7.36, p. 317]. By Remark 2.3, this property of
f ′2 implies that f2 is (PC) and not (uPC). Also, by the Mean Value Theorem,
f2 is (S).

Notice that, by Theorem 3.2(i), if f : X → X is as in Example 3, then X
cannot be compact.

Example 3. The map f : [0,∞)→ [0,∞), f(x) = x+e−x
2

, is from (S)&¬(PC)
and has no periodic point.

Proof. Notice that f ′(x) = 1 − 2xe−x
2

. Thus, f ′(0) = 1 and so, by Re-
mark 2.3, f is not (PC). Moreover, f ′[(0,∞)] ⊆ (0, 1) so that f is (S) since, for
any distinct x, y ∈ [0,∞), the inequality |f(x) − f(y)| < |x − y| follows from
the Mean Value Theorem. Finally, f has no periodic point, since f(x) > x for
every x ≥ 0. This inequality implies also that f is indeed into [0,∞).

The next example comes from Munkres [27, p. 182]. Notice that, by Theo-
rem 3.2(i), if f : X → X is as in Example 4, then X cannot be compact.

Example 4. The map f : R → R, f(x) = 1
2

(
x+
√
x2 + 1

)
, is from the class

(S)&(LC)&¬(uPC) and has no periodic point.

Proof. Notice that f ′(x) = 1
2

(
1 + x√

x2+1

)
. Therefore, for any a ∈ R,

f ′[(−∞, a]] = (0, c] for some c ∈ (0, 1). Thus, the Mean Value Theorem implies
that f is (S)&(LC). On the other hand limx→∞ f ′(x) = 1 so, by Remark 2.3, f
is not (uPC). Finally, f has no periodic point since f(x) > x all x ∈ R.

Notice that, by Theorem 3.2(i), if f : X → X is as in Example 5, then X
cannot be compact.

Example 5. There exists a map f : [0,∞) → [0,∞) from (S)&(PC)&¬(LC)
having no periodic point.

Construction. Let f2 : [0, 1] → [0, 1] be as in Example 2 and let r = f2(1).
Define gr(x) = 1

2

(
x+
√
x2 + 4r + 4r2

)
. This is a modification of the Munkres’

function from Example 4. It has the property that gr(1) = r + 1 = f2(1) + 1.
Define

f(x) =

{
f2(x) + 1 for x ∈ [0, 1],

gr(x) for x ∈ [1,∞).

Clearly, f is continuous and f(x) > x for all x ∈ [0,∞), so f has no pe-
riodic points. The restriction f � [0, 1] is (S)&(PC)&¬(uPC), as these are
the properties of f2 and both functions have the same derivative. In partic-
ular, f � [0, 1] cannot be (LC), since otherwise, by Theorem 4.2, f � [0, 1]
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would be (uLC) and, therefore, (uPC). Hence, f is not (LC). Notice also that

g′r(x) = 1
2

(
1 + x√

x2+4r+4r2

)
so, as in Example 4, f � [1,∞) = gr is both (S)

and (PC). Since f � [0, 1] has the same two properties, it is easy to verify that
the same is true for f , compare discussion in [1].

7.2 Examples on intervals with non-standard distances

In all examples f : X → X presented in Section 7.2 the space X is an interval.
However, in none of these examples X can be equipped with the standard metric
on R, as justified by Theorem 4.1 and further elaborated before each example.
Nevertheless, all metrics we use here are complete and topologically equivalent
to the standard metric on R (i.e., each X can be treated as a path in R2). The
only property about these spaces that we did not fully investigated is a question
of which of the spaces can be isometric to the subset of R2 or, more generally,
of Rn with n > 1.

7.2.1 Using simple rectifiably path connected metrics

Notice that, by Theorem 3.2(i), if X is compact, than any map f : X → X as
in Example 6 must have a fixed point. Also, by Theorem 4.1, the metric ρ̄ in
the example cannot be the standard metric (as, in such case, (ULC)⇒(uPC)
⇒(C)⇒(S)).

Example 6. There exists a function f : 〈[0, 4], ρ̄〉 → 〈[0, 4], ρ̄〉 from the class
(ULC)&¬(S), where ρ̄ is a rectifiably path connected metric on [0, 4] topologi-
cally equivalent to the standard metric. Clearly f has a fixed point.

Construction. Define ρ̄ via formula ρ̄(x, y) = min{|x− y|, 1} and put f(x) =
x/2. It is easy to see that f is

(
1
2 ,

1
2

)
-(ULC). It is not (S), since ρ̄(f(0), f(4)) =

ρ̄(0, 2) = 1 = ρ̄(0, 4).

Notice that, by Theorem 3.2(i), if f : X → X is as in the Example 7, then X
cannot be compact. Also, by Theorem 4.1, the metric ρ̄ in the example cannot
be the standard metric (as, in such case, (ULS)⇒(PS)⇒(S)).

Example 7. There exists a map f : 〈[0,∞), ρ̄〉 → 〈[0,∞), ρ̄〉 from the class
(ULS)&(LC)&¬(S) having no periodic point, where 〈[0,∞), ρ̄〉 is a rectifiable
path connected and topologically equivalent to [0,∞) with the standard metric.

Construction. The function f : [0,∞) → [0,∞) from Example 4 has the
desired properties, when the metric is defined as ρ̄(x, y) = min{|x − y|, 1}.
Indeed, the properties (LC) and (ULC) are not affected by this metric change.
However, f is not (S), since there are 0 < a < b for which b−a > f(b)−f(a) > 1
and we obtain ρ̄(a, b) = 1 = ρ̄(f(a), f(b)).

Notice that, by Theorem 3.4, if f : X → X is as in Example 8, then X
cannot be compact. Also, by Theorem 4.1, the metric ρ in the example cannot
be the standard metric (as, in such case, (PC)⇒(PS)⇒(S)⇒(LS)). However, we
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actually prove that there is a map h : [0,∞) → R for which the domain of f is
the graph of h considered as a subset of R2 with the standard distance.

Example 8. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(PC)&¬(LS) having no periodic point, where 〈[0,∞), ρ〉 is a rectifiable path
connected and topological equivalent to [0,∞) with the standard metric.

Construction. For n < ω let hn : [n, n + 1] → R be defined by a formula
hn(x) = 1

n+1dist(x, {n, n + 1}). Also, let h =
⋃
n<ω hn, see Figure 12, and

define ρ as
ρ(x, y) = ‖〈x, h(x)〉 − 〈y, h(y)〉‖.

Let f(x) = x+ 1.

Figure 12: The graph of h : [0,∞]→ R from Example 8 for which f(x) = x+ 1
is (PC) but not (LS).

Clearly, 〈[0,∞), ρ〉 is rectifiable path connected and f has no periodic points.
To see that f is (PC), it is enough to prove that so is its restriction to any of the
intervals [n, n+ 0.5] and [n+ 0.5, n+ 1]. Indeed, if x and y are distinct points
of such an interval, then

ρ(f(x), f(y))

ρ(x, y)
=

√
1 + 1

(n+2)2 |x− y|√
1 + 1

(n+1)2 |x− y|
=

√
1 + 1

(n+2)2√
1 + 1

(n+1)2

< 1.

The function f is not (LS) at any point s = n+ 1
2 since for any ε ∈ (0, 1/2)

we have ρ(f(s− ε), f(s+ ε)) = 2ε = ρ(s− ε, s+ ε).

Notice that, by Theorem 3.3, if f : X → X is as in Example 9 and X is com-
pact, then f must have a fixed point. Also, by Theorem 4.1, the metric ρ in the
example cannot be the standard metric (as, in such case, (uPC)⇒(C)⇒(LS)).
However, we actually prove that there is a map h : [0, 2] → R for which the
domain of f is the graph of h considered as a subset of R2 with the standard
distance.

Example 9. There exists a map f : 〈[0, 2], ρ〉 → 〈[0, 2], ρ〉 from (uPC)&¬(LS),
where 〈[0, 2], ρ〉 is a rectifiable path connected and topologically equivalent to
[0, 2] with the standard metric. Clearly, f has a fixed point, as f(2) = 2.
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Construction. Let ρ be the restriction to [0, 2] of the metric from Example 8
and define f(x) = min{2, x + 1}. The restriction f � [0, 1] is identical for this
example and Example 8. So, as in Example 8, it is not (LS) at x = 1

2 , while it
is (uPC). This ensures that our f is not (LS). However, it is (uPC), since so are
f � [0, 1] and f � [1, 2] (with f � [1, 2] being a constant map).

Notice that, by Theorem 4.3, if f : X → X is as in Example 10, then X
cannot be compact. Also, by Theorem 3.4, the map in the example must have
a fixed point. Moreover, by Theorem 4.1, the metric d in the example cannot
be the standard metric (as, in such case, (ULC)⇒(uPC)⇒(C)). However, we
actually prove that there is a map h : [0,∞) → R for which the domain of f is
the graph of h considered as a subset of R2 with the standard distance.

Example 10. There exists a function f : 〈[0,∞), d〉 → 〈[0,∞), d〉 from the class
(S)&(ULC)&¬(C), where d is a rectifiable path connected complete metric on
[0,∞) topologically equivalent to the standard metric. The map f has a fixed
point, f(0) = 0.

Construction. Define d by a formula d(x, y) = ln(1 + |x− y|). It is a metric,
since the map [0,∞) 3 t 7→ ln(1 + t) ∈ [0,∞) is concave down on [0,∞). It
is easy to see that the metric d is complete and topologically equivalent to the
standard metric. It is rectifiably path connected since the inequality ln(1+t) ≤ t
implies that the length, with respect to the metric d, of a path from x to y is
at most |x− y|.

Define f : [0,∞) → [0,∞) by f(x) = x/2. For any x ∈ [0,∞) and z > 0 we

have d(f(x),f(x+z))
d(x,x+z) = ln(1+z/2)

ln(1+z) < 1. Therefore, f is (S). The map f is not (C),

since, by l’Hôspital’s Rule, limz→∞
d(f(x),f(x+z))

d(x,x+z) = limz→∞
1+z
2+z = 1. On the

other hand, limz→0
d(f(x),f(x+z))

d(x,x+z) = limz→0
1+z
2+z = 1

2 so, there exists an ε > 0

such that d(f(x),f(x+z))
d(x,x+z) < 3

4 for every x ≥ 0 and z ∈ (0, ε). But this means that

f is
(
ε
2 ,

3
4

)
-(ULC).

