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Abstract

We prove that the following self-mappings must have unique fixed points: point-
wise contractive, (PC), maps on compact rectifiably path connected spaces; uni-
formly locally contractive, (ULC), maps on complete connected spaces.
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1. Introduction

Let 〈X, d〉 be a complete metric space. A mapping f : X → X is contractive
(with a contraction constant λ), abbreviated (C), provided there exists a λ ∈
[0, 1) such that d(f(x), f(y)) ≤ λd(x, y) for every x, y ∈ X. The Banach Fixed
Point Theorem also known as Contraction Mapping Principle, [1] states the
following:

Theorem 1.1. (Banach 1922) If X is a complete metric space and f : X → X
is contractive, then f has a unique fixed point, that is, there exists a unique
ξ ∈ X such that f(ξ) = ξ.

This Banach result inspired many generalizations, among which we are the
most interested in those, where the assumption of contractiveness is relaxed to
a local condition, see [5], [6], [17], [4], [10], [12], and the survey [16]. This work
was the most influenced by the 1978 theorem of Hu and Kirk [10], see below,
with a proof corrected, in 1982, by Jungck [12].
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Definition 1.2. A map f : X → X is pointwise contractive, denoted (PC), if
for every point x ∈ X there exists a λx ∈ [0, 1) and an open neighborhood
Ux ⊆ X of x such that d(f(x), f(y)) ≤ λxd(x, y) for all y ∈ Ux.1 We say that f
is uniformly pointwise contractive, denoted (uPC),2 provided the same λ ∈ [0, 1)
works for all x ∈ X.

Theorem 1.3. (Hu and Kirk 1978; Jungck 1982) If 〈X, d〉 is a rectifiably
path connected complete metric space and a map f : X → X is (uPC), then f
has a unique fixed point.

Recall, that a metric space 〈X, d〉 is rectifiably path connected provided any
two points x, y ∈ X can be connected in X by a path p : [0, 1] → X of finite
length `(p), that is, by a continuous map p satisfying p(0) = x and p(1) =
y, and having a finite length `(p) defined as the supremum over all numbers:∑n

i=1 d(p(ti), p(ti−1)), where 0 < n < ω and 0 = t0 < t1 < · · · < tn = 1.
It is worth noting that Munkres [14, p. 182] provides an example of a (PC)

map f : R→ R, f(x) = 1
2

(
x+
√
x2 + 1

)
, without fixed or even periodic points.

This shows that in Theorem 1.3 the assumption of (uPC) cannot be weakened
to (PC). One of two principal results of this paper is to show, that the fixed
point result with the weaker requirement of f being (PC) remains true, when
we additionally assume that X is compact.

Theorem 1.4. Assume that 〈X, d〉 is compact and rectifiably path connected
metric space. If f : 〈X, d〉 → 〈X, d〉 is (PC), then f has a unique fixed point.

Theorem 1.4 stands in contrast with the main result of [3, Theorem 1], where
we construct a (uPC)3 self-map on a compact (zero-dimensional) subset X of
R with every orbit being dense, hence having neither fixed nor periodic points.

Our second result on fixed points, without the assumption that the space
is rectifiably path connected, requires the following natural definition, in which
B(x, ε) denotes an open ball centered at x and of radius ε.

Definition 1.5. A map f : X → X is locally contractive, denoted (LC), if for
every x ∈ X there exist numbers λx ∈ [0, 1) and εx > 0 such that f � B(x, εx)
is contractive with constant λx. Moreover, f is uniformly locally contractive,
(ULC), if the same λ and ε work for all x ∈ X, which we also indicate by saying
that f is (ε, λ)-(ULC).

Theorem 1.6. Assume that 〈X, d〉 is complete and that f : X → X is (ULC).

(i) If X is connected, then f has a unique fixed point.

1So, a differentiable function f : R → R is (PC) if, and only if, |f ′(x)| < 1 for every x ∈ R,
see Fact 3.1.

2The notion of (uPC) maps was introduced by Holmes [8], where it was called local radial
contraction. (See also [11, 10].) The term radial is often used elsewhere in mathematics and
we find the adverb pointwise to be more adequate for this notion, see for example [9, p 104].

3In [3] the property (PC) is denoted (LRC), for locally radially contractive, and (uPC) is
denoted as (uLRC).
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(ii) If X has a finite number of components, then f has a periodic point, that
is, f (n) = f ◦ · · · ◦ f has a fixed point for some n > 0.

