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Abstract. We investigate the additivity A and lineability L cardinal
coefficients for the following classes of functions: ES \ SES of every-
where surjective functions that are not strongly everywhere surjective,
Darboux-like, Sierpiński-Zygmund, surjective, and their corresponding
intersections. The classes SES and ES have been shown to be 2c-lineable.
In contrast, although we prove here that ES \ SES is c+-lineable, it
is still unclear whether it can be proved in ZFC that ES \SES is 2c-
lineable. Moreover, we prove that if c is a regular cardinal number, then
A(ES \ SES) ≤ c. This shows that, for the class ES \SES, there is an
unusual big gap between the numbers A and L.

1. Preliminaries

Since the beginning of the 21st century many authors have become inter-
ested in the study of linearity within the non-linear settings and searched for
linear structures in the mathematical objects enjoying certain special or un-
expected properties. Vector spaces and linear algebras are elegant mathemat-
ical structures which, at first glance, seem to be “forbidden” in the families
of “strange” objects. In this line of research one typically starts with an ex-
ample of a function having some special (often referred to as) “pathological”
property, like the classical example of a continuous nowhere differentiable
function, also known as Weierstrass’ monster. Can a class of all such exam-
ples admit a large subclass with a linear structure? Since, typically, coming
up with a first single concrete example of such a function is difficult, there
is a natural tendency to think that there cannot be too many functions of
such kind. So, it seems unlikely, that such a class of examples could con-
tain a subclass forming an infinitely dimensional vector space. However,
in recent years, this intuition has been repeatedly proven incorrect: “large”
linear spaces and algebras have been found within the classes of “strange”
objects (usually functions) that come from the multitude of mathematical
areas: from Linear Chaos to Real and Complex Analysis [5, 6, 12, 13, 23],
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passing through Set Theory [27] and Linear and Multilinear Algebra, and
within Operator Theory, Topology, Measure Theory, Abstract Algebra, and
Probability Theory. For a complete modern state of the art of this area of
research see [2, 14].

The notion of a large linear structure within a given class, intuitively
discussed above, is nowadays typically expressed in the following more pre-
cise terminology: given a (finite or infinite) cardinal number κ, a subset M
of a vector space X is called κ-lineable in X if there exists a linear space
Y ⊂ M ∪ {0} of dimension κ (see, e.g., [2–5, 7, 14, 25, 34].) Intuitively, lin-
eability research seeks for a linear structure within M ∪ {0} of the highest
possible dimension. However, there exist sets M , with no linear substruc-
tures of highest dimension. (For a simple example of M that admits a linear
subspace of any finite dimension but is not ω-lineable see, e.g., [5].) There-
fore, the intuition of the “maximal lineability number” is best expressed as
the lineability coefficient L defined, see below, as the least cardinal for which
there is no linear substructure of that cardinality. (See [16].)

From this point on, we assume that all the structures M we consider
are the classes F ⊂ RR (that is, of functions from R to R), where RR is
considered as a linear space over R.

Definition 1.1. The lineability coefficient of a class F ⊂ RR is defined as

L(F) = min{κ :

there is no κ-dimensional vector space V with V ⊂ F ∪ {0}}.

Notice that F admits the maximal lineability number if, and only if, L(F)
is a cardinal successor, that is, L(F) is of the form κ+.

Lately, and since the appearance of the work [26] (see, also, [10, 16]), the
notion of lineability has been linked (see Proposition 1.3) to that of the
additivity coefficient A, which was introduced by Natkaniec in [30, 31] and
thoroughly studied by the first named author [15,17–19,22] and Jordan [28].

Definition 1.2. Let F ⊂ RR. The additivity of F is defined as the following
cardinal number:

A(F) = min
({
|F | : F ⊂ RR &

(
∀g ∈ RR)(g + F 6⊂ F)

}
∪
{

(2c)+
})
,

where (2c)+ stands for the successor cardinal of 2c.

The above definition gives us, roughly, the biggest cardinal number κ for
which every family G ⊂ RR, with |G| < κ, can be translated into F .