Notice that, by Theorem 4.2, if f̂ : X → X is as in Example 11, then X
cannot be compact. Also, by Theorem 3.3, the map f̂ must have a fixed point.
Moreover, by Theorem 4.1, the metric ρ in the example cannot be the standard
metric (as, in such case, (uLC)⇒(uPC)⇒(C)⇒(ULC)). We actually prove that
there is a subset X ⊆ R2 homeomorphic with R and a function f : X → X
which has the desired properties when X is taken with the standard metric.

Example 11. There exists a map f : 〈R, ρ〉 → 〈R, ρ〉 from (S)&(uLC)&¬(ULC),
where ρ is a rectifiable path connected complete metric on R topologically equiv-
alent to the standard metric. The map f has a fixed point.

Construction. Choose numbers · · · < a−2 < a−1 < a0 < a1 < a2 < · · · such
that a0 = 0 and if In = [an, an+1] for every n ∈ Z, then for every k < ω:

|I−(k+1)| = 1
k+2 , |I2k| = 1

k2+1 , and |I2k+1| = 1
k+1 .
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Notice that this choice ensures that R =
⋃
n∈Z In and

limk→∞ |Ik| = 0 and limk→∞
|I−k−2|+|I−k−1|

|I2k+1|+|I2k+2|+|I2k+3| . (3)

For every k < ω define: g � I−(k+1) and g � I4k as a constant 0 function;
g � I4k+2 as a constant 1 function; g � I4k+1 as a linear increasing map onto
[0, 1], and g � I4k+3 as a linear decreasing map onto [0, 1]. Define the metric ρ on
R via formula ρ(x, y) = ‖〈x, g(x)〉−〈y, g(y)〉‖. Also, define f : R→ R as follows.
Put f(x) = 0 for every x ≤ 0 and, for every k < ω, let f map each interval
I2k+1 decreasingly and linearly onto I−k−1 = [a−k−1, a−k] and each interval I2k
onto the singleton {a−k}, see Figure 13. We claim that f is as needed.

Figure 13: Illustration of g and f � [a2k, a2k+4] from Example 11.

Indeed, f is not (ULC) because, for every k < ω,

ρ(f(a4k+1), f(a4k+4))

ρ(a4k+1, a4k+4)
=
|a−2k − a−2k−2|
|a4k+1 − a4k+4|

=
|I−2k−2|+ |I−2k−1|

|I4k+1|+ |I4k+2|+ |I4k+3|

which, by (3), converges to 1, as k →∞, and limk→∞ ρ(a4k+1, a4k+4) = 0.
To see that the function f is (S), choose x < y in R. We need to show the

inequality ρ(f(x), f(y)) < ρ(x, y). But ρ(f(x), f(y)) = |f(x) − f(y)|, since
f(x), f(y) ∈ (−∞, 0] and ρ on (−∞, 0] is the standard metric. Moreover,
ρ(x, y) = ‖〈x, g(x)〉 − 〈y, g(y)〉‖ ≥ |x − y|. Hence, it is enough to show that
|f(x)− f(y)| < |x− y|, that is, that f is (S) when considered with the standard
metric. However, if ρn is the standard metric on In, then the metric ρ̄ on R
induced by these metrics as in Lemma 7.1 is the standard metric. Clearly, with
respect to the standard metric ρ̄, f � In is (S) since it is linear and |f [In]| < |In|.
Hence, by Lemma 7.1, f is (S) when considered the standard metric ρ̄, finishing
the argument.

Finally, to see that f is (uLC), it is enough to prove that, for every n ∈ Z,

f � (In ∪ In+1) is ( 1
2 )-(C). (4)
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Clearly, this is true when n < 0, since then f � (In ∪ In+1) is constant. So,
assume that n ≥ 0. We will assume also that n is an odd number 2k + 1,
the even case being essentially identical. Thus, to see (4), fix x < y from
I2k+1 ∪ I2k+2. We need to show that ρ(f(x), f(y)) ≤ 1

2ρ(x, y).
This inequality is obvious when x, y ∈ I2k+2, since f � I2k+2 is constant.

For x, y ∈ I2k+1 this follows from the fact that f � I2k+1 is linear with the

slope ρ(f(a2k+1),f(a2k+2))
ρ(a2k+1,a2k+2)

≤ ρ(f(a2k+1), f(a2k+2)) = |I−k−1| = 1
k+2 ≤

1
2 . The

remaining case is when x < a2k+2 < y. Then the inequality holds, since
ρ(f(x), f(y)) = ρ(f(x), f(a2k+2)) ≤ 1

2ρ(x, a2k+2) ≤ 1
2ρ(x, y), where the last

inequality is justified by the fact that the angle between the segments g � I2k+1

and g � I2k+2 is obtuse.

7.2.2 Using more involved rectifiably path connected metrics

All remaining examples presented in Section 7.2 will be based on the next lemma.
It will be primarily used for the families J of the form {(an, an+1) : n < ω}, with
0 = a0 < a1 < a2 < · · · . However, in several examples, it will be used also with
the families J of more complex format.

Lemma 7.1. Let J = {(at, bt) : t ∈ T} be a family of pairwise disjoint non-
empty open bounded intervals in R and let J be a closed interval in R containing
U =

⋃
t∈T (at, bt). Let d be the standard metric on U c = J \ U and, for every

t ∈ T , let ρt be a metric on [at, bt] such that ρt(at, bt) = |at − bt|. Extend the
function δ = d ∪

⋃
t∈T ρt to the metric ρ : J2 → R by putting, for every x ≤ y

from J ,
ρ(x, y) = ρ(y, x) = δ(x, x+) + δ(x+, y−) + δ(y−, y),

where x+ = inf U c∩[x,∞) and y− = sup U c∩(−∞, y]. Then ρ is a metric on J .
It is complete and topologically equivalent to the standard metric, provided so
is every ρt. Moreover, for every mapping f from 〈J, ρ〉 into a metric space 〈Y, η〉
the following hold.

(S): f is (S) provided all maps f � [at, bt] are (S) and U c is discrete.

(uLC): f is (uLC) with a constant λ ∈ [0, 1) provided all maps f � [at, bt] are
(uLC) with constant λ and U c is discrete.

(uPC): f is (uPC) with a constant λ ∈ [0, 1) providedall maps f � [at, bt] are
(uPC) with constant λ and U c is discrete.

(LC): f is (LC) providedall maps f � [at, bt] are (LC) with constant λ and U c is
discrete.

(C): f is (C) with a constant λ ∈ [0, 1) provided f � U c as well as all maps
f � [at, bt] are (C) with constant λ.

Proof. It is easy to see that ρ is a metric on J and that it is complete and
topologically equivalent to the standard metric, when every ρt is such.
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To see (S), choose x < y in J . Since U c is discrete, there exists a finite
sequence x = x0 < · · · < xn = y such that: for all i < n, the pair {xi, xi+1}
is contained in one of the intervals [ati , bti ]; and xj ∈ U c for all 0 < j < n.
Then, ρ(x, y) =

∑
i<n ρti(xi, xi+1) >

∑
i<n η(f(xi), f(xi+1)) ≥ η(f(x), f(y)) as

needed, where the equation is ensured by the definition of ρ, while the strict
inequality by the assumption on maps f � [at, bt].

To see (uLC), choose z ∈ J . We need to find open neighborhood U ⊂ J of
z such that f � U is (C) with the constant λ. If there is an open neighborhood
W ⊂ J of z contained in a single interval [at, bt], then, by our assumption
on f � [at, bt], there is a U ⊂ W as needed. Otherwise, there are distinct
s, t ∈ T such that z = bs = at. Then, by our assumption, there are p ∈ (as, bs)
and q ∈ (at, bt) such that both f � (p, z] and f � [z, q) are (C) with constant
λ. Then U = (p, q) is as needed. To see this, take x < y from (p, q). We
need to show that η(f(x), f(y)) ≤ λρ(x, y). If z /∈ (x, y), then this holds by
what we know about f � (p, z] and f � [z, q). Otherwise, z = x+ = y− and
λρ(x, y) = λρ(x, z) +λρ(z, y) ≥ η(f(x), f(z)) +η(f(z), f(y)) ≥ η(f(x), f(y)), as
needed.

The proofs of parts (uPC) and (LC) are straightforward variations of that
for (uLC).

To see (C), notice that for every x ≤ y from J we have

λρ(x, y) = λρ(x, x+) + λρ(x+, y−) + λρ(y−, y)

≥ η(f(x), f(x+)) + η(f(x+), f(y−)) + η(f(y−), f(y))

≥ λη(f(x), f(y)),

as needed.

Figure 14: Illustration of the graph of g from Example 12 for which the map f
is (uLC) but not (ULS). Notice that f [I2n+1] ⊆ I2n.

By Theorem 3.3, if the map f : X → X is as in Example 12 then it must
have a fixed point. By Theorem 4.1, the metric ρ on X cannot be the standard
metric (as, in such case, (uLC)⇒(uPC)⇒(C)⇒(ULS)). Also, by Theorem 3.2(i),
X cannot be compact since, by Theorem 4.2, in such case any (uLC) map is
also (ULC), so it is (ULS).

Example 12. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(uLC)&¬(ULS), where 〈[0,∞), ρ〉 is rectifiable path connected and topologically
equivalent to [0,∞) with the standard metric. It has a fixed point, f(0) = 0.
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Construction. Choose a sequence 0 = a0 < a1 < · · · such that if, for every
n < ω, we put In = [an, an+1], then each interval I2n+1 is centered at 9n+1 and
of length 2

n+4 . Let g : [0,∞) → [0, 1] be such that g � In ≡ 0 for every even
n < ω, while, for every odd n < ω, the graph of g � In is an upper semicircle of
radius 1

n+4 and centered at 〈9n+1, 0〉. See Figure 14.
For each n < ω let ρn be a metric on In defined as

ρn(x, y) = ‖〈x, gn(x)〉 − 〈y, gn(y)〉‖

and let ρ be the metric on [0,∞) from Lemma 7.1 associated with metrics
{ρn : n < ω}. Then, ρ is complete and, clearly, rectifiable path connected.

Define an increasing bijection L : [0,∞) → [0,∞) as L(x) = `(g � [0, x])
and let f : [0,∞) → [0,∞) be defined as f(x) = L−1

(
2
3L(x)

)
. In other words,

f(x) is the unique point r ∈ [0,∞) such that `(g � [0, r]) = 2
3`(g � [0, x]) or

equivalently,
L(f(x)) = 2

3L(x). (5)

We claim that f is as needed.
To see that f is (uLC), choose an arbitrary η ∈ (1, 3/2). By Lemma 7.1(uLC),

it is enough to show that, for every n < ω, f � In is (uLC) with constant λ = 2
3η.