Notice, that for the case of compact X, the conclusion of Theorem 1.6 follows
from the results of Edelstein [6] we discuss in Section 4.

The following examples show that the map f in Theorem 1.6 need to have
neither periodic points, when X has an infinite number of components, nor fixed
points, when X is disconnected with a finite number of components.

Example 1.7. Consider X =
⋃

n<ω[n, n+ 2−(n+1)] with the standard distance
and define f : X → X by putting f(x) = n + 1 + x−n

2 for every n < ω and

x ∈ [n, n + 2−(n+1)]. Then X is complete, while f is a ( 1
2 ,

1
2 )-(ULC) map with

no periodic point.

Example 1.8. Consider X = [−2,−1] ∪ [1, 2] with the standard distance and
define f : X → X by putting f(x) = − x

|x| for every x ∈ X. Then X is compact,

while f is a (ULC) map with no fixed point.

2. Proof of Theorem 1.6

For ε > 0, we say that X is ε-chainable, provided for every p, q ∈ X there
exists a finite sequence s = 〈x0, x1, . . . , xn〉, referred to as an ε-chain from p to
q, such that x0 = p, xn = q, and d(xi, xi+1) ≤ ε for every i < n. The length of
the ε-chain s is defined as l(s) =

∑
i<n d(xi+1, xi).

Fact 2.1. Connected spaces are ε-chainable for any ε > 0.

Proof. (See Engelking [7, Exercise 6.1.D(a) p 359].) Fix x, y ∈ X and ε > 0.
Define, by induction on n < ω, a sequence 〈Bn ⊂ X : n < ω〉 as B0 = {x} and
Bn+1 = {z ∈ X : ∃b ∈ Bn(d(z, b) < ε)}. The union

⋃
n<ω Bn 6= ∅ is a clopen,

so by, connectedness of the space X, we have
⋃

n<ω Bn = X. Thus, y ∈ Bn for
some n < ω and so, there exists an ε-chain, with n+ 1 terms, from x to y.

The next lemma shows that in connected spaces a new metric may be de-
fined such that functions locally contractive in original metric become globally
contractive in the new one, see also Lemma 3.6. Some of these ideas can be
found in Rosenholtz [17], Jungck [12], and Hu and Kirk [10].

Lemma 2.2. Let ε > 0 and assume that 〈X, d〉 is connected or, more generally,
ε-chainable. Then the map Dε : X2 → [0,∞) given as

Dε(x, y) = inf{l(s) : s is an ε-chain from x to y}

is a metric on X topologically equivalent to d. Moreover,

(i) If 〈X, d〉 is complete, then so is 〈X,Dε〉.

(ii) If f : 〈X, d〉 → 〈X, d〉 is (η, λ)-(ULC) for some η > ε and λ ∈ [0, 1), then
f : 〈X,Dε〉 → 〈X,Dε〉 is (C) with constant λ.
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Proof. To see that Dε is a metric on X it is enough to show that Dε satisfies
the triangle inequality. So, fix x, y, z ∈ X and δ > 0. Then, there exist the
ε-chains s = 〈x0, . . . , xn〉 from x to y and t = 〈y0, . . . , ym〉 from y to z with
Dε(x, y) ≥ l(s)− δ and Dε(y, z) ≥ l(t)− δ. Since u = 〈x0, . . . , xn, y0, . . . , ym〉 is
an ε-chain from x to z with l(u) = l(s) + l(t), we have

Dε(x, y) +Dε(y, z) ≥ l(s)− δ + l(t)− δ = l(u)− 2δ ≥ Dε(x, z)− 2δ.

Since the constant δ > 0 was arbitrary, we obtain the desired triangle inequality
Dε(x, y) +Dε(y, z) ≥ Dε(x, z).

Notice also that if d(x, y) ≤ ε, then we have Dε(x, y) = d(x, y) (since then
d(x, y) ≤ Dε(x, y) ≤ l(〈x, y〉) = d(x, y)). This implies topological equivalence.

To see (i) notice that for any x, y ∈ X, Dε(x, y) ≥ d(x, y) so any Dε-Cauchy
sequence is also d-Cauchy. Since the metrics are topologically equivalent, if
〈X, d〉 is complete, then so is 〈X,Dε〉.