Notice that the operators A and L are clearly monotone, in a sense that

if F ⊂ G ⊂ RR, then A(F) ≤ A(G) and L(F) ≤ L(G).
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PES // SES

))RRRRRRRRRRRRRRR // ES // D

��
RR \ SZ

Figure 1. The inclusions between Darboux and Sierpiński-
Zygmund classes of functions, indicated by arrows. The
dashed arrow indicates the implication that is consistent with
(follows from CPA) but independent of the ZFC axioms of set
theory.

To state the next proposition, linking A and L, we need also the following
notation

st(F) = {f ∈ F : rf ∈ F for every non-zero r ∈ R}.

Notice that all the classes F defined below satisfy st(F) = F .
The following result comes from [16].

Proposition 1.3. If F ( RR and st(F) = F , then A(F) > c implies that
A(F) < L(F). �

The results presented in this paper constitute research on the coefficients
A and L for several classes of real functions and some of their algebraic
combinations. For completeness sake, we provide below the full definitions
of these classes.

Definition 1.4. Given a function f : R→ R, we say (see, e.g., [2, 16]) that:

(i) f is surjective (f ∈ S) if f [R] = R.
(ii) f is everywhere surjective (f ∈ ES) if f [G] = R for every nonempty

open set G ⊂ R.
(iii) f is strongly everywhere surjective (f ∈ SES) if f−1(y) ∩ G has

cardinality c for every y ∈ R and every nonempty open set G ⊂ R;
this class was also studied in [18] (under the name of c-strongly
Darboux functions).

(iv) f is perfectly everywhere surjective (f ∈ PES) if f [P ] = R for every
perfect set P ⊂ R.

(v) f is Sierpiński-Zygmund (f ∈ SZ) if f � X is discontinuous for
every X ∈ [R]c (i.e., a subset X of R of cardinality continuum c).

(vi) f ∈ F<c if f−1(y) has cardinality smaller than c for every y ∈ R.
(vii) f is Darboux (f ∈ D) if f [K] is a connected subset of R (i.e., an

interval) for every connected K ⊂ R.

Remark 1.5. The inclusions between some of these classes are shown in Fig-
ure 1. In particular, SZ∩SES = ∅ and ES∩SZ ⊂ ES \SES.
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AC // Conn // D
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Figure 2. Classes of Darboux-like functions from R to R, C
denotes the class of continuous functions. (The arrows indi-
cate strict inclusions.)

The maps defined below are commonly known as Darboux-like functions.
The relations within these classes of functions are represented in Figure 2.
(See, e.g., [16].)

Definition 1.6. Given a function f : R→ R, we say that:
(i) f has the Cantor intermediate value property (f ∈ CIVP) if for

every x, y ∈ R and for each perfect set K between f(x) and f(y)
there is a perfect set C between x and y such that f [C] ⊂ K.

(ii) f has the strong Cantor intermediate value property (f ∈ SCIVP)
if for every x, y ∈ R and for each perfect set K between f(x) and
f(y) there is a perfect set C between x and y such that f [C] ⊂ K
and f � C is continuous.

(iii) f has perfect roads (f ∈ PR) if for every x ∈ R there exists a perfect
set P ⊂ R having x as a bilateral (i.e., two-sided) limit point for
which f � P is continuous at x.

(iv) f : X → R is almost continuous (f ∈ AC) in the sense of Stallings
if each open subset of X × R containing the graph of f contains
also the graph of a continuous function from X to R;

(v) for a topological space X, g : X → R is a connectivity function
(f ∈ Conn(X)) if the graph of g � Z is connected in Z × R for any
connected subset Z of X; we write Conn for Conn(R);

(vi) f is extendable (f ∈ Ext) provided that there exists a connectivity
function F : R×[0, 1]→ R such that f(x) = F (x, 0) for every x ∈ R;

(vii) f is peripherally continuous (f ∈ PC) if for every x ∈ R and for all
pairs of open sets U and V containing x and f(x), respectively, there
exists an open subset W of U such that x ∈W and f [bd(W )] ⊂ V ;
note that any function f with a graph dense in R2 is PC. Here,
bd(W ) denotes the boundary of W .