Indeed, if n is odd, then, for any x ∈ In, there is an open subset V of In con-
taining x such that for any y, z ∈ V , we have |L(y) − L(z)| ≤ ηρ(y, z) and,
by (5),

ρ(f(y), f(z)) ≤ |L(f(y))− L(f(z))| = 2
3 |L(y)− L(z)| ≤ 2

3ηρ(y, z) = λρ(y, z).

On the other hand, if n is even, then the following holds for every y, z ∈ In:

ρ(f(y), f(z)) ≤ |L(f(y))− L(f(z))| = 2
3 |L(y)− L(z)| = 2

3ρ(y, z) ≤ λρ(y, z).

To see that f is not (ULS), first notice that

f [I2n+1] ⊆ I2n for any n < ω. (6)

Indeed, since `(g � I2k+1) = π 1
k+4 < 1 for every k < ω, for every x ∈ [0, a2n+1]

we have x ≤ L(x) ≤ x + n. In particular, L[I2n+1] ⊆ [a2n+1, a2n+2 + (n + 1)]
and [a2n + n, a2n+1] ⊆ L[I2n], since I2n+1 ⊂ [0, a2(n+1)+1] and I2n ⊂ [0, a2n+1].
Hence,

2
3L[I2n+1] ⊂ 2

3 [a2n+1, a2n+2 + (n+ 1)]

= 2
3

[
9n+1 − 1

n+4 , 9
n+1 + 1

n+4 + (n+ 1)
]

⊆
[
9n + 1

n+3 + n, 9n+1 − 1
n+4

]
(7)

⊆ [a2n + n, a2n+1] ⊆ L[I2n],

where (7) is justified by the inequalities as 9n + 1
n+3 +n ≤ 2

3

(
9n+1 − 1

n+4

)
and

2
3

(
9n+1 + 1

n+4 + (n+ 1)
)
≤ 9n+1 − 1

n+4 , which hold for any n < ω. Therefore,

f [I2n+1] = L−1
[
2
3L[I2n+1]

]
⊆ L−1 [L[I2n]] = I2n and (6) is proved.
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Now, using (6), we can see that f is not (ULS). Indeed, for the endpoints y
and z of I2n+1, we have ρ(y, z) = |y − z| = 2

n+4 → 0, as n→∞, and

ρ(f(y), f(z)) = |L(f(y))− L(f(z))| = 2
3 |L(y)− L(z)| = 2

3π
|y−z|

2 > ρ(y, z),

finishing the argument.

By Theorem 3.3, the map from Example 13 must have fixed point while, by
Theorem 4.1, the metric ρ in the example cannot be the standard metric (as, in
such case, (uPC)⇒(C)⇒(uLC)). Also, by Theorem 3.2(i), if f : X → X is as in
the example, then X cannot compact.

Example 13. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(S)&(LC)&(uPC)&¬(uLC), where 〈[0,∞), ρ〉 is rectifiable path connected and
topological equivalent to [0,∞) with the standard metric. The map has a fixed
point, f(0) = 0.

Construction. Choose a sequence 0 = a0 < a1 < · · · such that if, for every
n < ω, we put In = [an, an+1], then each interval I2n+1 has length 2. Moreover,
the centers cn of intervals I2n+1 are chosen to ensure

[a2k+1, a2k+2+2(k+1)]∩ 1
2 [a2n+1, a2n+2+2(n+1)] = ∅ for every k, n < ω. (8)

For example, (8) is satisfied when pick cn = 9n+1.

Figure 15: Illustration of the graph of g from Example 13 for which the map f
is is (S), (uPC), and (LC) but not (uLC). Notice that f [I2n+1] ⊆ I2n.

Choose an increasing sequence 〈mn : n < ω〉 of positive numbers for which

lim
n→∞

√
1 +m2

n = 2 (9)

and define g : [0,∞)→ R via formula (see Figure 15)

g(x) =

{
mndist(x, {a2n+1, a2n+2}) when x ∈ I2n+1 for some n < ω,

0 otherwise.

Notice that the segments forming the graph of g � I2n+1 are the sides of isosceles
triangles (with basis of length 2) which are approaching the sides of an equilat-
eral triangle, as n→∞.
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For each n < ω let ρn be a metric on In defined as

ρn(x, y) = ‖〈x, g(x)〉 − 〈y, g(y)〉‖

and let ρ be the metric on [0,∞) from Lemma 7.1 associated with metrics
{ρn : n < ω}. Then, ρ is complete and, clearly, rectifiable path connected.

Define an increasing bijection L : [0,∞) → [0,∞) as L(x) = `(g � [0, x]).
Then, for every n < ω,

L[I2n+1] ⊂ [a2n+1, a2n+2 + 2(n+ 1)] (10)

as `(g � I2n+1) < 4. Let f : [0,∞) → [0,∞) be defined as f(x) = L−1
(
1
2L(x)

)
.

In other words, f(x) is the unique point r ∈ [0,∞) such that `(g � [0, r]) =
1
2`(g � [0, x]). We have

L(f(x)) =
1

2
L(x). (11)

We claim that f is as needed.
To see this, first notice that, by (8) and (10), for every k, n < ω,

f [I2n+1] ∩ I2k+1 = L−1
[
1
2L[I2n+1] ∩ L[I2k+1]

]
⊆ L−1

[
1
2 [a2n+1, a2n+2 + 2(n+ 1)] ∩ [a2k+1, a2k+2 + 2(k + 1)]

]
= ∅.

In particular, for all n < ω,

f [I2n+1] ∩
⋃
k<ω I2k+1 = ∅. (12)

The key fact for this construction is the following property.

(∗) For every y ∈ (0, 1] the mapping [0, 1] 3 x η7→ |L(cn−x)−L(cn+y)|
ρn(cn−x,cn+y) achieves

its maximum value
√

1 +m2
n for x = y.

(For the proof, put mn = m. Then η(x) =
√
1+m2(x+y)√

(x+y)2+m2(x−y)2
and η has only one

critical point, at x = y, as η′(x) = 2m2
√
1+m2y(y−x)

((x+y)2+m2(x−y)2)3/2 .3 This is the maximum

by the First Derivative Test.)
Now, for any p, q ∈ I2n+1, ρ(f(p), f(q)) = |f(p)−f(q)| = |L(f(p))−L(f(q))|,

since, by (12), f(p), f(q) ∈ f [I2n+1] ⊂ [0,∞) \
⋃
k<ω I2k+1. From this, (11) and

(∗) we conclude that, for any p, q ∈ I2n+1,

ρ(f(p), f(q)) = |L(f(p))− L(f(q))| = 1
2 |L(p)− L(q)| ≤

√
1+m2

n

2 ρ(p, q), (13)

3Here is the computation:

η′(x) =
√

1 +m2

√
(x+ y)2 +m2(x− y)2 − 2(x+y)+2m2(x−y)

2
√

(x+y)2+m2(x−y)2
(x+ y)

(x+ y)2 +m2(x− y)2

=

√
1 +m2

(
[(x+ y)2 +m2(x− y)2]− [(x+ y)2 +m2(x2 − y2)]

)
((x+ y)2 +m2(x− y)2)3/2

=

√
1 +m2m2[(x− y)2 − (x2 − y2)]

((x+ y)2 +m2(x− y)2)3/2
=

2m2
√

1 +m2y(y − x)

((x+ y)2 +m2(x− y)2)3/2
.
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with equation holding when p and q are symmetric with respect to the point

x = cn. This clearly shows that f is not (uLC), as

√
1+m2

n

2 →n→∞ 1.
Notice also that (13) implies that f � I2n+1 is (C) for any n < ω. Moreover,

for any n < ω, f � I2n is (C) with the constant 1
2 , since for any numbers

y, z ∈ I2n,

ρ(f(z), f(y)) ≤ |L(f(z))− L(f(y))| = 1
2 |L(z)− L(y)| = 1

2ρ(z, y). (14)

Therefore, by parts (S) and (LC) of Lemma 7.1, f is (S) and (LC).
Finally, notice that, for any n < ω, each f � [a2n+1, cn] and f � [cn, a2n+2]

is (C) with the constant 1
2 since for y and z belonging to one of these intervals,

the formula (14) holds. In particular, for any n < ω, f � I2n+1 is (uPC) with
the constant 1

2 . So, by (14) and Lemma 7.1(uPC), f is (uPC).

Notice that, by Theorem 4.1, the metric ρ in Example 14 cannot be the
standard metric (as, in such case, (uPC)⇒(C)⇒(LC)).

Example 14. There exist an a > 0 and a map f : 〈[0, a], ρ〉 → 〈[0, a], ρ〉 from
(uPC)&(S)&¬(LC), where 〈[0, a], ρ〉 is a rectifiable path connected and topolog-
ical equivalent to [0, a] with the standard metric. The map f has a fixed point,
f(a) = a.

Construction. Choose a sequence 0 = a0 < a1 < · · · such that if, for every
n < ω, we put In = [an, an+1], then each interval I2k has length |I2k| = 2−2k

and each interval I2k+1 has length k+8
k+92−2k. In particular, a = limn→∞ an is

finite.

Figure 16: Illustration of the graph of g from Example 14 for which the map f
is (S) and (uPC) but not (LC).

Define function g : [0, a]→ R for every x ∈ [0, a] as

g(x) =

{√
3 dist(x, {a2k, a2k+1}) if x ∈ I2k for some k < ω,

0 otherwise.

See Figure 16. Thus, the two segments forming g � I2k constitute the sides of a
equilateral triangle and so

`(g � [x, y]) = 2|x− y| for every x < y from I2k. (15)
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For each n < ω let ρn be a metric on In defined as

ρn(x, y) = ‖〈x, g(x)〉 − 〈y, g(y)〉‖

and let ρ be the metric on [0, a] from Lemma 7.1 associated with the metrics
{ρn : n < ω}. Then, ρ is complete and, clearly, rectifiable path connected.

Define f : [0, a] → [0, a] as an increasing function mapping linearly each
interval In onto In+1. (So, f(a) = a.) We claim that this f is as required.

Indeed, f is not (LC), as it is not (C) on any open neighborhood of a, since

ρ(f(a2k+1), f(a2k))

ρ(a2k+1, a2k)
=
a2k+2 − a2k+1

a2k+1 − a2k
=
k + 8

k + 9
→k→∞ 1.

To see the property (S) notice that f � In is (S), even (C), for every n < ω.

Indeed, by (15) and equation a2k+3−a2k+2

a2k+2−a2k+1
= 2−2(k+1)

k+8
k+9 2

−2k
= 1

4
k+9
k+8 , for every x < y

from I2k+1 we have

ρ(f(x), f(y)) ≤ `(g � [f(x), f(y)]) = 2|f(x)− f(y)|
= 1

2
k+9
k+8 |x− y| ≤

9
16 |x− y| =

9
16ρ(x, y), (16)

while for every x < y from I2k,

ρ(f(x), f(y)) = |f(x)− f(y)| = k+8
k+9 |x− y| ≤

8
9ρ(x, y).