Suppose that f : 〈X, d〉 → 〈X, d〉 is (η, λ)-(ULC) for some η > ε. To prove
(ii), fix x, y ∈ X. We need to show that Dε(f(x), f(y)) ≤ λDε(x, y). For
this, fix a δ > 0 and let s = 〈x0, . . . , xn〉 be an ε-chain from x to y with
Dε(x, y) ≥ l(s) − δ. Notice that, by (η, λ)-(ULC), for every i < n we have
d(f(xi+1), f(xi)) ≤ λd(xi+1, xi). In particular, t = 〈f(x0), . . . , f(xn)〉 is an ε-
chain and l(t) =

∑
i<n d(f(xi+1), f(xi)) ≤

∑
i<n λd(xi+1, xi) = λl(s). Hence,

Dε(f(x), f(y)) ≤ l(t) ≤ λl(s) ≤ λ(Dε(x, y) + δ). Since δ > 0 was arbitrary, we
obtain the desired inequality Dε(f(x), f(y)) ≤ λDε(x, y).

Proof of Theorem 1.6. The first part follows immediately from the Ba-
nach Contraction Principle, Theorem 1.1, Lemma 2.2, and the fact that every
connected space is ε-chainable for every ε > 0, see Fact 2.1.

To see the second part, let C1, . . . , Cm be the connected components of X.
Since f (n)[C1] is connected, there must exist i < i+k with f (i)[C1] and f (i+k)[C1]
intersecting the same component of X, call it C. Then f (k)[C] ⊂ C. Applying
the first part of the theorem to f (k) � C : C → C, we can find an x ∈ C with
f (k)(x) = x. Thus, x is a periodic point of f .

3. Proof of Theorem 1.4

Now let us highlight the connection between the (PC) property and the
derivative. If P ⊂ X and f : P → X, then, for every x ∈ P ,

D∗f(x) = lim sup
y→x

d(f(x), f(y))

d(x, y)

whenever x is a limit point of P and D∗f(x) = 0 otherwise. We have the
following relationship, which is related to a discussion at [11, p. 569].

Fact 3.1. For any f : X → X, (PC) is equivalent to having D∗f(x) < 1 for all
x ∈ X. Also, (uPC) property simply says that sup{D∗f(x) : x ∈ X} < 1.
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Proof. If D∗f(x) < 1 and λx ∈ (D∗f(x), 1), then d(f(x),f(y))
d(x,y) ≤ λx for all

y ∈ X sufficiently close to x. Conversely, if f is (PC) at x ∈ X with λx ∈ [0, 1),

then d(f(x),f(y))
d(x,y) ≤ λx for all y ∈ X sufficiently close to x, so that D∗f(x) ≤ λx.

An argument for the other equivalence is similar.

We will also need the following 1945 result of Myers [15, page 219]. For
reader convenience, we include a sketch of its proof.

Lemma 3.2. Let 〈X, d〉 be a compact metric space and assume that, for any
n < ω, pn : [0, 1] → X is a rectifiable path such that `(pn � [0, t]) = t`(pn) for
any t ∈ [0, 1]. If L = lim infn→∞ `(pn) < ∞, then there exists a subsequence
〈pnk

: k < ω〉 converging uniformly to a rectifiable path p : [0, 1] → X with
`(p) ≤ L.

Sketch of proof. Select a countable dense subset U = {um : m < ω} of
[0, 1]. By compactness of X, using a diagonal argument, it is possible to find
a subsequence 〈pnk

: k < ω〉 which is pointwise convergent on U , that is, such
that limk→∞ pnk

(um) = p(um) for all m < ω. Then, functions {pnk
: k < ω}

are equicontinuous and converge uniformly to a continuous p : [0, 1] → X with
`(p) ≤ L.

Notice that Lemma 3.2 implies immediately the following 1930 theorem of
Menger [13] that we will need as well.

Fact 3.3. In any compact metric space 〈X, d〉, any two points that can be joined
by a rectifiable curve, can be joined by a length minimizer.

Proof. Assume that x, y ∈ X can be joint by a rectifiable curve. Let L
be the infimum of the lengths of all such curves and choose rectifiable curves
qn : [0, 1]→ X from x to y such that limn→∞ `(qn) = L. For every n < ω define

pn =

{〈
`(qn � [0, t])

`(qn)
, qn(t)

〉
: t ∈ [0, 1]

}
(1)

that is, pn is a reparametrization of qn via (rescaled) path length of (the ini-

tial segments of) qn. Observe that if we let v = `(qn�[0,t])
`(qn)

, then we have

`(pn � [0, v]) = `(qn � [0, t]) = v`(qn) = v`(pn). Application of Lemma 3.2 to the
sequence 〈pn : n < ω〉 gives a path p : [0, 1]→ X from x to y with `(p) = L.