In the rest of this section we briefly summarize what is known about all
these classes in terms of inclusions and coefficients A and L.

We must remark that all of these classes coincide when we restrict our-
selves to functions in the first class of Baire. In contrast,

Proposition 1.7. Within the class SES of strongly everywhere surjective
functions, the inclusions presented in Figure 2 remain strict.
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Proof. The inclusion AC ⊂ Conn is implicitly shown in [33]. For the other in-
clusions, see the examples of additive functions described in [17]. (In general
such functions must be ES but not necessarily SES. However, the examples
given in [17] are SES as well.) �

Proposition 1.8.
(i) A(PC) = 2c;
(ii) A(Ext) = A(SCIVP) = A(CIVP) = A(PR) = c+;
(iii) c+ ≤ A(AC) = A(Conn) = A(D) = A(ES) = A(SES) = A(PES)

≤ 2c and this is all that can be proved in ZFC.

Proof. The results on all coefficients in (iii) except for A(PES) are proved
in [18]. The value of A(PES) is obtained in [26]. All other results are proved
in [22]. (See also [15].) �

Proposition 1.9.
(i) L(F ∩ G) = (2c)+ for the families F ∈ {SES,ES,S,RR} and G ∈
{Ext,SCIVP,CIVP,PR,AC,Conn,D,PC,RR}.

(ii) L(C ∩S) = c+, while L(C ∩ES) = L(C ∩SES) = 1.
(iii) L(G ∩ PES) = (2c)+ for any G ∈ {AC,Conn,D,PC,RR}.
(iv) L(PES∩G) = 1 for any G ∈ {Ext, SCIVP,CIVP,PR}.

Proof. (i): This is an immediate consequence of [16, Prop. 3.2] and the
monotonicity property of the operator L.

(ii): For the first part see, e.g., [1, 34]. The second part follows from the
fact that C ∩ES = ∅.

(iii): Let J be the class of Jones functions, as defined in [26]:

J = {f ∈ RR : C ∩ f 6= ∅ for every closed C ⊂ R2 with |domC| = c}.
Then J ⊂ AC∩PES. (The inclusion J ⊂ PES is obvious, while J ⊂ AC
is proved in [29].) Thus, (iii) follows from the monotonicity property of the
operator L and the equation L(J) = (2c)+, which is proved in [24].

(iv): This follows from the fact that PR∩PES = ∅. �

After this preliminary section and first cycle of ideas and notions, our
main goal in what follows is to give a thorough study of the additivity and
lineability numbers of the class ES \SES, the classes related to it, and some
of the intersections between them that have not been discussed above. In
particular, the problem of the value L for ES \SES, and related classes, have,
lately, attracted the attention of several authors. (See, e.g., [9, 25, 32].) So
far, and since the arrows in Remark 1.5 are all strict inclusions, the class SES
(and thus ES) has been shown to be 2c-lineable. However, the ZFC value of
L(ES \ SES) remains, still, a mystery.

2. New results on A and L for the classes defined above

The following theorem generalizes Proposition 1.8 by giving the values
of A for the classes not covered there.
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Theorem 2.1.
(i) For every F ∈ {Ext,SCIVP,CIVP,PR}, G ∈ {SES,ES,S,RR},

and H ∈ {AC,Conn,D,PC,RR} we have A(F ∩ G ∩H) = c+.
(ii) For every F ∈ {AC,Conn,D,PC} and G ∈ {PES, SES,ES,S} we

have c+ ≤ A(F ∩ G) = A(G) = A(AC) = A(Conn) = A(D) ≤ 2c

and this is all that can be proved in ZFC.