In particular, by Lemma 7.1, f is (S) on every interval [0, an] and so, on their
union [0, a). To finish the argument, it is enough to notice that this implies
that f is (S) on the entire [0, a]. Indeed, choose an x ∈ [0, a). To see that
ρ(x, a) > ρ(f(x), f(a)) choose an n < ω such that x < an. For every m > n we
have ρ(an, am) > ρ(f(an), f(am)) so, taking limit as m→∞, we get ρ(an, a) ≥
ρ(f(an), f(a)). So,

ρ(x, a) = ρ(x, an) + ρ(an, a) > ρ(f(x), f(an)) + ρ(f(an), f(a)) ≥ ρ(f(x), f(a))

as needed.
To see that f is (uPC), first notice that the maps f � In are (uPC) with

the same constant: for odd n with constant 9
16 , as follows from (16); for even

n = 2k with constant 8
18 , since for every x < y from the same half of I2k,

ρ(f(x), f(y)) = |f(x)− f(y)| = k+8
k+9 |x− y| =

k+8
k+9

1
2`(g � [x, y]) ≤ 8

18ρ(x, y).

Thus, by Lemma 7.1, f � [0, a) is (uPC). To finish the proof, it is enough to
prove that f is (PC) at a, which will be achieved by finding a λ ∈ [0, 1) such

that ρ(f(x),f(a))
ρ(x,a) ≤ λ for all x ∈ [0, a).

For this, fix an x ∈ In ⊂ I2k ∪ I2k+1 and notice that

ρ(a, x) = ρ(a, an+1) + ρ(an+1, x) ≤ ρ(a, an+1) + |an+1− an| = a− an ≤ a− a2k.

Hence, ρ(a, x) ≤ a− a2k ≤ 2
∑∞
i=k 4−i = 8

34−k.
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Next, we will show that there exists an α > 0, independent of k, such that

N(x) = ρ(a, x)− ρ(a, f(x)) ≥ α4−k for every x ∈ I2k ∪ I2k+1. (17)

Indeed, if x ∈ I2k, then we have N(x) = ρ(a2k+1, x) + ρ(a2k+1, f(x)) ≥
|a2k+1 − x|+ |a2k+1 − f(x)| = f(x)− x ≥ |I2k+1| = k+8

k+92−2k ≥ 8
94−k indicating

that any α ≤ 8
9 works for this case. On the other hand, if x = a2k+2− t|I2k+1| ∈

I2k+1 for some t ∈ [0, 1], then

N(x) ≥ t|I2k+1|+ |I2k+2| − ρ(f(x), a2k+3)

≥ t|I2k+1|+ |I2k+2| − `(g � [f(x), a2k+3])

= tk+8
k+94−k + 1

44−k − 2t 144−k ≥ t 894−k + 1
44−k − t 124−k ≥ 1

44−k,

showing that (17) holds with the constant α = 1
4 .

Now, to finish the proof of (uPC) for f notice that, by (17),

ρ(f(a), f(x))

ρ(a, x)
= 1− ρ(a, x)− ρ(f(a), f(x))

ρ(a, x)
≤ 1− α4−k

8
34−k

= 1− 3α

4
.

So, λ = 1− 3α
8 , with α = 1

4 , is as needed.

All remaining examples presented in Section 7.2 will be constructed on
the space 〈[0,∞), ρ〉 with ρ obtained using Lemma 7.1 with the family J =
{(an, an+1) : n < ω}, where 0 = a0 < a1 < a2 < · · · and an →n→∞ ∞. More-
over, the constructed mappings f will be non-decreasing and mapping each
interval In = [an, an+1] onto In+1.

Notice that, by Theorem 3.2(i), if f : X → X is as in Example 15, then X
cannot compact. Also, by Theorem 4.1, the metric ρ in the example cannot be
the standard metric (as, in such case, (LC)⇒(uPC)⇒(C)⇒(ULS)).

Example 15. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(LC)&¬(ULS) having no periodic point, where 〈[0,∞), ρ〉 is rectifiable path
connected and topological equivalent to [0,∞) with the standard metric.

Construction. Choose a sequence 0 = a0 < a1 < · · · such that if, for every
n < ω, we put In = [an, an+1], then each interval In has the length 1

n+1 when

n is even and the length 2
π

1
n+1 when n is odd. This ensures that an →n→∞ ∞.

Let g : [0,∞) → [0, 1] be such that g � In ≡ 0 for every even n < ω, while,
for every odd n < ω, the graph of g � In is an an upper semicircle with its
diameter coinciding with In, see Figure 17. Notice that our choice ensures that
`(g � In) = 1

n+1 for every n < ω.
For each n < ω let ρn be a metric on In defined as

ρn(x, y) = ‖〈x, g(x)〉 − 〈y, g(y)〉‖

and let ρ be the metric on [0,∞) from Lemma 7.1 associated with the metrics
{ρn : n < ω}. Then, ρ is complete and, clearly, rectifiable path connected.
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Figure 17: Illustration of the graph of g from Example 15 for which the map f
is (LC) but not (ULS).

For every n < ω and x ∈ In let f(x) be the unique point r ∈ In+1 such that

`(g � [an+1, r]) = `(g�In+1)
`(g�In)

`(g � [an, x]) = n+1
n+2`(g � [an, x]).

In other words f : [0,∞) → [0,∞) maps each In onto In+1 linearly, according
to the length ` of g � In and g � In+1. We claim that this f is as required.

Clearly f has no periodic point as f(x) > x for all x ≥ 0. Notice that the
equation above implies that for any x < y from In,

`(g � [f(x), f(y)]) =
n+ 1

n+ 2
`(g � [x, y]). (18)

To prove that f is (LC), by Lemma 7.1(LC), it is enough to prove that f � In
is (LC) for every n < ω. The argument depends on the parity of n. If n < ω is
even, then f � In is (C) with λ = n+1

n+2 . This follows from the fact that, in this
case, g � In ≡ 0 and, for any x, y ∈ In with x < y, by (18) we have

ρ(f(x), f(y)) = ‖〈f(x), g(f(x))〉 − 〈f(y), g(f(y))〉‖
< `(g � [f(x), f(y)])

= n+1
n+2`(g � [x, y]) = n+1

n+2ρ(x, y).

So, turn to the case when n < ω is odd. We need to refine the argument
above, as, in this case, f � In is only (ULC). To see this choose an η ∈ (1, 1.5)
such that n+1

n+2 η < 1. Notice that g � In is a semicircle of length 1
n+1 and that

there exists an α ∈
(
0, 1

n+1

)
such that ρ(x, y) ≥ η−1`(g � [x, y]) whenever x ≤ y

are from In and such that `(g � [x, y]) ≤ α (as `(g�[x,y])
ρ(x,y) → 1 when ρ(x, y)→ 0).

Moreover, there exists an ε > 0 such that `(g � [x, y]) ≤ α whenever x ≤ y are
from In and such that |x − y| ≤ ε.4 Then f � In is

(
ε
2 ,

n+1
n+2η

)
-(ULC): for all

4If K is the family of all arcs on g � In of length α and, for every κ ∈ K, p(κ) is the
projection of κ on the x-axis, then the number ε the minimizer of the values of the continuous
mapping K 3 κ 7→ `(p(κ)) ∈ (0,∞) defined on the compact space K.
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x ≤ y from In with |x− y| ≤ ε we have η ρ(x, y) ≥ `(g � [x, y]) and

ρ(f(x), f(y)) = ‖〈f(x), g(f(x))〉 − 〈f(y), g(f(y))〉‖

= `(g � [f(x), f(y)]) =
n+ 1

n+ 2
`(g � [x, y]) ≤ n+ 1

n+ 2
η ρ(x, y).

The function f is not (ULS) since, for all odd indices n > π+4
π−2 ,

ρ(f(an), f(an+1)) = ρ(an+1, an+2) =
1

n+ 2
>

2

π(n+ 1)
= ρ(an, an+1)

and, at the same time, ρ(an, an+1) = 2
π(n+1) → 0 as n→∞.

7.2.3 Using non-rectifiably path connected metrics

The remaining examples on connected spaces will be constructed with the use
of the following lemma, which is extracted from an example given by Hu and
Kirk in [21, p. 123]. It is not difficult to see that the metrics from this lemma
are not rectifiably path connected. In what follows the length of an interval I
is denoted as |I|.

Lemma 7.2. Let 0 < β0 < β1 < 1 and let f be a linear function from I0 =
[a0, b0] onto I1 = [a1, b1]. For each i < 2 let ρi : Ii → R be defined by a formula

ρi(x, y) = |Ii|
(
|x− y|
|Ii|

)βi
.

Then ρi is a complete metric on Ii topologically equivalent to the standard
metric. The map f : 〈I0, ρ0〉 → 〈I1, ρ1〉 is Lipschitz with the constant L =
|I1|/|I0|. It is also (ULC) with each constant λ ∈ (0, 1).

Proof. Clearly a sequence in Ii is Cauchy with respect to the metric ρi if, and
only if, it is Cauchy with respect to the standard metric on Ii. Thus, indeed ρi
is a complete metric on Ii topologically equivalent to the standard metric.

To see the second part notice that for every x, y ∈ I0, the linearity of f

implies that |f(x)−f(y)||I1| = |x−y|
|I0| . Hence

ρ1(f(x), f(y)) = |I1|
(
|x−y|
|I0|

)β1

= |I1|
|I0| |I0|

(
|x−y|
|I0|

)β1

= |I1|
|I0|

(
|x−y|
|I0|

)β1−β0

ρ0(x, y).

Thus, the inequality |I1|
|I0|

(
|x−y|
|I0|

)β1−β0

≤ |I1|
|I0| implies the Lipschitz condition

statement. Also, for every λ ∈ (0, 1), we have |I1||I0|

(
|x−y|
|I0|

)β1−β0

≤ λ if, and only

if, ρ0(x, y) = |I0|
(
|x−y|
|I0|

)β0

≤ |I0|
(
|I0|
|I1|λ

) β0
β1−β0

. Therefore, f is (ULC) with a

constant λ for ε = 1
2 |I0|

(
|I0|
|I1|λ

) β0
β1−β0

.
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Notice that, by Theorems 3.2(i) and 3.3, if f : X → X is as in Example 16,
then X can be neither compact nor rectifiably path connected. An example
of a periodic free mapping f : X → X from the class (uLC)&¬(ULC) is also
given in [30, example 1], where X is a (non-rectifiable, non-compact) curve of
R2 considered with the standard metric. However, this example is not (S), since
for every n < ω it maps (n, 0) ∈ X to (n+ 1, 0) ∈ X.

