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Early in a multivariable calculus class, students are asked to determine if f(x,y) given
by

27 when (z,y) £ (0,0),

f(z,y) = {+y ¢))

0 otherwise

is continuous. Although f is discontinuous (along the parabola x = y?), some stu-
dents are likely to think that this function is continuous since f(0,0) is equal to
the limit along the z- and y-axis. Did you know that an 1821 calculus textbook of
Augustin-Louis Cauchy [1] contains a theorem, which seems to contradict the exis-
tence of example with such properties and to agree with the naive hypothesis, that a
two variable function is continuous if it is continuous in each variable separately? The
apparent contradiction comes from the fact that Cauchy’s text is written for the set
2 of real numbers containing infinitesimals (i.e., numbers d with 0 < d < 1/n for
everyn = 1,2 3,...), while the standard set R of real numbers does not contain such
objects. The fact that Cauchy’s result is false when Z is replaced with the standard set
R of real numbers was first observed by E. Heine and appeared in the 1870 calculus
text [6] of J. Thomae, see [5]. The prominent example (1), that appears in many calcu-
lus books, comes from the 1884 treatise on calculus by A. Genocchi and G. Peanno [4],
see Figure 1. (See [3] on more history related to the above mentioned Cauchy’s result
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- -
continua di e funzione continua di y senz'essere funzione continua
di « ed y considerate insiere.
3* — La funzione
oyt
+v

2
@)=z

& tale che posto
a=ht, y=Kt,

e facendo tendere ¢ a zero il limite di /(a, y) & sempre zero qua-
lunque siano A e R, ossia se & ed y sono le coordinate cartesiane
d'un punto del piano, in i si faccia tare il
punto (, y) al punto (0, 0) il limite della funzione & sempre zero;
tuttavia /(z, y) col tendere di « ed y a zero non tende verso alcun
limite, ma in ogni intorno dei valori (0, 0) essa assume tutti i valori
compresi fra —1 e 1.

Figure 1. A. Genocchi (1817-1889), G. Peano (1858-1932), and (1) in [4]

and Genocchi-Peanno’s example.) Not only (1) is continuous separately, it is also con-
tinuous when restricted to any straight line, including those passing through the origin.
This article will focus on the following questions.

Q1: What are other examples of two variable functions that are discontinuous, but con-
tinuous along any straight line?

Q2: Can we generalize (1) to higher dimensions and, if so, in what sense?

Q3: What are the simplest examples of this sort?

In answering the question Q3, we will restrict our attention to the class of rational
functions, one of the simplest classes containing removable discontinuities.

When generalizing (1) to higher dimensions, we need to decide whether to treat
lines in R? as the objects of dimension 1, or rather as hyperplanes, that is, objects of
co-dimension 1. (Thus, hyperplanes in R? are the standard two-dimensional planes.)
In other words, do we want the functions of three or more variables to be continuous
on all hyperplanes? or just on all lines? The lines option does not lead to anything
truly new, as a “natural lift” of the original Genocchi-Peano function f(z,y) to the
higher dimensions, defined by g(z1, s, ..., x,) = f(x1,x2), is clearly discontinu-
ous, while continuous on any straight line. Therefore, in what follows, we will require
our examples to be continuous on all hyperplanes. Notice, that, for n > 2, the above
function g is not among such examples, since it is discontinuous when restricted to the
hyperplane {(z1, xa,...,2,) € R": z3 = x2}.

Generalized Genocchi-Peano examples The simplest rational functions
g: R" — R that may have a chance to lead to the examples we seek are in the

form
zalzC“Q,__zan
1 2 n
—+—2—" — when (x1,%s,...,%,) # (0,0,...,0
g1, o, . @) = el ( @202 ) 7 (0,0,..,0) 2
0 otherwise,

where o, 3; € N={1,2,3,...} foralli € {1,...,n}. For the rest of the paper we
will assume that every function is 0 at (xy, zo, ..., z,) = (0,0,...,0), the origin.

We say that g: R” — R in the form of (2) and with n > 1 is a Genocchi-Peano
example (abbreviated GPE), if g is discontinuous but has a continuous restriction
g | H to any hyperplane H in R". Of course, if all 3;’s are even, then the maps (2) are
continuous when restricted to the hyperplanes that do not contain the origin. Thus, in
such case, we will restrict our attention to the hyperplanes that contain the origin, that
is, expressible via equations 2;1 bz = 0. One of the main goals of this article is
to investigate the following general question.
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For any n > 1, for what values of «;, B; € N, i € {1,...,n}, is the function
g(x1,a, ..., x,) a Genocchi-Peano example?