Proof. (i): Clearly we have

A(Ext∩SES) ≤ A(F ∩ G ∩H) ≤ A(PR) = c+,

where A(PR) = c+ follows from Proposition 1.8. Thus, it is enough to prove
that A(Ext∩SES) ≥ c+. To see this, fix F ⊂ RR with |F | = c. There exists
g ∈ RR with g + F ⊂ Ext∩SES. First notice that A(Ext) ≥ c+ implies
the existence of g with g + F ⊂ Ext. However, an examination of the proof
of A(Ext) ≥ c+ from [22] shows, that we can choose g such that for some
c-dense subset D of R, any modification ḡ of g on D still has the property
that g + F ⊂ Ext. (In [22, lemma 3.2] choose sets Dξ ⊃ hξ[M ] disjoint
with some c-dense D ⊂ R.) Now, an easy induction shows that there exists
an h : D → R such that h + f � D is SES for every f ∈ F . Therefore, if
ḡ � D = h and ḡ agrees with g outside D, then ḡ+F ⊂ Ext∩SES, as needed.

(ii): First, notice that it is enough to prove that

A(S) ≤ A(AC∩PES). (1)

Indeed, the inclusions between the classes and inequality (1) imply that
A(AC∩PES) ≤ A(F ∩ G) ≤ A(G) ≤ A(S) ≤ A(AC∩PES). Therefore,
all these quantities are equal and, by Proposition 1.8, we conclude that
c+ ≤ A(F ∩ G) = A(G) = A(SES) = A(AC) = A(Conn) = A(D) ≤ 2c, as
the statement claims.

To see (1), first notice that

A(S) ≤ A(ES).

To see this inequality, choose κ < A(S) and F ⊂ RR with |F | = κ. We
need to find a g ∈ RR with g + F ⊂ ES. For this, let J be the family of all
non-empty intervals and let {PI ∈ [I]c : I ∈ J } be a partition of R. For every
I ∈ J the family {f � PI : f ∈ F} has cardinality not bigger than κ < A(S).
Therefore, there exists a gI : PI → R such that (gI + f � PI)[PI ] = R for
every f ∈ F . Then, g =

⋃
I∈J gI ∈ RR and g + F ⊂ ES, as required.

Now, let J the class of Jones functions. (See the proof of (iii) in Propo-
sition 1.9.) Then J ⊂ AC∩PES. Besides, it is proved in [26] that A(J) =
A(SES). Therefore,

A(S) ≤ A(ES) = A(SES) = A(J) ≤ A(AC∩PES),

proving the needed inequality (1). �

Next, we turn our attention to the families SZ, F<c, and RR\SES and their
intersections. We start here with noticing that SZ∩(SCIVP∪SES) = ∅.
This immediately implies



SURJECTIVITY AND CARDINAL INVARIANTS 7

Proposition 2.2. A(F) = L(F) = 1 for any F ⊂ SZ∩(SCIVP∪SES).

Therefore, we will drop the classes from Proposition 2.2 from further con-
siderations. The next result can be found in [27].

Proposition 2.3. L(SZ) is the smallest cardinality for which there is no
almost disjoint family on c. In particular, c++ ≤ L(SZ) ≤ (2c)+ and this is
all that can be proved in ZFC.

Recall also the following result from [20].

Proposition 2.4. A(SZ) is equal to the number

dc = min{|F | : F ⊂ cc & ∀h ∈ cc ∃f ∈ F |f ∩ h| = c}.

In particular, c+ ≤ A(SZ) ≤ 2c and this is all that can be proved in ZFC.

From this, we immediately conclude

Corollary 2.5. The equations L(SZ) = (2c)+ and A(SZ) = 2c are indepen-
dent of ZFC.

The following theorem shows that we can still have some ZFC results
related to the number A(SZ), in spite of the fact that its exact value is not
determined in ZFC.

Theorem 2.6. A(F ∩ SZ) = c+ for F ∈ {CIVP,PR} and A(PC∩SZ) =
A(SZ).

Proof. For the first part notice that CIVP∩SZ ⊂ PR∩SZ ⊂ PR implies
A(CIVP∩SZ) ≤ A(PR∩SZ) ≤ A(PR) = c+, where A(PR) = c+ follows
from Proposition 1.8. Thus, it is enough to show that A(CIVP∩SZ) ≥ c+.