Lemma 3.4. Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces and f : X → Y be contin- In the version of the

paper that appeared

in print, Lemma 3.4

had incorrect

direction of

inequality. This

version corrects the

“typo.”

uous. For every ε, L > 0 the set

KL
ε = {x ∈ X : ρ(f(x), f(x′)) ≤ Ld(x, x′) for all x′ ∈ X with d(x, x′) < ε}

is closed in X.

Proof. It is enough to show that the complement of KL
ε is open in X. Indeed,

if x ∈ X \KL
ε then there is an x′ ∈ B(x, ε) such that ρ(f(x), f(x′)) > Ld(x, x′).

In particular, we have x′ 6= x. Also, by the continuity of the map X 3 x 7→
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ρ(f(x), f(x′)) − Ld(x, x′), there exists a δ > 0 such that ρ(f(x′′), f(x′)) >
Ld(x′′, x′) for every x′′ ∈ B(x, δ). Decreasing δ, if necessary, we can also assume
that d(x′′, x′) < ε for every x′′ ∈ B(x, δ). So, B(x, δ) ⊂ X \KL

ε (as, for every
x′′ ∈ B(x, δ) there exists an x′ ∈ B(x′′, ε) with ρ(f(x′′), f(x′)) > Ld(x′′, x′)).

Corollary 3.5. Assume that f is a (PC) self-map on a complete metric space
〈X, d〉. If Y ⊂ X is closed in X (or, more generally, a Baire space), then there
exists a dense open subset U of Y such that f � U is (LC).

Proof. For 0 < n < ω let Fn = K
(n−1)/n
1/n be defined as in Lemma 3.4.

Since f is (PC), we have X =
⋃∞

n=1 Fn. Then U =
⋃∞

n=1 intY (Y ∩ Fn) is
as needed. Indeed, since Fns are closed, U is dense in Y by Baire category
theorem. Also, if y ∈ intY (Y ∩ Fn), then there is a δy ∈ (0, 1/(2n)) such that
Y ∩ B(y, δy) ⊆ intY (Y ∩ Fn) and then f � Y ∩ B(y, δy) is (C) with constant
(n− 1)/n.

Lemma 3.6. If 〈X, d〉 is a rectifiably path connected metric space, then the
map D0 : X2 → [0,∞) given as

D0(x, y) = inf{`(p) : p is a rectifiable path from x to y}

is a metric on X with the following properties.

(i) If 〈X, d〉 is complete, then so is 〈X,D0〉.

(ii) If P is the range of a rectifiable path p in X, λ ≥ 0, and f : X → X is
such that, for every x ∈ P , D∗(f � P )(x) ≤ λ with respect to the metric d,
then `(f ◦ p) ≤ λ`(p).4

Proof. For (i), see Hu and Kirk [10, Proof of Theorem 1, page 122].
To show (ii), fix an ε > 0. First notice that

d(f(p(t)), f(p(s))) ≤ (λ+ ε)`(p � [s, t]) for every 0 ≤ s < t ≤ 1. (2)

Indeed, for every x ∈ [s, t] we have D∗(f � P )(x) ≤ λ, so there exists a proper
open interval Ux = (x− δx, x+ δx) such that

d(f(p(x)), f(p(x′))) ≤ (λ+ ε)d(p(x), p(x′)) for every x′ ∈ Ux ∩ [s, t]. (3)

Let J be a finite subset of [s, t] such that U = {Ux : x ∈ J} is a cover of [s, t]
containing no proper subcover. Let 〈x1, x3, . . . , x2n−1〉 be a list of elements of
J in the increasing order. Then, by minimality of U , for every 0 < i < n there
exists an x2i ∈ Ux2i−1 ∩ Ux2i+1 ∩ (x2i−1, x2i+1). Moreover, x0 = s ∈ Ux1 and

4In [12, Lemma, page 505] Jungck proves the same estimate under the assumption that f
is (uPC) with a constant λ ∈ [0, 1). Our proof is similar to that of [12, Lemma, page 505].
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x2n = t ∈ Ux2n−1 . In particular, s = x0 ≤ x1 < x2 < · · · < x2n−1 ≤ x2n = t and
x2i, x2i+2 ∈ Ux2i+1 for every i < n. Therefore, by (3),

d(f(p(t)), f(p(s))) ≤
∑
k<2n

d(f(p(xk)), f(p(xk+1)))