It is worth noting that any GPE is, in particular, continuous on any straight line.
Clearly, the function f given by (1) is a GPE. It is also easy to see that the following
function

2

Ty
h($) y) = ‘%‘2 + yG (3)

constitutes another such example, since it is discontinuous on the curve z = g3
Actually, these two examples are essentially different: f[R?] is bounded (since

|f(z,y)| =4/ mfify‘“/ﬁ < 1), while h[R?] is not (as lim, o+ h(y*, y) = 00).

A simple GPE for n = 3 is given by

T LT3
e R

“

g($1, x27x3) -

Indeed, ¢ is discontinuous on {(t*,¢%,¢): ¢t € R}. To see that it is continuous on any

2
hyperplane (containing the origin), notice that |g(zy, z2, x3)| = ﬁ—}é{‘ﬁﬂ (%) ,
where d = 22 + 23 + x§. Now, each of the three quotients is bounded above by 1.

Moreover, for a hyperplane z3 = ax; + bz, we have (‘;f% < |a| Lzl 4 |p|Lz2l

dl/8 d1/8 —
ql/2 1/4 . .
la|S7s + 0] 31/8 — 0as d — 0. So, g is continuous at (0,0, 0) on this hyperplane.
. . 1/2
Similarly, g is continuous on a hyperplane x5 = ax;, since % < |a| Zl 7 — 0as

d — oo. Hence, g is indeed a GPE.

The above argument for g(z1, z2, x3) well exemplifies the general argument for our
main Characterization of GPEs result stated below. Before we state it, let us first note
that none of the ;s can be odd, if g, in the form of (2), is to be a GPE. Indeed, if 3; is
odd, then g is discontinuous on any hyperplane containing a point y = (y1,...,Y,) €
(R\ {0})" satisfying 37, ™ = 0. (To see this more clearly, we can set y; = 1 for
j #iandy; = /1 — n.) Therefore, in the rest of the paper we will assume that all
the ;s are even and, because of symmetry of the definition of g, we will also assume
81 < By < -+ < fB,.Now, we are ready to state our characterization of GPEs in terms
of exponents vy, ..., Q,, B1, .-+, Bn.

Characterization of GPEs. Let g be given by (2) and 1 < By < --- < 3, be

positive even numbers.

(i) g is discontinuous iff ;. ,8 = % + -+ %—” <1
(ii) g has a continuous restriction to every hyperplane iff

Z%—%—I— L > 1foreveryk € {2,...,n}. 5)
2B, B B
In particular, g is a Genocchi-Peano example iff ZZ 1 B L < 1 and (5) holds.
Notice, that the value of Y ", ﬁ— — 5, T 5., from (5) can be calculated by re-

placing B with 35—, in the expression 3 —|— - —|— ;: +o = 7
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It is also worthwhile to point out that, by the characterization, for a fixed sequence
(B, ... ,Bn>, we may have only finite number of GPEs, namely those that satisfy
Yo /3 < 1. We will postpone the proof of the characterization to the end of this

article.

Example 1. To illustrate the power of the characterization, we will determine all
GPE: s of the form
a] g

Ty Ty

S (6)

f(xh 1'2)

for aq, as € N. By the characterization, such an example must satisfy the inequalities
% + % <1and % + % > 1 or, equivalently, 5ai; + 3ay < 30 and ai; + g > 6.
It is easy to verify that there are only 23 pairs of (a1, cve) that satisfy 5oy + 3as < 30:
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8); (2,1), (2,2), (2,3), (2,4),
(2,5), (2,6); (3,1), (3,2), (3,3), (3,4), (3,5); (4,1), (4,2), (4,3); and (5,1).
Among these pairs, the inequality ov; + oo > 6 has precisely eight solutions, that cor-

6 7 8 2.5 2.6
. . _ mTy T129 T2 rixy T{Ty
respond to the following GPEs: f(x1,x5) = P g R e R s R
S L 6_,'_1101 NS O

A difficulty behind using the characterization is that, for each GPE candidate func-
tion with a fixed denominator, we need to check n different inequalities: >, ‘” <1

and (n — 1)-many of the form (5). Although, it is fairly easy to write a program in
one of the common symbolic algebra systems (e.g. Mathematica, Maple, Matlab, ...)
which, for fixed 1, ..., 8,, finds all ;s satisfying these inequalities (e.g., all the
GPEs with a fixed denominator), finding all such «;s without computer assistance
could be a challenging task. The following corollary, though more restrictive than our
Characterization of GPEs result, reduces the task of checking whether a candidate is a
GPE to a verification of a single equation.