Example 16. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(S)&(uLC)&¬(ULC) having no periodic point, where 〈[0,∞), ρ〉 is a complete
metric topologically equivalent to the standard metric. Moreover, f satisfies
(uLC) with every contraction constant λ ∈ (0, 1).

Construction. Choose strictly increasing sequence 〈βn ∈ (0, 1) : n < ω〉 and
let 0 = a0 < a1 < · · · be such that each interval In = [an, an+1] has the
length 1

n+1 . For every n < ω, let ρn be a metric on In defined by formula

ρn(x, y) = |In|
(
|x−y|
|In|

)βn
and let ρ be the metric on [0,∞) from Lemma 7.1

associated with the metrics {ρn : n < ω}. Then, ρ is complete and, clearly, path
connected. On each interval In define f as a linear increasing map onto In+1.
Then f is as needed.

Indeed, by Lemma 7.2, for every n < ω the restriction f � In is (C) with a

constant |In+1|
|In| = n

n+1 , so it is (S). Hence, by Lemma 7.1, f is (S).

Next fix a λ ∈ (0, 1). Then, by Lemma 7.2, for every n < ω the restriction
f � In is (ULC) with constant λ, so it also (uLC) with the same constant.
Hence, by Lemma 7.1, f is (uLC).

Finally, f is not (ULC) since for every λ ∈ (0, 1) and ε > 0 there is an n < ω

with ρ(f(an),f(an+1))
ρ(an,an+1)

= |In+1|
|In| = n+1

n+2 > λ and ρ(an, an+1) = |In| = 1
n+1 < ε.

Clearly, f has no periodic points.

Notice that, by Theorem 3.3, if f : X → X is as in Example 17, then X
cannot be rectifiably path connected. Also, by Theorem 4.2, X cannot compact.

Example 17. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(ULS)&(uLC)&¬(S) having no periodic point, where 〈[0,∞), ρ〉 is a complete
metric topologically equivalent to the standard metric. Moreover, f satisfies
(uLC) with every contraction constant λ ∈ (0, 1).

Construction. Choose strictly increasing sequence 〈βn ∈ (0, 1) : n < ω〉 and
let 0 = a0 < a1 < · · · be such that if, for every n < ω, we put In = [an, an+1],
then |I0| = 1 and |In| = 1

n for every 0 < n < ω. For every n < ω, let ρn be

a metric on In defined by formula ρn(x, y) = |In|
(
|x−y|
|In|

)βn
and let ρ be the

metric on [0,∞) from Lemma 7.1 associated with the metrics {ρn : n < ω}.
Then, ρ is complete and, clearly, path connected. On each interval In define f
as a linear increasing map onto In+1. Then f is as needed.

To see that f is (ULS) first notice that, by Lemma 7.2, for every n > 0 the
map f � In is (S), as it is (C) with constant n

n+1 . So, by Lemma 7.1, f � [1,∞)
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is (S). Also, by Lemma 7.2, f � I0 is (ULC), so also (ULS) with some constant
radius ε. Thus, f is (ULS) with the same radius.

To see (uLC), fix λ ∈ (0, 1) and notice that, by Lemma 7.2, for every n < ω
the restriction f � In is (ULC) with constant λ, so it also (uLC) with the same
constant. Hence, by Lemma 7.1, f is (uLC).

Finally, f is not (S), as ρ(f(a0), f(a1)) = ρ(a1, a2) = |I1| = 1 = ρ(a0, a1).
Clearly f has no periodic points.

Notice that, by Theorem 3.3, if f : X → X is as in Example 18, then X
cannot be rectifiably path connected. Also, by Theorem 4.2 (that any (LS) map
on a compact space is also (ULS)), X cannot compact.

Example 18. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(uLC)&¬(ULS) having no periodic point, where 〈[0,∞), ρ〉 is a complete metric
topologically equivalent to the standard metric. Moreover, f satisfies (uLC)
with every contraction constant λ ∈ (0, 1).

Construction. Choose strictly increasing sequence 〈βn ∈ (0, 1) : n < ω〉 and
let 0 = a0 < a1 < · · · be such that if, for every n < ω, we put In = [an, an+1],
then the intervals I2k and I2k+1 have length 1

k+1 for every k < ω. For every

n < ω, let ρn be a metric on In defined by formula ρn(x, y) = |In|
(
|x−y|
|In|

)βn
and let ρ be the metric on [0,∞) from Lemma 7.1 associated with the metrics
{ρn : n < ω}. Then, ρ is complete and, clearly, path connected. On each interval
In define f as a linear increasing map onto In+1. Then f is as needed.

To see this, fix λ ∈ (0, 1) and notice that, by Lemma 7.2, for every n < ω
the restriction f � In is (ULC) with constant λ, so it also (uLC) with the same
constant. Hence, by Lemma 7.1, f is (uLC).

At the same time, f is not (ULS) since for every ε > 0 there is a k < ω with
ρ(f(a2k),f(a2k+1))

ρ(a2k,a2k+1)
= |I2k+1|

|I2k| = 1 and ρ(a2k, a2k+1) = |I2k| = 1
k+1 < ε. Clearly f

has no periodic points.

Notice that, by Theorem 3.3, if f : X → X is as in Example 19, then X can-
not be rectifiably path connected. Also, by Theorem 3.2(i), X cannot compact.

Example 19. There is a map f from (S)&(LC)&(uPC)&¬(uLC) having no
periodic point, where f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 and ρ is a complete metric
on [0,∞) topologically equivalent to the standard metric. Moreover, f satis-
fies (uPC) with an arbitrary constant λ ∈ (0, 1). Also, there exists a perfect
unbounded X ⊂ R such that ρ on X is the standard metric on R and f � X
belongs to the same class.

Construction. Choose a sequence 0 = a0 < a1 < · · · such that each in-
terval In = [an, an+1] has length 1

n+1 . Define a function h : [0,∞) → [0,∞),
approximating f , by putting, for every x ∈ In,

h(x) =
1

n+ 2

[
(n+ 1)(x− an)

]n+1.5
n+1 + an+1.
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Notice that h is strictly increasing and maps every In onto In+1. Moreover, the
maps hn = h � In are convex, differentiable, and with derivatives h′n(an) = 0
and sn = h′n(an+1) = n+1.5

n+2 . It is important for the construction that

sn = h′n(an+1)↗ 1 as n→∞.

Choose a sequence a1 = c00 > c01 > · · · converging to a0 = 0 such that
c0k+1

c0k
→k→∞ 1, e.g., c0k = a1

k+1 , and, for every n, k < ω, let cnk = h(n)(c0k),

where h(n) = h ◦ · · · ◦ h is the nth iteration of h. Since, as an easy induction on
0 < n < ω can show, h(n) � I0 is given, for every x ∈ I0, by a formula

h(n)(x) = 1
n+1x

αn + an, where αn =
∏n
i=1

n+0.5
n ,

we have
cnk+1 − an
cnk − an

→k→∞ 1 for every n < ω. (19)

Indeed, for n = 0 this is ensured by our choice of numbers c0k, while, for n > 0,

we have
cnk+1−an
cnk−an

=
1

n+1 (c
0
k+1)

αn

1
n+1 (c

0
k)
αn

=
(
c0k+1

c0k

)αn
→k→∞ 1.

Figure 18: Functions h and f from Example 19 restricted to the interval [a0, a2].

For every n, k < ω, choose unique bnk ∈ (cnk+1, c
n
k ) such that the slope of the

segment joining points 〈bnk , h(cnk+1)〉 and 〈cnk , h(cnk )〉 is equal to sn. The map f
is defined as

f(x) =

{
h(x) for x = cnk for some k, n < ω

h(cnk+1) for x ∈ [cnk+1, b
n
k ] for some k, n < ω

and as a linear function on each interval [bnk , c
n
k ], see Figure 18.
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To define metric ρ, choose an increasing sequence 〈βn ∈ (0, 1) : n < ω〉. For
every k, n < ω define metric ρnk on the closure of the interval Jnk = (bnk , c

n
k ) by

a formula

ρnk (x, y) = |Jnk |
(
|x− y|
|Jnk |

)βn
and notice that ρnk (bnk , c

n
k ) = |Jnk | = |bnk − cnk |. Let ρ be the metric on [0,∞)

from Lemma 7.1 associated with the metrics {ρnk : k, n < ω}. We claim that f
has the desired properties as a self-mapping of 〈[0,∞), ρ〉.

To see this, let U =
⋃
k,n<ω J

n
k and X = [0,∞) \ U . Notice that f maps X

into X and that ρ on X is the standard distance. First we prove that f � X is not
(uLC). Indeed, for every λ ∈ [0, 1) there exists an n < ω such that λ < sn and
on no open neighborhood V of an in X the map f is (C) with constant λ, since

every such V contains points bnk , c
n
k for some k < ω while

|f(bnk )−f(c
n
k )|

|bnk−c
n
k |

= sn > λ.

So, neither f � X nor f is (uLC).
Next, we will prove that,

for every n < ω, f � In is (C) with a constant λ = sn ∈ (0, 1). (20)

Indeed, for every k < ω, both f � [cnk+1, b
n
k ] and f � [bnk , c

n
k ] are (C) with

constant sn: the first being constant, the second by Lemma 7.2. Hence, by
Lemma 7.1, f � [bnk , an+1] is (C) with constant sn for every k < ω, and thus, so
is f � (an, an+1]. This and continuity of f imply (20).

Clearly (20) implies that, for every n < ω, f � In is both (S) and (LC).
Hence, by Lemma 7.1, f is (S) and (LC).

To finish the proof, choose a λ ∈ (0, 1). We need to show that f is (uPC)
with constant λ. By Lemma 7.1, it is enough to show that, for every n, f � In is
(uPC) with constant λ. So, fix an n < ω and notice that, for every k < ω, both
f � [cnk+1, b

n
k ] and f � [bnk , c

n
k ] are (uPC) with constant λ: the first being constant,

the second by Lemma 7.2. Hence, by Lemma 7.1, f � [bnk , an+1] is (uPC) with
constant λ for every k < ω, and thus, so is f � (an, an+1]. Therefore, to finish
the proof it is enough to show that there exist an open V 3 an in In such that
ρ(f(an),f(x))

ρ(an,x)
≤ λ for every x ∈ V , x 6= an. But, for every x ∈ [cnk+1, c

n
k ],

ρ(f(an), f(x))

ρ(an, x)
≤ ρ(f(an), f(cnk ))

ρ(an, cnk+1)
=
cn+1
k − an+1

cnk − an
cnk − an
cnk+1 − an

→k→∞ 0,

since
cn+1
k −an+1

cnk−an
=

hn(c
n
k )−hn(an)
cnk−an

→k→∞ h′n(an) = 0 and, by property (19),
cnk−an
cnk+1−an

→k→∞ 1. Therefore, there exists a k0 < ω such that
ρ(f(an),f(c

n
k ))

ρ(an,cnk+1)
< λ

for every k ≥ k0, implying that V = [an, c
n
k0

) is as needed.
Clearly f has no periodic points.