≤
∑
k<2n

(λ+ ε)d(p(xk), p(xk+1)) ≤ (λ+ ε)`(p � [s, t]),

justifying (2).
To finish the argument for (ii) choose the numbers 0 = t0 < t1 < · · · < tn = 1

such that `(f ◦ p) ≤
∑

i<n d(f(p(ti+1)), f(p(ti))) + ε. Then, by (2),

`(f ◦ p) ≤
∑
i<n

d(f(p(ti+1)), f(p(ti))) + ε

≤
∑
i<n

(λ+ ε)`(p � [ti−1, ti]) + ε = (λ+ ε)`(p) + ε.

As this holds with any ε > 0, the desired inequality, `(f ◦ p) ≤ λ`(p), follows.

Remark 3.7. Notice that, unlike the metrics d and Dε from Lemma 2.2, the
metrics d and D0 from Lemma 3.6 do not need to be topologically equivalent.
For example, let X be union of the “topologist’s sine curve” (see Munkres [14,
p. 156]) and a semi-circular curve connecting one end of the vertical segment
with the “end” of the sine curve. If d is the standard metric on R2, then
〈X, d〉 is compact rectifiably path connected, while 〈X,D0〉 is not compact—it
is homeomorphic to [0,∞).

For our next lemma let us recall a notion similar to contractiveness but
without the λ.

Definition 3.8. A map f : X → X is shrinking, denoted (S), provided that
d(f(x), f(y)) < d(x, y) for any two different x, y ∈ X.5

The following lemma is the key step needed in our proof of Theorem 1.6.

Lemma 3.9. Assume that 〈X, d〉 is compact rectifiably path connected metric
space. If f : 〈X, d〉 → 〈X, d〉 is (PC), then f : 〈X,D0〉 → 〈X,D0〉 is (S).

Proof. Fix distinct x, y ∈ X. We need to show that D0(f(x), f(y)) < D0(x, y).
By Fact 3.3 there exists a path p : [0, 1] → X from x to y with D0(x, y) =

`(p). Since `(f ◦ p) ≥ D0(f(x), f(y)), it is enough to prove that `(p) > `(f ◦ p).
To see this, let Y be the rage of p. By Corollary 3.5, there exists an open

dense subset U of Y such that f � U is (LC). Thus, there exists also a non-
empty open W ⊂ U such that f � W is (C) with some constant L ∈ (0, 1).

5The mappings with the property (S) are in the spotlight of Edelstein [6] where they
are called contractive maps. In most of the literature contractive maps are the same as
contractions, that is, maps with the property (C). Term shrinking for (S) is used in [14].
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Choose a < b in [0, 1] such that P = p([a, b]) ⊂ W . Then, f � P is Lipschitz
with constant L. In particular, D∗(f � P )(x) ≤ L for every x ∈ P and so, by
Lemma 3.6(ii), `(p � [a, b]) ≤ L`(p � [a, b]). Moreover, by Fact 3.1, D∗f(x) < 1
for every x ∈ X. Thus, using Lemma 3.6(ii) also with λ = 1,

`(p) = `(p � [0, a]) + `(p � [a, b]) + `(p � [b, 1])

> `(p � [0, a]) + L`(p � [a, b]) + `(p � [b, 1])

≥ `(f ◦ p � [0, a]) + `(f ◦ p � [a, b]) + `(f ◦ p � [b, 1])

= `(f ◦ p),

as needed.

Proof of Theorem 1.4. Let D0 is the distance from Lemma 3.6. By
Lemma 3.9, f : 〈X,D0〉 → 〈X,D0〉 is (S). Let L = inf{D0(x, f(x)) : x ∈ X}.
We will show that

(•) there exists an x̄ ∈ X such that D0(x̄, f(x̄)) = L,

which is not completely obvious, since 〈X,D0〉 need not be compact, see Re-
mark 3.7.