Sufficient Condition for GPES. Let g be asin (2)and 1 < By < -+ < fB,.

(i) If g is a Genocchi-Peano example, then (3;s must be distinct.

(ii) If all B;s are evenand Y, ;1 =1, then

g is a Genocchi-Peano example iff all B;s are distinct.

Moreover, the functions as in (ii) are the only GPEs with g[R"] bounded.

This follows quite easily from our Characterization of GPEs. Indeed, if g is a GPE,
then f3;s must be distinct, since otherwise there would exist k € {2,...,n} with Z—: =
A

and so the inequalities from parts (i) and (ii) of the characterization cannot simul-
taneously hold. On the other hand, if all 3;s are distinct and ) ., ZZ = 1, then, for
n 3 7 —
every k € {2,...,n}, 35 < g and so, 301, 3F — FE 4 g > Yoy 5=
Thus, g is a GPE.
We leave the last part of the Sufficient Condition result as an exercise.

Exercise 1. Prove, using the characterization result, that the only bounded GPEs are
those for which >, al = 1. Hint: Follow the arguments used for A from (3) and g

from (1). For general n, Zequatlon (10) might be useful.
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3.5
Notice, that among the eight GPEs of the form (6) only one, %, satisfies the
1 2
Sufficient Condition. The Sufficient Condition implies also that each map
1Ty Ty 1T

nl‘?"'7mn: n— 7
anl(m ) wi+ad 4+ a2 a2 @

is a GPE, as % + .- 22n = 1. (The fact that g,,s are the GPEs was first
noticed, without a proof of correctness, in [2].) Note that the original GPE given in (1)
is go, while g from (4) is gs. Another general class of GPEs, each for n > 1 variables,

is given by:

2 2 2n
ho(x1,...,2,) = ! L L , 8
(1 ) x%n+‘..+$?ln+'..+$%n2 ()
where the assumptions of Sufficient Conditions hold, as >, 2m =n- =1
In particular, this glves the following GPEs of 2, 3, and 4- Varlables respec—
2 4 z
tively: go(z,y) = 2240 ho(z,y) = 4+y8’ 93(z,y, 2) = W’ hs(z,y, 2) =
246 Tyz 1/,2 426 12

m’ 94(33 Y,z t) Wisﬂwa and hy(z,y, 2,t) = m8+y1%+—z2t4+,32 In

these examples, the degrees of the denominators of GPEs given by (7) are smaller than
those given by (8). However, 2" is bigger than 2n? for large values of n, that is, this
trends reverses for as n — oco. (In fact, already for any n > 7.) These observations
open up a discussion of the simplest GPEs.

The simplest Genocchi-Peano examples of n-variables So far, we answered
the questions Q1 and Q2 (in the class of functions of the form (2)). In this section we
tackle the question Q3, on the simplest Genocchi-Peano examples. But how do you
define “the simplest example,” even just in the class of the Genocchi-Peano examples?
We decided to express this simplicity in terms of the degree of the denominator of
(2) (i.e., B,,) and declare that the smaller (3,,, the simpler associated GPE. In general,
little is known about the minimal degrees 3,, for GPEs of n variables. Of course, we
must have 3,, > 2n, as all numbers [3; are even and distinct. Also, we have GPEs with
Bn < min{2",2n?}, as justified by the maps g,, and h,, from (7) and (8). Thus, for
all GPEs of n variables, the minimal [3,, satisfy

2n < B, < min{2", 2n?}. )

However, in general, the upper bound min{2", 2n?} is far from optimal, as we can
see in the following investigation of GPEs for small values of n.

For n = 2: The inequalities (9) immediately imply that 3, = 4. In particular, the
original GPE (1), which is g», has the denominator of minimal degree. Moreover, it is
easy to see that g5 is the only GPE of two variables with 3,, = 4.