Notice that, by Theorem 3.3, if f : X → X is as in Example 20, then X can-
not be rectifiably path connected. Also, by Theorem 3.2(i), X cannot compact.
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Example 20. There is a map f from (S)&(uPC)&¬(LC) having no periodic
point, where f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 and ρ is a complete metric on [0,∞)
topologically equivalent to the standard metric. Moreover, f satisfies (uPC)
with an arbitrary constant λ ∈ (0, 1). Also, there exists a perfect unbounded
X ⊂ R such that ρ on X is the standard metric on R and f � X belongs to the
same class.

Construction. The example is obtained by a slight modification of one de-
scribed as Example 19. Specifically, the modification is obtained by choosing a
sequence s0 = t0 < t1 < · · · converging to 1 and then, for every k < ω, choosing
the unique b0k ∈ (c0k+1, c

0
k) such that the slope of the segment joining points

(b0k, h(c0k+1)) and (c0k, h(c0k)) is equal to tk. All other parts of the construction
from Example 19, including the choice of points bnk for n > 0, remain unchanged.
We claim that f has the desired properties as a self-mapping of 〈[0,∞), ρ〉.

Indeed, as before, we let U =
⋃
k,n<ω J

n
k and X = [0,∞) \ U . Once again,

f maps X into X and ρ on X is the standard distance. To finish the proof it
is enough to show that f � X is not (LC) and that f has the remaining two
properties.

To see that f � X is not (LC) notice that for every λ ∈ (0, 1) and every
open V containing 0, there exist k < ω such that λ < tk and b0k, c

0
k ∈ V . Then

|f(b0k)−f(c
0
k)|

|b0k−c
0
k|

= tk > λ. So, indeed, f � X is not (LC).

By Lemma 7.1, to finish the proof it is enough to show that, for every
λ ∈ (0, 1) and n < ω,

f � In is (S) and (uPC) with a constant λ = sn ∈ (0, 1). (21)

Indeed, for every k < ω, both f � [cnk+1, b
n
k ] and f � [bnk , c

n
k ] are (S) and (uPC)

with a constant λ: the first being constant, the second by Lemma 7.2. Hence,
by Lemma 7.1, for every k < ω the map f � [bnk , an+1] is (S) and (uPC) with a
constant λ. Therefore, f � (an, an+1] has the same property.

To see that f � [an, an+1] is (S) first notice that the continuity of f imply
that, for every y ∈ (an, an+1] we have ρ(f(an), f(y)) ≤ ρ(an, y). Therefore, for
every x ∈ (an, an+1], if y = cnk = x− for some k < ω, then f(y) = f(x)− and we
have

ρ(f(an), f(x)) = ρ(f(an), f(y)) + ρ(f(y), f(x)) < ρ(an, y) + ρ(y, x) = ρ(an, x)

proving (S) of f � In.
Since f � (an, an+1] is (uPC) with a constant λ, to finish the proof it is

enough to show that there exists an open V 3 an in In such that ρ(f(an),f(x))
ρ(an,x)

≤ λ
for every x ∈ V , x 6= an. But, for every x ∈ [cnk+1, c

n
k ],

ρ(f(an), f(x))

ρ(an, x)
≤ ρ(f(an), f(cnk ))

ρ(an, cnk+1)
=
cn+1
k − an+1

cnk − an
cnk − an
cnk+1 − an

→k→∞ 0,

since
cn+1
k −an+1

cnk−an
=

hn(c
n
k )−hn(an)
cnk−an

→k→∞ h′n(an) = 0 and, by property (19),
cnk−an
cnk+1−an

→k→∞ 1. Therefore, there exists a k0 < ω such that
ρ(f(an),f(c

n
k ))

ρ(an,cnk+1)
< λ
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for every k ≥ k0, implying that V = [an, c
n
k0

) is as needed. Clearly f has no
periodic points.

Notice that, by Theorem 3.3, the space X from Example 21 cannot be rec-
tifiably path connected. It is shown in Example 28 that such X can be path
connected. However, it is not clear if X in such example can be simultaneously
compact and connected, see Problem 8.1.

Example 21. There exists a map f : 〈[0,∞), ρ〉 → 〈[0,∞), ρ〉 from the class
(uPC)&¬(LS) having no periodic point, where ρ is a complete metric on [0,∞)
topologically equivalent to the standard metric. Moreover, f satisfies (uPC)
with every contraction constant λ ∈ (0, 1).

Construction. Choose strictly increasing sequence 〈βn ∈ (0, 1) : n < ω〉 and
let 0 = a0 < a1 < · · · be such that each interval In = [an, an+1] has the
length 1

n+1 . For every n < ω, let ρn be a metric on In defined by formula

ρn(x, y) = |In|
(
|x−y|
|In|

)βn
and let ρ be the metric on [0,∞) from Lemma 7.1

associated with the metrics {ρn : n < ω}. Then, ρ is complete and, clearly, path
connected.

Figure 19: Illustration of g and f on [c2n+2, c2n] from Example 21.

Define increasing function g : [0,∞) → [0,∞) such that it maps each inter-
val In onto In+1 linearly (with respect to the standard metric). The map f is
a modification of g: it coincides with g on [a1,∞), while on I0 is defined as
follows. Choose a sequence a1 = c0 > c2 > c4 > · · · converging to a0 = 0.
For every n < ω, put f(c2n) = g(c2n) and let `n : R → R be a line through
point (c2n+2, f(c2n+2)) having slope which is half of the slope of g � I0. Let
c2n+1 ∈ (c2n+2, c2n) be a solution of the equation ρ(`n(x), f(c2n)) = ρ(x, c2n),
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see Figure 19. Such a solution exists by the Intermediate Value Theorem, as

limx→c2n
ρ(`n(x),f(c2n))

ρ(x,c2n)
=∞ and ρ(`n(c2n+2),f(c2n))

ρ(c2n+2,c2n)
< |I1|
|I0| < 1. Define f(c2n+1) =

`n(c2n+1) and on each interval [cn+1, cn] extend f linearly. The function f is as
desired.

Indeed, f is not (LS), since any open neighborhood V of 0 contains, for
some n < ω, the points c2n+1 and c2n which satisfy the the following equation
ρ(f(c2n+1), f(c2n)) = ρ(`n(x), f(c2n)) = ρ(x, c2n) = ρ(c2n+1, c2n).

To see (uPC), choose λ ∈ (0, 1). By Lemma 7.2, f is (uPC) with constant
λ on each interval In, for 0 < n < ω, and [cn+1, cn] for every n < ω. Therefore,
by Lemma 7.1, f is (uPC) with constant λ on (0,∞). Finally, it is (uPC) with

constant λ at point 0, since ρ(f(x),f(0))
ρ(x,0) ≤ ρ(g(x),g(0))

ρ(x,0) < λ for small enough x,

since, by Lemma 7.2, D∗g(0) = 0.

7.3 Examples on disconnected X ⊂ R with standard dis-
tance

Notice that, by Theorem 3.2(iii), if f : X → X is as in Example 22, then X
cannot be connected. Also, by Theorem 3.2(ii), such map must have a periodic
point.

Example 22. There exists a compact set X ⊂ R and a map f : X → X from
(ULS)&¬(PC) having no fixed point. It has a periodic point, as f (2)(0) = 0.

Construction. Let X = [0, 1] ∪ [2, 3] and define: f(x) = 2 + arctanx for
x ∈ [0, 1] and f(x) = 0 for x ∈ [2, 3], compare Example 1. Such f is as needed.

Notice that, by Theorem 3.2(iii), if f : X → X is as in Example 23, then X
cannot be connected. Also, by Theorem 3.2(ii), such map must have a periodic
point.

Example 23. Let X = [−2,−1] ∪ [1, 2] and let map f : X → X be defined as
f(x) = − x

|x| . Then f is (ULC)&¬(S) having no fixed point. It has a periodic

point, as f (2)(1) = 1.

Notice that, by Theorems 3.2(i) and 3.5, the space X in Example 24 cannot
be compact and it must have infinitely many components.

Example 24. There exists a map f : X → X from (ULC)&¬(S) having no
periodic point, where X is an unbounded perfect subset of R.

Construction. Let X =
⋃
n<ω[2n, 2n + 1] and define f as f(x) = 2(n + 1)

for x ∈ [2n, 2n + 1]. Clearly, f satisfies (ULC) with λ = 0. It is not (S), as
f(2)− f(0) = 4− 2 = 2− 0. It has no periodic points since f(x) > x for every
x ∈ X.

Notice that, by Theorem 3.2(iii), if f : X → X is as in Example 25, then X
cannot be connected. Also, by Theorem 3.2(ii), such map must have periodic
point.
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Example 25. For X = [0, 1] ∪ [2, 3] there exists a map f : X → X from
(ULS)&(PC)&¬(uPC) having no fixed point. It has a periodic point, f (2)(0) = 0.

Construction. Let f2 : [0, 1] → [0, 1] be a map from (S)&(PC)&¬(uPC)
constructed in Example 2. We define f(x) = f2(x) + 2 for x ∈ [0, 1] and
f(x) = f2(x− 2) for x ∈ [2, 3]. Such f is as needed.

Notice that, by Theorem 3.2(iii), if f : X → X is as in Example 26, then X
cannot be connected. Also, by Theorem 3.2(ii), such map must have periodic
point.

Example 26. There exists a compact perfect set X ⊂ R and a map f : X → X
from (ULS)&(uPC)&¬(LC) having no fixed point. Such map must have periodic
point.

Construction. For n < ω let an = 2−2
n

so that an+1 = a2n and an ↘ 0.
Let b0 = 1 and, for 0 < n < ω, let bn ∈ (an, an−1) be such that the slope of
the segment joining points 〈bn, a2n〉 and 〈an−1, a2n−1〉 is 1 − 5−n. Then, the set
Y = {0} ∪n<ω [an, bn] is perfect. Define g : Y → Y by putting g(0) = 0 and
g(x) = a2n for every x ∈ [an, bn]. See Figure 20.

Figure 20: Function g : Y → Y for Example 26.