Let 〈xn ∈ X : n < ω〉 be a sequence with limn→∞D0(xn, f(xn)) = L. By
Fact 3.3, for every n < ω there exists a path pn : [0, 1] → X from xn to f(xn)
onto Pn ⊂ X of length D0(xn, f(xn)). Reparametrizing pn as in (1), if necessary,
we can assume that `(pn � [0, t]) = t`(pn) for any t ∈ [0, 1]. Then, by Lemma 3.2,
there exists a subsequence 〈pnk

: k < ω〉 converging uniformly to a rectifiable
path p : [0, 1] → X with `(p) ≤ L. If x̄ = limk→∞ pnk

(0) = limk→∞ xnk
,

then p is from x̄ to p(1) = limk→∞ pnk
(1) = limk→∞ f(xnk

) = f(x̄). So,
D0(x̄, f(x̄)) ≤ `(p) ≤ L, that is, x̄ satisfies (•).

To finish the proof it is enough to notice that L must be equal 0, since oth-
erwise D0(f(x̄), f(f(x̄))) < D0(x̄, f(x̄)), contradicting minimality of L. Thus,
D(x̄, f(x̄)) = 0 and f(x̄) = x̄, as required.

The uniqueness of the fixed point is ensured by the fact that, according to
Lemma 3.9, f : 〈X,D0〉 → 〈X,D0〉 is (S).

4. Concluding remarks and open questions

As we saw in Examples 1.7 and 1.8, when the assumption of connectivity
of X is dropped, the fixed points of (ULC) map f : X → X may disappear.
However, for compact spaces, the periodic points must exist, even when (ULC)
is weakened to the following notions.

Definition 4.1. A map f : X → X is locally shrinking, denoted (LS), provided
for every x ∈ X there exists an open εx > 0 such that f � B(x, εx) is shrinking,
(S). Also, f is uniformly locally shrinking, (ULS), if the same ε > 0 works for
all x ∈ X.

Edelstein’s [6, Theorem 2] implies the following result for compact spaces.
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Theorem 4.2. (Edelstein 1962) If 〈X, d〉 is compact and f : X → X is (ULS),
then f has a periodic point.

Edelstein also gives an example [6, Example 2, p 79] that his theorem does
not generalize to the (LS) functions on non-compact spaces. Nevertheless, The-
orem 4.2 remains true when f is assumed only to be (LS). This follows from the
following variation of [2, theorem 4.2].

Proposition 4.3. (LS) implies (ULS) for maps f : X → X with compact X.

Proof. For each y ∈ X find an open set Uy 3 y such that f � Uy is shrinking.
By compactness of X, there is a finite X0 ⊂ X such that U0 = {Uy : y ∈ X0}
covers X. Let δ > 0 be a Lebesgue number for the cover U0 of X. (See e.g. [14,
lemma 27.5].) Then ε = δ/2 satisfies (ULS).

Corollary 4.4. If X is compact and f : X → X is (LS), then f has a periodic
point.

Since the property (S) is the key in our proof of Theorem 1.4, it might
be tempting to try proving it by showing, generalizing Proposition 4.3, that for
compact spaces X every (PC) map f : X → X is (LS). However, there is no such
implication, even if f is assumed to be (uPC), as justified by our example [3,
Theorem 1]. (The function constructed there is (uPC). It cannot be (LS) by
Corollary 4.4, since it does not have periodic points.)

Two interesting questions arise from Theorem 1.4 and the above discussion.

Problem 1. Can Theorem 1.4 be proved when we assume only that the compact
space 〈X, d〉 is just connected? Or just path connected?

Clearly connectedness assumption on X is crucial, as shown by Example 1.8
and one from [3, Theorem 1].

A map f : X → X is pointwise shrinking, denoted (PS), if for any x ∈ X
there is an open neighborhood Ux 3 x such that d(f(x), f(y)) < d(x, y) for all
y ∈ Ux \ {x}.

Problem 2. Can Theorem 1.4 be proved when we assume that the map f is
just (PS), rather than (PC)?

A possible way of attacking Problem 2 would be to show that the conclusion
of Lemma 3.9 when function f is assume to be just (PS). We do not know, if such
generalization is true. However, our proof of Lemma 3.9 does not generalizes to
such scenario. Indeed, in our proof of the lemma we use the fact, that

• if p : [0, 1]→ X is a rectifiable path and the restriction f � p[[0, 1]] is (PC),
then `(f ◦ p) < `(p).

However, such implication does not hold if f � p[[0, 1]] is just (PS). Indeed, if p is
a natural parameterization of P = [0, 1]×{2} ⊂ R2 and f maps each 〈t, 2〉 ∈ P
onto 〈cos t, sin t〉 ∈ S1 ⊂ R2, then f � P is (PS) (in the standard metric of R2),
while `(f ◦ p) = `(p).
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