For n = 3: We know, by (9), that 6 < 3, < 8. Any GPE map (2) with 5, < 8

Qp a
would need to be of the form % Among such functions, only a; = o =
a3 = 1 gives the necessary 1nequa11ty 5+ % + % < 1. However, for this choice,
(ii) of the characterization is false for £ = 3. Hence, there is no GPE of this form and

s0 6 < B, < 8. In particular, 5, = 8.
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zlxgmg
23 +ad+al’
is a GPE with the denominator of minimal degree. In fact, g3 has also the smallest de-
gree of numerator among all three-variable GPEs having minimal degree denominator.

This is th in h of the functions —1%2%3 F122%3 nd —21%2%3 . fai]
s is the case, since each of the functio Sz§+zg+x§’ I%Hgﬂg,a dmglmgﬂg ails

the property (5) fork = 3,as 1 = % =+ i —i—i > %—1— % —l—% > i—l— % + é.Moreover,
g3 is the only GPE with 3, = 8 and the numerator of degree oy + g + a3 = 4,

This means that, once again, the function g,, forn = 3, g3(z1, T2, x3) =

since none of the following functions is a GPE: —2172%3 10375 and —Z1m2e3
glu . w%+a:‘21+z§ ’ 2+w4+w8 ’ %erg«ka:g
2 2 2 2
(they fail (i) of the characterization); — 2~ FAT2%5 T172%3 7275 - and

$%+wg+$§’ I%+$g+$§’ I‘ll-i-xg-i—wg’ I‘ll-l-wg-i—wg’
2
— 12278 (they fail (5) for k =

2 2 2
- T{T2T3 T1T5T3 riToT3 .
Exercise 2. Prove that the maps Trelred Prairel and P fail to be GPEs
by showing explicitly (without using the characterization) that they are continuous at

the origin.

2 2 2 2
Exercise 3. Check that the functions —+-2>3 F1%2%3 17273 12278 and

2+ S+25> a?+aS+af’ ai+al+ad’ al+aS+al

%zf’g indeed fail (5) with & = 3.

For n = 4: The inequalities (9) give bounds 8 < 3, < 16. We will show that, in
this case, the smallest possible 3,, of GPE is 10, if we allow unbounded maps, and 12

otherwise.
First notice that (8, > 8, since otherwise » ., 6 >3+ 5+5+ 5> 1, that

is, (i) of the characterization fails. This means that 3, > 10. The equation here is
It satisfies (i) from the

mlmgmgxi
w‘ll +a:g+z§+a:}10 :
characterization since i + % + % + 13—0 = % < 1. At the same time the inequality

Z’L 1([3)%

justified by a GPE map g(xy, z2, x3,24) =

Ck=di+tst+iti=5>1,
k=3 +5+iti =5 >1and
*k=2i4+3:+2+3=2>1
So, g satisfies (ii) from the characterization, showing that indeed it is a GPE.
A bounded GPE with 3,, = 12 s given as % — it satisfies the Sufficient
Condition as % + i + é + % = ;—% ;l— % + i + 2—24 = 1. Another example of this
@ zoxia]

kindis h(x1, X2, 3, 24) = — it satisfies the Sufficient Condition, since

A A
4T 6 TegTi2= 24T 24T 247 24~

Finally, notice that there is no bounded GPE with 3, = 10. To see this, by
Sufficient Condition, it is enough to show that £ + Z + ¢+ g + {5 =1 for no
a,b,c,d, e 6 {0,1, 2 } with precisely one of a, b, c,d being zero. Indeed, the
number s+ bt + —|— = = 120a+60b+406+30d+246 cannot be an integer, unless e is
divisible by 5 But 1feis d1V1Slble by 5 and premsely oneofa,b,c,d € {0,1,2,...}is
Zero’then2+4+6+8+ﬁ—§+4+6+8+E—5+4+6+8+T0>1'
This completes the argument.
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m1x2m3mi
Trefrai+all
example of GPE with (3, = 10. Notice, that its numerator has smaller degree than the
above discussed example.

Exercise 4. Use the Characterization of GPEs to show that is another

Exercise 5. Use the Characterization of GPEs to show that there is no GPE of four
variables with denominator of degree 10 and numerator of degree < 5.