Notice that g (uPC) with any constant λ ∈ (0, 1). It is easy to verify that
g is (S). Also, g is not (LC), since for any λ ∈ (0, 1) and any open V 3 0 in Y
there exists anon-zero n < ω such that bn, an−1 ∈ V and 1 − 5−n > λ, giving
|g(bn)−g(an−1)|
|bn−an−1| =

|a2n−a
2
n−1|

|bn−an−1| = 1− 5−n > λ.

Let X = Y ∪ (2 + Y ) and define f : X → X by putting f(x) = g(x) + 2 for
x ∈ Y and f(x) = g(x − 2) for x ∈ (2 + Y ). It is easy to see that such f is as
needed.

Notice that, by Theorems 3.2(i) and 3.5, the space X in Example 27 cannot
be compact and it must have infinitely many components.
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Figure 21: Function f : X → X for Example 27.

Example 27. There exists a map f : X → X from (S)&(ULC)&¬(C) having
no periodic point, where X is an unbounded perfect subset of R.

Construction. Let X =
⋃
n<ω[cn, dn], where we define, by induction, c0 = 0,

dn = cn + 2−(n+3), and cn+1 = dn + 1
2 + 2−(n+1) = cn + 2−(n+3) + 1

2 + 2−(n+1).
The space X is complete, since cn ≥ n

2 ↗ ∞ as n → ∞. Put f(u) = cn+1

for u ∈ [cn, dn] and n < ω, see Figure 21. Clearly f has no periodic point
and is (ULC) with any λ > 0 and 0 < ε < 1

2 (since the length of any [cn, dn] is

2−(n+3) < 1
2 ). To see that f satisfies (S), choose u < v from X. We need to show

that
∣∣∣ f(v)−f(u)v−u

∣∣∣ < 1. This is obvious, when u and v belong to the same interval

[cn, dn]. So, assume that u ∈ [cn, dn] and v ∈ [cn+k, dn+k] for some k ≥ 1. Then∣∣∣ f(v)−f(u)v−u

∣∣∣≤ ∣∣∣ cn+k+1−cn+1

cn+k−dn

∣∣∣= ∣∣∣ (cn+k+2−(n+k+3)+ 1
2+2−(n+k+1))−(dn+ 1

2+2−(n+1))

cn+k−dn

∣∣∣< 1,

since 2−(n+k+3) + 2−(n+k+1) − 2−(n+1) < 0, completing the argument.

Notice that, by Theorem 3.3, the space X from Example 28 cannot be rec-
tifiably path connected. It is shown in Example 21 that such X can be path
connected. However, it is not clear if X in such example can be simultaneously
compact and connected, see Problem 8.1.

Example 28. There exists a compact perfect X ⊂ R and a map f : X → X
from (uPC)&¬(LS) having no periodic point that satisfies (uPC) with every
contraction constant λ ∈ (0, 1).

Construction. In [10, theorem 1] the authors present a perfect compact set
X ⊂ R and a differentiable homeomorphism f : X → X which is (uPC) with
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any λ > 0. All orbits of the map f are dense in X, so f has no periodic points.
Hence, by Theorem 3.2(i), f is not (LS).

Figure 22: Relation between sequences 〈an : n < ω〉, 〈dn : n < ω〉, and the set X.

It is not clear if the space X from Example 29 can be simultaneously compact
and connected, see Problem 8.1. However, X can be [0,∞) with the standard
metric, as shown by Example 3.

Example 29. There exists a bijection f : X → X from (PS)&¬(PC) having no
periodic point, where X is a compact perfect subset of R considered with the
standard metric. Moreover, we will have f ′(x) = 0 for all but one x ∈ X.

Construction. Let f : X→ X be as in Theorem 1 of [10], that is, f is a periodic
point free differentiable auto-homeomorphism of a perfect compact nowhere
dense X ⊆ R such that f′(x) = 0 for all x ∈ X. We will construct an appropriate
increasing bijection g : R→ R for which X = g[X] and f = g ◦ f ◦ g−1 : X → X
will be as needed.

Translating X, if necessary, we can assume that minX = 0. Now, since
f′(0) = 0, the function ∆: X→ R defined as

∆(x) =

{
|f(x)−f(0)|

x for x 6= 0

0 for x = 0

is continuous. In particular, it is an easy task to choose a strictly decreasing
sequence 〈an ∈ (0,∞) \ X : n < ω〉 converging to 0 and associated numbers
dn = sup ∆[[0, an] ∩ X] such that:

• f[X∩[0, a0]] is disjoint with [0, a0] (possible, as f(0) > 0 and f is continuous),

• d0 < 1/2, and

• dn+1 ≤ 1
2dn for all n < ω. See Figure 22.
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Let 〈bn ∈ (an, an−1) : 0 < n < ω〉 be a decreasing sequence such that
[bn, an−1] ∩ X = ∅. Define function g as the identity on the complement of
(0, a0), while, for every 0 < n < ω, put

g(x) =
(n+ 1)dn

n
x on [an, bn]

and extend it linearly on [bn, an−1], see Figure 23.

𝑎0

𝑎0

0

𝑏1𝑎3 𝑎2 𝑎1𝑏3 𝑏2

2𝑑1𝑏1

2𝑑1𝑎1

3

2
𝑑2𝑏2

3

2
𝑑2𝑎2

4

3
𝑑3𝑏3

4

3
𝑑3𝑎3

Figure 23: The thick line is the graph of g from Example 29.

Notice that g is indeed increasing, since (n+2)dn+1

n+1 ≤ (n+2)
n+1

1
2dn <

(n+1)dn
n for

all 0 < n < ω. Moreover,

g(x) ≤ x for all x ≥ 0, (22)

since (n+1)dn
n ≤ 1 for all 0 < n < ω.

To see that f is as desired, first notice that

f ′(x) = 0 for every nonzero x ∈ X. (23)

Indeed, for any such x there exists a nonzero s ∈ X with x = g(s). Choose
c ∈ (0, x) with c < f(x) in case when f(x) 6= 0. Then the graph of g � [c,∞)
is a union of finite number of segments of positive slope and so, g � [c,∞) is
bi-Lipschitz with some constant M > 0, that is,

M−1|a− b| ≤ |g(a)− g(b)| ≤M |a− b|
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whenever a, b ∈ [c,∞). Choose y ∈ X \ {x} and t ∈ X with y = g(t).
Now, if f(x) 6= 0, then for every d < f(x) and y close enough to x we have

s, t, f(s), f(t) ∈ [d,∞), so that

|f(x)− f(y)|
|x− y|

=
|g(f(s))− g(f(t))|
|g(s)− g(t)|

≤ M |f(s)− f(t)|
M−1|s− t|

→t→s 0,

as needed for (23). Similarly, for f(x) = 0 and y close enough to x, using (22)
we obtain

|f(x)− f(y)|
|x− y|

=
g(f(t))

|g(s)− g(t)|
≤ f(t)

M−1|s− t|
=
|f(s)− f(t)|
M−1|s− t|

→t→s 0,

completing the proof of (23).
Clearly, (23) implies that f is (PS) at every x ∈ X \ {0}. To see that f is

(PS) notice that every y ∈ X ∩ (0, a0), there exists a t ∈ X ∩ (0, a0) such that
y = g(t). Moreover, t ∈ [an, bn] for some 0 < n < ω and g(f(t)) = f(t), as g is
the identity on [a0,∞) 3 f(t). Thus

|f(y)− f(0)|
|y − 0|

=
|g(f(t))− g(f(0))|

|g(t)|
=
|f(t)− f(0)|

(n+1)dn
n t

=
|f(t)−f(0)|

t

dn

n

n+ 1
≤ n

n+ 1
,

ensuring (PS) of f at 0.
Finally, to see that f is not (PC) at 0, it is enough to notice that, by the

definition of numbers dn, the inequality ≤ in the last display becomes equation
for some t ∈ [an, bn]. (The maximum dn of ∆ on [0, an]∩X must be be attained
on [an, bn], since for any s ∈ [0, an+1] ∩ X we have ∆(s) ≤ dn+1 < dn.)

It is not clear if the space X from Example 30 can be simultaneously compact
and connected, see Problem 8.1. However, X can be [0,∞) with the standard
metric, as shown by Example 4.

Example 30. There exists a bijection f : X → X from (PC)&¬(uPC) having
no periodic point, where X is a compact perfect subset of R considered with
the standard metric. Moreover, f ′(x) = 0 for all but countably many x ∈ X.

Construction. The construction is a variation of one used in Example 29. A
difficulty here is that, instead of having just one point x ∈ X with D∗f(x) 6= 0,
we will need to have a sequence of points 〈an ∈ X : n < ω〉, with D∗f(an)↗ 1
as n→∞.

As before, we start with the function f : X → X from [10, theorem 1], so
that f is a periodic point free differentiable auto-homeomorphism of a perfect
compact nowhere dense X ⊆ R such that f′(x) = 0 for all x ∈ X. We also assume
that minX = 0. We will construct an increasing bijection g : R → R for which
X = g[X] and f = g ◦ f ◦ g−1 : X → X are as needed.

Since f(0) > 0, by continuity of f we can find an a−1 ∈ X such that f(x) > a−1
for every x ∈ [0, a−1] ∩ X. Choose a sequence f(0) > a−1 > a0 > a1 > · · · in X
converging to 0 and such that for every −2 < n < ω there exists a cn < an with
(cn, an) ∩ X = ∅ (so, ans are isolated from the left, but not from the right).



K.C. Ciesielski, et al.: Locally contractive maps 52

Notice that, for every n < ω, the function ∆n : X→ R defined as

∆n(x) =

{
|f(x)−f(an)|
|x−an| for x 6= an

0 for x = an

is continuous, as f′(an) = 0. By induction on k < ω choose a strictly decreasing
sequence 〈bnk ∈ (an, an−1) \ X : k < ω〉 converging to an and the associated
numbers dnk = max ∆n

[
[an, b

n
k ] ∩ X

]
such that:

• bn0 < 2an, dn0 ≤ 1
2 , and dnk+1 < dnk for all k < ω.

Let 〈cnk ∈ (bnk , b
n
k−1) : 0 < k < ω〉 be such that [cnk , b

n
k−1]∩X = ∅. Define function

g as the identity (i.e., via g(x) = x) on R \
⋃
n<ω(an, b

n
0 ), for every n < ω and

0 < k < ω put

g(x) = an +
n+ 2

n+ 1
dnk (x− an) for x ∈ [bnk , c

n
k ],

and extend it linearly on each interval [cnk , b
n
k−1], see Figure 24.

Figure 24: The graph of y = g(x) between an+2 and an.