Let F ⊂ RR with |F | ≤ c. We will construct a function g such that
g+F ⊂ SZ and, besides, for every f ∈ F , every perfect setK, and every open
interval (a, b), there exists a perfect set C ⊂ (a, b) such that (g+ f)[C] ⊂ K.
The latter claim implies that g + F ⊂ CIVP.

To this end, let G = {(a, b) : a < b}, P = {K ⊂ R : K is perfect}, and
B be that family of all Borel functions from R to R. Enumerate G × P × F
as {〈Iα,Kα, fα〉 : α < c}, B as {ϕα : α < c}, and R as {xα : α < c}. It is a
standard fact that we can choose a sequence 〈Xα ⊂ Iα : α < c〉 forming a
partition of R with each Xα containing a perfect set Cα.

We define {g(xα) : α < c}, by induction on α < c, as follows. For every
α < c choose the unique β < c with xα ∈ Xβ and pick

g(xα) ∈ (−fβ(xα) +Kβ) \ {ϕγ(xα)− fδ(xα) : γ, δ < α}.

It is a simple task to check that the so constructed function g satisfies what
we need. Indeed, every g + fδ ∈ SZ since |(g + fδ) ∩ ϕγ | < c for every
Borel function ϕγ : (g+ fδ)(xα) = ϕγ(xα) implies that α ≤ max{γ, δ}. Also,
to see that g + f ∈ CIVP for every f ∈ F , choose a perfect set K ⊂ R
and a non-trivial interval I = (a, b). Then, there exists a β < c for which
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〈Iβ,Kβ, fβ〉 = 〈I,K, f〉. So, there is a perfect set Cβ contained in Xβ and we
have (g+f)(x) = (g+fβ)(x) ∈ Kβ = K for every x ∈ Cβ ⊂ Xβ ⊂ Iβ = (a, b).

For the second part, take F ⊂ RR with |F | < A(SZ). Then there exists
an h ∈ RR such that h+ F ⊂ SZ. As |h+ F | = |F | < A(SZ) ≤ 2c = A(PC),
there exists g ∈ RR such that g + (h+ F ) ⊂ PC. Actually, according to the
proof of [22, Thm. 1.7(3)], g can be chosen to take values only in Q. Then,
it is immediate that, for every h + f ∈ SZ, we have also g + (h + f) ∈ SZ.
Therefore, (g + h) + F ⊂ PC∩SZ. �

The next two theorems show that the classes SZ and F<c have the same
coefficients A and L. This stands in contrast with what we prove later: that
the classes SZ∩ES and F<c ∩ES are actually quite different with respect to
the operators A and L.

Theorem 2.7. L(F<c) = L(SZ).

Proof. The inequality L(SZ) ≤ L(F<c) is justified by the inclusion SZ ⊂ F<c.
To see the other inequality, notice that if κ < L(F<c), then the class F<c

is κ-lineable with some space W witnessing this. Then, there exists an
almost disjoint family of subsets of c of cardinality κ: the graphs of functions
in W are an example. Hence, by Proposition 2.3, the class SZ is κ-lineable,
implying that κ < L(SZ). So, indeed L(F<c) ≤ L(SZ), as needed. �

Similarly, we have

Theorem 2.8. A(F<c) = A(SZ) = dc.

Proof. The equation A(SZ) = dc follows from Proposition 2.3, while the
inequality A(SZ) ≤ A(F<c) is justified by the inclusion SZ ⊂ F<c. Therefore,
it is enough to prove that A(F<c) ≤ dc. To see this, choose a cardinal
κ < A(F<c). It is enough to show that κ < dc.

Indeed, choose an F ⊂ RR such that |F | ≤ κ. It is enough to show that
|F | < dc, that is, that there is an h ∈ RR such that |f ∩ h| < c for every
f ∈ F . But |F | < A(F<c) implies that there exists a g ∈ RR for which we
have g + F ⊂ F<c. Then h = −g has the property that, for every f ∈ F ,
|(−h+ f)−1(0)| < c, that is, |f ∩ h| < c, as needed. �

Thus, we have the following analog of Corollary 2.5.

Corollary 2.9. The equations L(F<c) = (2c)+ and A(F<c) = 2c are inde-
pendent of ZFC.