The justification of Characterization of GPEs Let v = Y. | <t and put d =

=1 B,
B1 Bn aytay? agn
T -+« 4+ a7, Then, for g of the form . 1—32—>"——,
1 + + n g mf1+m§2+.“+mnn
1 2 xom ol
= . =d1 ¢
g(xlv...7xn) = dl— doa /B don/Bn d 1_[1(1042/:82 (10)
ie

To see (i), first assume that v < 1. Then, for ¢ > 0,

tar/Br . opon/Bn gyl
h(t) = g(t"/Fr .. 1/0) = =

nt n
so that i does not converge to (0, ...,0) = 0as ¢t — 0. Thus, g is discontinuous.
Conversely, assume that v > 1. Since, for every i € {1,...,n}, we have
d(f;/ﬁi < (éjslaz/ﬂv? = 1, the equation (10) implies |g(x1,...,z,)| < d'7L.

But lim, . 2.)-(0,....0) d~1 =0, as v—1>0. So, by the Squeeze Theorem,
Bma, . en)—0,....00 9(T1, ..., x,) = 0, that is, g is continuous at the origin. So,
indeed, g is continuous, as desired.

To see that (ii) holds, for k € {2,...,n}letd, = > 1, - g—: + 5::.

First assume that 0, < 1 for some k& € {2,...,n} and consider the hyperplane
H ={x € R": x;, = x;,_1}. We will show that g | H, the restriction g to H, is
discontinuous. Indeed, for every t > O and i € {1,...,n} let

tV8ifi Ak,
fi(t) = {tl/ﬁkl

ifi =k.

Then (f1(t),..., f.(t)) € H. Moreover, since
o i/ Bi if i # k, 5, t if i # k,
(fi(®)* = {tai/ﬁkl ifi =k and (fit)™ = tPe/Pr-1 if{ =k

we have

9 JalD)) = (n—1)t+ +PK/Br—1 - (n—1)+ t(ﬁk/ﬁk—l)*ltgkil'

Thus, limy_,o g(f1(t), ..., fn(t)) # 0, since lim,_,o+ t°* 71 > 1 (as § — 1 < 0) and

lim, o+ (n_1)+t(52/5k71>—1 is either nil (when B, < (B;) or % (when B,_1 = Bg).

Therefore, indeed g | H is discontinuous at the origin.
To complete the argument, assume that §; > 1 for every k € {2,...,n} and
let H be a hyperplane. We need to show that g | H is continuous. This is obvious

VOL. 45, NO. 1, JANUARY 2014 THE COLLEGE MATHEMATICS JOURNAL 7



’Mathematical Assoc. of America College Mathematics Journal 45:1 April 8,2017 7:41p.m. ”127.HyperplaneContCMJaccepted 4-8-2017".tex| page 8

when H does not contain the origin. So, assume that it does and that H is given by
S bix; =0.Letk € {1,...,n} be the largest for which by, # 0.

If k=1, then g | H = 0 is continuous. So, assume that k£ > 1. Then, the
equation Z?:l brxr = 0 can be written as x;, = Zi.:ll a;x;. In particular, since
1/8; > 1/B_1 foreveryi € {1,...,k — 1}, forevery d € (0, 1) we have

k1 k-1 k1 k1
1 1 1
|z = E a;x;| < E |ail|xi| < E |ai|dP: < E |a;|dPk-1 = Ad%—1, (11)
i=1 i=1 i=1 i=1

o @i/ Bi

d

where A = Y°! |a,|. Since <1 for every i € {1,...,n},

dei/Bi

formulas (10) and (11) imply

1
1 |xk|ak <(Ad5k_l)ak
dl=7 dew/Br — d177+§—]’z

_ %%, 9k
’g($1,,$n)|§ :Aakd’y 5k+ﬁk71 1:Aakd6k_1,

But Ad’%*~! — 0 = g(0,...,0) as d — 0%, since d;, — 1 > 0. Hence, indeed
g | H is continuous, being continuous at the origin.

Summary We characterize the simple rational functions of n real variables which
are discontinuous but continuous when restricted to any hyperplane. The charac-
terization is expressed by simple inequalities with respect to the exponents of each

rlrg 11$Qz§
x%Jr:v% ’ $%+$§+9§§ ’

variable. In particular, the following functions have such properties:

2.3
_ T1TariTy _ T1®2L3Tg ,
af+aS+aS+a2]0" and 2 toitaltal? More generally, for every n > 1 the functions
I1I2~v;tn71x% a%x?’tzﬁn

= and —n constitute the examples we mentioned
7;%+w%+~~~+xiﬁ11+m%n I%"+“'+$?Zn+”'+$%"2 p

above. Finally, the smallest degree of the denominators of such examples is also
investigated.
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