Notice that g is indeed strictly increasing, since so is g � [an, b
n
0 ] for every

n < ω: every line `nk containing g � [bnk , c
n
k ] passes through the point 〈an, an〉

and the slope n+2
n+1d

n
k+1 of `nk+1 does not exceed the slope n+2

n+1d
n
k ≤ 1 of `nk .

LetA = {0}∪{an : n < ω}.Notice that, for every n < ω, we have g[[an, b
n
0 ]] =

[an, b
n
0 ]. This, the slopes of lines `nk being less than one, and that fact that
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g(x) = x for all x ∈ R \
⋃
n<ω(an, b

n
0 ), imply that

|g(t)− g(a)| ≤ |t− a| for every a ∈ A and t ≥ a. (24)

To see that g, X = g[X], and f = g ◦ f ◦ g−1 : X → X are as desired first
notice that, for every n < ω, an = g(an) ∈ X and D∗f(an) = n+1

n+2 . Indeed, if
y ∈ X and |y − an| < δn = min{bn0 − an, an − cn}, then there exists a non-zero
k < ω such that y = g(t) for some t ∈ [bnk , c

n
k ]. Then, by the definition of g

on [bnk , c
n
k ], |g(t) − an| = n+2

n+1d
n
k |t − an|. Therefore, as g(f(x)) = f(x) for any

x ∈ [0, a−1] ∩ X,

|f(y)−f(an)|
|y−an| = |g(f(t))−g(f(an))|

|g(t)−an| = |f(t)−f(an)|
n+2
n+1d

n
k |t−an|

=
|f(t)−f(an)|
|t−an|
dnk

n+1
n+2 ≤

n+1
n+2 ,

since |f(t)−f(an)||t−an| ≤ dnk by the definition of dnk . Hence, D∗f(an) ≤ n+1
n+2 . Moreover,

the equality holds, since there exists an s ∈ [an, c
n
k ] with dnk = |f(s)−f(an)|

|s−an| . Also,

s /∈ [an, c
n
k+1], since dnk+1 < dnk . Hence, s ∈ [bnk , c

n
k ] and |f(g(s))−f(an)||g(s)−an| = n+1

n+2 ,

proving that D∗f(an) ≥ n+1
n+2 .

The equation D∗f(an) = n+1
n+2 proves that f is not (uPC) and that it is (PC)

at every x = an. So, to finish the proof, it is enough to show that f ′(x) = 0 for
any x ∈ X \ {an : n < ω}.

So, choose such x. We consider the following three cases.

Case 1: x = 0. Then x = 0 = g(0) and, for every y = g(t) ∈ X close enough
to x, we have f(y) = g(f(t)) = f(t). Notice that having bn0 < 2an for all n < ω
gives us g(t) ≥ 1

2 t for all t ≥ 0. So, for y 6= 0, we obtain

|f(0)− f(y)|
|0− y|

=
|f(0)− f(t)|

g(t)
≤ |f(0)− f(t)|

1
2 t

= 2
|f(0)− f(t)|
|0− t|

→t→0 2 f ′(0) = 0,

giving required f ′(0) = 0.

Case 2: x, f(x) /∈ A. Then, neither g−1(x) nor f(g−1(x)) belongs to A, as
g(a) = a for every a ∈ A. It is easy to see that every z ∈ R \A admits an open
neighborhood U 3 z for which the graph of g � U is a union of at most two
non-constant linear functions. In particular, g � U is bi-Lipschitz, that is, there
exists an L > 0 such that

L−1|a− b| ≤ |g(a)− g(b)| ≤ L|a− b| for all a, b ∈ U . (25)

Let U0 and U1 be the neighborhoods of g−1(x) and f(g−1(x)), respectively,
satisfying (25). Since g and f are homeomorphisms, we can find an open neigh-
borhood V of x in X such that g−1(V ) ⊂ U0 and f(g−1(V )) ⊂ U1. Then, for
every y ∈ V , y 6= x, we have

|f(x)−f(y)|
|x−y| = |g(f(g−1(x)))−g(f(g−1(y)))|

|g(g−1(x))−g(g−1(y))| ≤ L|f(g−1(x))−f(g−1(y))|
L−1|g−1(x)−g−1(y)| →y→x L

2f′(g−1(x)).

Since f′(g−1(x)) = 0, we obtain required f ′(0) = L2f′(g−1(x)) = 0.
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Case 3: x /∈ A and f(x) ∈ A. Let a ∈ A be such that f(x) = a and notice
that f(g−1(x)) = g−1(f(x)) = g−1(a) = a. Since a is isolated from the left, there
exists an open neighborhood U1 of a = f(g−1(x)) in X such that U1 ⊂ [a,∞) and
so (24) holds for every t ∈ U1. Moreover, since x /∈ A, we have also g−1(x) /∈ A
and so, there exists an open neighborhood U0 of g−1(x) in X satisfying (25).
Now, as in the previous case, we can find an open neighborhood V of x in X
such that g−1(V ) ⊂ U0 and f(g−1(V )) ⊂ U1. Then, for every y ∈ V , y 6= x, we
have

|f(x)−f(y)|
|x−y| = |g(a)−g(f(g−1(y)))|

|g(g−1(x))−g(g−1(y))| ≤
|a−f(g−1(y))|

L−1|g−1(x)−g−1(y)|

= |f(g−1(x))−f(g−1(y))|
L−1|g−1(x)−g−1(y)| →y→x Lf

′(g−1(x)).

Since f′(g−1(x)) = 0, we obtain required f ′(0) = Lf′(g−1(x)) = 0 .

8 Remaining open problems and remarks

The in-depth analysis of this article, for the most part, presents a clear picture
of the place of fixed and periodic point theorems among classes of functions
described in Definition 2.1, considered in various topological configurations.
However, there remain a few cases, indicated in the problems below, which
“locally” cloud this image. In particular, the first of this problems, seems to be
particularly intriguing, especially for the classes (PC) and (uPC).

Problem 8.1. Assume that 〈X, d〉 is compact and either connected or path
connected. If the map f : 〈X, d〉 → 〈X, d〉 is (PS), must f have either fix or
periodic point? What if f is (PC)? or (uPC)?

Note that, for the class (PC), the answer to Problem 8.1 (and Problem 8.2) is
affirmative when the space 〈X, d〉 is rectifiably path connected, see Theorem 3.4.

Problem 8.2. Assume that 〈X, d〉 is compact and rectifiably path connected.
If the map f : 〈X, d〉 → 〈X, d〉 is (PS), must f have either fix or periodic point?

Notice also that a large number of examples of functions we discussed are
defined on spaces 〈X, ρ〉, where X is an interval and ρ cannot be the standard
metric from R. However, in all such cases with the exception of Example 11, it
seems to be unknown if in these examples the space 〈X, ρ〉 can be isometric to
a subset of Rn for some n > 1. We believe that in the cases when 〈X, ρ〉 can
be rectifiably path connected — that is, in Examples 6, 7, 10, 12, 13, 14, and
15 — it is indeed possible to find the examples with 〈X, ρ〉 being isometric to
subsets of R3. Verifying this conjecture might be an interesting project. In the
cases when 〈X, ρ〉 cannot be rectifiably path connected — that is, in Examples
16, 17, 18, 19, and 20 — the possibility of finding the examples on the subsets
of Rn seems still possible, but it is less clear to us. Somewhat encouraging is
[30, example 1], see also our comment preceding Example 16.
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We like to finish here with few words on what brought us to pursue the work
on this project since, perhaps surprisingly, it was not our interest in the fixed
point theorems. Instead, it stemmed from examining differentiability of the
Peano-like maps g from the subsets X of R onto X2, see [8, 9, 10]. It is easy to
see that the differentiability of such g implies that X has Lebesgue measure 0.
But, in [8], we gave an example of an infinitely many times differentiable function
g : R→ R2 which maps an unbounded perfect set X ⊂ R (clearly of measure 0)
onto X2. We also showed that for every continuously differentiable function
g : R → R2, X2 6⊂ g[X] for every compact perfect set X ⊂ R. However, the
following problem from [8] remains open.

Problem 8.3. Let X ⊂ R be compact perfect and let g be a function from X
onto X2. Can g be differentiable? continuously differentiable?

If such a g = 〈f, h〉 exists, then f maps X onto X and, as we remarked in
[8, lemma 3.2], f ′(x) = 0 for all x ∈ X except possible of a first category subset
of X.

Figure 25: The result of the action of f2 = 〈f, f〉 on X2 = X× X

Can surjection with such properties exist? What if f ′(x) = 0 for all (rather
than “almost” all) x ∈ X? Our (false) intuition was that f with this last
property (i.e., being a map from compact perfect X ⊂ R onto X with f ′ ≡ 0)
cannot exist. In our attempt to show such claim, we proved (see [10, theorem 9])
that for any such f there exists a perfect X ⊂ X such that f = f � X has no
periodic points, bringing us to the realm of fixed point theorems and (uPC)
maps. Of course, we eventually discovered (see [10, theorem 9] and Example 28)
that such paradoxically behaving function f (see Figure 25) indeed exists. So
one may say that this entire study stems from Example 28.

Finally, notice that the existence of map f seems to indicate, that the answer
to Problem 8.3 is affirmative. However, the delicate construction of f so far
defied any attempts to transform it to the example confirming this indication.



K.C. Ciesielski, et al.: Locally contractive maps 56

References

[1] D. Acosta and T. Lawson, Weak contractions and fixed points, College
Math. J. 46(1) (2015), 35–41.

[2] M.A. Alghamdi, W.A. Kirk, and N. Shahzad, Locally nonexpansive map-
pings in geodesic and length spaces, Topology Appl. 173 (2014), 59–73.

[3] S. Almezel, Q.H. Ansari and M.A. Khamsi - Editors, Topics in Fixed Point
Theory, Springer, Switzerland 2014.

[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur applica-
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tions, (St. Johńıs, NF, 1999). Nonlinear Anal. Forum 6(1) (2001), 103–111.

[19] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New
York 2003.

[20] R.D. Holmes, Fixed points for local pointwise contractions, Proc. Seminar
on Fixed Points Theory and Its Appl., (Dalhousie Univ., 1975), Academic
Press New York, 78–89.

[21] T. Hu and W.A. Kirk, Local contractions in metric spaces, Proc. Amer.
Math. Soc. 68 (1978), 121–124.

[22] G. Jungck, Local radial contractions — a counter-example, Houst. J. Math.
8 (1982), 501–506.

[23] W.A. Kirk, Contracting Mappings and Extensions, in Handbook of Metric
Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001, pp 1-
34.

[24] W.A. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces,
Springer, Switzerland, 2014.
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