The next theorem shows that A(ES \SES) is surprisingly small.

Theorem 2.10. If c is regular, then A(ES \ SES) ≤ c and A(F<c ∩ S) ≤ c.

Proof. Let {rξ : ξ < c} be an enumeration of R and, for every ξ < c, define
Aξ = {rζ : ζ < ξ}. Let F = {rχAξ

+ y : r, y ∈ R & ξ < c}, where χA is the
characteristic function of A. Then |F | = c. Fix a g : R → R. We will see
that g + F 6⊂ ES \ SES.
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Indeed, this is clearly the case when g = g + χA0 ∈ SES. So, assume that
g /∈ SES and let a, b, y ∈ R be such that a < b and A = g−1(y) ∩ (a, b)
has cardinality smaller than c. Then, A = (g − y)−1(0) ∩ (a, b). Let ξ < c
be such that A ⊂ Aξ and choose a non-zero r ∈ R \ (g − y)[Aξ]. Then
g(x)−y 6= rχAξ

(x) for every x ∈ (a, b): for x ∈ Aξ by the choice of r and for
x ∈ (a, b)\Aξ as g(x)−y 6= 0 = rχAξ

(x). In particular, (g−y−rχAξ
)(x) 6= 0

for every x ∈ (a, b), that is, g+ (−rχAξ
− y) /∈ ES while f = −rχAξ

− y ∈ F ,
finishing the proof.

The inequality A(F<c ∩ S) ≤ c is justified by the same family F . More
precisely, for every g ∈ RR, g + F 6⊂ F<c ∩ S since either g = g + χA0 /∈ F<c

or otherwise the above argument works for A = g−1(y) for every y ∈ R. �

We can now get a quite precise view of how different additivity and line-
ability coefficients can be for the intersections of SZ with classes of surjective
Darboux-like functions. This is shown in the following result.

Theorem 2.11.
(i) It is consistent with ZFC (it follows from the Covering Property

Axiom, CPA, [21]) that SZ∩(D∪S) = ∅. In this case, A(F) =
L(F) = 1 for any F ⊂ SZ∩(D∪S).

(ii) If the union of less than continuum many meager sets does not
cover R (i.e., when cov(M) = c), then L(SZ∩AC∩ES) ≥ c++.

(iii) If c is regular, then A(SZ∩S) ≤ c.
(iv) It is consistent with ZFC, follows from GCH, that

A(SZ∩F ∩ G) ≤ c and L(SZ∩F ∩ G) = (2c)+

for every F ∈ {AC,Conn,D,RR} and G ∈ {ES,S}.

Proof. (i) The equation SZ∩(D∪S) = ∅ is consistent with ZFC since it
holds in the iterated perfect set model, as it was proved by Balcerzak, the
first named author, and Natkaniec in [8]. For the proof that this follows from
the CPA axiom see [21].

(ii) In [32] it is proved that CH implies that L(SZ∩AC) ≥ c++. A quick
examination of the proof reveals that the argument works also under this
weaker assumption and that it actually gives L(SZ∩AC∩ES) ≥ c++.

(iii) It follows from Theorem 2.10, since SZ∩S ⊂ F<c ∩ S.
(iv) It follows from (ii) and (iii). �

Let us recall that, in [25], the authors showed that ES \ SES is c-lineable.
However, the sets ES and SES are both 2c-lineable, see [5, 25]. Thus, it is
natural to wonder about the maximal lineability of ES \SES. Let us first
study the lineability of the class F<c ∩ ES, which is contained in ES \ SES.

Theorem 2.12. If c is a regular cardinal, then F<c ∩ES is c+-lineable, that
is, L(F<c ∩ ES) > c+.

Proof. Let G be a linear subspace of (F<c ∩ ES) ∪ {0} of cardinality not
bigger than c. It is enough to show that G is not maximal, since then we can
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keep extending the linear subspaces of (F<c ∩ ES) ∪ {0} until we get one of
cardinality c+. To see that G is not maximal, it is enough to find an f : R→ R
for which f − G ⊂ F<c ∩ ES, since then R(f − G) ∪ G ⊂ (F<c ∩ ES) ∪ {0} is
a desired proper extension of G.

So, let {〈gξ, rξ〉 : ξ < c} be an enumeration of G × R with no repetitions.
Define, by induction on ξ < c, a sequence {Xξ ∈ [R]ω : ξ < c} of pairwise
disjoint sets and the values of f � Xξ such that

(Iξ) if rξ 6∈
⋃
η<ξXη, then rξ ∈ Xξ and f(rξ) /∈ {gζ(rξ) + rζ : ζ < ξ};

(Jξ) Dξ = Xξ \ {rξ} is countable, dense in R, and disjoint with the
set

⋃
ζ<ξ(gζ − gξ)−1(rξ − rζ); moreover, for every d ∈ Dξ we put

f(d) = gξ(d) + rξ.
The choice of the set Dξ in (Jξ) is possible by the set-theoretical assumption
we made, the regularity of c, since each set (gζ−gξ)−1(rξ−rζ) is of cardinality
smaller than c (as either gζ−gξ ∈ F<c or gζ = gξ, in which case rζ 6= rξ, since
our enumeration of G × R is with no repetitions). Notice that (Iξ) ensures
that R =

⋃
ξ<cXξ.

To see that f − G ⊂ F<c ∩ ES, choose a g ∈ G and let r ∈ R. We need to
show that (f − g)−1(r) is a dense subset of R of cardinality less than c. To
see this, choose a ξ < c such that 〈g, r〉 = 〈gξ, rξ〉. Then, by (Jξ), we have
(f − g)(d) = (f − gξ)(d) = rξ = r for every d ∈ Dξ. Therefore, (f − g)−1(r)
contains the dense set Dξ.

To see that (f − g)−1(r) has cardinality less than c it is enough to show
that (f − g)−1(r) = (f − gξ)−1(rξ) is disjoint with Xα whenever ξ < α < c.
So, choose an x ∈ Xα. We need to show that (f − gξ)(x) 6= rξ, that is, that
f(x) 6= gξ(x) + rξ.

Indeed, if x = rα, then f(x) = f(rα) 6= gξ(rα) + rξ = gξ(x) + rξ is ensured
by (Iα), while for x = d ∈ Dξ = Xξ \ {rξ} the condition (Jα) implies that
(gξ− gα)(d) 6= rα− rξ so, once again, f(x) = f(d) = gα(d) + rα 6= gξ(d) + rξ,
finishing the proof. �

Notice also

Theorem 2.13. L(SZ∩S) = L(SZ∩ES) ≤ L(F<c ∩ ES) = L(F<c ∩ S) and
this is all that can be proved in ZFC, as GCH implies that L(SZ∩ES) =
L(F<c ∩ ES) while CPA implies that L(SZ∩ES) = 1 < c+ < L(F<c ∩ ES).

Proof. First we prove the equation L(F<c ∩ S) = L(F<c ∩ ES). Clearly, we
have L(F<c ∩ ES) ≤ L(F<c ∩ S) as F<c ∩ ES ⊂ F<c ∩ S. To see the other
inequality, let κ < L(F<c ∩ S) and let W witness κ-lineability of F<c ∩ S
(i.e., W is a linear subspace of (F<c ∩S)∪ {0} of dimension κ). It is enough
to prove that F<c ∩ ES is κ-lineable.

Indeed, let V ⊂ R be a Vitali set and let h : V → R be a bijection. For
f ∈ RR define f̂ ∈ RR via the formula f̂(v + q) = f(h(v)), where v ∈ V and
q ∈ Q. It is easy to see that Ŵ = {f̂ : f ∈ W} witnesses κ-lineability of
F<c ∩ ES.
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Next we prove L(SZ∩S) = L(SZ∩ES). As L(SZ∩ES) ≤ L(SZ∩S) fol-
lows from SZ∩ES ⊂ SZ∩S, it is enough to prove the other inequality. So,
let κ < L(SZ∩S) and let W witness κ-lineability of SZ∩S. It is enough to
prove that SZ∩ES is κ-lineable.

For this, let {Pn : n < ω} be a family of pairwise disjoint compact perfect
sets such that each non-empty open interval contains one of the Pn’s. For
every n < ω let hn be a bijection from R onto Sn ⊂ Pn such that hn � (R \Q)
is a homeomorphic embedding. (It exists, since every perfect set in R is
a universal space for zero-dimensional separable metric spaces.) Let T =

R \
⋃
n<ω Sn and for every f ∈ RR let f̂ = (f � T ) ∪

⋃
n<ω(f ◦ h−1n ). It is

easy to see that Ŵ = {f̂ : f ∈ W} witnesses κ-lineability of SZ∩ES. (For
every f ∈ SZ the map f̂ is also SZ, since it is a countable union of SZ maps:
f � T and f ◦ h−1n , where f ◦ h−1n ∈ SZ since it is a union of a countable set
and of f ◦ (h−1n � hn[R \Q]) ∈ SZ.)

Finally, the inequality L(SZ∩ES) ≤ L(F<c∩ES) follows from the inclusion
SZ∩ES ⊂ F<c ∩ ES. GCH implies equality, and then, by Theorem 2.11(ii),
c++ ≤ L(SZ∩AC∩ES) ≤ L(SZ∩ES) ≤ L(F<c ∩ ES) ≤ (2c)+ = c++. On
the other hand, CPA implies that SZ∩S = ∅, giving L(SZ∩ES) = 1, and
that c = ω2 is regular, hence, by Theorem 2.12, L(F<c ∩ ES) > c+. �

Theorem 2.14. L(ES \ SES) > cκ for every κ < c.

Proof. Let ω ≤ κ < c. We need to show that ES \SES is cκ-lineable. Let
{Xξ : ξ < κ} be a partition of R into c-dense sets. For every ξ < κ choose
an fξ ∈ RR such that fξ � (R \Xξ) ≡ 0 and, for every y ∈ R, Xξ ∩ f−1ξ (y) is
a countable dense subset of R. Notice that the family

F =

{∑
ξ<κ

h(ξ)fξ : h ∈ Rκ
}

is as needed. �

As a consequence of the previous results, we have:

Corollary 2.15. L(ES \ SES) > c+.

Proof. If c is regular, this follows from Theorem 2.12 and the fact that

ES \ SES ⊃ ES∩F<c.

If c is singular, this follows from Theorem 2.14 used with κ = cof(c). �

3. Open problems

We have elucidated many of the values of lineability and additivity coef-
ficients for the considered families of functions. However, the exact values
of these operators for some of these classes are still unknown as we indicate
below.



12 CIESIELSKI, GÁMEZ, MAZZA, AND SEOANE

A consequence of Corollary 2.15 is that under the assumption of GCH (or
just that 2c = c+) we have L(ES \ SES) = (2c)+. However, the answer to the
following question is still unknown.

Problem 3.1. Can equation L(ES \ SES) = (2c)+ be proved in ZFC?

Concerning the additivity operator, Theorem 2.10 assures that, assuming
that c is a regular cardinal, the values of A(ES \SES) and A(ES∩F<c) do
not exceed c. But, what can be said about these coefficients in ZFC?

Problem 3.2. Can we prove A(ES \SES) ≤ c in ZFC? What about
A(ES∩F<c) ≤ c? What else can be said about A(ES \ ES) or A(ES∩F<c)?

According to Theorem 2.11, the lineability numbers for S∩SZ and D∩SZ
can be as small as 1 and as large as (2c)+. Nevertheless, the exact relations
between these values remains unclear.

Problem 3.3. Are any of the coefficients A(D∩SZ), A(ES∩SZ), and
A(S∩SZ) provably equal (in ZFC)? What about L(D∩SZ) and L(S∩SZ)?

Related to this last question is also the following

Problem 3.4. Does the assumption SZ∩S 6= ∅ imply that SZ∩S is c+-
lineable? Does it imply that SZ∩S is κ-lineable, where κ = L(SZ)?
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